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Abstract

Surface-Enhanced Laser Desorption and Ionization (SELDI) is a promising
proteomic technique for discovering biomarkers. However, the pre-processing
of the raw data is still problematic. Integrating transcriptomic and proteomic
data may enhance the search for biomarkers, but the current data integration
approach results in the loss of large amounts of data.

In this thesis, we made improvements to the peak detection step in SELDI
by developing the Annotated Regions of Significance (ARS) method. It uses
a multi-spectral signal detection method, ‘Region of Significance’ (RS), to
identify regions with potential biomarkers. RS had better operating charac-
teristics (OC) than existing methods in identifying peaks. Using lung cell line
data, at 80% sensitivity, the False Discovery Rates (FDRs) of existing meth-
ods were around 25% to 50%, compared to around 8% for RS. ARS extracts
a peak template from all spectra in the peak region via Principal Compo-
nent Analysis (PCA) and fits the template to the spectra. A refinement was
made to the estimation of the amplitude via a mixture model. Using patient
samples from a clinical study, we showed that ARS detected more peaks and
gave more accurate peak quantifications than the standard method. We im-
plemented ARS as an R package, ProSpect, and also developed a graphical
user interface, ProSpectGUI.

Motivated by the performance of ARS in SELDI, we extended ARS to MALDI
data with isotopic resolution. The extended ARS utilizes the isotopic pat-
tern to filter out peaks which do not adhere to the expected isotopic pattern.
Using the spike-in data, we validated the use of the log-transformed intensi-
ties for ARS in MALDI. Compared to the standard method, extended ARS
generally had better specificity and was better in quantifying the peaks. At
low FDR, extended ARS had higher sensitivity than the standard method.

We also contributed to the integration of proteomic and transcriptomic infor-
mation from the same samples by investigating the use of Maximum Covari-
ance Analysis (MCA). The estimates of the gene and protein pattern-pairs
from MCA were consistent and biologically congruent, compared to General-
ized Singular Value Decomposition (gSVD). Therefore MCA has the poten-
tial to enhance biomarker discovery and our understanding of the interplay
between genes and proteins.

Keywords: Proteomics, mass spectrometry, SELDI, MALDI, peak detection,
signal detection, peak annotation, transcriptomics, data integration, maxi-
mum covariance analysis, generalized singular value decomposition
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Chapter 1

Introduction

A biomarker is a molecule that indicates the physiological state of a cell
(Srinivas et all, 2001)). Therefore biomarkers can serve as early warning indi-
cators for disease, help to monitor disease progression, and predict receptivity
to treatment. Since proteins are effectors driving cell behavior, they are po-
tential candidates for biomarkers (Weston and Hood), [2004]).

One promising approach in the identification of biomarkers is the use of pro-
teomic technology. The advantage of proteomic technology is that it allows
us to study proteins in a high-throughput fashion. This greatly increases
the chances of identifying single or even combinations of protein biomarkers.
Surface-Enhanced Laser Desorption and Ionization (SELDI) is a proteomic
technique that has been used for biomarker discovery (Srinivas et all [2002).
However the current peak detection method used in SELDI (Fung and En-
lderwickl is known to have low specificity (Coombes et al) 2003)). If
this limitation could be overcome, researchers would be able to identify com-
binations of protein biomarkers with greater ease. This has potential appli-
cations, for example, on mass cancer screening, which drives current research
towards identifying combinations of biomarkers, since single biomarkers have
been found to be ineffective (Etzioni et all 2003).

Different proteomic techniques may detect different protein biomarkers
lderson et al) [2004)). Using multiple proteomic techniques to analyze the
same sample could increase the number of biomarker candidates discovered.
We therefore extend our method to Matrix-Assisted Laser Desorption and
Ionization (MALDI) (Karas et all, [1985; [Karas and Hillenkamp), [1988)), an-
other commonly used proteomic technique that has potential for biomarker
discovery. Similar to SELDI, MALDI requires peak detection to be applied




to its output.

Diseases affect common protein regulatory networks as well as common gene
regulatory networks. Researchers have recognized the potential of jointly
analyzing gene and protein expressions in assessing the physiological state of
a diseased cell (Weston and Hood, [2004). Present efforts use bioinformatic
tools to integrate transcriptomic and proteomic data using deoxyribonucleic
acid (DNA) and protein sequence databases (Cox et al) 2005 Waters et al.,
2006). However, there are difficulties in data integration as large amounts
of data could be lost due to the exclusion of the genes and proteins that are
not matched (Waters et all 2006)).

In this thesis we aim to: (i) develop an improved method that performs peak
detection and quantification in SELDI for biomarker discovery studies, and
extend the method to MALDI, and (ii) integrate proteomic and transcrip-
tomic information from the same samples by characterizing the patterns of
correlation between the large number of gene and protein expressions, thereby
detecting proteins that are jointly involved in regulating gene expressions.



Chapter 2

Background

The key focus of our work is the use of proteomics for biomarker discovery.
In this chapter we will introduce some basic concepts in proteomics, focusing
on topics related to protein expressions.

We begin with an overview of what a protein is and its role in biology. This
is followed by a review of biomarker discovery studies in proteomics and a
brief look at related proteomic technologies. Two proteomic techniques -
SELDI and MALDI - are examined, with particular reference to their peak
detection methods. We conclude the chapter by discussing the prospects
of integrating transcriptomic and proteomic data for elucidating complex
biological processes.

2.1 Proteins

Proteins play a vital role in various biological processes (Cooper and Haus-
manl, 2004} |Alterovitz et al., [2000]):

e They are involved in the reading, copying and organizing of genetic
code in the DNA.

e They are key agents in processes such as digesting nutrients, defending
against pathogens and directing growth.

e Cells communicate with other cells via protein-based signals.



e Structural proteins are also responsible for holding an organism to-
gether.

A protein is made up of a chain of amino acids. There are 20 different amino
acids and each amino acid is made up of:

e a central carbon atom (called the « carbon); and
e a hydrogen atom; and

e an amino group (NHj); and

a carboxyl group (COO™); and

a side chain (called the R group).

There are 20 side chains which differentiate each of the 20 amino acids. A
linear sequence of amino acids is linked up by forming amide linkages through
condensation polymerization of amino and carboxyl groups of adjacent amino
acids. The sequence of the amino acids determines the structure and function
of the protein. The size of a protein is measured by its total molecular
mass, with the unit of measurement being the dalton (Da). Due to the
occurrence of natural isotopes (chemical elements with the same number
of protons, but different numbers of neutrons), a protein could consist of
molecules with masses that are consecutively 1 Da apart. In the case of
proteins, the monoisotopic mass (defined as the mass when a molecule is
made up of the most common isotope of each element) happens to be the
minimum mass.

Proteins are synthesized (translated) from messenger ribonucleic acids (mR-
NAs) that are first transcribed from sequences of DNA coding for the pro-
teins. This process is called the central dogma of molecular biology; see
Figure 21 The DNA consists of a double helix of nucleotides. There are a
total of four different nucleotides: Adenine (A), Cytosine (C), Guanine (G)
and Thymine (T). Each nucleotide has a complementary pair: C is paired
with G, and A is paired with T. The mRNA is a single strand of nucleotides
with the nucleotide Uracil (U) instead of the Thymine. Each nucleotide
triplet (i.e. codon) of the mRNA codes for either an amino acid or a stop
signal. For example, the first codon of the mRNA in Figure 21} GUG, codes
for the amino acid Valine (V). After the translation of mRNA into protein,
the protein may be altered by post-translational modifications.



GTGCAT

DNA
CACGTA
l (Transcription)
GUGCAU MmRNA
(Translation)
V—H Protein

Figure 2.1: The central dogma of molecular biology.

The human genome has around 20,000 to 25,000 genes (International Hu-

man Genome Sequencing Consortiuml, 2004)) while the genome of the worm
Caenorhabditis elegans has around 19,000 genes (C. elegans Sequencing Con-|
sortium), [1998). Such close similarity in the number of genes between the
two organisms suggests that the genome itself is not sufficient in explaining
their differences. Perhaps proteins, estimated to be close to a million for hu-
mans (Bairoch and Apweiler, [2000), may provide the additional information
to explain the differences.

