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ABSTRACT 
Breast cancer is overall the most common cancer in women worldwide and endometrial 
cancer is the most common gynaecological cancer in the industrialized world.  History of 
a first-degree relative with breast or endometrial cancer has been related to a twofold 
increase in risk of the respective diseases.  Whilst genetic risk factors for endometrial 
cancer in general or for breast cancer in women not carrying any high-penetrance 
mutations are largely unknown, a polygenic model has been suggested to account for 
residual familial risk.  This model anticipates small effects of common, low-penetrance 
genetic risk variants in combination with environmental influence.  We thus set out to 
study common variation in key breast and endometrial cancer genes in relation to a) 
breast or endometrial cancer risk overall or in subgroups of environmental risk factors, b) 
the risk of tumour characteristics-defined breast cancer, or c) breast cancer death.  In this 
population-based case-control study, we included 1579 breast cancer cases, 705 
endometrial cancer cases and 1565 shared controls.  All participants donated tissue or 
whole blood and provided detailed information about various lifestyle factors through 
questionnaires.   
 
The CYP17, ATM, CHEK2 and ERBB2 genes have all been suggested to play a key role 
in cancer aetiology and progression.  They are important candidate genes in breast and 
endometrial cancer aetiology specifically through their involvement in the estrogen 
metabolism pathway, DNA-damage response or cell proliferation.  We genotyped 
common single nucleotide polymorphisms (SNPs) and rare variants in these genes in all 
cases and controls.  Using regression models, we then assessed the effect of the variants 
and their haplotypes on cancer risk and survival. 
 
We found that the rare 1100delC deletion in CHEK2 was more common in breast cancer 
cases than controls and increased breast cancer risk with an odds ratio of 2.26 (95% CI 
0.99–5.15) for carriers versus non-carriers.  Our results also indicated an increased risk of 
developing endometroid endometrial cancer for homozygous carriers of the rare allele 
(AA) of a tagSNP (rs4987886) in CHEK2 (P = 0.005), when contrasted with GG carriers.  
In addition, we found a decreased endometrial cancer risk among non-smoking carriers of 
a haplotype in ATM (P = 0.0007) and among carriers of a haplotype in CHEK2 who had 
experienced menopause below 49 years of age (P = 0.0009), compared to non-carriers of 
these haplotypes.  We found no effect of genetic variation in CYP17 on breast cancer risk 
regardless of histopathology or menopausal hormone use.  The ATM, CHEK2 or ERBB2 
genes did not appear to affect the risk of tumour characteristics-defined breast cancer or 
breast cancer death.  We did not find any evidence supporting a role for the ATM and 
ERBB2 genes in breast cancer aetiology, and the ERBB2 gene also did not seem to have 
an effect on endometrial cancer risk. 
 
Our estimate of the breast cancer risk related to the CHEK2*1100delC is in line with 
previous studies published in Northern European populations.  Further studies regarding 
CHEK2 or ATM in relation to endometrial cancer risk are however required for 
corroboration since our results became statistically non-significant after multiple testing 
adjustment.   
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INTRODUCTION 

Whilst our knowledge of the human body is extensive, at the same time we are still 
ignorant in many areas.  The fact that we are often restricted to simplified experiments – 
whether the experiments are epidemiological observations or controlled laboratory 
situations – might be one of the reasons for this ignorance.  We repeatedly explore an 
isolated feature, a cause and effect.  However, the human body and its cells do not work 
in such a simple way.  Cells are a complex system of DNA, proteins and fats.  All have 
their necessary role and all make the picture complete.  We most often cannot isolate one 
gene, one protein or one fatty acid and assume that the effect we observe is the only 
effect that exists. 
 
In each of my studies I examine one gene at a time, looking at a single effect on cancer 
risk and survival.  Even though most of the genes are covered comprehensively with 
respect to common variation, I still only explore one gene at a time.  As has been widely 
stated, cancer is not a simple process.  It is most likely not an effect of any single gene in 
each case.  One possible reason why in my studies I have failed to find a major 
association – even though my hypotheses were reasonable – might be that I am simply 
not looking at the whole picture.  However, as is often said in Icelandic:  ”Margt smátt 
gerir eitt stórt” (many small pieces bring light to the whole picture).  This is my 
contribution to the scientific world, small pieces of knowledge meant to shed a light on 
the mechanisms of breast and endometrial cancer aetiology and progression.   
 
This project initiated in the early 90’s with questionnaire-based case-control studies on 
breast and endometrial cancer, where extensive information on all participants was 
obtained.  In the late 90’s, a subset of the participants in the initial questionnaire-based 
studies were selected to be included in genetic studies.  Blood and tissue samples were 
collected, DNA extracted, candidate genes selected, and polymorphisms analyzed.  
Development in the field was rapid, however, and at the end of this first phase of the 
genetic studies the investigators believed that a larger number of candidate genes – 
preferably whole pathways – needed to be studied with better coverage of each gene.  
Fortunately, enough blood and tissue samples had been collected from the participants to 
support another phase of the genetic studies.  At this point, in February 2003, I began my 
thesis work on this project.  DNA was extracted a second time and candidate gene 
selection began.  In my thesis, I decided to investigate the ESR1, EGF, ATM, CHEK2 and 
ERBB2 genes in relation to breast cancer risk.  I had explored the relationship of 300 
candidate genes with estrogen, estrogen metabolism and estrogen downstream pathways 
and chose these five to be the main focus of my thesis.  In the end however, my thesis 
included studies of the CYP17, ATM, CHEK2 and ERBB2 genes in relation to risk of 
breast and endometrial cancer as well as breast cancer prognosis.  CYP17 was originally 
selected and genotyped in the previous phase of the genetic studies, but was included in 
my thesis.  Analyses of the ESR1 and EGF genes will however have to wait their turn. 
 
During the four years of my studies, development in the field of genetic association 
studies has again been rapid – or should we say continues to be rapid.  We have now the 
capacity to perform genome-wide association studies.  We therefore do not necessarily 
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have to rely on existing biological knowledge for selecting candidate genes.  The 
question remains however whether genome-wide association studies will in the end 
provide us with the complete picture.  Perhaps in combination with well powered linkage 
studies, we will be able to reveal the genetic spectra involved in cancer aetiology.  We 
could say that we are at the beginning of a new era.  We have recognized our mistakes in 
the past and are eager to move forward.  We have also realized that we need to share 
information and join forces.  What these new efforts will bring, only future can tell.  
However, we are certainly moving in the right direction. 
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BACKGROUND 

Human Genome Variation 

The haploid human genome constitutes about 3.3 billion basepairs [1].  Around 3% of the 
genome consists of coding sequences [1] including 30,000-40,000 protein-coding genes 
[2].  The majority of the genome (99.9%) is identical between any two individuals, but 
variation does exist between two copies of the same chromosome [3].  New mutations 
can arise in individuals, either in somatic cells or in the germ-line.  However, because 
mutation rates are low, the vast majority of allele differences within an individual are 
inherited rather than resulting from somatic mutations [1].  Most mutations arise as 
copying errors during DNA replication because DNA polymerases are error-prone, but 
DNA can also be damaged by exposure to natural ionizing radiation and reactive 
metabolites.   
 
Large-scale chromosome abnormalities involve loss or gain of chromosomes or breakage 
and rejoining of chromatids.  Smaller scale mutations can be grouped into the following 
mutation classes [1]: 
 
• Base substitutions involve replacement of usually a single base. 

− Splice site mutations create or destroy signals for exon-intron splicing. 
− Synonymous (silent) mutations result in a new codon specifying the same 

amino acid. 
− Non-synonymous mutations 

◊ Nonsense mutations – a codon specifying an amino acid is replaced by a 
stop codon. 

◊ Missense mutations – the altered codon specifies a different amino acid. 
• Deletions – one or more nucleotides are eliminated from a sequence. 
• Insertions – one or more nucleotides are inserted into a sequence. 
• Framshift mutations that can be produced by deletions, insertions or splicing 

errors. 
• Variable number tandem repeat polymorphisms – caused by deletions/insertions 

in tandemly repetitive DNA. 
− Microsatellites – very short di-, tri- and tetranucleotide repeats. 
− Minisatellites – repeats of intermediate length. 

 
Mutations drive evolution, but they can also be pathogenic and cause or increase the risk 
of diseases.  Pathogenic mutations can occur in coding sequences of genes, in intragenic 
non-coding sequences (necessary for correct expression of the gene), or in regulatory 
sequences outside exons (promoter elements or distantly located regulatory elements) [1].  
Mutations can be broadly categorized into gain-of-function and loss-of-function 
mutations [1].  Gain-of-function mutations usually cause dominant phenotypes, as the 
presence of a normal allele does not prevent the mutant allele from behaving abnormally.  
Loss-of-function mutations, on the other hand, most often produce recessive phenotypes, 
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which means that normal function can be sustained with half the amount of the genetic 
product.  For some gene products, 50% of the normal level is not sufficient for normal 
function, a phenomenon called haploinsufficiency.  Also, sometimes a non-functional 
mutant protein interferes with the function of the normal allele in a heterozygous person, 
giving a dominant negative effect.   
 

Linkage vs. Association 

Linkage analysis was widely used in the early 1990s to locate genes and mutations 
involved in monogenic disorders.  In linkage analysis, co-segregation of a disease and 
marker alleles is assessed among related individuals.  If evidence for such co-segregation 
is found, one can infer the existence of a disease-causing locus near the marker locus.  
Because the focus of linkage mapping is on the small number of generations within a 
family, a limited number of recombination events have occurred and linkage can be 
detected over large genetic distances [4, 5].  Hence, only approximately 300 highly 
informative microsatellite markers evenly spaced across the human genome are needed in 
a genome-wide scan [6].  Microsatellites are suited for linkage studies since they 
typically have a large number of alleles (i.e. repeat lengths), making it easy to identify 
alleles co-segregating with a disease.   
 
Linkage studies have been useful in detecting rare mutations in genes with high 
penetrance and strong effects that are involved in monogenic disorders or complex 
diseases [6-8].  However, they are not very powerful in detecting genes with low 
penetrance and small to moderate effects on a disease.  Recent focus has therefore been 
on population-based genetic association studies, as they can more easily detect small 
effects of low penetrance common alleles.  Association studies however require a much 
denser set of markers than linkage studies since the size of the genomic regions 
harbouring alleles that co-segregate with a disease in the population may be very small 
[4, 5].  This is due to the large number of recombinations over successive generations in 
the population.  As single nucleotide polymorphisms (SNPs) are by far the most abundant 
variants in the human genome [1], they have become the markers of choice in genetic 
association studies. 
 

Single Nucleotide Polymorphisms 

A SNP is defined as a single base change that occurs with a frequency over 1% in the 
population [1].  It has been estimated that about 11 million SNPs with at least 1% minor 
allele frequency exist in the genome [9].  They are found throughout the genome, e.g. in 
exons, introns, intergenic regions, in promoters or enhancers.  However, SNPs in non-
coding sequences and synonymous SNPs in coding sequences are generally more 
common than non-synonymous SNPs.  For example, a typical gene contains only one or 
two missense SNPs [10]. 
 
There are several reasons for the usefulness of SNPs in genetic association studies in 
addition to their abundance in the human genome:  
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1. As SNPs are single base substitutions, they can be rapidly and efficiently 

genotyped.  
 

2. Groups of adjacent SNPs may exhibit patterns of correlations that can be used to 
enhance gene mapping. 

 
3. Not only can SNPs be used as surrogate markers – like microsatellites – but some 

of them can also be tested directly as functional variants. 
 

4. SNPs are less mutable than other types of variants [11], which minimizes the 
possibility that associations will be confounded by alleles having mutated to 
different forms between generations.  

 

Direct vs. Indirect Association 

In genetic association studies, the SNPs of interest can either be tested directly or 
indirectly [12].  Direct testing implies that variants known to have deleterious effect on 
the protein product are targeted.  This type of genetic association study most resembles 
classical epidemiology case-control studies where the frequency of the exposure (the 
genetic variant in this case) is compared between cases and controls.  This genetic 
association study type is also the easiest to analyze and the most powerful, but the 
difficulty is the identification of candidate polymorphisms.  It is likely that many causal 
variants involved in the development of common, complex diseases will be non-coding 
(see Genetic Spectra of Common Diseases below).  Such variants may affect gene 
regulation and expression or differential splicing, but our ability to predict such effects 
are limited.  However, even though direct genetic association studies only have the 
potential to identify a part of the genetic causes of common diseases, a whole-genome 
approach to direct association is worthwhile [12, 13]. 
 
In indirect genetic association studies, a marker (called a haplotype tagging SNP) 
inherited together (in linkage disequilibrium) with the causal locus can act as a surrogate 
for the causal locus and can thus be assessed directly instead of the causal locus.  The 
analysis of indirect association studies is however not as straightforward as that of direct 
association studies, and indirect studies are also less powerful than direct studies.  
Furthermore, to be able to exclude that a causal locus exists when a negative association 
is observed in the area under study, the coverage of the genotyped SNPs in an indirect 
association study needs to be carefully assessed in order to ensure that the majority of the 
variation in the area has been predicted [12]. 
 
The main advantage of indirect association studies over direct association studies is the 
detection of causal variants that have not previously been identified in the human 
genome.  If indirect association studies are well designed and have enough SNP coverage 
of the area under study, they have the potential to detect any common variant in the area 
that is associated with the disease.  The whole-genome approach to indirect association 
studies has therefore enormous promise in the future for identifying common alleles that 
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play a role in the development of common, complex diseases.  In spite of that, candidate 
gene studies will continue to play an important part since they will allow genotyping of 
markers more densely, thus improving detection of true causal association as well as 
increasing the confidence that negative findings represent true negatives [12]. 
 

Linkage Disequilibrium 

Linkage disequilibrium (LD) implies that a particular allele at one locus is found together 
on the same chromosome with a specific allele at a second locus more often than 
expected if the loci were segregating independently in a population [14].  Pairs of loci in 
LD are generally close together, but the distances also vary (Figure 1) [15].   
 

 
Figure 1.  Observed patterns of LD decay on chromosome 22.  (From Palmer et al. [15]). 
 
When a variant is first formed in a population because of mutation, it will be perfectly 
correlated with nearby variants.  However, over successive generations, recombination 
will break up the correlations and LD will decay.  Mutation and recombination appear to 
have the most evident impact on LD, but demographic aspects of a population also 
contribute to the extent and distribution of LD [14].   
 
The two most common measures of pairwise LD are the D´ and R2.  Both measures range 
from 0 (no disequilibrium) to 1 (complete disequilibrium), but their interpretation differs.  
D´ essentially measures the amount of recombination between loci, where D´=1 means 
that no recombination has occurred.  Values of D´ <1 indicate that LD has been disrupted 
by recombination, but values of D´ between 0 and 1 have no clear interpretation [14].  
Hence, LD based on D´ can be divided into strong LD (D´ near 1), weak LD (D´ 
significantly lower than 1) and intermediate/unknown LD (intermediate D´) [16].  
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The R2 measures the statistical correlation between two loci [16] and is related to the 
allele frequencies of the loci [12].  R2 =1 means that knowledge of alleles at one locus can 
perfectly predict the alleles at the other [14].  Intermediate values of R2 are easily 
interpretable since they are related to a) how well one locus predicts the other and b) the 
loss of power due to testing the locus of interest indirectly [14].  When using a surrogate 
marker for assessing an effect of a causal locus on disease, the sample size has to be 
increased by 1/R2 (where R2 represents how well the surrogate marker predicts the causal 
locus) to achieve the same power as if the causal locus had been assessed directly [17].  
These qualities of the R2 measure make it the most appropriate measure of LD for the 
selection of haplotype tagging SNPs (tagSNPs) in genetic association studies.   
 
The pattern of LD across the human genome has been described as a series of high LD 
regions (blocks) separated by short discrete segments of very low LD (recombination hot 
spots) [18, 19].  The high LD regions have been suggested to contain limited haplotypic 
diversity, where only three to five common haplotypes can account for 80-90% of all 
chromosomes in the population [19, 20].  However, discussion has surfaced regarding 
whether haplotype blocks have clear boundaries caused by recombination hot spots or 
whether they arise as a result of random recombination [14, 16, 21].  Furthermore, the 
idea of a clearly structured genome with respect to LD has been criticized and some have 
showed that patterns of LD can vary greatly [22]. 
 
Although the idea of tagSNPs was inspired by the observation of haplotype blocks – i.e. 
that few tagSNPs can predict the few common haplotypes observed in blocks – the 
tagging approach does not require clear blocks of LD [23, 24].  Regardless of how 
discreet the LD pattern is or what causes the pattern, the question important to genetic 
association studies is how well a tagSNP can represent the tagged SNP.  Goldstein and 
colleagues argue that the average marker density necessary to find a set of tagSNPs 
sufficient to represent the common allelic variants in the human genome is 1-2 per 10kb 
[23].  This suggested marker density for the tagging approach in genetic association 
studies is somewhat lower than the marker density necessary to achieve stable block 
definitions, due to the fact that the length of haplotype blocks decreases with increasing 
marker density [16]. 
 

Genetic Spectra of Common Diseases 

The current focus of genetic association studies exploring common diseases has almost 
entirely been on genetic markers that are common (minor allele frequency >1%).  This is 
mainly due to two reasons.  First, the ‘common disease/common variant’ (CD/CV) 
hypothesis [25].  This hypothesis states that genetic influences on diseases of high 
population prevalence are old, and are thus typically very common.  This hypothesis is 
supported by a few examples, including the APOE ε4 allele in Alzheimer’s disease [26], 
Factor VLeiden in deep venous thrombosis [27], and PPARγ Pro12Ala in type II diabetes 
[28].  However, alternative hypotheses to the CD/CV exist, such as the classical disease 
heterogeneity hypothesis (or multiple rare-variant hypothesis), in which disease 
susceptibility is due to distinct genetic variants in different individuals and disease-
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susceptibility alleles have low population frequencies [29].  As common diseases are 
assumed to be influenced by many genetic and environmental factors, all with a modest 
effect on the trait (see below), genetic association studies are not amenable to discovering 
these rare alleles.  The reasons are that the sample sizes required to detect the modest 
effects of the rare alleles will become impossibly large and since many patients will have 
unique mutations, associating each mutation with the disease will be almost impossible 
[15].  Hence, the second reason why the current focus of genetic association studies is on 
common genetic markers is a purely practical one.  Genetic association studies can not 
possibly detect the modest effect of rare mutations on disease.  Furthermore, since 
family-based linkage analyses detect mainly genes with strong effects on disease they 
will also be ill-equipped to locate rare alleles with small effects. 
 
Wang and colleagues suggest that the allelic spectra of most common diseases probably 
falls between these two extreme hypotheses [30].  Empirical evidence suggests that both 
high- and low-frequency variants contribute to common diseases [26, 27, 31-34].  In 
addition, studies have indicated that the distribution of phenotypic-effect sizes of genetic 
variants is consistent with the existence of few genetic loci with large effects and 
numerous loci with small effects [30, 33].  The potential for a large number of variants 
with small effects to be involved in the aetiology of common diseases is supported by 
recent findings that allelic variation frequently affects gene expression and exon splicing 
[35-37].  This kind of variation is likely to have smaller effects than polymorphisms that 
affect the coding sequence.  For example, causal alleles for monogenic disorders are 
highly penetrant and often cause severe changes in protein function.  These mutations are 
often subject to negative selection and thus remain rare in the population.  On the other 
hand, alleles that underlie complex diseases have more subtle effects on disease risk since 
they are more likely to include non-coding regulatory variants with a modest impact on 
expression.  These alleles are therefore far less likely to be subject to strong negative 
selection and will thus most likely become more common in the population. 
 