2.2 Biomarker discovery

Biomarkers are molecules that can serve as early warning indicators for dis-
ease, help to monitor disease progression, and predict receptivity to treat-
ment. They can be classified into three major groups: diagnostic, prognostic
and predictive markers (Alaiya et al] 2005). Diagnostic markers are needed
for early, accurate diagnosis of diseases to enable optimal treatment choices,
while prognostic markers provide information about the future course of a
disease, which would influence treatment decisions. Predictive markers offer
insight on the potential responses of an individual to the various treatment
options. Therefore, biomarker discovery could potentially advance the de-

velopment of predictive, preventive and personalized medicine (Weston and|
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The emergence of technologies from the field of transcriptomics and pro-
teomics provided another avenue for seeking out potential biomarkers in
biomarker discovery studies. This will improve, for example, our chances
for developing diagnostic markers for early detection of cancer. Currently,
single biomarkers are used to detect cancer but they are not effective for mass
cancer screening. One reason for that is their inadequate specificity and sensi-
tivity (Etzioni et all,[2003). Proteomics may provide the solution. There has
been promising research showing combinations of biomarkers identified by
SELDI having potentially better specificity and sensitivity than established

single biomarkers in detecting cancer (Cho, [2007)).

Biological samples, such as tissues or various biological fluids, are good
sources to obtain biomarkers. For example, cells from a diseased tissue or
its proximal biological fluid could potentially give us the biomarkers for the
disease. However, a suitable biological sample, especially for early detection
of diseases, should be obtained in a non-invasive and easy way. Blood, in
the form of serum or plasma, is especially promising because the circula-
tory system of our bodies allows blood to be in constant contact with our
tissues. Therefore, blood should contain proteins secreted by the diseased
tissue. Unfortunately, 97% of the protein content in blood is dominated by
about seven proteins such as albumin, immunoglobins and fibrinogen
, . Methodologies developed to deplete the highly abundant pro-
teins could improve our chances of detecting the proteins secreted by the
diseased tissue (Villar-Garea et all 2007). It is very likely that tumor se-
creted proteins are present in very low amounts, especially in the early stages
of cancer. There is, however, growing evidence of immune response to cancer,
which provides us with alternative sources of biomarkers, such as antigenic
tumor proteins and the antibodies they elicit (Hanash et all 2008)).

Most biomarkers are identified through case-control study designs
. The biological samples of cases (people with the disease)
and controls (people without the disease) are collected, and their protein
profiles are then used to identify proteins that are differentially expressed
between the two groups (i.e. protein biomarkers). These identified biomark-
ers are then used in a classification algorithm that assigns samples into either
the diseased group or the control group. An ideal study design would be a
prospective cohort study, where biological samples of individuals are col-
lected periodically before and after their diagnosis of disease
2004). The establishment of large and long-term cohorts such as

LifeGene (lifegene.ki.se|) and Singapore Consortium of Cohort Studies



lifegene.ki.se

(SCCS) (www.nus-cme.org.sg), will contribute immensely to the identifica-
tion of biomarkers for diseases.

2.3 Proteomic technologies

Proteomic technologies can be divided according to the two approaches to-
ward biomarker discovery: target and non-target driven approaches
, . In the target-driven approach, there is a pre-selected list of
proteins of interest, such as proteins involved in a particular biological path-
way, which are checked for their associations with the disease. Protein mi-
croarrays, which include forward-phase and reverse-phase arrays are used.
Forward-phase arrays have a variety of antibodies immobilized on them to
detect the proteins present in the sample, similar to a gene expression mi-
croarray. In reverse-phase arrays, the samples are immobilized on the array
and then probed with an antibody. For this technology, the antibodies need
to be of high sensitivity and specificity to their target protein.

The non-target driven approach does not require a pre-selected list of pro-
teins. The proteomic technologies used are two-dimensional gel electrophore-
sis (2DGE) and mass spectrometry (MS). 2DGE separates proteins based on
their charge (the first dimension) and size (the second dimension), and the
proteins are presented as spots on a biaxial plane; see Figure 2.2 Although
2DGE is a useful tool for biomarker discovery, it is slow and can only detect
heavy protein molecules. The two-dimensional difference gel electrophoresis
(DIGE) is a modification of 2DGE, with test and reference samples labeled
before separating their proteins on the same gel, allowing for relative quan-
tification of each spot.

The most promising technology in proteomics research is the mass spectrom-
etry (Dhamoon et all 2007, which consists of an ion source, a mass analyzer
and a detector. The ion source produces ions from the biological sample.
The three commonly used ionization methods are MALDI, SELDI and Elec-
trospray lonization (ESI). In MALDI and SELDI, each protein tends to pick
up a single proton, which means that the mass-per-charge (m/z) ratio of the
protein is its mass. In ESI, each protein could pick up different numbers
of protons. Therefore, proteins with the same mass can have different m/z.
Mass analyzers resolve the ions into their respective m/z values. Some basic
types of mass analyzers for mass spectrometry are time-of-flight (TOF) and
quadrupole time—of-flight (Q-TOF). Finally, the detector counts the number
of ions that the mass analyzer resolves.
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Figure 2.2:  An example of a 2DGE. Haptoglobin-I identified as a potential
biomarker for ovarian cancer. Reprinted by permission from Macmillan Pub-
lishers Ltd: British Journal of Cancer (Ahmed et all, [2004]), copyright 2004,
http: //www. nature. com/bjc/ index. html|

A protein profile of a sample, obtained by mass spectrometry, is shown graph-
ically as a line plot with m/z and intensity as the horizontal and vertical axis
respectively in Figure 2.3l A peak in the spectral profile suggests the pres-
ence of a protein in the sample. We can then identify the protein by the m/z
of the peak and determine its amount from the intensity value of the peak.
This is called the ‘top-down’ proteomics approach. However, the measure-
ment accuracy in the mass spectrometry decreases as the mass of the protein
increases, making identification of large proteins difficult. Post-translational
modification further complicates the identification of proteins, because the
sequence of amino acids remains unchanged, but the mass is changed.

The other proteomics approach, ‘bottom-up’ or ‘shotgun’ proteomics, breaks
proteins into smaller units, called peptides. The protein is digested by adding
protease, which cleaves the proteins at predictable amino acid locations.
This results in better measurement accuracy with peptides that are of lower
masses. If enough peptides remain unmodified, it could be possible to iden-
tify proteins with post-translational modifications. To identify the proteins,
bioinformatic tools are used to compare the detected masses from the mass
spectrometry with the theoretical masses of proteins from the genome of the
organism.
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Figure 2.3: The blank spectra profile from (a) MALDI and (b) SELDI in the
1000 to 1050 Da range.

2.4 SELDI and MALDI

Surface-Enhanced Laser Desorption and Ionization Time-of-Flight Mass Spec-
trometry (SELDI-TOF-MS), developed by Ciphergen Biosystems, and Matrix-
Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry

(MALDI-TOF-MS) are two well recognized mass spectrometry techniques for

obtaining protein profiles from biological samples (Hutchens and Yip| [1993);

Karas et al), [1985} [Karas and Hillenkamp}, [1988)). Both techniques have been

used to explore large clinical cohort materials, such as plasma, because of

their high-throughput capability and their ability to analyze a large number

of samples within a short span of time.



Both techniques co-crystallize the samples and matrix on a surface; see Fig-
ure 24l The matrix enables the transfer of laser energy for the desorption
and ionization of the proteins in the samples. The ionized proteins are then
accelerated into the vacuum time-of-flight (TOF) tube. In the TOF tube,
similar protein molecules gather together and hit the detector at the same
time. The detector records the TOF and the number of ions that hit the
detector.

lon Source Mass Analyzer Detector

Laser

L]
() ® o -
°

lonized
Proteins

Chip Surface Time of Flight Tube

Figure 2.4: A schematic overview of either MALDI-TOF-MS or SELDI-
TOF-MS.

The pairs of (TOF, intensity) data undergo three pre-processing stages before
any data is analyzed: mass calibration, baseline subtraction and normaliza-
tion. Firstly, mass calibration converts raw TOF values into m/z. Normally,
proteins with known molecular weights are used to calibrate the quadratic
relation between m/z and TOF. Baseline subtraction is then carried out to
eliminate baseline signal caused by chemical noise from the matrix molecules.
Finally, normalization is performed to eliminate any variation between sam-
ples that is not due to biological differences.

One major difference between SELDI-TOF-MS and MALDI-TOF-MS lies in
the ionization surface. Unlike MALDI, SELDI ionization surfaces are coated
with various activated and patented chemistries (i.e. pre-coated chromato-
graphic chips) that select a subset of proteins based on their physiochemical
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property, enabling an integrated fractionation of the protein sample. Be-
cause of the ease in sample preparation, there is greater potential in the use
of SELDI in clinical applications.

The resolution of current MALDI-MS/MS instruments (i.e. tandem mass
spectrometry) is higher than most of the SELDI-MS instruments used for
protein profiling. This is illustrated in Figure 2-3] where the spectral profile
of blanks (i.e. only the matrix is applied to the chip) from a MALDI-MS/MS
instrument (AB4800) and SELDI-MS instrument (PBSIIc) are plotted using
2635 and 85 (m/ z, intensity)-pairs respectively in the 1000 to 1050 Da region.
Proteins signals from MALDI-MS/MS instruments can be resolved into their
isotopic patterns.

One common limitation of SELDI and MALDI is that both techniques are
unsuitable for detecting proteins of high molecular weight (>100 kDa). A
review paper by [Kiehntopf et al| (2007) and [Poon| (2007) discussed in further
details the limitations of SELDI for biomarker discovery, such as competitive
binding and competitive ionization, while Engwegen et al, (2006) summarized
the advantages and disadvantages of selected proteomic technologies.

2.5 Existing methods for peak detection

The presence of proteins in the sample is indicated by peaks in the spec-
tral profile from SELDI and MALDI. Therefore developing an effective peak
detection method is critical. There are currently two general approaches in
peak detection: intensity threshold-based methods and matching spectral in-
tensities to a reference peak shape. In intensity threshold-based approaches,
an instrument noise level is first established. This could be the standard
deviation of the intensity values in the absence of peaks. This noise level is
then used to define a critical threshold that flags intensities exceeding the
threshold as peaks.

An example of a threshold-based method in SELDI is by
(2003). They propose using the first differences of successive intensities to
identify local maxima and local minima, and the median of the absolute val-
ues of first differences as the noise level. Maximum points, whose distances
to their nearest local minimum points are greater than the noise level, are
marked as potential peaks. In a more recent method by
(2005), the authors estimate the noise from the residuals in a wavelet denois-
ing method that does baseline subtraction on each spectrum.

11



(2003) identify points as peaks if their intensities are the maximum in a
neighborhood containing a prespecified number of points. A smoother is
subsequently used to estimate the local noise.

Spectral matching approaches compare the intensity values within a window
to a reference peak for detection and subsequent characterization. In general,
this requires the specification of a predefined reference peak and a suitable
distance measure to determine the similarity of a window of intensity values
with the reference peak. For MALDI, Kempka et al (2004) suggest the sum
of two Gaussian functions as the reference peak and the least-squares as the
distance measure. By describing the spectral profile with a mixture model,
which consists of components such as peak signals (reference peaks) and
background noise, [Dijkstra et al| (2006) and [Wang et al| (2008) have recently
developed approaches that perform peak detection and baseline correction
simultaneously on SELDI data. Dijkstra et al| (2006) use the EM-algorithm
to solve for the parameters that contain peak information, while
(2008)) use the reversible jump Markov Chain Monte Carlo approach. Jarman
develop an approach for MALDI data, where the reference peak
does not need to be specified explicitly. They use a histogram-based model
for spectral intensity and detect peaks by comparing the estimated variance
of the observations to the expected variance when no peak is present in a
window.

However, most of the peak detection methods do not utilize information
across spectra. This seems unnatural, especially in protein profiling studies
for biomarker discovery, because we expect a potential biomarker to be con-
sistently detected across spectra of samples with similar conditions. Pooling
spectra together can potentially improve the characterization of the back-
ground noise and reduce the number of falsely declared peaks (i.e. false
positives). suggest borrowing peak information across spec-
tra by aligning multiple peaks across the spectra and keeping those peaks
that are consistent across spectra, while [Morris et al| (2005]) suggest doing
peak detection on the mean spectrum because it is less affected by noise than
individual spectra.

In order to incorporate the isotopic pattern in MALDI data, additional steps
have been proposed. After peak detection, [Senko et al. (1995)) and Breen et al |
(2000) propose using averagine (an average amino acid) to model isotopic
distributions. Instead of averagine, Wehofsky et al| (2001)) enumerate all
possible amino acid formulae, and use the relative intensity of the second
and third peak to the first peak to model the isotopic pattern. A commonly
used method for MALDI data analysis, PeakExplorer, picks a ‘typical’ peak

12



model and employs a non-linear iterative algorithm to fit detected peaks to
the peak model (Applied Biosystems, 2008]).

2.6 Integrating transcriptomic and proteomic
data

Advanced technology enables us to measure thousands of gene and protein
expressions simultaneously. Joint analysis of these gene and protein expres-
sions from the same sample has the potential to discover complex biological
processes. Present efforts use bioinformatic tools to integrate transcriptomic
and proteomic data through DNA and protein sequence databases (Cox et al/,
2005; [Waters et all, [2006). Briefly, the current approach matches genes and
proteins through a common identifier from the databases, before computing
the pairwise correlation.

One disadvantage of the current approach is that large amounts of data can
be lost in the matching process. This is well illustrated by
(20006), who found 60% of the proteins from liquid chromatography-mass
spectrometry analysis did not match the sequence identifiers from two mi-
croarray platforms, Affymetrix and Nimblegen. At least 29% and 46% of the
genes from Affymetrix and Nimblegen, respectively, did not overlap with the
proteins.

Although the central dogma of molecular biology suggests a strong correlation
between gene and protein expressions, past studies suggest only a modest cor-
relation 2007). Factors that potentially mask the correlation are:
analytical variability of the measurement technologies, post-transcriptional
mechanisms affecting mRNA stability and protein degradation, and timing
differences between gene and protein expressions. Since genes and proteins
are connected in pathways or processes, a global correlation between genes
and proteins will be more informative, as a result of pooling signals across
genes and proteins.

Furthermore, proteomic technology is still not as comprehensive in its cover-
age as compared to transcriptomic technology. Therefore, protein expressions
corresponding to some genes might not be measured and their expression val-
ues are set to zero. In order to account for the excess number of proteins
with expression values at zero, the zero-inflated Poisson regression model was
proposed, with the mean protein expression value defined as a function of

the gene expression value (Nie et all, 2000])).
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In addition, diseases affect both common protein and gene regulatory net-
works. Integrating mRNA and protein level expressions may be a way to
improve our ability of finding biomarkers and reduce the number of falsely
identified protein or gene biomarkers. From data integration, we can also
potentially gain understanding of the interplay of genes and proteins in dis-
eases.

14



Chapter 3
Aims

The aims of this thesis were motivated by the two issues mentioned in Chap-
ter [[] The first is the low specificity problem of the peak detection step in
the analysis of SELDI data (Coombes et al., |2003)). To overcome this prob-
lem, scientists visually inspect multiple spectra in parallel, a time consuming
task which slows down the biomarker discovery process. The second is the
loss of large amounts of data when integrating transcriptomic and proteomic
data. Given the insufficiency of using one ‘omic’ technology to gain a com-
prehensive understanding of the biological processes (Hegde et all, 2003)),
improvements to data integration could pave the way to better biomarker
discovery techniques.

The overall objective of this thesis was to address the above issues and the
specific aims were:

1. To develop an improved method that performs peak detection and
quantification in SELDI for biomarker discovery studies (Paper I and
II).

e Develop an R package for our method (Paper III).
e Extend our method to MALDI data that have isotopic resolution
(Paper V).

2. To integrate transcriptomic and proteomic data by characterizing their
correlations through Maximum Covariance Analysis (Paper IV).



Chapter 4

Methods

This chapter starts with a description of the method we have developed
for detecting and quantifying peaks in SELDI (Paper I and II), and its ac-
companying R package, called ProSpect (Paper III). Next, we describe the
extension of our method to MALDI data with isotopic resolution (Paper V).
We conclude the chapter with a brief presentation of the selected approaches
for integrating transcriptomic and proteomic data, such as the Maximum
Covariance Analysis (Paper IV).

4.1 Finding peaks in SELDI (Paper I-III)

Our method for peak detection, called Annotated Regions of Significance
(ARS), consists of two steps (Paper II). In the first step, our aim is to detect
a signal, which is defined as a spectral region containing potential biomarkers.
The algorithm called Regions of Significance (RS), uses a modified F-statistic
(F™*) to pick out regions with significant intensity variability between spectra
(Paper I). Since all the spectra are analyzed simultaneously in our method, its
characterization of the background noise is likely to be better than methods
that detect peaks for each spectrum individually.

The second step is a peak quantification procedure, which focuses on the po-
tential biomarker regions detected by RS. It extracts peak templates through
Principal Component Analysis (PCA) across all spectra (Anderson|, [1984;
Stoyanova et al) 1995). With the templates, ARS estimates the amplitude
and location of the peak in each spectrum, using the weighted least-squares
method, and refines the estimation of the amplitude via a mixture model.
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R is a widely used statistical programming environment (R Development
[Core Team, 2008) and we have implemented ARS as an R package called

ProSpect (Paper I1I). Users are able to call up key functions to run different
stages of ARS and have control over the tuning parameters. A graphical user
interface version of ProSpect, called ProSpectGUI, has also been developed
to make our method accessible to users not familiar with the R command
line.

As mentioned earlier, our method identifies potential biomarker peaks. Apart
from detecting peaks, it also filters out those which do not have the poten-
tial to be biomarkers, because they have similar intensities across the spec-
tra. This should be seen as an advantage. To verify whether the peak is a
biomarker, additional analysis is required to test for association between the
peaks and the clinical or experimental outcome of interest.