Breast Cancer 

Cancer of the female breast is both a common and complex disease.  It is responsible for 
one in ten of all new cancers diagnosed worldwide each year [38] and is the most 
common cancer in women in both high-resource and low-resource countries.  It is also 
the most frequent cause of cancer death in females worldwide [38].  In Sweden, one in 
ten women will develop breast cancer by the age of 75 [39].  The age-standardized 
incidence rate was 142 per 100,000 women in 2004 with an annual increase of 1.6% for 
the previous 10 years [39].  In contrast to the increasing incidence, the breast cancer 
mortality has decreased slightly since 1975, which is thought to be due to intensified 
screening and improved therapy [39].  The 5-year survival rate has been increasing over 
the last several decades and is now estimated to be 85% [40]. 
 
The highest breast cancer incidence rates in the world occur in Northern and Western 
Europe, Northern America, Australia, New Zealand, Uruguay and Argentina [41].  
Incidence is however low throughout Africa and Asia, as well as most of Central and 
South America [41].  Despite this, incidence rates have been rapidly increasing in some 
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low risk areas, reflecting changes towards a ‘westernized’ lifestyle and reproductive 
pattern [42]. 
 
Factors that have been shown to increase breast cancer risk are late age at menopause 
[43], early age at menarche [43], hormonal replacement therapy [44, 45], recent oral 
contraceptive use [46], postmenopausal obesity [47], adult weight gain [48], and alcohol 
consumption [49], whilst premenopausal obesity [47] and physical activity [50, 51] 
reduce the risk.  A common thread through these risk factors is that increased exposure to 
estrogens and progesterone seems to increase breast cancer risk whilst decreased 
exposure decreases the risk.  Nulliparity and older age at first birth also increase the risk 
of breast cancer [43], whilst early age at first birth [43], long duration of breast feeding 
[52] and higher parity decrease the risk [43].  This is thought to be related to the 
protective effects of a fully differentiated mammary gland reached at full term pregnancy 
[53].  Other factors have been also suggested to increase breast cancer risk.  Adolescent 
exposure to ionizing radiation is thought to affect breast cancer risk through DNA 
damage [54].  History of proliferative benign breast disease increases breast cancer risk 
and seems likely to be a precursor of the subsequent breast cancer if the cancer occurs 
within 10 years of the development of the benign breast lesion [55].  With a longer 
interval, however, benign breast disease seems to be merely a marker of increased 
susceptibility to breast cancer [55].  Diabetes type 2 seems to increase breast cancer risk 
through increased insulin levels that stimulate androgen synthesis and thereby cause 
decreased levels of sex hormone binding globulin and increased levels of free estrogen 
[56].  Tall stature appears to increase breast cancer risk which might be due to the fact 
that tall women may develop a higher number of ductal stem cells in utero than other 
women [47].  High mammographic breast density is also a risk factor for breast cancer 
[57].  Epithelium and stroma appear white on a mammogram, a phenomenon which is 
referred to as mammographic density [57].  High mammographic density has been 
associated with a greater total nuclear area, a greater proportion of collagen, and a greater 
area of glandular structures, which might reflect a greater number of breast cells at risk 
[57]. 
 
A positive family history of breast cancer is one of the major known risk factors for the 
disease.  Women with one affected relative have an approximately twofold increased risk 
of breast cancer compared to women with no affected relatives and the risk increases with 
increasing number of affected first-degree relatives [58-60].  These observations suggest 
that heritable factors are important in breast cancer aetiology.  Indeed, a Nordic twin 
study has reported that hereditary factors explain 27% of breast cancers [61]. 
 
BRCA1 and BRCA2 
An intensive search for genetic factors causing hereditary breast cancer has been ongoing 
for the last couple of decades.  Initially this search led to the identification of the BRCA1 
and BRCA2 genes.  BRCA1 was localised to chromosome 17q21 by genetic linkage in 
1990 [8] and subsequently cloned in 1994 [62].  BRCA2 was localised to chromosome 
13q12-13 in 1994 [63] and cloned in 1995 [64, 65].  Mutations in these genes are highly 
penetrant but the prevalence of specific mutations is small.  Most mutations found in 
breast and/or ovarian cancer families appear to truncate the protein product [66].  The 
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majority are small frameshift insertions or deletions, but missense and nonsense 
alterations as well as mutations affecting splice sites have also been described [66].   
 
A number of population-specific founder mutations have been identified in the BRCA 
genes.  In BRCA1 the two most common mutations are 185delAG and 5382insC [67] 
which occur at a 10-fold higher frequency in the Ashkenazi Jewish population than in 
non-Jewish Caucasians [68].  Founder mutations in BRCA2 include the 6174delT 
mutation – which has been found in Ashkenazi Jews [69] – and the 999del5 mutation, 
which has been found in the Icelandic and Finnish populations [70, 71].  The most 
frequent mutation in Sweden is the 3171ins5 in BRCA1, which has been reported in 65% 
of all breast cancer families detected with BRCA1 or BRCA2 mutations in Western 
Sweden [72].  In most countries a higher proportion of breast cancers seem to be due to 
BRCA1 mutations than to BRCA2 mutations [73].  This is in contrast to observations in 
Iceland where BRCA2 linkage has been shown to predominate [71, 74].   
 
BRCA1 and BRCA2 are thought to account for a high proportion of high-risk breast 
cancer families.  Ford and colleagues assessed the contribution of BRCA1 and BRCA2 to 
inherited breast cancer by linkage and mutation analysis in 237 families with four or 
more cases of breast cancer diagnosed below age 60 years [75].  They reported that 84% 
of the families were linked to either BRCA1 or BRCA2.  The majority (81%) of the 
breast-ovarian cancer families showed linkage to BRCA1, with most others (14%) 
showing linkage to BRCA2.  On the other hand, the majority of families with male and 
female breast cancer showed linkage to BRCA2 (76%).  Furthermore, the estimated 
cumulative risk of breast cancer by the age of 70 reached 84% for BRCA2 mutation 
carriers [75] and 71% for BRCA1 carriers [76].   
 
Estimates based on high-risk families such as reported by Ford and colleagues [75] are 
directly relevant to high-risk families, but may overestimate the risk in carriers randomly 
selected from the population.  A recent meta-analysis reported penetrance estimates from 
22 population studies [77].  The average cumulative risks of breast cancer by age 70 
years were 65% in BRCA1 mutation carriers and 45% for BRCA2 mutation carriers. 
 
As mentioned above, the prevalence of BRCA1 and BRCA2 mutations is 84% among 
high-risk breast cancer families [75].  However, the prevalence in families with fewer 
breast cancer cases is markedly lower; excess familial risk due to mutations in these 
genes has been estimated to be only 17% [34].  The most likely explanation is that whilst 
BRCA1 and BRCA2 are the most important high penetrance breast cancer susceptibility 
genes, a collection of other genes conferring lower risks explain the majority of the 
familial aggregation [33].   
 
Five percent of breast cancer cases with first degree family history carry mutations in 
BRCA1 and BRCA2 [34].  Numerous studies have sought to estimate the overall 
frequencies of BRCA1 and BRCA2 mutations in breast cancer cases unselected for family 
history, but the majority of the studies have only included women at young age of 
diagnosis.  The overall mutation prevalence in breast cancer cases under 55 years of age 
as been reported to be 0.7% for BRCA1 and 1.3% for BRCA2, but was significantly 
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higher in cases diagnosed under 35 years of age [34].  Thompson and Easton estimate the 
overall fraction of breast cancer cases in outbred populations carrying BRCA1 and 
BRCA2 mutations to be around 1-2% for each gene [66].  The overall frequencies of 
BRCA1 and BRCA2 mutations within large outbred populations have been inferred to be 
somewhat lower; 0.13% for BRCA1 and 0.17% for BRCA2 [78]. 
 

Endometrial Cancer 

Uterine endometrial carcinoma is the 7th most common cancer in females worldwide and 
the 14th leading cause of cancer deaths [38].  Incidence rates are higher in North America 
and Europe than in Asia and Africa [79].  In Sweden, 3 in 100 women develop 
endometrial cancer by the age of 85 [39].  The age-standardized incidence has been 
slowly increasing for the last five decades and was 26 per 100,000 women in 2004 [39].  
The mortality rate has on the other hand been decreasing slightly over the past four 
decades with the 5-year survival rate currently being 82% [80].   
 
Endometrial cancers can be divided into Type I endometroid tumours and Type II non-
endometroid tumours [81-83], where endometroid tumours constitute the majority of 
endometrial cancers.  The endometroid tumours appear to be the tumours that are mainly 
caused by estrogen exposure [81-83] since they are associated with endometrial 
hyperplasia, express estrogen and progesterone receptors [84] and are associated with 
elevated levels of serum estradiol [82].  They are also characterized overall by a 
favourable prognosis [81-83]. 
 
The most important risk factor for endometrial cancer is unopposed estrogen exposure.  
This is reflected in the increased endometrial cancer risk in women with late age at 
menopause or adult obesity [85], in women that use postmenopausal estrogen without 
progestin addition [86] or in women that are nulliparous [87].  It is also reflected in the 
decrease in risk in women that use combined oral contraceptives [88], have higher parity 
[87], smoke [89] or are physically active [90].  Another factor that increases the risk is 
diabetes [85], whilst late age at last birth decreases the risk [87].  The underlying 
biological mechanisms for the last two associations are not clear but a few have been 
suggested.  The biological mechanism in diabetics may be similar for breast and 
endometrial cancer, i.e. that increased insulin levels lead to increased levels of free 
estrogen [56].  For women delivering their last child late in life it has been suggested that 
the birth may provide protection by mechanically clearing the uterine lining from cells 
that have undergone malignant transformation [91].   
 
Another important risk factor for endometrial cancer is family history of the disease.  
Having a first degree relative with endometrial cancer approximately doubles the risk of 
developing the disease [87].  This observation suggests that endometrial cancer is not 
only caused by environmental factors, but that genetic components also play a role in the 
disease development. 
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Genetics of Endometrial Cancer 
Hereditary non-polyposis colorectal cancer (HNPCC) is a dominantly inherited syndrome 
with germ-line abnormalities in one of five DNA-mismatch repair genes (MSH2, MLH1, 
PMS1, PMS2, MSH6) with resultant microsatellite instability.  Females with HNPCC 
have a tenfold increased lifetime risk of endometrial cancer compared with that of the 
general population and the lifetime risk of endometrial cancer (60%) is higher than that 
for colorectal carcinoma (54%) [92].   
 
The lifetime risk of endometrial cancer in HNPCC families related to specific mutations 
in the DNA-mismatch repair genes has been explored in a few studies.  Vasen and 
colleagues reported 35-40% cumulative risk of endometrial cancer by age 70 in women 
from 40 HNPCC families carrying MSH2 mutations and a 25% cumulative risk in female 
MLH1 mutation carriers from 34 HNPCC families [93].  Hendriks et al. examined 20 
HNPCC families with mutations in MSH6 and reported mutation carriers to have 71% 
cumulative risk of endometrial cancer by the age of 70 [94].   
 
Somatic mutations are common in endometrial cancers but differ between Type I and 
Type II cancers.  Type I carcinomas frequently show mutations in the MLH1, MSH2, 
MSH6, PTEN, KRAS and ß-catenin genes, whilst Type II cancers are more likely to 
contain amplification of the ERBB2 gene and mutations in the TP53 gene [95]. 
 

Candidate Genes 

In this population-based, genetic association study, we applied both direct and indirect 
analyses to investigate the CYP17, ATM, CHEK2 and ERBB2 genes in relation to breast 
cancer risk, breast cancer survival and endometrial cancer risk.  The four genes have 
previously been extensively studied in relation to breast cancer.  However, since we did 
not study the effect of CYP17 on endometrial cancer risk and since common variation in 
the ATM, CHEK2 and ERBB2 genes has never before been explored in relation to the risk 
of this cancer, I focus my literature review below on the genes’ relationship with breast 
cancer risk as well as breast cancer survival when applicable. 
 
CYP17 
One of the key enzymes in the synthesis of sex hormones, such as estrogens and 
androgens, is Cytochrome P450c17 (CYP17).  CYP17 catalyses the 17α-hydroxylation of 
pregnenolone and progesterone, and these intermediates are then converted to 
dehydroepiandosterone and androstenedione by the 17,20-lyase activity of the enzyme 
[96, 97].    
  
The CYP17 gene spans 7 kb of genomic sequence on chromosome 10 (dbSNP build 126).  
A single T (A1 allele) to C (A2 allele) base change in the 5’ promoter region of CYP17 
(c.1-34T>C) has been suggested to create an additional binding site for the transcription 
factor Sp1 [98].  This could theoretically lead to increased levels of the enzyme, but use 
of the extra binding site has not been confirmed experimentally [99].  Three groups have 
reported an association of the A2 allele with increased breast cancer risk [100-102] whilst 
others have failed to replicate those findings [99, 103-115].  A recent meta-analysis of 15 
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case-control studies did not find any overall association [116] but this analysis was 
criticized by Feigelson and colleagues who found a borderline significant association 
between the CYP17 polymorphism and advanced breast cancer [117]. 
 
ATM 
The ATM (ataxia-telangiectasia mutated) gene covers 146.3 kb on chromosome 11 
(dbSNP build 126).  The ATM protein is activated in response to DNA damage and 
triggers phosphorylation of CHEK2 and other proteins that promote cell cycle arrest and 
activation of DNA repair [118-124].    The ATM gene is mutated in ataxia-telangiectasia 
(A-T), a rare autosomal recessive disorder associated with a complex phenotype that 
includes radiosensitivity and increased risk of cancer.  Breast cancer risk has been found 
to be increased in relatives of A-T patients [125, 126] and in A-T heterozygotes [127, 
128].  Previous mutation screening studies have indicated that missense mutations in 
ATM – not protein truncating mutations – are over-represented in breast cancer cases 
compared to the general population [129-134].  A recent publication refuted this finding 
and found that ATM mutations that cause ataxia-telangiectasia – i.e. truncating, splicing 
and missense mutations – are breast cancer susceptibility alleles [135].  They found an 
over twofold increase in breast cancer risk related to a combination of 12 mutations, six 
of which were truncating mutations [135].  Thus, controversy remains both regarding 
which type of mutations in ATM are involved in breast cancer aetiology, and also which 
mutations actually drive the association with breast cancer risk [134, 136-144].  With 
regard to common variation in ATM, three groups have reported a significant effect 
between specific common haplotypes in ATM and breast cancer risk [141, 144, 145], 
whilst one group did not find any association [146].  No association has been reported 
between ATM common haplotypes and breast cancer survival or tumour characteristics. 
 
The rare 4258 C→T and 2527 T→C mutations in ATM are two of many missense 
variants that have been thought to increase breast cancer risk.  Although the 4258 C→T 
and 2527 T→C missense variants do not appear to target residues known to be crucial for 
ATM function [134], increasing evidence suggests that missense variants in ATM cause 
chromosomal instability and abolish the radiation-induced kinase activity of ATM [147].  
Mutant ATM protein also appears to interfere with normal ATM function in a dominant-
negative manner [147].   
 
CHEK2 
The CHEK2 (checkpoint kinase 2) gene spans 54.1 kb on chromosome 22 (dbSNP build 
126).  Following phosphorylation of the CHEK2 protein by ATM after DNA damage, 
activated CHEK2 phosphorylates p53, Cdc25, and BRCA1, thereby promoting cell cycle 
arrest and activation of DNA repair [118-121].  Mutations in the CHEK2 gene have been 
found in patients with Li-Fraumeni syndrome [148], a highly penetrant familial 
phenotype characterized by the occurrence of breast cancers, sarcomas, brain tumours, 
leukemias, and adrenal cortical tumours [149].  One of the mutations – a rare deletion in 
CHEK2 named 1100delC – leads to a premature termination of translation that abolishes 
CHEK2 kinase activity [150].  This deletion has been found to increase breast cancer 
susceptibility at the population level [32] and in families without BRCA1 or BRCA2 
mutations [151, 152].  It has also been associated with breast tumours of high grade [153, 
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154] as well as steroid receptor positive breast tumours, but not with overall survival 
[153].  Other mutations in the CHEK2 gene have been inconsistently related to breast 
cancer risk [155-161].  Of the two common CHEK2 polymorphisms studied so far, 
neither was associated with breast cancer risk [162].  Nothing has been reported 
regarding CHEK2 common variation in relation to breast cancer survival or tumour 
characteristics. 
 
ERBB2 
The ERBB2 (also named HER2) gene covers 33.7 kb on chromosome 17 (dbSNP build 
126).  The ERBB2 protein is a transmembrane glycoprotein with tyrosine kinase activity 
[163-167] that plays a major role in signal transduction pathways.  Activation of the 
pathways results in a variety of cellular responses, including proliferation, cell 
differentiation, cell motility and survival [168-170].  The ERBB2 gene has been shown to 
be often amplified and/or over-expressed in breast and endometrial cancers [171-176].  
This hyper-activation of the receptor appears to be a marker of tumour aggressiveness 
and is associated with poor breast and endometrial cancer prognosis [171-173, 175-177].  
Most previous publications regarding ERBB2 and breast cancer risk have explored one 
common variant, I655V, but results have been inconsistent [178-181].  Two groups have 
studied common haplotypes in ERBB2 in relation to breast cancer risk, but found no 
association [178, 181].  One group has investigated ERBB2 common variation in relation 
to breast cancer survival and found an association between poor breast cancer prognosis 
and ERBB2 common haplotypes [181]. 
 

Biological Hypotheses 

The CYP17 and ERBB2 genes are obvious role players in both breast and endometrial 
cancer development.  Estrogen exposure is an important risk factor for both cancers, so a 
gene involved in estrogen metabolism like CYP17 is a clear candidate.  Since the ERBB2 
gene is amplified and/or over-expressed in breast and endometrial tumours, a variant in 
the gene affecting this amplification could be involved in breast or endometrial aetiology 
or survival. 
 
Mutations in the ATM and CHEK2 genes appear to be involved in breast cancer 
development, so common variation in the genes could also play an important role.  
Furthermore, variation in the ATM and CHEK2 genes could affect breast cancer survival 
through increased radiosensitivity [182-184].  But why study these genes specifically in 
relation to endometrial cancer in addition to breast cancer when they could be involved in 
the development of any cancer via their role in DNA repair?  As mentioned above, 
estrogen exposure is the main risk factor for endometrial cancer.  Estrogen metabolites 
have been reported to cause a number of DNA lesions [185], among which are double 
strand DNA breaks [186].  DNA double strand breaks appear to be the predominant 
signal for the activation of pathways mediated by the ATM  protein [187]. Once 
activated, the ATM protein triggers phosphorylation of CHEK2 [118].  Defects in the 
ATM and CHEK2 genes could thus be involved in endometrial cancer development via 
their role in DNA damage checkpoint regulation, especially in combination with 
increased estrogen exposure.   
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AIMS 

 
General aims: 
 
We wanted to assess whether common variation in selected candidate genes was involved 
in breast or endometrial cancer development, either as main effects, or by interacting with 
environmental cancer risk factors.  We were also interested in whether carriers of 
common variants in the selected genes would be prone to develop breast tumours of 
certain characteristics or would have increased risk of breast cancer death.  
 
 
Specific aims: 
 
Paper I   
 

1. To examine whether the CYP17 c.1-34T>C polymorphism affects breast cancer 
risk overall, or in combination with environmental breast cancer risk factors. 