In this section, we describe the modifications we made to the F-statistic. This
is followed by a description on how PCA is used to identify a peak template,
and our approach to fitting the template to a spectrum. We conclude this
section with a description of ProSpect.

4.1.1 Modifications to the F-statistics

We obtained four blanks from SAX2 chips to understand the null distribution
of the F-statistics from the one-way analysis of variance (ANOVA). Blanks
are spectra generated from chips that carry no biological tissue. Therefore,
theoretically, their intensities do not contain any biological signal for differen-
tiating one spectrum from another, making them good null data candidates.

From our investigation of the null distribution of the F-statistics by using
blanks, the F-statistic was observed to be inflated. Under the null hypothesis,
where the intensities of the spectra are the same, the standard F-statistic
with normal but dependent intensities can be inflated by a multiplicative
factor ¢, i.e. distributed as ¢F' (Scariano and Davenport, [1987). This depen-
dency is not surprising, given that the raw spectra are in fact time series data.
In addition, fluctuation in the mean square error (MSE) was observed. To
deal with the fluctuation in the MSE and the dependency between intensities
of a spectrum, we proposed two modifications to the standard F-statistic.

The first modification deals with the fluctuation in MSE by smoothing the
MSE with the mean or median of its neighboring MSEs, denoted by MSE'.
MSE’ estimates the variance of the error term better than MSE, thereby in-
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creasing the sensitivity of the F-statistic. The smoothing parameter, Mg,
is expressed as a percentage of the total number of measurement points that
form the spectral trace. Using the local median provides some robustness,
whereas using the local mean allows us to apply the Satterthwaite’s approx-
imation to estimate the degrees of freedom of MSE’ (Satterthwaite) [1946]).
The F-statistic corresponding to MSE’ is denoted by F”.

The second modification aims to remove the effect of the dependency between
the intensities of a spectrum. We expect a local correction factor to remove
¢ and this is achieved by dividing F’ by the mean or median of its neighbor-
ing F's and adjusting F’ to its expected mean or median. The smoothing
parameter, Mg, is also expressed as a percentage of the total number of
measurement points. The final modified F' is denoted by F™.

When the local mean is used in the first modification, we expect F™* to follow
an F distribution with estimated degrees of freedom from Satterthwaite’s
approximation. When a local running median is used, there is no simple
way to compute the degrees of freedom of MSE'. Since MSE' is based on
a large number of points, we use the fact that F with degrees of freedom
(df1, df2) is approximately Xﬁfl/ dfy for large dfy, where 1 and 2 denotes the
x2-distribution statistic in the numerator and denominator of F, respectively.
In practice, dfs will be in the safe order of several hundreds.

4.1.2 Using PCA to extract a peak template

The first step of our peak quantification approach is to identify a peak tem-
plate in each peak region. By performing PCA across all spectra in the peak
region, we obtain a template that best captures the peak shape. However,
we often encounter a misalignment problem along the m/z axis for real data.
This is illustrated in Figure (a) where a common peak shape can be ob-
served across most spectra, but the unknown shifts in the peaks along the
m/z axis create difficulties in having a clear view of the common peak shape.
Hence, in order to depict a clearer view, we have aligned the peaks along a
straight vertical line, as shown by the vertical dotted line in Figure (b).

Alignment of the peaks and extraction of the peak template are performed
simultaneously by linearizing the misalignment problem due to a shift in
location. This is done through applying a first-order Taylor expansion to the
spectrum, S(t),

S(t) = Bo+ Af(t—0) = fo + Af(t) — Adf'(t), (4.1)
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Figure 4.1: (a) Illustrates the misalignment problem. (b) Shows a common
peak shape after aligning the peaks along the vertical dotted line. (c) The
expected protein peak shape is Af(t) (black solid line), but the protein was
perturbed at three different locations, represented by shifts 61-03, and with
the corresponding amplitudes Ai-Asz. This results in three individual peaks,
Ay f(t —01)-Asf(t — d3) (gray dotted lines). (d) Instead of observing Af(t),
we observe the aggregation of the three individual peaks [3’0—5—2'3:1 Aif(t—06;).

where [y is an additive parameter to make the intensity values non-negative,
f(¢) is the common template, A is the amplitude and ¢ is the shift.

Equation [I.1] suggests that the observed intensities can be decomposed into
two-components, where the first Principal Component (PC), PC;, provides
a template for the peak shape, the second PC, PCsy, captures the remaining
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signal-associated PC due to the shift and the remaining PCs are associated
with noise (Stoyanova et al) [1995). We estimate 3y to be the smallest non-
positive intensity in the spectrum and estimate the other parameters by
performing a least-squares regression with constrained parameters.

4.1.3 Fitting of the template to the other spectra

The fitting of the template f(¢) is done by minimizing the weighted mean
squared error (WMSE) between the template f(t) and the measurements S(¢):

WMSE = w Y {S(t) — 8 — Af(t — 6)}*/n, (4.2)

where the weight w is defined as the reciprocal of the median intensity of the
spectrum for the region and n is the number of points in the template. The
wMSE is also used to compare the quality of the fit.

From Figure (b), it is obvious that some spectra have slightly different
peak shapes from the common peak shape. This might be expected because
the peak shapes are an aggregation of the template perturbed around the
m/z of the protein, as illustrated in Figures (c)-(d). If the protein with
amplitude A is perturbed at three different locations, represented by shifts
01-03 with the corresponding amplitudes A;-Ajz, this will result in three in-
dividual peaks, A; f(t — 61)-Asf(t — 03), represented as gray dotted lines in
Figure (c). Instead of observing the peak shown as black solid line, we
observe the peak shown as gray dotted line in Figure (d), which is the
aggregation of the three individual peaks.

By re-formulating S(t) = Gy + ZZZI Agf(t — ;) as a mixture model prob-
lem, where the amplitude of the peak is naturally defined as the sum of the
individual amplitudes, it turns out that

A= A= YIS0~ B/ (). (43)

Therefore no re-estimation is needed for the mixture model and we can use
Equation [1.3] to refine the estimate of the amplitude.

4.1.4 ProSpect: An R package for ARS

We have implemented our method, ARS (Paper I and II), in an R package
called ProSpect. R is a widely used statistical programming environment
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that provides a base system and a large repository of modules called R pack-

ages (R Development Core Team, 2008)). Sinc

e R mainly works on a command

line interface to allow for the rapid creation of analysis workflow, it may not
be a very friendly environment for beginners. Therefore, we developed a
package ProSpectGUI which allows access to the functionality of ProSpect

via a graphical user interface.

Project folder Range of interest

i Experiment namy

2 .ccl file ;
— .ars/.pa file ;

3 .settings file
| ‘ findPeaks() ‘ ‘
R
Part a ‘ read.ProSpect() ‘ 4" mim.ProSpect() | 4’| zoom.alpha() |
‘ smooth.mse() ‘ ‘ merge.window() ‘
Partb reduct.ProSpect() i
Part c ‘ BgCorrection.Spect() }— ‘ modFcorr.fdr() }_ ‘ peakOut file() ‘
 E—
Phase | Phase I Phase I

Figure 4.2: Basic workflow of the key function findPeaks().

In ProSpect, we use key functions to facilit

ate (i) user control of the algo-

rithms’ parameters and (ii) maintenance of the codes. A key function controls

separate and independent blocks of codes w
There are three key functions in ProSpect:

hich usually have specific roles.

e findPeaks(): Identifies and quantifies the peaks in the spectra, and

exports the results.

e summaryPeaks(): Summarizes the basic statistics of the intensity and

m/z of the spectra.

e plotPeaks(): Plots the spectra at different steps of the algorithm.
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The three key functions have two kinds of inputs: required parameters and
optional parameters. The required parameters are a minimum set of argu-
ments that has to be specified before the key function can be executed. For
the optional parameters, default values exist which can be changed by ad-
vanced R-users. In the following, we focus on the key function findPeaks()
that performs the ARS algorithm.

Table 4.1: The ARS algorithm implemented in findPeaks().

Step | Task Description
I Data preparation Preparation of the data to calculate the F-
statistics
Ta Importation Read the .csv files exported by Ciphergen’s
software
Ib Reduction Reduce data to the region of interest
Ie Baseline correction | Correct the intensity for baseline noise
1I Calculation of differ- | Spectra are reduced to one spectrum of F™*
ent F-statistics
Ila | F Calculate the F-statistic
Ibh | F' Smooth the MSE to get MSE’
Ile F* Scale F’ to its null distribution
11T Peak detection and | Export information of peaks in potential
exportation of data | biomarker regions
ITla | Identification of po- | Flag regions that are significant from the
tential biomarker re- | user specified criterion and cut-off level
gions
IIIb | Peak quantification | Quantify the peaks in the potential
biomarker regions
IIIc | Exportation of data | Export peak information via .ccl, .ars and
.pa files

Figure and Table briefly describe the workflow of findPeaks(). In
Phase I, findPeaks() reads in comma separated value (csv) files containing
intensity and m/z information of the spectra, and pre-processes the data for
identifying and quantifying potential biomarker peaks. Functions in Phase
IT flag out potential biomarker regions via the RS algorithm, and those in
Phase I quantify the peaks via the ARS algorithm. The estimates of the
m/z and intensity of peaks are then stored for further analysis. Recently, we
updated ProSpect by adding a parametric peak template (i.e. a mixture of
log-normal distribution) option to quantify the peaks in a cluster (Dijkstra
et all [2006]).
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After each run of findPeaks(), it generates .settings, .ars, .pa and .ccl files.
The full name of the output files depends on the specified project name and
gives the user the possibility of distinguishing between different calculations
done for one dataset. The .settings file records all the options specified to
run findPeaks(); .ars and .pa files contain the estimated m/z and intensity
of peaks from ARS and the parametric peak template approach respectively;
and the .ccl file contains information for importing peaks detected by ARS
into Ciphergen software.

Users who are unfamiliar with R may have difficulties manipulating ProSpect
because of the command line interface environment in R. To increase the
usability of ProSpect, we used an R package, called tcltk (Dalgaard, 2001)),
to develop a graphical user interface version, ProSpectGUI, which is also
available as an R package.

4.2 Finding peaks and isotopic patterns in
MALDI (Paper V)

In this section, we briefly describe the extension of ARS for MALDI data.
For SELDI, a protein biomarker is represented by a peak, while MALDI
- which can resolve a protein signal into its isotopic pattern - a protein
biomarker is represented by a series of peaks that are consecutively 1 Da
apart. To pinpoint a biomarker using MALDI, we need to consider the m/z
and intensity for each peak in the isotopic pattern.

From ARS, we have obtained potential biomarker peaks, like the blue vertical
lines in Figurothat represent the m/z and intensity estimates of the peaks
for a particular spectrum. Given that an isotopic pattern of a protein is made
up of a series of peaks that are consecutively 1 Da apart, and that we expect
a protein biomarker to be made up of a series of biomarker peaks, we first
filter out stand-alone potential biomarker peaks from ARS that cannot be
formed as part of a series of peaks which are more or less consecutively 1 Da
apart. The series of blue vertical lines in Figure 3] is made up of biomarker
peaks that are approximately 1 Da apart from their immediate neighbors.

Another aspect of an isotopic pattern is its intensity. The expected isotopic
pattern of the intensity approximately follows a Poisson distribution. We
have used the approach by Breen et al.| (2000) to get the expected isotopic
pattern at a given m/z value. The red vertical lines in Figure represent
the expected isotopic pattern in the region. Capitalizing on this information,
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Figure 4.3: An illustration of the extended ARS for MALDI data.

we define a goodness-of-fit measure for the isotopic peak, r, as a ratio of
the sum of squared residuals between isotopic pattern and constant intensity
models. If r < 1, a potential protein biomarker is detected. If r > 1, the
series of peaks is probably noise. The series of peaks in Figure -3 has r < 1,
suggesting a detection of a potential protein biomarker. This process of
eliminating the series of peaks is done sequentially with the series of peaks
ordered according to its minimum m/z in an ascending manner.
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4.3 Correlating gene and protein expression
data (Paper IV)

In this section, we describe the multivariate statistical method called Max-
imum Covariance Analysis (MCA). To the best of our knowledge, this is
the first time MCA is applied to the problem of integrating transcriptomic
(Xpxn) and proteomic (Y,x,) data with p genes and ¢ proteins from the
same n samples. This is followed by a brief description of Gene Ontology
(GO) enrichment analysis which is used to gain biological insight into the
results obtained from MCA. We conclude this section with a description of
a closely related technique called the Generalized Singular Value Decom-
position (gSVD), which has been previously used to jointly analyze gene
expression and copy number variation information from the same samples
(Berger et all 2006). A comparison of the two methods, MCA and gSVD,
will be presented in Chapter

By considering an extension of the factor analysis model (Salim and Pawitan|,
2007), where the factors are allowed to correlated, MCA can be used to
estimate gene (a;s) and protein (bjs) patterns. Let @; be a p-vector of gene
expression, and y; a g-vector of protein expression data from sample 7, for
j=1,...,n. Assuming co-expression in r pathways are reflected in r gene
patterns and protein patterns:

xz; = Zg]‘kak +€j, and y; = Z hjibk + e?, (4.4)
k=1 k=1

where g;is and hj,s are random scalars associated with the unobserved r

factors. Let Ay, =[a1...a,] and By, = [b1...b,], g; = (gj1,- .., 95) and

h; = (hj1,...,h;). To avoid non-identifiability, we assume orthogonality:

A’A = B'B = [, and cov(g,, h;) = A is a diagonal matrix with decreasing

values. The cross-covariance between x; and y; is given by:

AAB/, (4.5)

so the correlation is captured by the r values on the diagonal of A and the
corresponding pattern-pairs given by A and B.

MCA can be used to obtain estimates of the pattern matrices A and B in
model @ The MCA maximizes the sample covariance of linear combina-
tions from two datasets. The objective is to find a; and by such that

A1 = cov(X'ay, Y'by),
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is maximized over all choices of a; and by, with a;’a; = by’by = 1. The
constraints on the pattern-pair are needed because A\; can be made as large
as possible by multiplying a; and by with a constant scalar. The second pair
of gene and protein patterns are found by maximizing:

Ao = cov(X'az, Y'bs),

over all unit vectors as and bs that are orthogonal to a; and by respectively.
In summary, the k-th pattern-pair is found by maximizing:

A = cov(X'ay, Y'by),

with constraints that ay'ax = by'by = 1, aj’a; = 0 for i # j, and b;'b; = 0
for i # j, where i =1,2,...,kand j=1,2,... k.

The MCA estimates are obtained by performing a Singular Value Decom-
position (SVD) on the cross-covariance matrix 3., = XY’/n with X and
Y previously centered across the rows. The relative amount of covariances
explained by the j-th component is A3/ Y7 Af, where 7 is the rank of X.
To determine the number of pattern-pairs, we used a permutation approach.

The genes and proteins with large absolute pattern values in their respective
pattern pair have strong influence on the cross-covariance matrix. Therefore
we propose performing a GO enrichment analysis on the set of genes which
have the top 5% absolute gene pattern values in its pattern-pair. In a GO
analysis, we test whether a subset of genes is enriched with a particular GO
term when compared to all genes on the microarray. Therefore a GO analysis
reduces the test to a 2 x 2 table test of association between gene membership
in a GO term and the set of genes having the top 5% gene pattern values. This
allows us to make biological inferences about each pattern pair from MCA
and hence identify associations between proteins and biological processes.

The gSVD, which has been used to integrate two datasets from the same
samples, simultaneously reduces X and Y to a s X s metagene-array space:

prn = APXP[DX]JXS7OPX("*S)]G;in
qun = quq[Dqum qu(nfs)}G;inv
where s is the rank of [X', Y], A and B are orthogonal matrices, and Dx
and Dy are matrices, such that their (¢, j)-entries are zero when i # j, and
non-negative when ¢ = j, where Dx'Dx +Dvy’'Dy = I, (Paige and Saunders,

1981)).
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Similar to MCA, the significance of the i-th metagene and its corresponding
meta-array for dataset j = X,Y is quantified by:

t=1

where dx; and dy; are the (i,4)-entries of Dx and Dy respectively, which
carry the expression information of the i-th metagene and its corresponding
meta-array in X and Y respectively.

The relative significance of the i-th metagene is assessed through the ratio

of the expression information from the datasets (Alter et all 2003):
0; = arctan(dx;/dy;) — 7/4,

where —7/4 < 6; < w/4. When the angular distance is 0, the i-th metagene
may be equally significant in both datasets. However, when the angular
distance is 7/4, the i-th metagene may have no significance in Y relative to
X. And when the angular distance is —/4, the i-th metagene may have no
significance in X relative to Y.
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Chapter 5

Results

In this chapter we present the results for (i) Paper I-111: Performance of ARS,
(i) Paper V: Performance of extended ARS for MALDI and (iii) Paper IV:
Performance of MCA in integrating gene and protein expression data.