 
 
Papers II-IV  
 

1. To assess common variation in the ATM, CHEK2 or ERBB2 genes in relation to:  
 

− Overall breast cancer risk 
− Interaction with breast cancer risk factors 
− Breast cancer survival  
− Risk of tumour-characteristics defined breast cancer 
 

− Overall endometrial cancer risk 
− Interaction with endometrial cancer risk factors  

 

2. To investigate whether rare variants in ATM and CHEK2 affect overall breast or 
endometrial cancer risk. 
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SUBJECTS 

Parent Studies 

Two large case-control studies were initiated in the early 90’s to examine the effect of 
menopausal hormone use on breast and endometrial cancer risk.  The study base included 
all Swedish-born women between 50 and 74 years of age and resident in Sweden between 
October 1993 and March 1995 (breast cancer study) or between January 1994 and 
December 1995 (endometrial cancer study).  During these periods, all breast and 
endometrial cancer cases were identified at diagnosis through the six regional cancer 
registries in Sweden.  Controls were randomly selected from the Swedish Registry of 
Total Population to match the cases in 5-year age strata.  Most of the controls were 
shared between the studies (n=2633), but additional controls (n=735) were sampled after 
completion of the breast cancer study to match the recruitment period of the endometrial 
cancer study.     
 
Patients received a mailed questionnaire after having been asked to participate by their 
respective physicians.  The questionnaire included detailed information on intake of 
menopausal hormones and oral contraceptives, weight, height, reproductive history, 
medical history and other lifestyle factors.  The average interval from diagnosis to data 
collection was 4.3 months.  Controls were contacted directly with the questionnaire.  In 
the endometrial cancer study, only women with an intact uterus were eligible as controls.  
Histological specimens for the endometrial case women were retrieved from all 35 
pathology departments in Sweden and reviewed and re-classified by the study 
pathologist.   
 
Participation rates in the parent studies are given in Table 1.  Reasons for non-
participation among cases and controls were poor health of controls, physicians’ refusal 
(because of psychiatric disorder, death, anxiety or poor physical health of the patients), 
subjects’ refusal (either to being approached at all or to return the questionnaires) or 
failure in contacting the woman. 
 
Table 1.  Participation rates in the breast and endometrial cancer studies. 
 Breast cancer study  Endometrial cancer study 
 Cases Controls  Cases Controls 
Parent studies      
     Eligible 3979 4188  1055 4216 
     Participated 3345 (84%) 3454 (82%)  802 (76%) 3550 (84%) 
Present studies      
     Eligiblea 2818a 3111a  802b 3550b

     Selected 1801 2057  802 2074 
     Participated 1596 (89%)c 1524 (74%)  719 (90%) 1574 (76%) 
     Available DNA 1590c 1518c  716 1567 
a Pre-menopausal women and women with previous malignancies excluded 
b Women with previous malignancies excluded 
c Numbers not applicable to Paper I 
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Present Studies 

From the parent breast cancer study, we randomly selected 1500 breast cancer cases and 
1500 age-frequency matched controls among the postmenopausal participants without 
any previous malignancy (except carcinoma in situ of the cervix or non-melanoma skin 
cancer).  Similarly, we selected all 802 endometrial cancer cases and randomly selected 
802 age-frequency matched controls among the pre- or postmenopausal participants in 
the endometrial cancer study without any previous malignancy.  Women with previous 
cancers were excluded in order to minimize the risk of including a metastasis from a 
previous cancer in our study instead of an incident cancer.  Cervical carcinoma in situ and 
non-melanoma skin cancer should not be metastatic so women with these conditions were 
not excluded.   
 
With the intention of increasing statistical power in subgroup analyses, we further 
selected all remaining breast cancer cases, breast cancer controls and endometrial cancer 
controls (191 cases, 108 controls and 277 controls, respectively) who had used 
menopausal hormones (estrogen alone or any combination of estrogen and progestin) for 
at least 4 years (breast cancer study) or at least 2 years (endometrial cancer study).  We 
also included all remaining participants (110 breast cancer cases, 104 breast cancer 
controls and 124 endometrial cancer controls) with self-reported diabetes mellitus.  Since 
a large proportion of the controls were shared between the studies, we were able to add 
an additional 345 controls to the breast cancer study that had been selected for the 
endometrial cancer study as well as add a further 871 controls to the endometrial cancer 
study that had been selected for the breast cancer study.  Numbers for the total selected 
participants in the present studies are shown in Table 1. 
 
We contacted all selected living women by mail.  Those who gave informed consent 
received a blood sampling kit by mail.  Whole blood samples were drawn at a primary 
health care facility close to the woman’s home and sent to us by standard mail.  The 
majority of the samples arrived at Karolinska Institute within 24 hours after phlebotomy.  
All blood samples were immediately stored at -20°C.  For deceased cancer cases and 
those cases who declined to donate blood but consented to our use of tissue, we collected 
archival paraffin-embedded, non-cancerous tissue samples taken at breast cancer surgery 
(for example cancer-free lymph nodes, uterine tube or cancer-free myometrium).  We 
acquired 70% (breast cancer study) and 65% (endometrial cancer study) of the requested 
tissue samples; the main reason for non-participation was unwillingness or lack of time at 
the respective pathology department to provide the tissue blocks.  In total, we obtained 
blood samples and archived tissue samples for 1321 and 275 (247 included in Paper I) 
breast cancer patients, respectively, and 603 and 116 endometrial cancer patients (Table 
1).  We also obtained blood samples for 1524 breast cancer controls and 1574 
endometrial cancer controls (Table 1).  Mean time from diagnosis of cases to arrival of 
the blood and tissue samples at our department was 5 years.  Reasons for non-
participation included lack of interest in research, a negative attitude towards genetic 
research, old age, and severe disease or death.  Population-based participation rates 
(taking into account the proportion that did not participate in the parent questionnaire 
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study) were 75% and 61% for the breast cancer cases and controls respectively, and 68% 
and 64% for the endometrial cancer cases and controls. 
 

Categorization of Questionnaire Information 

We defined age at menopause as the age of the last menstrual period or age at bilateral 
oophorectomy, if this took place at least one year before data collection.  If the last 
menstrual period was less than one year before data collection, the woman was 
considered premenopausal.  Women who had been hysterectomized in the breast cancer 
study or who were menstruating due to hormone treatment were considered 
postmenopausal when they reached the age at which 90% of the study participants had 
reached natural menopause.  Women that we classified as postmenopausal in this way 
were assigned an age at menopause corresponding to the mean age at menopause in our 
data according to case-control and current smoking status. 
 
Conjugated estrogens, estradiol and other synthetic estrogens were classified as medium 
potency estrogens.  Estriol was classified as low potency estrogen.  We only included 
information on orally administered menopausal hormones in the present study. 
 
Age was divided to 5-year age groups and adjusted for in all analyses.  Breast and/or 
endometrial cancer risk factors that we analyzed for gene-environment interaction were:  
Age at menarche (≤12 years, >12–14 years, >14 years); age at menopause (<49 years, 
49–52 years, >52 years); medium potency estrogen only use (never, <4 years, ≥4 years; 
or never, <2 years, ≥2 years); medium potency estrogen and progestin use (never, <4 
years, ≥4 years; or never, <2 years, ≥2 years); estrogen and progestin cyclically (less than 
16 days of progestins per cycle, most commonly 10 days) (never, <2 years, ≥2 years); 
estrogen and progestin continuously (19 or more days of progestins per cycle, most 
commonly 28 days) (never, <2 years, ≥2 years); low potency estrogen use (ever, never); 
age at first birth (≤24 years, 25–29 years, ≥30 years); age at last birth (≤26 years, 27-33 
years, ≥34 years); parity (nulliparous, 1 child, 2 children, >2 children); body mass index 
one year prior to diagnosis (weight in kg/(height in meters)2) (<25, 25-<28, ≥28); regular 
smoking for at least 1 year or ever having smoked over 100 cigarettes (yes, no); first 
degree family history in at least one relative (yes, no); use of combined oral 
contraceptives where estrogens and progestins were given concurrently in a monthly 
cycle (ever, never); and self-reported diabetes mellitus (yes, no). 
 
Age at menarche and menopause were categorized into quartiles according to the 
distribution in the controls.  The 1st category included the 1st quartile of the data, the 2nd 
category contained the 2nd and 3rd quartiles, and the 3rd category contained the 4th 
quartile.  Menopausal hormone use, age at first and last birth, parity, and body mass 
index where categorized according to cut-offs that in previous studies have been shown 
to be informative with regard to the variables' influence on breast and/or endometrial 
cancer risk. 
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Breast Tumour Characteristics and Follow-up 

We retrieved information on date and cause of death until December 31st 2003 from the 
Swedish Causes of Death Registry and on date of emigration from the Swedish National 
Population Registry.  Follow-up time began at date of diagnosis and ended on December 
31st 2003, or at date of death or emigration, whichever came first.  From medical records, 
we collected information on tumour characteristics such as tumour size, lymph node 
involvement, grade (tumour differentiation), histological type and date of first distant 
metastasis.  We obtained information on tumour estrogen and progesterone receptor 
content and S-phase fraction (i.e. the proportion of tumour cells in the DNA synthesis 
phase of the cell cycle) from seven laboratories around Sweden that routinely perform 
these tumour measurements for all of Sweden.  At the time of the study, all seven 
laboratories used an enzyme immunoassay (Abbott Laboratories) on cytosol samples for 
analyzing estrogen and progesterone receptor content.  This method was estrogen 
receptor alpha specific [188].  The laboratories reported either quantitative measurements 
(i.e. fmol receptor per µg DNA or mg protein, and percentage of cells in S-phase) or 
categorical (i.e. strongly positive, positive, weakly postitive or negative for receptor 
status and high, intermediate or low for S-phase).  A rather high proportion of this 
information was missing, due to the fact that these measurements were not routinely 
performed in the mid 1990s.   
 
We classified the tumour characteristics as follows:  TNM stage: (1) Tumour size ≤20 
mm and no regional lymph node metastases; (2) tumour size ≤20 mm and lymph node 
metastases, or tumour size 20-≤50 mm, or tumour size >50 mm and no lymph node 
metastases; (3) inflammatory breast tumour, or tumour size >50 mm and lymph node 
metastases; (4) distant metastasis within 90 days after diagnosis.  Lymph node 
involvement:  (Yes) At least one metastasized lymph node; (No) no metastasized lymph 
node.  Grade: (1) High differentiation; (2) intermediate differentiation; (3) low 
differentiation.  Estrogen and progesterone receptor status: (Positive) ≥0.05 fmol/µg 
DNA or ≥10 fmol/mg protein, or categorically strongly positive, weakly positive or 
positive; (Negative) <0.05 fmol/µg DNA or <10 fmol/mg protein, or categorically 
negative.  S-phase fraction: (High) ≥9% or categorically high; (Low) <9% or 
categorically low.  We combined TNM stage 3 with TNM stage 4 in all association 
analyses due to small numbers. 
 

Endometrial Tumour Characteristics 

Endometrial cancers can be divided into Type I endometroid tumours and Type II non-
endometroid tumours [81-83], where endometroid tumours constitute the majority of 
endometrial cancers.  Endometroid tumours can be further divided according to cell 
differentiation (grade).  We defined grade as follows:  Grade I tumours were defined as 
well differentiated carcinomas, with maximum 5% solid areas; grade II tumours as 
moderately differentiated, with 6-50% solid areas; and grade III tumours as poorly 
differentiated or entirely undifferentiated, with more than 50% solid areas.  Myometrial 

 19



 

invasion was classified as:  (No) None or less than 50% of the myometrial thickness; 
(Yes) at least 50% of the myometrial thickness or through the serosa. 
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METHODS 

Paper I 

DNA Isolation 
We isolated DNA from 3 ml of whole blood using a Wizard Genomic DNA Purification 
Kit (Promega, Madison, WI, USA) according to the manufacturer's instructions.  From 
non-malignant cells in paraffin-embedded tissue, we extracted DNA using a standard 
phenol/chloroform/isoamyl alcohol protocol [189]. 
 
Genetic Analyses 
Colleagues at the Department of Medical Sciences, Uppsala University and at the Unit of 
Molecular Toxicology at the Department of Environmental Medicine, Karolinska 
Institute carried out all genotyping.  They used two methods for genotyping the c.1-
34T>C (rs743572) variant in CYP17:  Multiplex fluorescent solid-phase minisequencing 
[190]; and dynamic allele specific hybridization (DASH) [191].  Results from the two 
methods were validated with PCR-RFLP [192].  Twenty-four percent of the samples 
were analysed with both minisequencing and DASH, and the genotypes obtained were 
identical.  Exact PCR conditions, primer sequences and allele detection methods can be 
found in the supplement to Paper I. 
 
Minisequencing 
The minisequencing method is based on the extension reaction where a primer is attached 
adjacent to the variant and one fluorescent labeled ddNTP, which stops the elongation, is 
added to the reaction.  If the SNP is for example G/A then ddCTP and ddTTP are added, 
each with different fluorescence dye.  The fluorescence signal will indicate what alleles 
are present in the sample.  The minisequencing method could not be easily multiplexed 
(see ‘Papers II-IV’, ‘Genetic Analyses’) so the genotyping personnel switched to DASH.   
 
DASH 
In the DASH method a probe specific to the wild-type allele is hybridized to the DNA 
strand surrounding the SNP.  If the mutant allele is present in the DNA sample, a mis-
match will occur at the SNP site.  Following addition of a double strand-specific dye, the 
sample is steadily heated and fluorescence signal is continually monitored.  Rapid fall in 
fluorescence indicates the denaturing temperature of the double stranded DNA.  The mis-
match double stranded DNA will denature at a lower temperature than the wild-type 
double stranded DNA, which indicates that a mutant allele is present in the sample.   
 
Statistical Analyses 
Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using conditional 
logistic regression models with the A1/A1 genotype of the c.1-34T>C variant as the 
reference group.  We conditioned the models on age (due to matching) and on duration of 
medium potency estrogen only use, estrogen+progestin use and self-reported diabetes 
mellitus (due to our over-sampling scheme).  We chose to condition because in the 
presence of association between any of the selection variables and CYP17 genotype, 
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estimates of the main effect of CYP17 could be biased.  We did not expect confounding 
by other known breast cancer risk factors as they most likely would be intermediates 
between the genetic variant and breast cancer.  We nevertheless assessed whether c.1-
34T>C was associated with any of the known breast cancer risk factors.  The likelihood 
ratio test and the Wald test statistic were used to test for interaction.   
 

Papers II-IV 

Overview 
We downloaded all reported SNPs in the ATM, CHEK2 and ERBB2 genes from publicly 
available databases and selected thereof the SNPs that were eligible for our study.  The 
selected SNPs were genotyped in 92 randomly selected controls.  From that genotype 
information we were able to estimate the LD across the genes, reconstruct haplotypes and 
select the tagSNPs that could predict the single locus and haplotypic variation in the 
genes.  The tagSNPs were genotyped in the full set of cases and controls so as to evaluate 
the association of common tagSNPs or their haplotypes with breast or endometrial cancer 
risk or survival.  We additionally genotyped rare variants in ATM and CHEK2 in all cases 
and controls and evaluated their relation with breast or endometrial cancer risk. 
 
DNA Isolation 
The Swegene laboratories in Malmö (Sweden) extracted DNA from 4 ml of whole blood 
using the QIAamp DNA Blood Maxi Kit (Qiagen) according to the manufacturer's 
instructions.  The extraction was complete in March 2004 and the DNA samples were 
shipped to the Genome Institute of Singapore for genotyping.  DNA was extracted from 
non-malignant cells in paraffin-embedded tissue using a standard 
phenol/chloroform/isoamyl alcohol protocol [189] in June 2004 at the Genome Institute 
of Singapore.  Numbers for successfully extracted DNA samples are shown in Table 1. 
 
SNP Selection 
At initiation of this study, SNP data from the International Hapmap project was still 
sparse, so we decided to select SNPs from publicly available databases and characterize 
LD as well as choose tagSNPs using our own study population.   
 
In October 2003, we downloaded from Ensembl (http://www.ensembl.org/) all the 
available SNPs in ATM, CHEK2 and ERBB2 and their 5kb flanking sequences.  From 
them we selected all validated SNPs with a minor allele frequency of at least 1%, aiming 
for a marker spacing of less than 5kb.  At that time, Ensembl had three criteria for a SNP 
to be considered validated:  a) By frequency (a SNP has genotype frequency data); b) by 
cluster (SNP has been submitted at least by two submitters); or c) by 2hit-2allele (every 
allele of the variant has been observed in at least two chromosomes (i.e. in two different 
samples of DNA)).  To fill in the gaps that exceeded 5kb, we included non-validated 
SNPs.   
 
Due to inadequate coverage in the genes after this first batch of SNP selection (see 
‘Statistical Analyses’, ‘Coverage’ below) we downloaded and selected a second batch of 
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SNPs in the ATM, CHEK2 and ERBB2 genes – this time including their 10kb flanking 
sequences – in January 2005.  This selection was done using an integrated database of the 
Genome Institute of Singapore (GISSNP), which contained SNP information from 
dbSNP (build 123, http://www.ncbi.nlm.nih.gov/SNP/) and Celera.  In June 2005, a third 
batch of SNPs was subsequently selected in the ATM and ERBB2 genes.  This time 
around the GISSNP database included information from dbSNP build 124. 
 
Reasons for incomplete coverage despite selecting a large number of SNPs for initial 
genotyping were:  a) Primers could not be designed around all selected SNPs due to 
repetitive sequence surrounding the locus; b) not all SNPs were successfully genotyped in 
at least 85% of the samples due to problems with multiplexing (see ‘Genetic Analyses’ 
below); and c) not all successfully genotyped SNPs were polymorphic.  For example, in 
CHEK2 we selected 151 SNPs for genotyping in total, we were able to design primers for 
55 SNPs (36%), 34 SNPs (23%) were successfully genotyped, and 23 SNPs (15%) were 
polymorphic. 
 
We additionally selected for genotyping a number of non-synonymous SNPs and SNPs 
from conserved sequences across human, rat and mouse.  Among those which were 
successfully genotyped in the 92 controls, most were very rare variants and were thus not 
genotyped in the full set of cases and controls.  
 
Genetic Analyses 
Genotyping was performed at the Genome Institute of Singapore.  Thousands of SNPs in 
different genes were genotyped concurrently so genotyping was not limited to the SNPs 
in the ATM, CHEK2 and ERBB2 genes.  We used the Sequenom primer extension-based 
assay (San Diego, California) and the BeadArray system from Illumina (San Diego, 
California) for genotyping.  CHEK2 was entirely genotyped with Sequenom, but ATM 
and ERBB2 were also genotyped with Illumina.   
 
All genotyping results were generated and checked by laboratory staff unaware of case-
control status.  All DNA plates (96 wells) contained two negative controls and two 
distinct positive controls.  For genotypes to be considered accurate, 97% of each set of 
positive controls were required to show an identical genotype and 97% of the negative 
controls needed to be without contamination.  Only SNPs where at least 85% of the 
samples gave a genotype call were analysed further.  As quality control, we genotyped 
200 randomly selected SNPs in the 92 control samples using both the Sequenom system 
and the BeadArray system.  The genotype concordance was >99.5%, suggesting high 
genotyping accuracy. 
 
Three major steps characterize most genotyping methods:  1) Initial amplification of the 
genomic template, 2) generation of allele specific products, and 3) detection of allele-
specific products.  High-throughput genotyping systems are created by combining a 
certain assay for generation of allele-specific products with a specific detection platform.  
The main strategies for creating high-throughput genotyping platforms are to analyze 
multiple samples at the same time (i.e. 96 well plates with one sample in each well) and 
to analyze multiple SNPs in a single well (called multiplexing).   
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Sequenom 
Sequenom uses the primer extension assay for generating allele-specific products.  In the 
extension reaction, the primers anneal adjacent to the SNP.  Adding the correct mix of 
bases will make the primer adjacent to one allele of the variant elongate for one base.  In 
heterozygous samples, the primer adjacent to the other allele elongates for two bases.  
This results in PCR products of different length depending of the allele present.  The 
products are inserted into a mass spectrometer, which measures the time of flight of the 
products.  The products containing only one extra base will fly faster and produce a peak 
in the output that is differentially positioned to the peak for the product with the two 
additional bases.  We multiplexed our analyses by analyzing the SNPs in 1-plex assays 
up to 12-plex assays.  With maximum throughput, the Sequenom platform can generate 
18,400 genotypes per day.   
 
Illumina 
For higher throughput, we used the Illumina platform, which can generate 300,000 
genotypes per day.  The Illumina company designs plates that carry 96 array bundles, one 
for each sample of DNA.  Each array bundle contains 46,080 beads that are divided into 
1536 bead types with one bead type per SNP.  Each bead type includes 30 beads that 
together carry oligonucleotides specific for one SNP.  Hence, 1536 SNPs can be 
genotyped simultaneously for each DNA sample.  Illumina uses the oligo ligation assay 
for generating allele-specific products.  Three oligos are designed for each SNP locus.  
One oligo is specific to each allele of the SNP site.  The third oligo hybridizes several 
bases downstream from the SNP site and carries a unique address sequence that targets 
the correct bead type for that SNP.  The assay oligos hybridize to the genomic DNA 
sample.  Extension of the appropriate allele-specific oligo and ligation of the extended 
product to the oligo with the unique address joins information about the allele present at 
the SNP site to the address sequence for the bead type.  These DNA products are then 
dye-labeled depending on the allele present and hybridized to their complement bead type 
through the unique address.  Different alleles of each SNP will give different 
fluorescence signals, which can be read from the bead types for each SNP with a 2-D 
reader.  In each array bundle, the 30 beads for each SNP will give the same fluorescence 
signal as one array bundle corresponds to one DNA sample. 
 
CHEK2 Duplicated Regions 
Non-expressed duplications of the CHEK2 3’ terminal exons and introns have been 
revealed on chromosomes 2, 7, 10, 13, 15, 16, X and Y [193].  We blasted our primers 
and probes for the CHEK2 SNPs to the genome and found they could hit unique 
sequences on chromosome 22.  However, with lesser scores, they could also hit the 
duplicated sequences on the other chromosomes.  We observed that the SNPs on the 
duplicated regions tended to deviate from Hardy-Weinberg equilibrium (HWE) (four 
SNPs out of six).  We therefore relied on HWE tests to identify the SNPs in CHEK2 that 
seemed to be genotyped from more than one genomic location. 
 
The 1100delC was designed in monoplex on Sequenom with primers located outside the 
duplicated regions to ensure genotyping of the expressed copy of CHEK2. 
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Statistical Analyses 
LD Characterization, Haplotype Reconstruction and tagSNP Selection 
Using the Haploview program [194], we produced LD plots of the D´ values for the SNPs 
in ATM, CHEK2 and ERBB2 that were genotyped in the 92 controls.  We reconstructed 
haplotypes for all three genes using the PLEM algorithm [195] implemented in the 
tagSNPs program [196] and selected tagSNPs based on the R2 coefficient, which 
quantifies how well the tagSNP haplotypes predict SNP genotypes or the number of 
copies of haplotypes an individual carries.  We chose tagSNPs so that common SNP 
genotypes (minor allele frequency ≥0.03) and common haplotypes (frequency ≥0.03) 
were predicted with R2 ≥ 0.8 [19]. 
 
Coverage 
In order to evaluate our tagSNPs’ performance in capturing unobserved SNPs within the 
genes and to assess whether we needed a denser set of markers to be genotyped in the 92 
controls, we performed a SNP-dropping analysis [197, 198].  In brief, each of the 
genotyped SNPs was dropped in turn and tagSNPs were selected from the remaining 
SNPs so that their haplotypes predicted the remaining SNPs with an R2 value of 0.85.  A 
slightly more stringent value of 0.85 was used here, as we were predicting only SNPs and 
not haplotypes with our tagSNPs.  We then estimated how well the tagSNP haplotypes of 
the remaining SNPs predicted the dropped SNP, which act as surrogates for unobserved 
SNPs in the gene.  This evaluation can provide an unbiased and accurate estimate of 
tagSNP performance [197, 198]. 
 
HWE 
The Hardy-Weinberg law predicts how gene frequencies will be transmitted from 
generation to generation given a specific set of assumptions.  Specifically, if an infinitely 
large, random mating population is free from outside evolutionary forces (i.e. mutation, 
migration and natural selection), then the gene frequencies will not change over time and 
the frequencies in the next generation will be p2 for the AA genotype, 2pq for the Aa 
genotype and q2 for the aa genotype.   
 
Shoemaker et al. stated that a population will never confirm exactly with the Hardy-
Weinberg law [199].  However, in well designed genetic association studies, the 
conditions of HWE are generally applicable to the controls since (1) mating takes place at 
random with respect to genotype, (2) allelic frequencies are the same in males and 
females, and (3) mutation, selection, and migration are negligible [200].  Furthermore, 
deviation from HWE can lead to either false positive or false negative findings for 
association [200].  Errors in genotyping can easily lead to large deviations from HWE.  
With Sequenom for example, this can happen when DNA is of poor quality or assays 
perform poorly.  Larger DNA products will then fly less efficiently in the mass 
spectrometer and will thus have lower intensity peak compared to the smaller products.  
This can cause homozygous excess, as heterozygotes are called incorrectly as the 
homozygous low mass allele, i.e. the two peaks for heterozygotes can not be 
distinguished.  We manually checked our genotyping results for SNPs that deviated from 
HWE in the controls, and if the results could not be repaired, we excluded that particular 
SNP from all analyses.   
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We checked the assumption of HWE among the controls with the standard χ2 test 
statistics using the observed genotype frequencies obtained from the data and the 
expected genotype frequencies obtained with the HWE.  SNPs were regarded as 
deviating from HWE if P < 0.01.  We relaxed the usual P < 0.05 cut-off in order to not 
exclude SNPs that deviated from HWE due to chance, which is frequently the case for 
SNPs with low minor allele frequency in samples of limited size. 
 
Multiple Testing Correction 
Our testing strategy was to fit a single model and to assess within each stratum of risk 
factor subgroup and for different tumour characteristics, haplotype-trait association as a 
global likelihood ratio test [201].  We accounted for the number of tests by using a 
permutation approach that controls the family wise error rate (probability of rejecting one 
or more true null hypotheses) and takes into account the dependence structure of the 
hypotheses [202].  Only when a haplotype global test was significant did we scrutinize 
the haplotype-specific effects.   
 
Haplotype Dosage 
We computed expected haplotype dosage using the tagSNPs program [196].  Haplotype 
dosages give estimates as to how many copies of a certain haplotype an individual 
carries.  Assuming we have genotype information on two loci, an individual with two 
homozygous genotypes (e.g. AA and BB) will carry two copies of the same haplotype 
(AB).  If the individual carries one heterozygous genotype (Bb) the individual will carry 
one copy of the haplotype AB and one copy of the haplotype Ab.  However, if both loci 
are heterozygous, four possible haplotypes exist (AB, Ab, aB, ab) and the haplotype 
dosages will thus depend on the haplotype frequencies.   
 
We computed the haplotype dosages with haplotype frequencies estimated for cases and 
controls combined, assuming Hardy-Weinberg equilibrium (HWE) of haplotypes.  We 
then included the haplotype dosages as explanatory variables in our regression models.  
We assumed co-dominance of the haplotype effects in our analyses, i.e. the computed 
point estimates showed the risk increase associated with carrying one copy of a 
haplotype.  The effect estimates should be squared in order to calculate the risk 
associated with carrying two copies of a haplotype.   
 
Power 
To estimate power in the risk analyses, we used a method for indirect genetic association 
studies described by Chapman et al. [203], which assumes co-dominant effects at an 
unobserved locus.  To calculate power for log-additive effects in the survival analyses, 
we used the Quanto program [204] in a similar manner as Manolio et al. [205], i.e. by 
assuming two controls for each case. 
 
Association Analyses 
In Paper II, we applied conditional logistic regression models conditioned on age (in 5-
year age-groups) as well as the selection variables (menopausal hormone use and 
diabetes) to assess the association of CHEK2 tagSNPs or haplotypes with breast cancer 
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risk.  In Papers III and IV, we applied unconditional logistic regression models adjusted 
for age to assess the effect of ATM, CHEK2 and ERBB2 tagSNPs or haplotypes on risk of 
breast or endometrial cancer.  Conditioning on the selection variables did not affect our 
estimates in Papers III and IV.  The appropriateness of these approaches is argued for by 
Stram et.al. [196].  That is, when R2 values are high, as is the case here, point and interval 
estimates obtained by this approach will be approximately accurate.  We estimated the 
hazard ratio of death due to breast cancer in relation to the ATM, CHEK2 and ERBB2 
tagSNPs or haplotypes using Cox proportional hazards models.  To assess the 
proportional hazards assumptions of the Cox models we examined scaled Schoenfeld 
residuals and found no evidence against proportionality.   
 
Confounding has been defined as the presence of a common cause to the exposure and 
the outcome [206].  We believe that lifestyle and reproductive breast cancer risk factors 
are unlikely to cause genetic variation in the genes, but they could be intermediates in the 
causal pathway between the genes and a) overall cancer and b) tumour characteristic-
defined cancer.  For completeness, we assessed among the randomly selected controls – 
using Kruskal-Wallis and Chi square tests – whether the tagSNPs where associated with 
known cancer risk factors.   
 

 27



 

RESULTS 

Characteristics of Participants 

The selected characteristics of the cases and controls participating in the present breast 
and endometrial cancer genetic studies reflected established associations (Table 2). 
 
Breast cancer cases cases who participated via tissue sample donation were on average 
1.5 years older (P = 0.0003) and were more likely to have been diagnosed with TNM 
stage 2 or more advanced cancers (P < 0.0001), compared to breast cancer cases who 
donated a blood sample.  Endometrial cancer cases who participated via tissue sample 
donation were however 2.1 years older on average than endometrial cancer cases who 
participated by donating a blood sample (P = 0.002) and were more likely, though not 
significantly, to have poorly differentiated (grade 3) tumours (P = 0.08).  Importantly, no 
significant differences in genotype frequencies were evident between those who 
participated via blood or tissue among the breast or endometrial cancer cases.   
 
Table 2.  Selected characteristics of the cases and controls participating in the present breast and 
endometrial cancer studies. 
  

Breast cancer study 
 

Endometrial cancer study 

Characteristic 

Number of  
cases/ 
controls 

Cases/ 
Controls PP

a

Number of 
cases/ 
Controls 

Cases/ 
Controls PP

a

   
Mean

   
Mean

 

Age (years) 1579/1516 63.3/63.1 0.405 705/1565 64.0/62.8 <0.0001 
Age at menopause (years) 1569/1503 50.4/50.0 0.015 617/1506 51.0/50.1 <0.0001 
Recent BMI (kg/m2)b 1570/1495 25.8/25.5 0.073 704/1548 27.4/25.5 <0.0001 
Age at first birth (years) 1341/1368 25.4/24.7 0.001 604/1406 24.6/24.7 0.634 
Parity 1579/1516 1.8/2.2 <0.0001 705/1565 1.9/2.1 <0.0001 
Duration of menopausal  
hormone use (years) 

  
Percent

   
Percent

 

       0 1050/1085 67.1/72.7 --- 498/1113 71.9/72.1 --- 
       <4 (breast), <2 (endo) 206/190 13.2/12.7 --- 49/131 7.1/8.5 --- 
       ≥4 (breast), ≥2 (endo) 308c/217c 19.7c/14.5c --- 146c/300c 21.1c/19.4c --- 
Self reported diabetes  
mellitus (yes/no) 

 
1577/1401 

 
9.0c/7.8c

 
--- 

 
705/1443 

 
10.1c/8.3c

 
--- 

Smoking (yes/no)d 1579/1516 42.8/42.7 0.998 705/1565 35.6/43.1 0.0008 
Family history (yes/no) e 1540/1379 16.0/9.3 <0.0001 669/1399 10.2/5.1 <0.0001 
a Kruskal-Wallis or Chi-square tests. 
b One year prior to diagnosis. 
c Long term users of menopausal hormones and women with diabetes mellitus were over-sampled. 
d Regular smoking for at least 1 year or having ever smoked 100 cigarettes. 
e Family history is defined as having at least one first degree relative with breast or endometrial cancer. 
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Paper I 

We obtained CYP17 c.1-34T>C genotypes from 1,544 breast cancer cases and 1,502 
controls.  The genotype frequencies were similar to previously published frequencies in 
Caucasian populations [99, 103-105, 114, 115] and did not deviate from Hardy-Weinberg 
Equilibrium (P = 0.927) among the controls.  The CYP17 c.1-34T>C was not associated 
with the environmental breast cancer risk factors among the randomly selected controls.   
 
We found no overall association between CYP17 c.1-34T>C and breast cancer risk, 
regardless of histopathology (Table 3).  This negative result was not modified by 
menopausal hormone use or diabetes mellitus.  We also did not detect any association 
when we considered stage 1 (n = 389) and stage 2 or more advanced (n = 591) breast 
cancers separately.  None of these findings were altered by restricting the sample set to 
the randomly selected cases and controls or by including other breast cancer risk factors 
as co-variates in the logistic regression models. 
 
In exploratory analyses, the A2/A2 genotype, compared to A1/A1, was associated with 
an increased breast cancer risk in women with age at menarche of 12 years or younger (P 
for interaction = 0.026; Table 3).  Furthermore, carriers of the A2 allele conferred a 
decreased risk in women with menopause before 49 years of age compared to A1/A1 
carriers (P for interaction = 0.062; Table 3).  There was, however, no dose-response 
pattern in these findings and we therefore regarded them as being due to chance.  Age at 
first birth, parity or body mass index did not seem to modify the non-association between 
CYP17 c.1-34T>C genotype and breast cancer risk.  All estimates remained unaffected 
after we restricted the analyses to the randomly selected cases and controls. 
 
Table 3.  CYP17 c.1-34T>C in relation to breast cancer risk overall, restricted to histological type or 
stratified by breast cancer risk factors. 
 CYP17 genotype 
 A1/A1 A1/A2 A2/A2 

 
Cases/ 
controlsa ORb (CI) 

Cases/ 
controlsa ORb (CI) 

Cases/ 
controlsa ORb (CI) 

       
All cancers 550/488 1 (reference) 711/638 1.0 (0.9-1.2) 238/212 1.0 (0.8-1.3) 
Ductal cancers 420/488 1 (reference) 510/638 1.0 (0.8-1.1) 180/212 1.0 (0.8-1.3) 
Lobular cancers 56/488 1 (reference) 90/638 1.3 (0.9-1.8) 24/212 1.1 (0.6-1.8) 
Age at menarche (years)     
≤12 102/96 1 (reference) 138/128 1.1 (0.7-1.5) 74/38 1.9 (1.1-3.0) 
>12-14 283/251 1.1 (0.8-1.5) 360/325 1.1 (0.8-1.5) 106/126 0.8 (0.6-1.0) 
>14 107/94 1.1 (0.7-1.6) 152/126 1.2 (0.8-1.7) 41/38 1.1 (0.6-1.8) 
Age at menopause (years)     
<49 145/123 1 (reference) 141/165 0.7 (0.5-1.0) 44/59 0.7 (0.4-1.1) 
49-52 282/243 1.0 (0.7-1.3) 380/316 1.0 (0.8-1.4) 140/97 1.2 (0.9-1.8) 
>52 119/117 1.0 (0.6-1.3) 184/150 1.1 (0.8-1.6) 54/56 0.8 (0.5-1.3) 
a Including only cases and controls with complete information on menopausal hormones and diabetes 
mellitus. 
b Analyses were conditioned on age, menopausal estrogen only use, use of estrogen in combination with 
progestin and diabetes mellitus. 
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Papers II-IV 

Genotyping, LD Pattern and Coverage 
Summary statistics on genotyping results and SNP coverage in the ATM, CHEK2 and 
ERBB2 genes are shown in Table 4.  The SNPs successfully genotyped in 92 randomly 
selected controls are listed in Paper II (CHEK2) and in supplements to Papers III and IV 
(ATM and ERBB2).   
 
We included in our study 51 SNPs in ATM, 14 SNPs in CHEK2 and 13 SNPs in ERBB2 
that were successfully genotyped in the 92 controls.  All included SNPs were at least 3% 
in minor allele frequency and were in HWE (Table 4).  Mean spacing between included 
SNPs was 2.9 kb, 4.0 kb and 2.8 kb in ATM, CHEK2 and ERBB2, respectively (Table 4).  
We produced LD plots from the included SNPs in the three genes and detected strong LD 
across all the genes (Figures 2-4).  Using the SNP dropping method [197], we found that 
the tagSNPs selected from the included SNPs could capture non-genotyped SNPs 
efficiently (Table 4). 
 
Table 4.  Summary statistics on genotyping results and SNP coverage in ATM, CHEK2 and ERBB2. 
 
Summary statistics 

 
ATM 

 
CHEK2 

 
ERBB2 

Number of successfully genotyped SNPsa 152b 34c 38d

  Number of polymorphic SNPs 68 23 16 
    Number of common SNPse 52 19 13 
      Number of SNPs deviating from HWEf 1 5 0 
    

Number of SNPs included in study 51 14 13 
    

Sequence coverage (kb) 146.2 52.0 33.9 
Mean spacing between SNPs (kb) 2.9 4.0 2.8 
Median spacing between SNPs (kb) 2.0 3.2 2.7 
Number of common haplotypese,g 6 6 8 
Percentage of chromosomes accounted for by common haplotypesg 89 81 96 
Number of tagSNPs selected 7 6 7 
Average tagSNP prediction of common SNPs included in study (R2)e 0.96 0.95 0.99 
Average tagSNP prediction of common haplotypes (R2)e 0.95 0.94 0.94 
    

Coverage evaluationh    
Average prediction of dropped SNPs (R2) 0.92 0.93 0.72 
Percentage of R2 values ≥ 0.7 92 93 70 
a In 92 controls. 
b Supplementary Table 2 in Paper III and Supplementary Table 1 in Paper IV. 
c Table 2 in Paper II. 
d Supplementary Table 3 in Paper III and Supplementary Table 2 in Paper IV. 
e Common was defined as minor allele frequency ≥ 0.03 (SNPs) or haplotype frequency ≥ 0.03. 
f P < 0.01. 
g Haplotypes were reconstructed from the SNPs included in the study. 
h SNP dropping method by Weale et al. [197]. 
 



 

 

 
Figure 2.  LD plot of 51 SNPs in ATM genotyped in 92 controls and included in the study.  Red:  D´=1 and LOD ≥ 2.  Blue:  D´=1 and LOD < 2.  White:  D´< 1 
and LOD < 2. 
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Figure 3.  LD plot of 14 SNPs in CHEK2 genotyped in 92 controls and included in the study.  Red:  D´=1 and LOD ≥ 2.  Blue:  D´=1 and LOD < 2.  White:  D´< 
1 and LOD < 2.



 

 
Figure 4.  LD plot of 13 SNPs in ERBB2 genotyped in 92 controls and included in the study.  Red:  D´=1 
and LOD ≥ 2.  Blue:  D´=1 and LOD < 2.  White:  D´< 1 and LOD < 2. 
 
From the included SNPs in ATM, CHEK2 and ERBB2, we selected 7 tagSNPs in ATM, 6 
tagSNPs in CHEK2 and 7 tagSNPs in ERBB2 that could predict the included SNPs and 
their haplotypes with an R2 of at least 0.8.  The tagSNPs were genotyped in all cases and 
controls, but five tagSNPs in ATM could not be genotyped in the cases who participated 
via tissue sample donation.  All tagSNPs were in HWE among both breast and 
endometrial cancer controls and none showed a meaningful association with any of the 
breast or endometrial cancer risk factors.  Only one of the tagSNPs – TAG5 in ERBB2, 
also named I655V – conferred an amino acid change in the protein product. 
 