5.1 Performance of ARS (Paper I-III)

We used the following datasets to assess the performance of our method,
ARS:

e Lung cell line data (H69). Two types of lung cell lines were studied,
resistant versus sensitive to chemotherapy, with four spectra for each
type of cell lines. A low intensity laser setting was used on SAX2 chips,
and the analysis was restricted to the 3-10 kDa range. The scientist
who was familiar with the data manually identified 51 regions in the
spectra with biologically plausible peaks. These regions were taken to
be the gold standard in determining true and false positives.

e Spike-in data. Bovine insulin at approximately 5733 Da was spiked
into human blood serum at seven levels of dilution. Each dilution was
performed in independent duplicates and applied to WCX2 chips. The
chips were scanned at low laser intensity, resulting in 14 spectra. The
analysis was restricted to the 5-6.5 kDa range.

o Lung cancer serum data. The data consisted of eight serum samples
from patients diagnosed with adenocarcinoma and squamous-cell car-
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cinoma, respectively. Duplicates of the sample were applied to CM10
chips with optimized mass between 2-10 kDa. The settings were ob-
tained by an experienced SELDI analyst.

Sensitivity
Sensitivity

Sensitivity
Sensitivity

FDR

Figure 5.1: Comparing RS with the (a) standard method (Fung and Ender-
, (b) Coombes method (Coombes et all, [2003), (c) Yasui method
and (d) Cromwell method (Coombes et al., |2005) respec-

tively by using the lung cell line data in the 3 kDa to 10 kDa region. The
scattered solid and open circles are the (sensitivity, empirical FDR)-pairs for
RS and the other methods, respectively. The OC curve of RS is a solid line
and the other methods are dashed lines.

5.1.1 Lung cell line data (H69)

Using the lung cell lines data (H69), we studied the operating characteristics
(OC) curves of RS and four other methods, namely the standard method
(Fung and Enderwickl, [2002), ‘Coombes’ method (Coombes et all, [2003),
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‘Yasui’ method (Yasul et al), 2003) and ‘Cromwell’ method (Coombes et all,
2005)). We modified the traditional OC curves by replacing the false positive

rate on the horizontal axis with the FDR (Choe et all 2005). While the

empirical FDR is available for all methods, the theoretical FDR is available
for RS by converting the p-values from F* to FDR.

Figures (a)-(d) compare the OC curves of RS to the four methods men-
tioned above by using the empirical FDR. From the plots we observed that
RS (solid curve) has better OC than the other four methods (dashed curves).
At 80% sensitivity, the FDRs of the four methods are around 25% to 50%,
compared to around 8% for RS.

We briefly summarize the other observations made from the same data:
e The local running median for smoothing the MSE and F’ performed

better than the other options, such as local running mean for smoothing
either the MSE or F’. Therefore robust smoothing was necessary.

e The similarity of the OC curves for the theoretical and empirical FDRs
corroborated our distribution theory of F™.

5.1.2 Spike-in data

By using the standard method (Fung and Enderwickl, [2002)), the insulin peak
was detected together with 30 peak regions across the whole mass range from
5.5-6 kDa; see bottom row of Figure In comparison, RS identified nine
significant windows in the 5.5-6 kDa range at FDR cut-off of 5%, out of which
eight corresponded to the insulin peak; see Figure 5.2} Thus, this showed
that RS had a higher specificity than the standard method.

5.1.3 Lung cancer serum data

We compared the performance of ARS with the standard method
on the SELDI data of serum samples obtained from lung
cancer patients. While ARS detected 151 peak regions, the standard method
only detected 89 peak regions. We investigated all peak regions which are
not detected by both methods and visually verified that (i) 60 out of 68
ARS peak regions and (ii) all 11 standard peak regions were plausible. Using
the McNemar test (Lachenbruchl 1998)), ARS classified significantly more
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Figure 5.2: Analysis of the spike-in data in the 5.5 kDa to 6 kDa region;
the insulin peak is at approximately 5733 Da. The top plot shows the FDR
as a function of the m/z-value. The main plot shows intensity vs. m/z-
value for all fourteen spectra. The two Tows of vertical bars in the bottom
correspond to regions flagged by RS (proposed, gray) and standard method
(black) respectively.

regions correctly into peak and non-peak regions than the standard method
(p-value=4.0 x 107°).

We noticed that 78 peak regions detected by the standard method overlapped
with 83 peak regions detected by ARS. This discordance in the number of
peak regions was due to the fact that five (single) peak regions detected by
the standard method overlapped with two peaks from multiple peaks clusters
of ARS. Further investigation revealed that the standard method was unable
to distinguish multiple peaks in close vicinity of each other. In contrast, ARS
was more robust in distinguishing them.

The other results obtained in the comparison of ARS with the standard
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method showed the following:

e The standard method missed an obvious peak which ARS could iden-
tify.

e ARS performed better than the standard method under severe mis-
alignment.

5.2 Performance of extended ARS (Paper V)

We used the spike-in data to assess the performance of extended ARS for
MALDI. All spike-in samples contained Bovine Serum Albumin (BSA) tryp-
tic digested. The following peptides were added into the samples at various
quantities: (A) Angiotensin, (B) [Glul]-Fibrinopeptide B, (C) Dynorphin A,
(D) Adrenocorticotropic hormone (ACTH) and (E) S-Endorphin. Table
gives the detailed composition for each sample. Each sample was spotted
once on the plate, except for Sample 12 which was spotted on five different
spots. Five CHCA blanks were also spotted in parallel with the samples.
The samples were then analyzed in an AB4800 MALDI-TOF/TOF Mass
Spectrometer (Applied Biosystems) with optimized mass between 0.7-4kDa.

Table 5.1: Description of peptide composition for each sample (ul).
Peptides

Sample A B C D E BSA MilliQ
1 10 333 5 0 833 0.38 7296
2 0 5 667 5 10 038  72.95
3 3.33 10 0 6.67 333 038 76.29
4 5 0 10 833 1.67 038 74.62
5 1.67 833 833 10 0 038 71.29
6
7
8

6.67 1.67 1.67 333 5 038 81.28
8.33 6.67 3.33 1.67 6.67 0.38 72.95
-11 5 5 5 5 5 038 T74.62
12 0 0 0 0 0 038 99.62
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5.2.1 Validation of ARS in MALDI

We applied ARS separately to the following groups of spectra:

e Blank spectra generated from spots that contained no sample.
e BSA only spectra generated from spots that contained Sample 12.

e Spike-in(8-11) spectra generated from spots of Sample 8 to Sample 11,
which had the same quantity of spike-ins.

We varied the nominal p-value cut-offs for flagging significant windows within
the region 0.7-4.01 kDa at the following values: 0.1, 0.05 and 0.01. At each
nominal p-value, we computed the empirical false positive rates (total number
of significant windows/total number of windows): (i) as a whole (overall
empirical false positive rates) and (ii) for each of the 30 sub-regions of equal
length (local empirical false positive rates). We also fitted a smoothed curve
(loess fit) to the 30 (m/z, local empirical false positive)-pairs.

The first row of plots in Figure -3 shows a lack of agreement between the
nominal p-values and the empirical false positive rates. However, there was
strong agreement when the intensities of the blanks are log-transformed; see
second row of Figure[5.3] This was also observed in: (i) log-transformed spec-
tra from BSA only (log-BSA) and (ii) log-transformed spectra from Spike-
in(8-11) (log-Spike-in(8-11)); see the third and fourth rows of Figure
respectively.

The above validates the use of the log-transformed intensities of MALDI for
ARS. The log-blanks have the closest agreement between the nominal p-value
and empirical false positive rates, followed by log-BSA and log-Spike-in(8-
11).

5.2.2 Near the spike-in regions

Using Sample 1 to Sample 7, we computed the Pearson correlation of the
quantity spiked and the estimated peak intensity from ARS at approximately
0, 1, 2, 3 and 4 Da to the right of the observed monoisotopic peak of Spike-
in A to Spike-in E. In general, correlations were greater than 0.8 for 0-4 Da.
The monotonic increasing relationship between the estimated peak intensity
and the quantity spiked was linear in Spike-in A, B, C and E, but curvilinear
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Figure 5.3:  The empirical false positive rates at various nominal p-value
cut-offs of: (a) 0.1, (b) 0.05 and (c) 0.01. The first, second, third and fourth
rows correspond to blanks (Blanks), log-transformed blanks (log-Blanks), log-
transformed BSA (log-BSA) and log-transformed spike-ins which have the
same quantity spiked (log-Spike-in(8-11)). The gray circles are the 30 (m/z,
local empirical false positive rate)-pairs; the black solid lines are the smoothed
curve of the 30 local points and the horizontal black broken lines correspond
to the nominal p-value. The overall empirical false positive rate is presented
at the top right hand corner of each plot.

in Spike-in D for 0-4 Da. Therefore, peaks in an isotopic pattern of a protein
contained information on the protein’s quantity.