Overview of Association Analyses 
Our testing strategy was to first assess the effect of the tagSNPs singly and then to 
estimate the effect of their haplotypes.  The tagSNPs were included in the regression 
models assuming co-dominance of effects with homozygotes of the major allele as a 
reference group.  When assessing the effect of the tagSNP haplotypes we included the 
dosages for the common haplotypes and the combined group of rare haplotypes in the 
regression models, with the most common haplotype as the reference.  Only if the global 
P-values for the haplotype regression models in the subgroup analyses were significant 
did we scrutinize the haplotype-specific effects. 
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Breast Cancer Risk
tagSNPs 
We found no effect of ATM, CHEK2 or ERBB2 tagSNPs on breast cancer risk (Table 5), 
which was not altered after restricting the analyses to the randomly selected cases and 
controls or conditioning the ATM and ERBB2 analyses on menopausal hormone use or 
diabetes mellitus. 
 
Table 5.  Characteristics of the tagSNPs in ATM, CHEK2 and ERBB2 and their association with breast 
cancer risk. 

 
SNP ID 

 
dbSNP name 

 
Allelesa

Number of  
cases/controls 

Minor allele  
frequencyb

HWE  
P-valueb

 
OR (95% CI)c

       

ATM       

TAG1d  rs4987886 A/T 1220 / 1440 0.06 0.83 1.05 (0.84-1.31) 
TAG2d  rs3092991 A/G 1119 / 1318 0.14 0.04 1.08 (0.93-1.27) 
TAG3d  rs1800057 C/G 1144 / 1346 0.03 0.30 0.89 (0.63-1.26) 
TAG4  rs1801516 G/A 1538 / 1500 0.15 0.34 1.08 (0.94-1.24) 
TAG5  rs17107917 C/G 1546 / 1493 0.04 0.05 1.00 (0.79-1.28) 
TAG6d  rs227060 C/T 1152 / 1350 0.28 0.66 0.99 (0.88-1.12) 
TAG7d  rs664143 C/T 1227 / 1408 0.48 0.20 1.01 (0.91-1.13) 
        

CHEK2       
TAG1  rs8135424 G/A 1539 / 1478 0.13 0.34 1.15 (0.99-1.34) 
TAG2  rs5762749 C/G 1516 / 1472 0.35 0.80 1.00 (0.89-1.12) 
TAG3  rs743185 C/T 1547 / 1491 0.12 0.63 1.05 (0.90-1.24) 
TAG4  rs738722 C/T 1501 / 1444 0.25 0.38 1.00 (0.89-1.13) 
TAG5  rs5762765 G/C 1510 / 1456 0.38 0.10 0.99 (0.88-1.10) 
TAG6  rs2236142 C/G 1541 / 1471 0.31 0.85 1.09 (0.97-1.22) 

        

ERBB2       
TAG1  rs2643195 G/A 1494 / 1458 0.32 0.16 0.98 (0.88-1.09) 
TAG2  rs4252596 G/A 1530 / 1481 0.13 0.08 0.90 (0.78-1.05) 
TAG3  rs2952155 C/T 1459 / 1407 0.25 0.84 0.99 (0.88-1.11) 
TAG4  rs2952156 G/A 1546 / 1481 0.32 0.76 0.97 (0.87-1.09) 
TAG5e  rs1801200 A/G 1548 / 1485 0.26 0.39 1.01 (0.91-1.13) 
TAG6  rs4252665 C/T 1527 / 1486 0.05 0.94 1.00 (0.80-1.25) 
TAG7  rs3809717 G/T 1532 / 1478 0.31 0.60 1.01 (0.90-1.12) 
a Major alleles given first, minor alleles second. 
b In all breast cancer controls. 
c Odds ratios are assessed assuming co-dominance and show the increase/decrease in breast cancer risk 
with each addition of the rare allele.  ATM and ERBB2 analyses were adjusted for age.  CHEK2 analyses 
were also adjusted for menopausal hormone use and diabetes mellitus. 
d Not genotyped in the cases who participated via tissue sample donation. 
e Also named I655V. 
 
Haplotypes 
Compared to the most common haplotype, the rare haplotypes in CHEK2 appeared to 
increase breast cancer risk (Table 6).  The association did not however carry over to the 
global test.  After excluding the 1100delC carriers (n=28) from the analysis, this 
association decreased (OR 1.20; 95% CI, 0.98–1.47), whilst the odds ratios for the 
common haplotypes remained unchanged.  Consideration only of breast cancer cases 
eventually diagnosed with a second breast cancer (n=72) did not provide any convincing 
association.  These findings remained unaltered after restricting the analyses to the 
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randomly selected cases and controls or when we compared carriers to noncarriers of 
each haplotype, instead of using haplotype 1 as reference.   
 
Table 6.  Common tagSNP haplotypes in ATM, CHEK2  and ERBB2 in relation to breast cancer risk. 
  Haplotype proportions  
Haplotype no. Haplotypes Cases  Controls  OR (95% CI)b

     

ATM  (n = 1574a) (n = 1513a)  
1 AACGCCT 0.414 0.408 1.00 (Reference) 
2 AACGCTC 0.231 0.231 0.99 (0.86-1.13) 
3 AGCACCC 0.150 0.139 1.06 (0.91-1.24) 
4 AACGCCC 0.062 0.076 0.81 (0.64-1.02) 
5 TACGCCT 0.064 0.061 1.03 (0.81-1.30) 
6 AACGGTC 0.043 0.043 0.97 (0.75-1.25) 

 Rarec  0.037 0.042 0.88 (0.66-1.16) 
Global P-valued   0.50 
     

CHEK2  (n = 1571a)  (n = 1513a)  

1 GCCCCC 0.223 0.241 1.00 (Reference) 
2 GGCTGC 0.231 0.230 1.07 (0.92-1.26) 
3 GCCCCG 0.140 0.129 1.13 (0.93-1.37) 
4 ACCCGC 0.113 0.104 1.20 (0.98-1.46) 
5 GCTCGG 0.089 0.088 1.10 (0.88-1.36) 
6 GGCCGC 0.052 0.060 0.94 (0.72-1.24) 
7 GCCCGC 0.027 0.034 0.87 (0.61-1.26) 

 Raree   0.125 0.114 1.24 (1.02-1.51) 
Global P-valued   0.19 
     

ERBB2  (n = 1579a) (n = 1516a)  
1 GGCGACT 0.296 0.295 1.00 (Reference) 
2 AGTAACG 0.166 0.165 1.01 (0.86-1.18) 
3 GGCGGCG 0.135 0.128 1.04 (0.88-1.23) 
4 GACGACG 0.116 0.128 0.91 (0.77-1.08) 
5 AGTAGCG 0.075 0.077 0.97 (0.79-1.20) 
6 AGCAACG 0.068 0.071 0.94 (0.76-1.17) 
7 GGCGACG 0.079 0.069 1.14 (0.91-1.41) 
8 GGCGGTG 0.048 0.051 0.94 (0.74-1.20) 

 Raref  0.018 0.015 1.18 (0.77-1.81) 
Global P-valued   0.76 

a Information on at least one tagSNP 
b ATM and ERBB2 analyses were adjusted for age.  CHEK2 analyses were also adjusted for menopausal 
hormone use and diabetes mellitus. 
c 11 rare haplotypes combined.  Each haplotype has frequency below 3% among the controls. 
d Likelihood ratio test. 
e 19 rare haplotypes combined.  Each haplotype has frequency below 3% among the controls. 
f 19 rare haplotypes combined.  Each haplotype has frequency below 3% among the controls. 
 
We stratified the haplotype analyses by several breast cancer risk factors:  Age at 
menarche and menopause, first-degree family history, body mass index, age at first birth, 
menopausal hormone use, and parity.  None of the stratified analyses yielded a significant 
(α=0.05) global test of association. 
 
Rare Variants 
The 1100delC mutation, genotyped in 1,510 cases and 1,334 controls, was rare in our 
Swedish population, with a frequency of 0.4% in the controls (HWE, P = 0.89).   
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The deletion was slightly more common 
in the cases (0.7%) than in the controls, 
and the corresponding age- and sampling 
scheme-adjusted odds ratio for carriers 
versus noncarriers was 2.26 (95% CI, 
0.99–5.15) (Table 7).  The 1100delC 
was exclusively carried on rare 
haplotypes, which may explain the 
marginally significant association 
between the group of rare haplotypes in 
CHEK2 and breast cancer risk (Table 6).  

 
Table 7.  Association of the CHEK2*1100delC 
with breast cancer risk. 
1100delC 
genotype 

Number of 
cases/controls OR (95% CI)a

C/C 1490/1326 1 (Reference) 
C/- 19/8 2.13 (0.92-4.89) 
-/- 1/0 --- 
C/- and  -/- 20/8 2.26 (0.99-5.15) 
a Analyses were conditioned on age, menopausal 
hormone use and diabetes mellitus. 

We genotyped two missense mutations 
in ATM in the complete sample set:  
4258 C→T (rs1800058, L1420F) and 
2572 T→C (rs1800056, F858L).  
Neither mutation deviated significantly 
from HWE in controls.  They were both 
rare in our population, with minor allele 
frequency of 1.9% for 4258 C→T and 
1.4% for 2527 T→C in the controls.  
When exploring the change in breast 
cancer risk with each addition of the rare 
allele compared to non-carriers 
(assuming co-dominance), we found 
elevated risk – though not significantly – 
for the 4258 C→T (OR 1.36, 95% CI 
0.91-2.04), but no association emerged 
between the 2527 T→C and breast 
cancer risk (OR 1.05, 95% CI 0.65-
1.71). 
 
Breast Cancer Survival 
We estimated the risk of breast cancer 
death associated with the tagSNPs 
(Table 8) in ATM, CHEK2 and ERBB2, 
and their haplotypes (Table 9).  We 
found decreased risk of breast cancer 
death associated with each addition of 
the rare allele of TAG2 in CHEK2 (P = 
0.026) as well as elevated risk of 
CHEK2 TAG6 (P = 0.03), compared to 
homozygotes of the common allele for 
each variant (Table 8).  The associations 
did not however withstand multiple  

Table 8.  Association of the tagSNPs in ATM, 
CHEK2 and ERBB2 with breast cancer survival. 

 
SNP ID 

Br.ca. deaths 
/person-yearsa

 
HR (95% CI)a,b

   

ATM   

TAG1c  70 / 10,660 0.86 (0.42-1.76) 
TAG2c   65 / 9,717 1.12 (0.71-1.77) 
TAG3c  66 / 9,958 0.62 (0.16-2.46) 
TAG4  185 / 12,421 0.99 (0.75-1.30) 
TAG5  192 / 12,466 1.01 (0.63-1.64) 
TAG6c  68 / 10,004 0.77 (0.52-1.14) 
TAG7c  73 / 10,684 1.24 (0.89-1.73) 
   

CHEK2   
TAG1 197 / 12,367 1.08 (0.83-1.41) 
TAG2 191 / 12,172 0.78 (0.62-0.97) 
TAG3 192 / 12,471 1.21 (0.91-1.62) 
TAG4 187 / 12,083 0.72 (0.56-0.93) 
TAG5 192 / 12,118 1.15 (0.94-1.41) 
TAG6 192 / 12,398 1.25 (1.02-1.54) 

   

ERBB2   
TAG1  186 / 12,052 1.09 (0.88-1.35) 
TAG2  189 / 12,330 0.95 (0.70-1.30) 
TAG3  184 / 11,666 1.02 (0.80-1.29) 
TAG4  194 / 12,445 1.11 (0.89-1.37) 
TAG5e  193 / 12,463 1.00 (0.80-1.25) 
TAG6  182 / 12,401 0.76 (0.45-1.27) 
TAG7  194 / 12,310 0.96 (0.77-1.20) 
a Among breast cancer cases. 
b Hazard ratios are assessed assuming co-
dominance and show the increase/decrease in 
risk of breast cancer death with each addition of 
the minor allele compared to homozygotes of the 
major allele. 
c Not genotyped in the cases who participated via 
tissue sample donation. 
e Also named I655V. 

 

 36



 

testing correction.  Carriers of haplotype 2 in CHEK2 appeared to have decreased risk of 
breast cancer death (P = 0.038), compared to haplotype 1 carriers, whilst ERBB2 rare 
haplotype carriers seemed to have increased risk (P = 0.009).  Neither association carried 
over to the global test (P = 0.15 and P = 0.45, respectively) (Table 9). 

Table 9.  tagSNP haplotypes in ATM, CHEK2 and ERBB2 in relation to breast cancer survival. 
Haplotype number Haplotypes Haplotype proportions (cases) HR (95% CI) 

    

ATM  n = 1574a  
1 AACGCCT 0.414 1.00 (Reference) 
2 AACGCTC 0.231 0.85 (0.65-1.13) 
3 AGCACCC 0.150 0.89 (0.66-1.21) 
4 AACGCCC 0.062 0.86 (0.52-1.44) 
5 TACGCCT 0.064 0.88 (0.55-1.40) 
6 AACGGTC 0.043 0.95 (0.57-1.57) 

 Rareb 0.037 0.95 (0.53-1.68) 
Global P-valuec  0.95 
    

CHEK2  n = 1571a  
1 GCCCCC 0.223 1.00 (Reference) 
2 GGCTGC 0.231 0.72 (0.52-0.98) 
3 GCCCCG 0.140 1.02 (0.72-1.43) 
4 ACCCGC 0.113 1.00 (0.70-1.41) 
5 GCTCGG 0.089 1.08 (0.73-1.57) 
6 GGCCGC 0.052 0.61 (0.34-1.10) 
7 GCCCGC 0.027 0.60 (0.26-1.41) 
 Rared 0.125 0.95 (0.67-1.35) 
Global P-valuec  0.15 
    

ERBB2  n = 1579a  
1 GGCGACT 0.296 1.00 (Reference) 
2 AGTAACG 0.166 0.98 (0.71-1.34) 
3 GGCGGCG 0.135 1.01 (0.73-1.40) 
4 GACGACG 0.116 0.98 (0.69-1.39) 
5 AGTAGCG 0.075 1.21 (0.81-1.81) 
6 AGCAACG 0.068 1.16 (0.76-1.77) 
7 GGCGACG 0.079 1.06 (0.69-1.63) 
8 GGCGGTG 0.048 0.81 (0.47-1.39) 

 Raree 0.018 2.21 (1.22-4.02) 
Global P-valuec  0.45 

a Information on at least one tagSNP 
b 11 rare haplotypes combined.  Each haplotype has frequency below 3% among the controls. 
c Likelihood ratio test. 
d 19 rare haplotypes combined.  Each haplotype has frequency below 3% among the controls. 
e 19 rare haplotypes combined.  Each haplotype has frequency below 3% among the controls. 
 
Breast Tumour Characteristics 
Breast cancer cases were divided in groups according to their tumour characteristics (see 
‘Subjects’, ‘Breast Tumour Characteristics and Follow-up’ above) and each group was 
contrasted against all controls.  None of the global P-values of the haplotype logistic 
regression models reached significance, which indicates that after taking into account the 
number of tests performed, none of the individual haplotypes affected the risk of 
developing tumours with certain characteristics. 
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We could not perform a meaningful analysis regarding the association between the rare 
variants in CHEK2 and ATM and breast cancer characteristics or survival due to very 
small sample sizes. 
 
Endometrial Cancer Risk 
tagSNPs 
When assessing the change in risk with each addition of the rare allele compared to non-
carriers, we found TAG1 in CHEK2 to be associated with increased endometrial cancer 
risk (P = 0.01, Table 10), but multiple testing adjustment rendered the association non-
significant (P = 0.23).  Restricting the analysis to include only endometroid tumours 
yielded a stronger association with an odds ratio of 1.28 (95% CI 1.07-1.54, P = 0.007).      
 
Table 10.  Characteristics of the tagSNPs genotyped in ATM, CHEK2 and ERBB2 and their association with 
endometrial cancer risk. 
SNP ID Minor allele frequencya HWE P-valuea Number of cases/controls OR (95% CI)b

     

ATM     

TAG1c 0.06 0.69 552/1467 0.97 (0.73-1.30) 
TAG2c 0.14 0.01 501/1361 1.14 (0.93-1.38) 
TAG3c 0.03 0.39 523/1390 0.84 (0.54-1.30) 
TAG4  0.14 0.18 694/1547 1.09 (0.91-1.30) 
TAG5  0.04 0.08 690/1539 1.15 (0.87-1.54) 
TAG6c 0.28 0.90 521/1393 1.02 (0.87-1.19) 
TAG7c 0.48 0.55 546/1450 1.02 (0.89-1.18) 
     

CHEK2     
TAG1  0.13 0.94 683/1524 1.26 (1.06-1.51) 
TAG2  0.35 0.95 672/1516 0.93 (0.82-1.07) 
TAG3  0.12 0.51 682/1541 0.93 (0.76-1.14) 
TAG4  0.26 0.66 663/1493 1.03 (0.89-1.19) 
TAG5  0.39 0.07 671/1500 0.96 (0.84-1.10) 
TAG6  0.31 0.94 682/1521 1.02 (0.89-1.17) 

     

ERBB2     
TAG1  0.32 0.21 671/1503 0.91 (0.80-1.05) 
TAG2  0.13 0.05 687/1524 0.93 (0.77-1.13) 
TAG3  0.26 0.90 657/1454 0.93 (0.80-1.09) 
TAG4  0.32 0.81 686/1530 0.91 (0.79-1.05) 
TAG5e 0.26 0.50 691/1531 0.95 (0.83-1.10) 
TAG6  0.05 0.58 690/1534 0.95 (0.71-1.28) 
TAG7  0.31 0.81 682/1524 1.03 (0.90-1.18) 
a In all endometrial cancer controls. 
b Odds ratios are assessed assuming co-dominance and show the increase/decrease in endometrial cancer 
risk with each addition of the rare allele.  Analyses were adjusted for age (5 year age-groups). 
c Not genotyped in cases who participated via tissue sample donation. 
e Also named I655V. 
 
When we explored individual genotype risks for CHEK2 TAG1, the increased risk 
appeared to be confined to homozygous carriers of the rare allele (AA) (Table 11).  
Compared with GG carriers, the risk in AA carriers was 2.11 (P = 0.012) for all tumours 
and 2.29 (P = 0.005) for the endometroid tumours (Table 11).  Conditioning on the 
selection variables (menopausal hormone use and diabetes mellitus) or restricting the 
analyses to the randomly selected controls did not alter the results. 
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Table 11.  Association of TAG1 in CHEK2 with endometrial cancer risk overall and restricted to 
endometroid tumours. 
 All cancers Endometroid tumours 
TAG1 CHEK2 No. of cases/controls OR (95% CI)a No. of cases/controls OR (95% CI)a

GG 490/1156 1.00 (reference) 453/1156 1.00 (reference) 
GA 170/343 1.18 (0.95-1.46) 157/343 1.18 (0.95-1.47) 
AA 23/25 2.11 (1.18-3.77) 23/25 2.29 (1.28-4.08) 
a Adjusted for age in 5-year age-groups. 
 
Haplotypes 
When we assessed the association of the tagSNP haplotypes in ATM, CHEK2 and ERBB2 
in relation to endometrial cancer risk, haplotype 4 in ATM and haplotype 4 in CHEK2 
appeared to affect the risk (P = 0.028 and P = 0.017, respectively) compared to haplotype 
1 in each gene (data now shown).  The associations did not, however, carry over to the 
global tests for either gene (P = 0.20 and P = 0.24, respectively).  These results were 
unaffected after conditioning on the selection variables (menopausal hormone use and 
diabetes mellitus), or restricting the analyses to the randomly selected controls. 
 
Global likelihood ratio test P-values for association between ATM, CHEK2 and ERBB2 
haplotypes and endometrial cancer risk, restricted to certain tumour subtypes or stratified 
by cancer risk factors are shown in Table 12.  We did not perform tests within the 
subgroups of medium potency estrogen only or in combination with progestin since the 
low numbers might have affected the reliability of the global P-values.  ATM haplotypes 
appeared to affect endometrial cancer risk among women who delivered their last child 
over 33 years of age (global P = 0.027, Table 12).  Haplotype 5 showed a borderline non-
significant association (P = 0.053) compared to haplotype 1 in this group of women, but 
the likelihood ratio test for interaction between age at last birth and haplotype 5 in ATM 
was not statistically significant (P = 0.08).  A stronger association emerged between 
endometrial cancer risk and ATM haplotypes in non-smokers (global P = 0.009), but 
became non-significant after multiple testing adjustment (P = 0.32).  This association was 
driven by haplotype 4 in ATM (P = 0.002), which decreased the risk of endometrial 
cancer (OR 0.50, 95% CI 0.32-0.77) compared to haplotype 1 (Table 13).  When we 
compared carriers of haplotype 4 with non-carriers, the association was slightly stronger 
(OR 0.48, 95% CI 0.31-0.73, P = 0.0007), and the test of interaction indicated that the 
effect of haplotype 4 in ATM on endometrial cancer risk depended on smoking status (P 
= 0.0037).   
 
CHEK2 haplotypes were associated with endometrial cancer risk among women with 
menopause below 49 years of age (global P = 0.034, Table 12).  In this group of women, 
all haplotypes in CHEK2 appeared to increase endometrial cancer risk when compared 
with haplotype 1 (Table 13).  However, when we compared each haplotype with non-
carriers of the respective haplotype, only haplotype 1 affected endometrial cancer risk 
among these women (OR 0.50, 95% CI 0.33-0.75, P = 0.0009).  The risk related to 
haplotype 1 increased with increasing age at menopause (49-52 years: OR = 0.88, P = 
0.30; >52 years: OR = 1.17, P = 0.31) and the test for interaction between age at 
menopause and haplotype 1 in CHEK2 was statistically significant (P = 0.007). 
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Table 12.  Global P-values for the association of ATM, CHEK2 and ERBB2 tagSNP haplotypes with 
endometrial cancer risk, restricted to tumour subtypes and stratified by endometrial cancer risk factors. 
 ATM CHEK2 ERBB2 
Characteristic Global P-valuea Global P-valueb Global P-valuec

Endometroid cancers 0.261 0.203 0.493 
     Grade I 0.300 0.912 0.536 
     Grade II 0.423 0.156 0.865 
     Grade III 0.842 0.286 0.413 
Myometrial invasiond    
     No 0.418 0.226 0.778 
     Yes 0.671 0.542 0.057 
Age at menopause (years)    
     <49 0.435 0.034 0.508 
     49-52 0.427 0.050 0.866 
     >52 0.080 0.807 0.248 
Age at last birth (years)    
     ≤26 0.723 0.391 0.311 
     27-33 0.153 0.693 0.810 
     ≥34 0.027 0.284 0.486 
Parity    
     Nulliparous 0.561 0.682 0.164 
     1 child 0.659 0.253 0.789 
     2 children 0.801 0.638 0.559 
     ≥3 children 0.195 0.457 0.641 
Body mass index (kg/m2)    
     <25 0.266 0.690 0.508 
     25-<28 0.306 0.682 0.128 
     ≥28 0.372 0.078 0.212 
Regular smoking for at least 1 year    
     No 0.009 0.209 0.279 
     Yes 0.261 0.847 0.344 
Family historye    
     No 0.066 0.329 0.365 
     Yes 0.431 0.369 0.109 
Combined oral contraceptivesf    
     Never 0.135 0.221 0.795 
     Ever 0.684 0.585 0.352 
Low potency estrogen useg    
     Never 0.240 0.320 0.135 
     Ever 0.815 0.392 0.756 
Self-reported diabetes mellitus     
     No 0.401 0.455 0.585 
     Yes 0.304 0.738 0.155 
a Likelihood ratio test with 6 degrees of freedom.  Models include 5 common haplotypes and the 10 rare 
haplotypes combined into a single variable.  The most common haplotype is the reference. 
b Likelihood ratio test with 6 degrees of freedom.  Models include 5 common haplotypes and the 19 rare 
haplotypes combined into a single variable.  The most common haplotype is the reference. 
c Likelihood ratio test with 8 degrees of freedom.  Models include 7 common haplotypes and the 16 rare 
haplotypes combined into a single variable.  The most common haplotype is the reference. 
d No:  No invasion or <50% of the myometrum.  Yes:  Invasion through ≥ 50% of the myometrium or 
through the serosa. 
e At least one 1st degree relative with endometrial cancer 
f Estrogens and progestins given concurrently in a monthly cycle. 
g Oestriol or oestradiol of low dose.  Not exclusive use. 
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Table 13.  The association of ATM, CHEK2 and ERBB2 tagSNP haplotypes with endometrial cancer risk 
stratified by smoking history and age at menopause. 
 ATM CHEK2 ERBB2 
Smoking (no)d OR (95% CI)a OR (95% CI)b OR (95% CI)c

haplotype 1 1 (Reference) 1 (Reference) 1 (Reference) 
haplotype 2 0.97 (0.78-1.22) 1.14 (0.89-1.47) 0.94 (0.73-1.22) 
haplotype 3 1.14 (0.89-1.46) 1.16 (0.85-1.58) 0.93 (0.70-1.23) 
haplotype 4 0.50 (0.32-0.77) 1.49 (1.10-2.01) 1.22 (0.93-1.60) 
haplotype 5 1.17 (0.82-1.67) 1.00 (0.72-1.39) 0.78 (0.54-1.12) 
haplotype 6 1.45 (0.99-2.12) 1.02 (0.67-1.55) 0.95 (0.68-1.33) 
haplotype 7 --- --- 1.27 (0.91-1.77) 
haplotype 8 --- --- 1.20 (0.80-1.78) 
Rare 0.98 (0.63-1.53) 1.16 (0.87-1.55) 0.78 (0.37-1.64) 
Global P-valuee 0.01 0.21 0.28 
Smoking (yes)d   
haplotype 1 1 (Reference) 1 (Reference) 1 (Reference) 
haplotype 2 0.92 (0.70-1.22) 0.93 (0.68-1.28) 1.12 (0.82-1.53) 
haplotype 3 0.92 (0.67-1.25) 1.14 (0.78-1.66) 0.85 (0.60-1.22) 
haplotype 4 1.05 (0.68-1.63) 1.12 (0.78-1.62) 0.84 (0.59-1.20) 
haplotype 5 0.68 (0.42-1.12) 1.02 (0.64-1.65) 0.78 (0.50-1.20) 
haplotype 6 0.77 (0.46-1.30) 0.78 (0.43-1.43) 0.74 (0.46-1.21) 
haplotype 7 --- --- 0.95 (0.62-1.46) 
haplotype 8 --- --- 0.58 (0.33-1.00) 
Rare 0.44 (0.21-0.9) 1.05 (0.75-1.47) 1.47 (0.56-3.88) 
Global P-valuee 0.26 0.85 0.34 
Age at menopause <49 years   
haplotype 1 1 (Reference) 1 (Reference) 1 (Reference) 
haplotype 2 0.82 (0.54-1.22) 2.02 (1.25-3.28) 0.65 (0.41-1.04) 
haplotype 3 0.73 (0.47-1.15) 2.53 (1.42-4.52) 0.56 (0.33-0.97) 
haplotype 4 0.71 (0.33-1.53) 2.17 (1.23-3.81) 0.91 (0.57-1.44) 
haplotype 5 1.22 (0.62-2.41) 1.46 (0.75-2.85) 0.67 (0.36-1.27) 
haplotype 6 1.20 (0.61-2.38) 1.84 (0.85-4.00) 0.69 (0.36-1.30) 
haplotype 7 --- --- 0.78 (0.41-1.51) 
haplotype 8 --- --- 0.64 (0.31-1.30) 
Rare 1.51 (0.72-3.17) 1.96 (1.13-3.39) 1.16 (0.38-3.55) 
Global P-valuee 0.43 0.03 0.51 
Age at menopause 49-52 years  
haplotype 1 1 (Reference) 1 (Reference) 1 (Reference) 
haplotype 2 1.04 (0.80-1.37) 1.03 (0.75-1.40) 1.06 (0.78-1.43) 
haplotype 3 1.26 (0.93-1.71) 1.04 (0.71-1.52) 0.97 (0.69-1.36) 
haplotype 4 0.95 (0.61-1.48) 1.77 (1.24-2.53) 1.10 (0.78-1.53) 
haplotype 5 0.83 (0.52-1.32) 1.17 (0.77-1.76) 0.76 (0.49-1.17) 
haplotype 6 1.02 (0.61-1.68) 1.06 (0.63-1.78) 0.86 (0.55-1.33) 
haplotype 7 --- --- 0.84 (0.56-1.28) 
haplotype 8 --- --- 0.82 (0.49-1.35) 
Rare 0.66 (0.37-1.19) 1.03 (0.73-1.46) 1.28 (0.50-3.27) 
Global P-valuee 0.43 0.05 0.87 
Age at menopause >52 years   
haplotype 1 1 (Reference) 1 (Reference) 1 (Reference) 
haplotype 2 1.24 (0.89-1.74) 0.82 (0.56-1.19) 1.34 (0.93-1.95) 
haplotype 3 1.19 (0.82-1.72) 0.87 (0.55-1.38) 0.90 (0.58-1.38) 
haplotype 4 0.45 (0.23-0.87) 0.78 (0.49-1.24) 1.05 (0.69-1.59) 
haplotype 5 1.23 (0.71-2.13) 0.77 (0.46-1.29) 0.88 (0.52-1.51) 
haplotype 6 1.33 (0.78-2.29) 0.66 (0.34-1.29) 0.92 (0.55-1.56) 
haplotype 7 --- --- 1.71 (1.04-2.82) 
haplotype 8 --- --- 1.35 (0.73-2.51) 
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 ATM CHEK2 ERBB2 
Rare 0.68 (0.31-1.50) 0.98 (0.66-1.46) 0.57 (0.15-2.15) 
Global P-valuee 0.08 0.81 0.25 

a Models include 5 common haplotypes and the 10 rare haplotypes combined into a single variable.  The 
most common haplotype is the reference. 
b Models include 5 common haplotypes and the 19 rare haplotypes combined into a single variable.  The 
most common haplotype is the reference. 
c Models include 7 common haplotypes and the 16 rare haplotypes combined into a single variable.  The 
most common haplotype is the reference. 
d Regular smoking for at least one year or ever having smoked over 100 cigarettes. 
e Likelyhood ratio test. 
 
Rare Variants 
We genotyped the non-synonymous variants rs1800056 (2572 T→C, F858L) and 
rs1800058 (4258 C→T, L1420F) in the ATM gene and the 1100delC deletion in the 
CHEK2 gene in our endometrial cancer sample set.  All variants were very rare in our 
population with minor allele frequencies of 1.6%, 1.7% and 0.4% among the controls 
respectively.  We found no association between any of the three variants and endometrial 
cancer risk. 
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DISCUSSION 

Study Design 

Our study was a population-based case-control study.  Case-control studies can be 
thought of as reverse cohort studies.  In a cohort study, a population is defined, exposure 
information determined, and the population is followed to see how many develop the 
disease and whether they are more or less frequently exposed than those who do not 
develop the disease.  In a population-based case-control study, a population is defined, all 
cases are identified, controls are selected, and the exposure distribution – which often 
happened many years earlier – is determined in both cases and controls.  The controls 
should be sampled from the source population that gave rise to the cases and should be 
sampled independently of the exposure such that the exposure distribution in the controls 
represents that of the source population [207].  Hence, if the selection of the controls does 
not depend on the exposure distribution in any way and measurement of the exposure will 
not be different between cases and controls, the case-control study will be a valid 
approximation of a cohort study. 
 
Case-control studies are often preferred to cohort studies when the disease is rare, has a 
long induction and latent period and/or if expensive laboratory tests are required to be 
carried out on biological samples obtained from the cohort members.  For example, if 
researchers design a case-control study instead of a cohort study they do not have to wait 
for decades for only few cases to develop the disease and do not have to perform 
expensive laboratory tests on thousands of biological samples.  We studied breast and 
endometrial cancer, which are both rare diseases with a long induction period.  
Furthermore, we collected biological samples from all participants and performed 
numerous expensive laboratory tests.  Hence, the case-control design we applied was 
obviously to our advantage. 
 
It is believed that case-control studies are more prone to bias such as selection bias and 
recall bias than cohort studies since the study base (the population) is often not well 
defined and the exposure information is collected retrospectively [207].  Furthermore, it 
can be difficult to establish a clear temporal relationship between the exposure and 
disease because of the retrospective nature of the data.  Case-control studies were thus 
thought of in the past as being less valid than cohort studies.  This view has changed in 
the last couple of decades since researchers realized that well-designed case-control 
studies can be just as efficient a way to learn about the relationship between an exposure 
and disease as cohort studies.   
 
In order to determine the internal validity of our study and subsequently to determine 
causation, I discuss below some of the main considerations for case-control studies as 
well as genetic association studies and relate these factors to our study. 
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Validity 

Internal validity of a study must be established before the observed results can be deemed 
causal and before the results can be generalized to other populations.  Only if bias, 
confounding and random error have been carefully considered and found to be negligible 
can the investigator conclude that the study is valid and the association true [207]. 
 
Selection Bias 
Control Selection Bias 
A well defined study base is the foundation of all case-controls studies.  A problem with 
this definition can lead to selection bias.  This can happen when the investigators do not 
use the same criteria to select cases and controls.  In hospital-based case-control studies 
for example, when the cases and controls – with an unrelated disease – are identified 
from hospital records, the investigators have to make sure that the illness of the controls 
has the same referral pattern to the health care facility as that of the cases [207].  This can 
be very difficult to determine particularly since the study base is often unknown.  
Population-based case-control studies like ours circumvent this problem by defining the 
study base prior to selecting cases and controls, thus ensuring that the controls are 
selected from the population that gave rise to the cases.  
 
Self-selection Bias 
Refusal to participate in the study or non-response by the eligible cases and controls can 
lead to selection bias if this non-participation is different between cases and controls and 
is related to the exposure [207].  Selection bias of this type could be a concern in our 
study since non-participation was related to severe disease or death.  This non-
participation was related to case-control status since the cases were more likely to 
become seriously ill and it might have been related to our exposure; genetic variation.   
 
We sought to obtain tissue samples from the deceased cases and those cases that had 
declined donation of a blood sample, and were able to obtain the majority of the samples 
requested.  The relative minor lack of tissue accessibility is unlikely to be related to our 
exposure – CYP17, ATM, CHEK2 or ERBB2 genetic variation – as it depended on the 
inability of the respective pathology department to retrieve the samples.  Furthermore, 
genotype frequencies of the tagSNPs in ATM, CHEK2 and ERBB2 did not differ between 
blood and tissue samples, which suggests that the exposure was not related to non-
participation and therefore that selection bias was negligible.  Hence, we believe our main 
problem was lack of generalizability to women with severe breast cancer.  
 
However, we were not able to genotype five tagSNPs in ATM in the tissue samples. If 
these five tagSNPs were in fact associated with severe disease, the association with risk 
of breast cancer death might have been biased towards the null in our study since we did 
not include all the severe cases.  The fact that the results were not different when we 
restricted our analyses to the most severe cases among those who donated blood samples 
indicates that the five tagSNPs were truly not associated with severe disease. 
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Differential Diagnosis 
If diagnosis of the disease is related to the exposure then selection bias can occur.  In this 
situation, cases are selected on the basis of the exposure.  It is almost impossible that 
diagnosis of breast or endometrial cancer could have been influenced by the main 
exposure in our study, which is germ-line genetic variation.  However, users of 
menopausal hormone therapy tend to have more frequent mammographic screenings than 
non-users, which can lead to increased possibility of being diagnosed with breast cancer.  
Unless the genetic factors were associated with menopausal hormone therapy – which we 
found no evidence of – or to the tendency to seek medical care, this kind of selection bias 
is not a problem in our study. 
 
Observation Bias 
Recall Bias 
Recall bias occurs when cases are more or less likely than controls to recall and report 
prior exposures [207].  The exposure in our study was genetic information detected in 
extracted DNA from blood or tissue, information which the participants did not have any 
knowledge of.  It is therefore impossiple that the exposure information could have 
depended on the respective memory of the cases and controls.  However, we had 
extensive questionnaire information on reproductive and lifestyle factors, which enabled 
us to test for gene-environment interactions.  Recall of these factors could have been 
differential between cases and controls.  Nevertheless, provided that the genetic and 
environmental factors are independent and that the misclassification of the environmental 
factor is independent of the genetic factor, both non-differential and differential 
misclassification of the environmental factor merely biases their interaction towards the 
null [208].  We found no meaningful association between the SNPs in CYP17, ATM, 
CHEK2 and ERBB2 and the environmental factors under study and thus conclude that 
recall bias is not a major problem in our study.   
 
Misclassification 
Misclassification or error in measuring the exposure or the outcome can be either 
differential or non-differential.  Differential misclassification occurs when 
misclassification on one of the axes (exposure or outcome) is related to the other axis 
(exposure or outcome) [207].  Non-differential misclassification refers to errors on the 
one axis that are not related to the other axis [207].  For example, non-differential 
misclassification of the exposure occurs when the errors in the exposure classification are 
the same for cases and controls.  Differential misclassification can bias the results either 
upwards or downwards but non-differential misclassification of dichotomous exposures 
causes bias towards the null.  Non-differential misclassification of exposure variables 
with three or more categories is less predictable. 
 
Misclassification of the Outcome 
Misclassification of the outcome, such as the breast tumour characteristics, could have 
occurred in our study.  The breast tumour characteristics were assessed by different 
pathologists and different laboratories throughout Sweden, which could have led to 
misclassification.  However, the misclassification was most likely not related to the 
exposure as the pathologists or the laboratories had no knowledge of the individual’s 
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genetic make-up.  For example, estrogen and progesterone receptor status of the breast 
tumours and S-phase fraction were assessed at seven different laboratories across 
Sweden, but it is doubtful that genotype frequencies are related to inter-laboratory 
differences.  Furthermore, a large proportion of the information on receptor status, S-
phase fraction and grade for the breast tumours was missing.  Assessment of receptor 
status and S-phase fraction was to a large extent dependent on the size of the tumour, but 
evaluation of grade was mostly dependent on the pathologist’s decision.  As genotype 
frequencies were not related to tumour size in our dataset, bias due to missing 
information on these factors seems unlikely.   
 
Information from the Causes of Death Registry in Sweden has been found to be of high 
quality [209].  Thus, misclassification of a death as breast cancer death is unlikely.  
Furthermore, the same pathologist assessed the histological specimens for all of the 
endometrial cancer cases.  This pathologist did not have any knowledge of the genetic 
make-up of the individuals who the samples belonged to and any misclassification that 
occurred is therefore merely non-differential.   
 
Misclassification of the Exposure 
Misclassification of the exposure in genetic association studies is related to the 
genotyping accuracy of the methods used and the quality control performed.  Genotyping 
accuracy is essential in genetic association studies where the effect of interest is small.  
Using genotyping methods with low error rates is therefore crucial.  Genotyping errors 
stem from various factors:  a) Variation in DNA sequence (a mutation close to the marker 
site prevents amplification); b) low quantity or quality of DNA (only one of the two 
alleles present at a heterozygous locus is amplified or contaminant molecules are 
amplified as they have a higher probability of being amplified when the number of 
template DNA is low); c) biochemical artifacts (the Taq polymerase has a tendency to 
add a non-templated nucleotide to the 3´ end of the PCR product which creates an 
artificial band on the readout gel); d) human factor (sample mix-up, contamination, 
incorrect reagents added, pipetting error, data handling) [210].  
 