Using the same spike-in samples as above, we compared the extended ARS
and the standard method, PeakExplorer, by investigating their abilities in
capturing the quantity of proteins spiked. The ratio of residuals cut-offs for
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line (black line). Above each plot, we report the Pearson correlation between
the estimated protein intensity and quantity spiked, with the m/z range of
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the extended ARS were: 0.1, 0.2, 0.4, 0.6, 0.8, 1 and 1.2. For PeakExplorer,
the signal-to-noise ratio (S/N) cut-offs were: 3, 5, 10, 15, 20, 50, 100 and
150.

In general, the Pearson correlation between the quantity spiked and the es-
timated protein intensity was higher in extended ARS than PeakExplorer;
see Figure (.4 The estimation of the location of the monoisotopic peaks
was similar between the two methods with extended ARS having a wider
monoisotopic peak m/z range. Therefore the two methods performed well
in detecting the spike-ins, but extended ARS quantified the spike-ins better
than PeakExplorer.

We investigated the detection of monoisotopic peaks in the neighborhood
of £ 5 Da of the observed monoisotopic peak of Spike-in A to Spike-in E.
For extended ARS, it only detected a monoisotopic peak that was 3 Da to
the left of Spike-in B’s observed monoisotopic peak. However, PeakExplorer
detected more monoisotopic peaks in the neighborhood. Therefore, ARS is
potentially more specific than PeakExplorer.

5.2.3 Across the entire mass range

Using the same spike-in samples in Section we compared the perfor-
mance of extended ARS and PeakExplorer across the m/z range by studying
their OC curves. Similar to Section B.1.1] we modified the traditional OC
curves by replacing the false positive rate on the horizontal axis with the
FDR. All the monoisotopic peaks detected by the two methods were visu-
ally checked to confirm if they were real monoisotopic peaks. The FDR is
the proportion of unique monoisotopic peaks detected by the method that
were verified real. Sensitivity is the proportion of all unique and verified real
monoisotopic peaks that were detected by the method. The OC curves for
the two methods were obtained by varying their cut-offs. When we com-
pared their OC curves, at low FDR, extended ARS had higher sensitivity
than PeakExplorer.

5.3 Performance of MCA (Paper 1V)

We used the following datasets to investigate the integration of transcrip-
tomic and proteomic data:
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e NCI data. Microarray and proteomic datasets from the same human
cell line of a variety of cancers were downloaded from the CellMiner pro-
gram package, National Cancer Institute (http://discover.nci.nih.
gov/cellminer/)). One of the 60 human cancer cell lines was excluded
from the analysis, because it had missing microarray information on
the Affymetrix HG-U133A chip. The gene expression data were nor-
malized using the GCRMA method (Shankavaram et all, 2007)). For
the proteomic data, reverse-phase protein lysate arrays (RPLA) were
used to obtain 89 protein expressions. RPLA used an antibody to mea-
sure the amount of protein presented across samples by spotting many
samples on one slide. For the microarray dataset, genes with expres-
sion variances lower than the 25th percentile were filtered out, leaving
15918 genes. For the proteomic dataset, no filtering was performed.

o Simulated data. An extended standard factor analysis model
land Pawitan| 2007) was used to simulate correlated gene and protein
expression data. Sample size was set to be n = 59, or 500, with p =
1000 genes, g = 89 proteins and r = 2 pairs of patterns. Sub-sampling
of 1000 genes from the NCI data without replacement was performed
to obtain realistic parameters and pattern-pairs, which were used to
generate 250 simulated sets of correlated gene and protein expression
data.

5.3.1 Simulated data

The simulated data were used to investigate the consistency of the MCA
approach in estimating the pairs of patterns (ajs and b;s), and to compare
MCA against gSVD. For MCA, estimates were close to the true patterns
values when the sample size was large (n = 500). This suggested that MCA
produced consistent estimates of the gene and protein patterns. However, a
small bias was observed in the small sample (n = 59).

For gSVD, we considered gene and protein patterns that had the highest ab-
solute correlation with the corresponding true patterns values. The result for
large sample size (n = 500) suggested that gSVD captured some correlation
patterns in the data, but it did not estimate them consistently, especially the
gene patterns. Only 11% of these gene and protein patterns were from the
same pair. In small samples (n = 59), we observed a smaller bias, but higher
variability.
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We also investigated if the use of angular distances would improve the strength
of correlation between gSVD and the true patterns. There was no evidence
of improvement.

5.3.2 NCI data
Using MCA

For MCA, we determined through permutation that the number of signifi-
cant pattern-pairs was three; the three pattern-pairs explained 74.8% of the
covariation. For subsequent pattern-pairs, the cumulative profile of the co-
variation started to plateau off to 100%. Therefore, we concluded the first
three pattern-pairs were adequate in capturing the structure of the cross-
covariance matrix between genes and proteins.

For each pattern-pair, we considered the genes from the top 5% absolute
gene pattern values as interesting and performed a GO analysis on the bi-
ological processes. The p-value cut-off was set at 0.01 for evaluating over-
representation of biological processes (i.e. enriched GO terms). By using
the top 10 most significant enriched GO terms, we inferred the biological
processes of each MCA pattern-pair. The inferred biological processes were
associated with cancer, such as angiogenesis and blood vessel morphogen-
esis. Therefore MCA suggests that there is a strong association between
the inferred biological processes and the proteins with high absolute protein
pattern values.

Next, we investigated whether both gene and protein patterns from MCA
gave congruent signals. We made the reasonable assumption that the top
10 proteins with the largest absolute protein pattern values were likely to
be involved in the biological processes of the pattern-pair, while the bottom
10 were not. Thus, the GO terms from top 10 proteins were more likely to
match the 100 most significant GO terms obtained from the GO analysis of
the genes compared to the bottom 10. A GO term of a gene matched a GO
term of a protein when either their GO terms, or their GO terms’ parents, or
their GO terms’ children overlapped. The p-values of the 100 most significant
GO terms were ranked in descending order (i.e. the largest p-value had the
lowest rank, while the smallest p-value had the highest rank). We computed
the mean ranking, M, for each protein’s GO term. The median of M for the
top 10 proteins was significantly higher than the bottom 10 (p-value=0.005
using Wilcoxon test). Therefore the gene and protein pattern-pairs from
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MCA were extracting similar biological signals.

Using gSVD

For gSVD, we determined the interesting pattern-pairs by considering their
angular distances. All of the 59 angular distances were positive and ranged
from 0.485 to 0.778. The generalized variance explained by the microar-
ray data was quite uniform, while the generalized variance explained by the
proteomic data was high when the angular distance was low. In view of
the generalized variance explained, we further investigated the pattern-pairs
with the lowest three angular distances (0.485, 0.548 and 0.556).

Similar to the MCA, we defined genes from the top 5% absolute gene pattern
values as interesting and performed a GO analysis on the biological processes.
The inferred biological processes from the enriched GO terms were also as-
sociated with cancer. We analyzed the concordance between the gene and
protein patterns for gSVD by applying the same approach used in MCA.

The median of M for the top 10 proteins was significantly lower than the
bottom 10 (p=0.016 using the Wilcoxon test). This indicated that gSVD
gene and protein pairs were not internally congruent, with each referring to
different processes.

Comparing MCA and gSVD

To compare the two methods, we tried to match the MCA and gSVD results
as much as possible, by identifying pattern-pairs from gSVD that had the
highest absolute correlation with the first three pattern-pairs from MCA.

Similar to the previous sub-sections, we defined a set of interesting genes
from the absolute gene pattern values and performed a GO analysis on the
biological processes. The inferred biological processes were associated with
cancer. However, the median of M from the top 10 proteins was not signif-
icantly different from the bottom 10 (p=0.325). Again, this indicated that
these gSVD gene and protein pairs were not internally congruent.

Using a similarity measure between highly significant GO terms from genes
and GO terms from proteins, which were grouped into their top and bottom
10 absolute protein pattern values, we observed that all the three MCA
pattern-pairs had a higher similarity value for their top 10 proteins than
their bottom 10. For gSVD there was one pattern-pair where the bottom
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10 proteins had a higher similarity value than the top 10. Therefore all
the pattern-pairs from MCA were having similar biological signals in the
genes and proteins, while gSVD had a pattern-pair with dissimilar biological

signals.

40



Chapter 6

Discussion

6.1 ARS (Paper I-III)

Our approach, called ARS, contains a signal detection step, followed by a
peak quantification step. The signal detection step effectively reduces the
spectra of intensities to a spectrum of F*  before zooming in on regions
that contain potential biomarkers for peak quantification. This reduces the
number of peaks to be inspected visually in parallel with multiple spectra for
differences in intensities. If a peak has the same intensity across all spectra,
it will not be identified as significant. Hence, RS functions as a filter for
common but uninformative proteins.