Each 1% increase in non-differential genotyping error has been suggested to require a 2-
8% increase in sample size in order to retain the same power in the study [211].  The 
Sequenom and Illumina methods used in our study are both highly automated methods – 
from sample handling to allele scoring – with low error rates (0.5% and 0.3%, 
respectively).  Our power should therefore be similar to a study with 4% or 2.4% 
(depending on the method used) less sample size.  The four percent corresponds to 
loosing 63 breast cancer cases, 28 endometrial cancer cases, and 63 controls, which only 
lowered our power by approximately 2% in general. 
 
It is imperative in genetic association studies to randomly assign the case and control 
samples to the genotyping plates so any genotyping error does not become differential.  
Positive and negative controls should be added on each genotyping plate to assess 
contamination.  If contamination occurs, the assay should be repeated.  Furthermore, 
genotyping personnel should be blinded to case-control status in order to prevent any 
systematic differences between cases and controls, and concordance of genotypes should 
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be assessed with different genotyping methods to validate genotype frequencies.  We 
included positive and negative controls on all genotyping plates, we assigned the DNA 
samples randomly on the plates, our genotyping personnel were blinded to case-control 
status, and we replicated genotype calls with a separate genotyping method with over 
99.5% concordance.  Hence, differential misclassification of the exposure is unlikely to 
have accounted for our results.   
 
Loss to Follow-up 
Loss to follow-up refers to when subjects can no longer be located in follow-up studies.  
This is a potential problem since it can not be determined whether the losses are 
differential or non-differential because outcome information is unknown [207].  It is 
therefore important to maintain high and similar follow-up rates between the exposed and 
unexposed groups in follow-up studies.  Since we relied on the constantly updated and 
nation-wide Causes of Death registry for determination of the outcome in the survival 
component of our study, loss to follow-up was mainly related to emigration of the 
women.  However, only two women had emigrated in the parent breast cancer study.  
These two women were not selected for the current genetic study so loss to follow-up did 
not pose a problem in our study.  
 
Length and Lead Time Bias 
Length and lead time biases are not a problem in risk analyses but can be a problem in 
survival analyses. 
 
Screening tends to detect cases with less aggressive forms of disease and who have 
longer survival.  Length bias makes a screening program appear to be beneficial with 
regard to survival since people who are destined to have a favorable course are 
selectively identified [207].  If a person’s genetic make-up determines whether this 
person will be screened or not, it would seem that the genetic factors under study were 
related to longer survival.  Women using menopausal hormones are more likely than 
other women to undergo mammography screening.  However, as the genotype 
frequencies were not related to method of breast cancer detection in our study, or to the 
use of menopausal hormones, length bias is most likely not a reason for concern in our 
study. 
 
Lead time is the time from when a disease is detected by screening to when symptoms 
appear and the disease should have been detected [207].  Survival time of the cases 
therefore depends on whether the disease was detected by screening or whether the 
disease was detected because of symptoms.  However, as mentioned above, the genotype 
frequencies in our study did not vary with the method of breast cancer detection or 
menopausal hormone use.  Hence, we believe that problems related to lead time bias are 
negligible in our study. 
 
Confounding 
Until recently, a confounder has been defined according to three criteria:  a) The exposure 
and confounder are associated, b) the confounder is associated with the outcome 
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conditional on the exposure and c) the confounder is not an intermediate in the pathway 
between the exposure and the outcome. 
  
Statistical association between two factors – such as the exposure and a confounder – 
occurs when one is the cause of the other, when they share a common cause, or both 
[206].  Hence, the criteria that the confounder can not be in the causal pathway between 
the exposure and the outcome (i.e. that exposure causes the confounder), implies that the 
confounder must cause the exposure or that they have a common cause (which would 
then in turn be the confounder) (Figure 5).  The three criteria can therefore be redefined 
as a single criterion:  Confounding is the presence of common causes to the exposure and 
outcome [206].  In this case, the confounder does not necessarily have to be a direct 
common cause of the exposure and outcome (Figure 5, b), but can also be a common 
cause indirectly through a surrogate marker for example (Figure 5, c). 
 

E O E O E O

 
Figure 5.  Examples showing the three possibilities of a statistical association between the exposure and a 
confounder.  E=exposure, PC=potential confounder, O=outcome, C=confounder.  a) E causes PC, which in 
turn causes O.  Hence, PC is an intermediate in the pathway between E and O and not a confounder.  b) C 
causes both E and O.  C is therefore a confounder.  c) C causes both E and PC, and PC causes O.  C is thus 
the confounder, but PC can be adjusted for as the surrogate confounder.  
 
Because a confounder should cause the exposure as well as the outcome either directly or 
indirectly – not merely be associated with the exposure and cause the outcome – 
confounding by any environmental factor is difficult to imagine in genetic association 
studies.  No reproductive or lifestyle factor of an individual should be able to affect that 
person’s genetic make-up.  I believe that adjusting for potential confounders (apart from 
the matching factors) in genetic association studies when assessing the effect of the gene 
on the disease – either as main effects or stratified by environmental factors – should be 
avoided.  Furthermore, applying statistical models using forward or backward selection of 
potential confounders to statistically assess the best fit of the different models should be 
discouraged.  Instead, since our knowledge is limited regarding which environmental 
factors might be intermediates in the causal pathway between the genetic factors and 
disease; biological reasoning according to the above single criterion – and not the three 
criteria – should be applied to determine whether a factor is a confounder.  
 
Unnecessary adjustments for potential confounders in genetic association studies can 
reduce the sample size considerably in the applied multiple regression models and can 
therefore reduce the power to a large extent.  Power is an important issue in genetic 
association studies since the role of chance (due to lack of prior probability, see ‘Random 
Error’, ‘Multiple Comparisons’, ‘Prior Probability’ below) is one of the main challenges 
faced by this type of studies. For example, if we had adjusted for all the ‘potential 

C
b) 

PC 
a) PC C c) 
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confounders’ in the final models of our breast cancer study, our sample size would have 
been effectively reduced from 1579 breast cancer cases and 1516 controls to 1160 cases 
and 1106 controls in the regression analyses, or by 26.5% and 27%, respectively. 
 
Confounding by Ethnicity 
Confounding has been defined as mixing of effects between the causal factor and the 
confounder.  Population stratification is a type of confounding and can be a problem in 
genetic association studies.  It happens when the population under study is a mixture of 
two populations with different disease prevalence and different allele frequencies that are 
also different between cases and controls.  For example, assume that a population being 
studied consists of Caucasians and Asians who differ in disease and exposure prevalence.  
The Caucasians tend to develop a certain type of cancer more often than the Asians and 
have a minor allele frequency (MAF) of 30% for a SNP under study, whilst the MAF is 
10% among the Asians.  The cases in this population will thus tend to be Caucasian with 
MAF of 30% whilst the controls will tend to be Asian with MAF of 10%.  Hence, the 
SNP under study will erroneously be thought to increase the risk of the cancer. 
 
There are several ways to adjust for population stratification in genetic association studies 
of unrelated individuals.  First, the obvious procedure is to adjust for geographical region 
and markers of ethnic origin.  This method has been stated to be sufficient to control for 
population stratification in populations with unrelated controls and no recent admixture 
[212].  However, other and more efficient methods have been suggested, such as 
genotyping anonymous genetic markers scattered throughout the genome that are 
independent of those affecting the disease of interest and that do not correlate with each 
other [213].  These markers should then reflect the baseline differences between cases 
and controls.  They can be used to either estimate a scaling factor of the stratification to 
be incorporated into the association tests [214] or to subdivide the population into 
homogeneous subgroups [215].  However, Cardon and Palmer mention that in light of the 
limited empirical support for undetected population stratification as the major cause of 
false positive reports, it is currently not clear whether these extra genotyping efforts will 
be worthwhile in genetic association studies [216]. 
 
We believe that population stratification is of limited concern in our study since the 
participants were entirely Caucasian, Swedish born women residing in Sweden.  All 
participants were born between 1919 and 1944, at a time when foreign immigration to 
Sweden was still rare [217].  It therefore seems likely that our population is relatively 
homogeneous with respect to genetic variation and that population stratification is not 
present in our study. 
 
Random Error 
Random error leads to a false association between the exposure and the outcome that 
arises from chance alone.  This can result from an error in measuring the exposure or the 
outcome (for example human error occurring during documentation or calculation) or 
sampling variability [207].  Sampling is generally necessary in genetic association studies 
where expensive genetic tests are performed.  Even if bias due to the selection of the 
participants does not exist, an unrepresentative sample of the source population can still 
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be selected ‘just by chance’.  In the present genetic studies, we selected the participants 
from larger questionnaire-based studies.  We first randomly chose an equal amount of 
cases and controls and then we over-sampled the long-term menopausal hormone users 
and the diabetics.  Despite this over-sampling, Table 1 in Paper II and Table 1 in Paper 
IV show that the characteristics of the cases and controls were similarly distributed 
between the present and parent studies.  Hence, our sub-samples were representative of 
the parent studies. 
 
There are three principal ways to increase precision and reduce random error in 
epidemiological research [207]:  (1) Increase the sample size of the study, (2) repeat the 
measurements within the study or repeat the entire study, and (3) design the study in such 
a way that the information obtained from a given sample size will be maximized.  
However, the absence of random errors does not guarantee the absence of systematic 
errors.  It is possible to have precise but inaccurate findings due to bias for example. 
 
Hypothesis Testing 
Hypothesis testing is used to assess the role of random error in research [207].  First the 
null and alternative hypotheses are specified.  The null hypothesis (HO) states that there is 
no association between the exposure and disease whereas the alternative hypothesis (HA) 
states that an association between the exposure and disease is present.  Then a statistical 
test is performed to quantify the compatibility of the study data with the null hypothesis.  
The test statistic will yield a P value which is defined as the probability of obtaining the 
observed or more extreme result by chance alone, given that the null hypothesis is true.  
A P value of 0.02 indicates that there is only 2% probability of obtaining the observed 
result or one more extreme by chance alone if the null hypothesis is true.  In this 
situation, chance is an unlikely explanation for the finding and we will reject the null 
hypothesis.   
 
The decision whether a result can be called significant is made according to the level of 
significance we select.  If we decide to reject the null hypothesis when the P value is less 
than 0.05, there is still 5% chance of rejecting the null hypothesis when it is in fact true.  
This is called the type I or alpha error.  Type II or beta error occurs when the HA is true 
but we fail to reject HO.   
 
Power 
Power refers to the ability of a statistical test to correctly reject the null hypothesis when 
the alternative is true (1-beta error) [207].  When calculating power for a certain sample 
size, it is necessary to take into account a) the lowest magnitude of association that the 
study should be able to detect, b) the exposure prevalence in the control group, c) the 
prevalence of the disease in the population, and d) the selected level of significance.  
Power increases with increasing sample size, increasing magnitude of association or 
increasing prevalence of the exposure.   
 
As mentioned above in the ‘Background’, under ‘Linkage Disequilibrium’, the 
relationship between a tagSNP and the SNP of interest in the gene is measured by the R2 
measure, which quantifies how well the tagSNP predicts the SNP of interest.  The loss of 
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power due to testing the SNP of interest indirectly is related to the R2 measure [17, 19].  
For example, assume the R2 between a tagSNP and the SNP of interest in the gene is 0.8.  
This means that the tagSNP can predict the SNP of interest with 80% certainty, and that 
we would need to increase the sample size by 25% (1/0.8) in order to achieve the same 
power as if we would have tested the SNP of interest directly [17].  
 
We wanted to quantify the power in our study, and in order to do so for the indirect 
analyses, we needed to take into account the ability of the tagSNPs to predict the other 
SNPs in the gene.  Our study includes in theory three types of SNPs in each gene:  The 
tagSNPs, (genotyped in all cases and controls), the observed SNPs (genotyped in 92 
controls), and the unobserved SNPs (not genotyped and thus unknown).  We could easily 
quantify how well the tagSNPs predicted the observed SNPs in our study and if we 
obtained high R2 values we could easily have assumed that they are the same for the 
unobserved SNPs as well.  However, this is not always a correct assumption [198].  We 
therefore assessed the capability of the tagSNPs to convey an association signal from 
unobserved SNPs as well as the observed SNPs (see ‘Methods’, ‘Papers II-IV’, 
‘Statistical Analyses’, ‘Coverage’ above).  We captured the unobserved SNPs with 
average R2 of 0.92, 0.93 and 0.72 in ATM, CHEK2 and ERBB2, respectively, and thus 
suffered minimal loss of power due to our indirect testing.  Based on these R2 values, we 
then calculated the power for risk assessment in both the breast cancer study and the 
endometrial cancer study.  We calculated power related to assessment of survival in the 
breast cancer study using the Quanto program [204].  We were thus unable to take into 
account the R2 value and calculated the power in accordance to direct analysis.  The rare 
variants in ATM and CHEK2 and the c.1-34T>C variant in CYP17 were all tested directly 
in our studies and we calculated the power accordingly. 
 
Breast Cancer Study 
For the ability of haplotypes to predict the allele count at a causal locus with minor allele 
frequency of 0.20 – assuming α = 0.05 – we had 89% power for ATM, 73% power for 
ERBB2 and 87% power for CHEK2 to detect an odds ratio of 1.3 in the risk component of 
the study. 
 
To detect a hazard ratio of 1.4 with alpha level of 0.05 (assuming co-dominance) in the 
survival component of the study, we had 50% power for TAG1 in CHEK2, which had a 
minor allele frequency of 0.13, and 76% power for TAG5 in CHEK2, which had a minor 
allele frequency of 0.38. 
 
Assuming α=0.05 and dominant inheritance, we had 68% power for the 
CHEK2*1100delC to detect a 2.25-fold increase in breast cancer risk.  To detect an OR 
of 1.5, we had 43% power for the 2572 T→C in ATM, 53% power for the 4258 C→T in 
ATM, and 99.9% power for the CYP17 c.1-34T>C variant. 
 
Endometrial Cancer Study 
For the ability of haplotypes to predict the allele count at a causal locus with minor allele 
frequency of 0.25 – assuming α = 0.05 – we had 88% power for ATM, 88% power for 
CHEK2 and 72% power for ERBB2 to detect an odds ratio of 1.35. 
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Assuming α=0.05 and dominant inheritance to detect an OR of 1.5, we had 14% power 
for the 1100delC in CHEK2, 33% power for the 2572 T→C in ATM, and 34% power for 
the 4258 C→T in ATM. 
 
Multiple Comparisons 
When performing one statistical test with an α-level of 0.05, there will be 5% probability 
of falsely rejecting the null hypothesis when it is true.  However, when performing 10 
statistical tests, the probability of observing at least one false positive finding will be 40% 
when the tests are independent (1-(1-α)k where k applies to the number of tests 
performed).  That is, the more tests one performs, the more likely it will be to eventually 
obtain a positive test.  Thus, in order to retain the same overall rate of false positives 
(0.05), the significance level for each test has to become more stringent.  The Bonferroni 
correction dictates that a new significance level of α/k should be applied to maintain the 
desired overall α-level.  This procedure has on the other hand been criticised for being too 
conservative since the dependence of the statistical tests are not taken into account [218].  
In our study, we corrected the global haplotype P values as well as individual SNP P 
values by applying the Westfall and Young permutation method for correction of the 
family-wise error rate, which takes into account the dependence structure of the 
hypotheses [202].   
 
In Paper IV, we observed four statistically significant P values (<0.05) between the 
common tagSNPs or haplotypes and endometrial cancer risk:  a) The overall P value for 
the CHEK2 TAG1; b) the global P value for CHEK2 haplotypes in non-smokers; and c) 
the global P values for ATM haplotypes in women who were younger than 49 years of 
age at time of menopause and in women with late age at last birth.  None of these P 
values remained statistically significant after multiple testing correction.  However, our a 
priori hypothesis stated that in interaction with increased estrogen exposure, these genes 
might affect endometrial cancer risk.  We therefore assessed the effect of CHEK2 TAG1 
on endometrial cancer risk only among women with endometroid cancers – which are 
related to high estrogen exposure – and found a more pronounced association.  In 
addition, when we statistically assessed the interaction between the haplotype that was 
responsible for each global haplotype association and the environmental factor in 
question, the interaction tests were highly statistically significant between ATM haplotype 
4 and smoking status as well as CHEK2 haplotype 1 and age at menopause.  We therefore 
decided to report these three associations, discuss the biological mechanisms, and let the 
reader decide for him- or herself whether the associations will be worth attempting to 
replicate. 
 
Prior Probability 
It has been suggested that it is not the large number of tests in any one genetic association 
study that is the problem with multiple comparisons, but rather that each locus tested has 
such a small prior probability of being associated with the disease that even if the false 
positive rate is small, the vast majority of the positive findings will be false [12].  This 
might be the reason why the standards of statistical proof in classical epidemiology have 
become almost obsolete in genetic epidemiology.  The problem is not necessarily the 
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increased number of tests performed but rather the small prior belief that a certain SNP or 
a haplotype will be associated with the disease.  Methods have been suggested to adjust 
for multiple testing by accounting for prior belief of an association [219], but they require 
knowledge of the prior probability of association.  The very small prior probability that a 
SNP or a haplotype is associated with disease can instead be accounted for by applying a 
stringent significance threshold. 
 
We detected a twofold increase in breast cancer risk related to the 1100delC in CHEK2.  
Due to the functional effect of this deletion on the CHEK2 protein and the fact that a 
similar association with breast cancer risk had previously been reported in a large 
population-based study [32], we believe this deletion had much higher prior probability 
of being associated with breast cancer than the common polymorphisms in CHEK2.  
Hence, we report the association as a positive finding despite the borderline significance. 
 

Effect Measure Modification 

Effect measure modification means that an effect between exposure and outcome varies 
over strata of a third variable [207].  Its existence depends on the measure of association; 
i.e. when effect modification is present on the multiplicative scale, it will be absent on the 
additive scale and vice versa [207].  This fact has caused researchers some significant 
headaches.  Rothman has stated that only an additive measure of effect modification can 
measure the underlying biological interaction of two factors [220].  However, calculating 
the appropriate measures of interaction for departure from additive risks is not straight 
forward in case-control studies since only surrogate measures  – which are prone to bias – 
can be estimated [221].  Furthermore, additional covariates can not be accounted for in 
the models when assessing interaction using most of these surrogates measures [221].  
For this reason, and because multiplicative models generally appear to be an adequate fit 
to observed data in practice [222], we assessed interaction on the multiplicative scale. 
 

Paper I 

The lack of association between CYP17 c.1-34T>C and overall breast cancer risk in our 
data is in line with results from 14 previous studies – where 10 included only Caucasian 
women – and a recent meta-analysis [99, 103-116].  Two groups have reported an 
association between CYP17 genotype and breast cancer risk in postmenopausal women 
[100, 101] and in contrast to Feigelson and colleagues, we did not find any association 
between this polymorphism and advanced breast cancer [102].  All three studies were 
performed in non-Caucasian populations.   
 
A possible mechanism for the CYP17 c.1-34T>C polymorphism to influence breast 
cancer risk is through increased biosynthesis of and therefore increased levels of 
circulating estrogen.  Contrary to the predicted effect of the A2 allele, one group found 
decreased CYP17 mRNA levels in A2 carriers [223].  Studies regarding association of 
CYP17 c.1-34T>C and circulating hormone levels as well as markers of hormonal status 
(i.e. age at menarche or menopausal hormone use) have recently been reviewed [224].  
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Increased estradiol levels have been associated with the A2 allele in premenopausal 
women [100, 192] as well as in postmenopausal women [103, 225], but three groups did 
not report any significant changes in hormone levels by genotype; two in postmenopausal 
women [111, 226] and one in premenopausal women [227].  Results from seven [228-
230] studies have indicated a moderate association between the A2 allele and earlier 
menarche; an association that was not detected in our study, nor in five others [103, 106, 
115, 231, 232].  Furthermore, previous investigators have posited that CYP17 genotype 
may be associated with use of menopausal hormones, an important risk factor for breast 
cancer, but results have been inconsistent [105, 106, 115, 233-235].  We found no such 
association in our data. 
 
We identified interaction with age at menarche, but considered it unlikely that the A2/A2 
genotype would increase breast cancer risk in women with age at menarche less than 13 
years without also moderately increasing risk in women with age at menarche between 12 
and 14 years.  Instead, the A2/A2 genotype decreased risk in the latter group, which is 
difficult to explain biologically.  A similar pattern was seen for the interaction with age at 
menopause.  To our knowledge, other groups have not reported comparable findings and 
we therefore believe the results to be caused by chance alone. 
 

Papers II-IV 

Breast Cancer Risk 
tagSNPs and Haplotypes 
We found no association between common variation in the CHEK2 gene and overall 
breast cancer risk, which was in agreement with earlier findings of common 
polymorphisms in CHEK2 [162].  We correspondingly found no effect of common 
variation in ATM or ERBB2 on breast cancer risk, even when stratified by known breast 
cancer risk factors.  One study of ATM [146] and two studies of ERBB2 [178, 181] are in 
agreement with our findings.  Tamimi et al. found no association between haplotypes of 
five Hapmap tagSNPs (one of which was our TAG7) in ATM and breast cancer risk 
[146].  Benusiglio et al. explored ERBB2 haplotypes composed of five tagSNPs (three of 
which were our TAG2, 3 and 5) – including the non-synonymous I655V and P1170A – in 
relation to breast cancer risk [178], whilst Han et al. solely studied the I655V and 
P1170A as tagSNPs [181].  Neither study found any effect of the haplotypes on breast 
cancer risk.  Common haplotypes in ERBB2 thus do not appear to affect breast cancer 
risk, although results regarding the I655V common variant in ERBB2 have been 
conflicting [178-181].  We included the I655V as a tagSNP in our study and genotyped 
the P1170A in the 92 controls.  We found no association of the I655V with breast cancer 
risk. 
 
Three groups have found an association between specific ATM common haplotypes and 
breast cancer risk [141, 144, 145].  Lee et al. [141] and Koren et al. [145] reconstructed 
haplotypes in ATM from five and eight randomly selected common SNPs respectively, 
whereas Angele et al. [144] included eleven common SNPs in ATM for their haplotypes 
estimation that had either been previously reported in the literature or that they had 
detected by sequencing.  SNP selection overlapped somewhat between the three studies, 
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but none of them reported the likelihood of their SNPs being able to predict underlying 
variation in the gene.  Furthermore, findings from two of the three groups [144, 145] 
were based on small sample sizes.   
 
Rare Variants 
We found more than twofold increase in breast cancer risk related to carriers of the 
1100delC in CHEK2 compared to non-carriers, which is consistent with results from 
other Northern European populations [32, 236].  The 1100delC variant has not previously 
been studied in the Swedish population.  The variant is rare [157, 158, 161, 237-241], 
except in a few Northern European populations such as Finland and the Netherlands 
where moderate frequency of 1% or above has been observed [151, 152, 236].  The low 
population frequency of 1100delC in the Swedish population is therefore generally in line 
with previous data. 
 
In line with two [134, 144] out of three reports [134, 142, 144], we found an elevated 
breast cancer risk – though not significant – for carriers of the rare 4258 T allele in the 
ATM gene.  We did not, on the other hand, find an association for carriers of the 2527 C 
allele.  One study found twofold increase in breast cancer risk related to the 2527 T→C in 
a US population, but did not confirm the finding in a Polish population [143].  Three 
other groups did not detect any significant effect of the 2527 T→C on breast cancer risk 
[134, 142, 144], although one of the groups found elevated point estimates [134]. 
 
Breast Cancer Survival and Tumour Characteristics 
Our data did not support an association between common variation in ATM, CHEK2 and 
ERBB2 with breast cancer survival or the risk of developing tumours of different 
characteristics.  Hence, we did not confirm the finding of Han et al. where they found an 
ERBB2 haplotype composed of two non-synonymous tagSNPs – I655V and P1170A – to 
increase the risk of breast cancer death or recurrence [181].  We found no effect of the 
I655V on breast cancer survival or tumour characteristics-defined breast cancer.  To our 
knowledge, no study has investigated ATM or CHEK2 common haplotypes in relation to 
breast cancer survival or tumour characteristics, although one study explored the effect of 
three common polymorphisms in ATM and two common polymorphisms in CHEK2 on 
breast cancer survival [242].  They found no association, which is in agreement with our 
findings.  The rare 1100delC mutation in CHEK2 has been associated with breast 
tumours of high grade [153, 154] as well as steroid receptor positive breast tumours, but 
not with overall survival [153].  The mutation was too rare in our population to be studied 
in relation to breast cancer survival or tumour characteristics. 
 
Endometrial Cancer Risk 
Until now, germ-line variation in the ATM, CHEK2 and ERBB2 genes has not previously 
been assessed in association with endometrial cancer risk. 
 
CHEK2 TAG1 
We found homozygous carriers of the minor allele of the common tagSNP TAG1 in 
CHEK2 to be at increased risk of endometrial cancer.  The rare allele of TAG1 was the 
only rare allele carried by haplotype 4 in CHEK2 and we consequently found an 
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increased risk for haplotype 4 carriers in CHEK2.  The effect of TAG1 in CHEK2 on 
endometrial cancer risk was stronger among endometroid tumours.  Endometrial cancers 
can be divided into Type I endometroid tumours and Type II non-endometroid tumours 
[81-83], where endometroid tumours constitute the majority of endometrial cancers.  The 
endometroid tumours appear to be the tumours that are mainly caused by estrogen 
exposure [81-83].  Estrogen metabolites have been reported to cause a number of DNA 
lesions both directly and indirectly through redox cycling processes [185].  Indirect 
damage includes single strand DNA breaks, 8-hydroxylation of guanine bases, and DNA 
adducts [185], whilst direct DNA damage caused by covalent binding of quinone 
intermediates of 4-hydroxyestrogens to DNA can result in the formation of mutagenic 
apurinic sites [243].  The estrogen metabolites 2- and 4-hydroxyestrogens have also been 
reported to cause double strand breaks in vitro [186].  DNA double strand breaks seem to 
be the predominant signal for the activation of ATM-mediated pathways [187].  The 
CHEK2 protein is activated by ATM and thus affects cell cycle arrest and DNA repair 
[118-121].  Our results imply that a defect in the CHEK2 gene affecting the function or 
expression of the CHEK2 protein increases endometrial cancer risk mainly in 
combination with increased estrogen exposure.  This study was designed in such a way 
that the tagSNPs in each gene predicted common variation of over 3% in minor allele 
frequency with at least 80% probability.  It is unlikely that TAG1 itself has a structural 
effect on the CHEK2 protein as it is located in an intronic region, but it is still possible it 
has a regulatory effect on the protein expression.  Another likely scenario is that a 
common polymorphism in linkage disequilibrium with TAG1 might be responsible for 
this association. 
 
ATM Haplotype 4 
Interestingly, we observed carriers of haplotype 4 in ATM to have decreased endometrial 
cancer risk if they had never smoked in their lifetime.  Carriers of this haplotype also had 
decreased endometrial cancer risk overall, although it was not as pronounced as in non-
smokers and did not carry over to the global test of significance.  Haplotype 4 did not 
carry a rare allele from any of the tagSNPs (it carried only the tagSNP common alleles), 
which is in line with the observed lack of effect of the ATM tagSNPs on endometrial 
cancer risk.  One plausible biological explanation for this finding is that non-smoking 
ATM haplotype 4 carriers are more efficient in repairing estrogen-related DNA damage 
than non-carriers.  Smoking has been suggested to have anti-estrogenic effects [244] and 
women who smoke therefore are likely to be less exposed to estrogen.  These women 
may be able to adequately repair the lower levels of estrogen-related DNA damage 
regardless of their ATM haplotype.  In non-smokers however, estrogen levels have been 
found to be higher than in smokers [245-247].  In this situation, the increased DNA 
damage may exceed the repair-capabilities of those women who do not possess ATM 
haplotype 4, whereas women with ATM haplotype 4 may be able to manage the excess 
levels of damage imposed by estrogen. 
 
CHEK2 Haplotype 1 
Additionally, we found decreased endometrial cancer risk among carriers of haplotype 1 
in CHEK2 who were younger than 49 years of age at time of menopause.  The only rare 
allele carried by haplotype 1 was the C allele of TAG5 in CHEK2, but TAG5 itself did 
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not appear to affect endometrial cancer risk.  Women who are relatively young at time of 
menopause have experienced fewer ovulatory cycles and thus less exposure to estrogen 
than women who experience menopause at an older age [248].  It is possible that carriers 
of haplotype 1 are more capable of managing the low estrogen-related DNA damage in 
women with early age at menopause than carriers of other haplotypes in CHEK2.  
However, in the presence of high estrogen-related DNA damage (in women with higher 
estrogen exposure), even haplotype 1 carriers appear to be unable to repair the large 
amount of DNA damage.   
 
Rare Variants 
Neither the 1100delC deletion in CHEK2 nor the rs1800056 (2572 T→C, F858L) and 
rs1800058 (4258 C→T, L1420F) variants in ATM have been previously studied in 
relation to endometrial cancer risk.  We found no effect of these variants on endometrial 
cancer risk in our data, but since there were very few carriers of the rare alleles, our 
statistical power was low.   
 

Causation 

In this thesis, I report associations between the rare 1100delC in CHEK2 and risk of 
breast cancer as well as between carriers of common variation in CHEK2 and ATM and 
endometrial cancer risk. 
 
I have assessed the role of bias and confounding and come to the conclusion that the 
findings are unlikely to be due to these factors.  I could however not exclude the role of 
random error in the endometrial cancer findings, but decided nevertheless to consider 
them plausible until refuted.   
 
Austin Bradford Hill suggested a set of nine guidelines for researchers to aid them in 
assessing if associations are causal [249].  None of the guidelines were intended to be 
rigid criteria, but rather as imperfect guides towards causation.  Below I discuss each 
guideline in relation to our findings: 
 

1. Strength of the association 
Strong associations are more likely to be causal as they are unlikely to be 
accounted for entirely by, for example, bias and confounding. 
All four associations were relatively strong and therefore any bias or confounding 
by ethnicity that might have occurred is unlikely to have entirely accounted for 
our results. 

 
2. Consistency 

Associations are more likely to be causal if they are observed repeatedly by 
different researchers. 
Previous studies had found a similar association between the 1100delC and breast 
cancer risk [32], but the endometrial cancer findings await replication. 
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3. Specificity 
The concept of specificity means that a cause should only lead to a single effect 
and vice versa.   
There are numerous well known exceptions to this concept and epidemiologists 
therefore do not consider specificity a useful guideline. 

 
4. Temporality 

The belief that a cause must precede the disease is a well known and accepted 
requirement for causality. 
The exposure in our studies obviously preceded the disease as the genetic make-
up of the women was determined at conception. 

 
5. Biological Gradient 

An association is more likely to be causal if its strength increases as the exposure 
level increases. 
The effect of the 1100delC and TAG1 in CHEK2 increased from heterozygous to 
homozygous carriers of the rare allele.  The effect estimates for the haplotype 
effects referred to heterozygous carriers of the haplotypes and should be squared 
to obtain the estimates for homozygous carriers the haplotypes. 

 
6. Plausibility 

There should be existing biological or social model to explain the association. 
The ATM and CHEK2 genes respond to DNA damage caused by estrogen, and 
increased estrogen exposure can lead to the development of breast or endometrial 
cancer. 

 
7. Coherence 

The interpretation of the data should not seriously conflict with generally known 
facts of the natural history and biology of the disease. 
Both breast and endometrial cancer are believed to be in part due to genetic 
factors.  Thus, finding genes that affect the risk of these diseases is highly 
probable. 

 
8. Experiment 

Intervention that modifies the exposure through prevention, treatment or removal 
should result in less disease. 
Intervention has not yet become feasible in genetic epidemiology since gene 
therapy is still in its early stages and the numerous ethical issues involved have 
not been addressed. 

 
9. Analogy 

Analogies should exist between the observed association and other associations.   
Other genes with similar functions as ATM and CHEK2 could also be involved in 
the development of breast or endometrial cancers.  For example, the function of 
the BRCA1 gene is highly linked to the ATM and CHEK2 gene functions [250, 
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251] and mutations in the BRCA1 gene have been shown to be involved in breast 
cancer development [34].  
 

Implications and Future Research 

Replication is essential in genetic association studies as well as other epidemiological 
studies.  We want to make sure that the observed association is not due to bias, other 
factors or chance.  The best way to ensure this is by testing the same association in 
completely independent populations, preferably by different investigators.  Whilst the 
benefits with respect to public health may not be immediate, confirmation of the results in 
independent populations is still worthwhile.  It will not turn out to be beneficial to 
individually correct the genetic variation affecting the disease aetiology as the prevalence 
of each variation will be high in the population, whilst the penetrance will be low.  In 
contrast, the important role of genetic association studies will be to elucidate the 
biological mechanisms that lead to disease.  This elucidation will specifically be of 
importance in order to identify susceptible subgroups of people in which intervention of 
certain environmental factors will be especially beneficial. 
 
In light of the positive findings in this thesis, what are the obvious subsequent steps?  The 
first step would be to replicate the endometrial cancer findings in another larger and 
independent population.  Secondly, it would be of interest to sequence the carriers of the 
CHEK2 TAG1 rare allele as well as the women carrying haplotype 1 in CHEK2 and 
haplotype 4 in ATM.  Comparison of the sequence information of these women with non-
carriers of TAG1 and the respective haplotypes could lead to detection of the causal 
variants responsible for the observed associations. 
 
It would also be of interest to genotype the CHEK2*1100delC in a much larger 
population in order to evaluate gene-environment interaction and assess the effect of the 
deletion on breast cancer survival or tumour characteristics. 
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CONCLUSIONS 

 
Paper I 
 

• Genetic variation in CYP17 had no obvious effect on breast cancer risk regardless 
of histopathology or menopausal hormone use.   

 
 
Papers II-IV 
 
Common Variation 
 

• Common variation in the ATM, CHEK2 or ERBB2 genes did not affect breast 
cancer risk overall or in combination with breast cancer risk factors. 

 
• Common variation in the ATM, CHEK2 or ERBB2 genes was not associated with 

the risk of tumour characteristics-defined breast cancer or breast cancer death. 
 
 

• Common variation in the ERBB2 gene did not show any relationship with the risk 
of endometrial cancer and the ATM and CHEK2 genes did not appear to affect 
overall endometrial cancer risk. 

 
• Homozygous carriers of the rare allele of TAG1 in CHEK2 had more than twice 

the risk of developing endometroid endometrial cancer, compared to non-carriers. 
 

• Non-smoking carriers of haplotype 4 in ATM possessed half the endometrial 
cancer risk of non-carriers. 

 
• Among carriers of haplotype 1 in CHEK2 who had experienced menopause below 

49 years, endometrial cancer risk was halved compared to non-carriers. 
 
 
Rare Variants 
 

• Carriers of the rare 1100delC deletion in CHEK2 had a more than twofold 
increased breast cancer risk compared to non-carriers, but the deletion did not 
seem to have an effect on endometrial cancer risk. 

 
• Rare variants in the ATM gene did not appear to affect breast or endometrial 

cancer risk. 
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ÁGRIP Á ÍSLENSKU 

Brjóstakrabbamein er algengasta krabbameinið meðal kvenna í heiminum í dag og 
krabbamein í legi er algengasta krabbameinið í æxlunarfærum kvenna í hinum iðnvædda 
heimi.  Konur með fjölskyldusögu um brjósta- eða legkrabbamein eru í tvöfalt meiri 
hættu á að mynda þessi krabbamein en aðrar konur.  Erfðafræðilegir áhættuþættir 
legkrabbameina almennt og brjóstakrabbameina í konum, sem ekki bera sjaldgæfar 
stökkbreytingar með háa sýnd, eru að stórum hluta óþekktir.  Því hefur verið sett fram sú 
tilgáta að fjölgena líkan skýri eftirstöðvarnar af arfgengi krabbameinanna.  Þetta líkan 
gerir ráð fyrir samspili margra algengra genabreytileika með litla sýnd sem eru auk þess 
taldir hafa áhrif í samspili við hina ýmsu umhverfisþætti.  Við ákváðum þar af leiðandi að 
rannsaka áhrif algengra breytileika í lykil brjósta- og legkrabbameinsgenum á almenna 
brjósta- og legkrabbameinsáhættu.  Við rannsökuðum einnig hvort að breytileikarnir hafi 
áhrif í samspili við umhverfisþætti, hvort þeir auki hættu á brjóstakrabbameinum með 
ákveðin einkenni, eða hvort þeir auki hættu á að brjóstakrabbamein leiði til dauða.  Við 
rannsökuðum 1579 konur með brjóstakrabbamein, 705 konur með legkrabbamein og 
1565 heilbrigð viðmið.  Allir þáttakendur gáfu vefja- og blóðsýni og skiluðu inn 
spurningalistum með upplýsingum um hina ýmsu lífshætti. 
 
Talið er að CYP17, ATM, CHEK2 og ERBB2 genin leiki hlutverk í myndun og þróun 
krabbameina.  Hlutverk þessara gena í myndun brjósta- og legkrabbameina liggja í 
áhrifum þeirra á efnaskipti estrógena, virkjun DNA viðgerðakerfa og fjölgun fruma.  Í 
rannsókn okkar greindum við í öllum þáttakendunum arfgerð algengra breytileika og 
sjaldgæfra stökkbreytinga í þessum genum.  Við mátum síðan tengsl þessara breytileika 
og haplótýpa þeirra við krabbameinsáhættu og lifun. 
 
Í rannsókn okkar kom í ljós að arfberar hinnar sjaldgæfu 1100delC stökkbreytingar í 
CHEK2 voru algengari meðal kvenna með brjóstakrabbamein en heilbrigðra viðmiða.  
Arfberarnir voru í tvöfalt meiri hættu á að mynda brjóstakrabbamein samanborið við 
stofngerðir (LH 2.26, 95% ÖM 0.99-5.15).  Niðurstöður okkar bentu einnig til þess að 
arfhreinir arfberar rs4987886 breytileikans í CHEK2 hafi aukna hættu á legkrabbameini 
af gerð I (P = 0.005) samanborið við stofngerðir.  Vid fundum auk þess verndandi áhrif 
gegn legkrabbameini meðal arfbera haplótýpu í ATM sem ekki reykja (P = 0.0007) og 
meðal arfbera haplótýpu í CHEK2 sem voru yngri en 49 ára við tíðahvörf (P = 0.0009), 
samanborið við arfbera annarra haplótýpa.  ATM, CHEK2 og ERBB2 genin virtust ekki 
leika hlutverk í myndun brjóstakrabbameina með ákveðin einkenni eða í lifun kvenna 
með brjóstakrabbamein.  Við fundum engin tengsl milli CYP17, ATM og ERBB2 genanna 
og brjóstakrabbameinsáhættu.  ERBB2 genið virtist auk þess ekki hafa áhrif á myndun 
legkrabbameins.   
 
Mat okkar á brjóstakrabbameinsáhættunni tengdri CHEK2*1100delC stökkbreytingunni 
samsvarar niðurstöðum annarra rannsókna meðal Norður-Evrópuþjóða.  Frekari 
rannsókna er hins vegar þörf í sambandi vid tengsl CHEK2 og ATM við 
legkrabbameinsáhættu þar sem niðurstöður okkar voru ekki tölfræðilega marktækar þegar 
við höfðum tekið til greina þann fjölda tölfræðiprófa sem voru framkvæmd. 
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