The advantage of investigating the null distribution of the F-statistic through
blanks is the ability to use an objective selection criterion, such as FDR,
which accounts for multiple testing. Existing methods use arbitrary criteria,
such as signal-to-noise ratio, which gives only a vague notion of the level of
false positive rate or false discovery rate. At 80% sensitivity, the FDRs of
the four methods are around 25% to 50%, compared to around 8% for RS.
This observation could be explained by the fact that RS analyzes the spec-
tra simultaneously, which is likely to improve the characterization of noise
compared to the other four methods, which detect peaks for each spectrum
individually.

For the peak quantification step, the appeal of ARS lies in using the data to
obtain peak templates instead of specifying potentially unrealistic parametric
templates. In addition, we refined the estimation of the amplitude by using
a mixture model that mimics an elongated cloud of ionized molecules from
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the same protein hitting the detector of the mass spectrometry.

We have also demonstrated that ARS can detect more peaks than the stan-
dard method. Attempting to reduce false positives by adjusting the settings
of the standard method reduces its sensitivity substantially. Furthermore, we
have shown that improvements in peak annotation in ARS can potentially
benefit downstream data analysis in biomarker research.

6.2 Extended ARS (Paper V)

We validated the use of ARS on the log-transformed intensities of MALDI.
This suggests that the log-transformation reduces variation in the intensities
which reduces false positives. In the validation process, we noticed that the
agreement between the nominal p-value and the empirical false positive rate
was the closest for log-blanks, followed by log-BSA and log-Spike-in(8-11).
It is suspected that variation in trypsin digestion and competitive ionization
are responsible for the larger discrepancy between the nominal p-value and
the empirical false positive rate.

The monotonic increasing relationship between the estimated peak intensity
and the quantity spiked is linear for Spike-in A, B, C and E, but curvilinear
for Spike-in D. This demonstrates the ability of MALDI in detecting the
quantity of protein in the sample. At the same time, the results suggest that
proteins may ionize differently from each other.

Correlation between the intensities of peaks identified by ARS and the quan-
tity spiked is generally high (> 0.8) in the neighborhood of the isotopic region
of the spike-ins. This suggests that protein biomarkers consist of biomarker
peaks. Detection of potential protein biomarkers in the extended ARS re-
quires a sustained series of potential biomarker peaks that are more or less
consecutively 1 Da apart. This is a good feature, as the peaks corroborate
among themselves the presence of the potential protein biomarker.

While extended ARS and PeakExplorer perform well in detecting the spike-
ins, extended ARS is more specific than PeakExplorer. Extended ARS quan-
tifies the intensities better and has higher sensitivity at low FDR than Peak-
Explorer, although ARS generally has a wider monoisotopic peak m/z range.
The generally better performance of ARS may be a consequence of the cor-
roborative feature in ARS when detecting a potential biomarker.
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6.3 MCA (Paper 1V)

The SVD has been used to study dominant patterns of variation in a single
phenotype such as gene expression , . Here we apply SVD
on the cross-covariance matrix to study dominant patterns of correlation
between two phenotypes.

Our simulation study indicates that MCA gives consistent estimates of the
pattern-pairs, while the gSVD does not. For MCA, analysis was done through
the cross-covariance matrix, while for gSVD, it was done through the ap-
pended gene and protein expression matrices. Although gSVD does capture
some portion of the correlation, it is not designed to capture it completely.
From the NCI data analysis, we demonstrated that the gene and protein
pattern-pairs found by MCA were biologically congruent, but not those found
by gSVD. This suggests that MCA could be used to gain biological insight
into the interplay between genes and proteins.

From our gSVD results on the NCI datasets, we considered the three pattern-
pairs with the lowest angular distance. Their total generalized variances are
4.8% and 29.6% for microarray and proteomic datasets respectively. How-
ever, for the highest three angular distances, the total generalized variance
for the proteomic dataset drops dramatically (0.06%). This suggests that
the selection of pattern pairs from gSVD requires both angular distance and
total generalized variance.

However, the angular distance carrying information on the significance of
metagenes in one dataset over the other may not be applicable in our con-
text. Independence between the two datasets is required for a meaningful
interpretation of the angular distances (Alter et al], 2003). Therefore, the use
of angular distance may not be appropriate in our situation, since they are
from the same samples. Furthermore, the angular distance profile changes
with increasing sample size in the simulation study.

6.4 Future research

ARS can be extended to other technologies that require peak detection to be
made before further downstream analysis can be performed. We have already
demonstrated the feasibility of extending ARS to MALDI in this thesis.
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We could extend ARS to other MS techniques, such as Gas Chromatography
Mass Spectrometry (GC-MS) which consists of two major components: the
gas chromatography and the mass spectrometry (Dunn et all, [2005). The gas
chromatography separates out molecules according to their retention time,
which is the time taken to travel through the column. At the end of the
column, the molecule proceeds to the mass spectrometry. Therefore, apart
from the m/z dimension from the mass spectrometry component, GC-MS
also has a retention time dimension. The output can be visualized as a
biaxial plane, similar to the 2DGE in Figure[2.2] where the axes correspond to
retention time and m/z, and level of the intensity from the mass spectrometry
corresponds to the color intensity of the spot. When extending ARS, the
retention time dimension needs to be addressed.
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Figure 6.1: An example of an NMR data. The z-azis is the ppm and the
y-axis is the intensity.

We could extend ARS to non-MS technologies, such as, Nuclear Magnetic
Resonance (NMR) spectroscopy, which requires little sample preparation and
is non-destructive (Dunn et al., 2005). It is used in the field of metabolomics
to profile metabolites from tissues or biological fluids in a high throughput
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fashion. By using the fact that nuclei absorb electromagnetic radiation in a
strong magnetic field, NMR obtains information on the structure and concen-
tration of the metabolites. The metabolite profile of the sample generated by
NMR can be represented graphically where the horizontal and vertical axes
are the parts per million (ppm) and the intensity respectively; see Figure .
The peak intensity is proportional to the total number of nuclei, indicating
the concentration of the metabolites in the sample, while the peak position
indicates the molecular group and molecular environment of the metabolites.
The metabolite profile could potentially be used in biomarker discovery.

Systems biology ‘aims at a system-level understanding of genetic or metabolic
pathways by investigating interrelationships (organisation or structure) and
interactions (dynamics or behavior) of genes, proteins and metabolites’ (Wolkén-
[2001)). The integration of datasets from various biological levels, such
as DNA, mRNA, proteins and metabolites, is one aspect of it. In our thesis,
we have illustrated how MCA could be used to integrate two such datasets -
mRNA and proteins - to gain understanding of the interplay between mRNA
and proteins. To integrate more than two datasets, we could consider formu-
lating the MCA under the duality diagram theory, a unifying mathematical
tool which includes PCA or correspondence analysis (Dray et al |2003; Dray|

fnd Dufour, 2007).

Briefly, the duality diagram is based on the statistical triplet, which is com-
posed of three matrices: the data matrix, X, and two positive symmetric
matrices Qpxp and D,,y,. Q is a metric used as an inner product in R?” to
measure the distances between n individuals, while D is a metric used as an
inner product in R™ to measure the relationships between p variables. Differ-
ent definitions of X', Q and D correspond to different multivariate methods.
We can obtain Canonical Correlation Analysis (CCA) from Co-inertia Anal-
ysis (CIA), which uses the duality diagram theory to define two statistical
triplets from two datasets and co-inertia criterion for measuring the adequacy
between the two datasets. An R package, ade4, runs the multivariate meth-
ods under the duality diagram theory for any number of datasets (Dray and

Dufour, 2007).

45



Chapter 7

Conclusions

We have developed an improved method that performs peak detection and
quantification in SELDI for biomarker discovery studies (Paper I and II),
and an accompanying R package, called ProSpect, which has a graphical
user interface version, called ProSpectGUI (Paper III):

e RS uses an objective selection criterion for peak detection. RS has
better OC than existing methods. At 80% sensitivity, the FDRs of
comparable methods are around 25% to 50%, compared to around 8%
for RS.

e ARS captures several peak regions in the spectral data that are missed
by the standard method. It is more robust than the standard method,
as two or more neighboring peaks are not mistaken as a single peak. It
is also able to detect peaks in the presence of m/z-misalignment.

e ARS is accessible through R packages ProSpect and ProSpectGUI.
We extended ARS to MALDI data (Paper V):

e Extended ARS is generally better than the standard method in quan-
tifying the intensities of proteins.

e Extended ARS has higher specificity than the standard method. At low
FDR, extended ARS has higher sensitivity than the standard method.
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We are able to integrate transcriptomic and proteomic data using MCA (Pa-
per IV):

e By circumventing the step of matching genes and proteins, MCA ex-
ploits all information in the analysis. The estimates of the gene and
protein pattern-pairs from MCA are consistent and biologically con-
gruent.

e MCA allows proteins to correlate with genes throughout the genome,
reflecting the biological phenomenon of proteins and genes being inter-
connected in various pathways. This increases the chances of uncover-
ing novel biological relationships between genes and proteins.
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