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Abstract

Traditionally, statistics has been viewed as the branch of science which deals
with association. Many epidemiological research questions, however, are con-
cerned with causation, not association. In this thesis we develop novel sta-
tistical methodology to address four epidemiological problems properly, from
a causal inference point of view. We show, that for these four problems, our
methods offer an attractive alternative to the ‘standard” methodology, which
may not yield the desired (causal) inference.
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1 What is ‘causal inference’?

Most epidemiological studies ultimately aim at detecting a causal relation-
ship. Some examples of research questions which have been posed in epi-
demiology are:

1. Does long-term use of hormone replacement therapy (HRT') cause breast
cancer (BC)?

2. To what extent is Alzheimer’s disease caused by genetic or environmen-
tal factors?

3. Can obesity be prevented by moderate levels of physical activity?

One could therefore rightly claim that most epidemiological inference is, or
at least strives to be, ‘causal’. Nevertheless, there is a fundamental difference
between how the concept of causality has been traditionally treated in epi-
demiology and biostatistics, and how it is treated in the modern framework of
causal inference. Traditionally, causality has been defined, and inferred from
observed associations, on an informal basis. During the last three decades,
however, a formal theory of causal inference has been developed, with major
contributions from Donald Rubin, James Robins, and Judea Pearl.

Consider research question 3 above. In an attempt to answer this ques-
tion, a researcher might carry out a cross-sectional study and report the
association between weight and physical activity. Suppose, for simplicity,
that both weight (Y) and physical activity (X) are dichotomized, as ‘1’
(obese/inactive) or ‘0’ (not obese/active). One natural measure of the asso-
ciation between weight and physical activity is the relative risk

CE(Y|X =1)
TR =0 "

If B # 1, then weight and physical activity are associated in the study pop-
ulation. This, however, does not imply that physical activity prevents (or,
for § < 1, causes) obesity. If, for example, there are factors which both
affect a subjects weight and physical activity level, then weight and physi-
cal activity may be associated even if activity does not prevent obesity; we
say that ( suffers from ‘confounding’, and we call the common causes of



weight and physical activity level ‘confounders’. The standard epidemiolog-
ical way to deal with confounding is to carry out the analysis conditional on
the confounders. The intuition behind this approach is that any discrepancy
between exposed (physically active) and non exposed (inactive) in terms of
the outcome (weight) must be attributed to the exposure, if all other relevant
factors are held fixed. Formal causal theory supports the intuition in many
scenarios. It can be shown, however, that conditioning on the confounders
is not always a valid method. Furthermore, if the confounders are not mea-
sured, then conditioning is not possible in practice. A causal formalism is
useful for a) determining when standard procedures fail to produce a valid
(causal) inference, and b) to derive alternative methods for these situations.

As an illustration, suppose that the researcher addressing question 3
above carries out a longitudinal study instead of a cross-sectional study. For
each study participant, measures of physical activity are obtained at differ-
ent occasions, t = 1,2,....,T. We let X; denote physical activity at time ¢,
and define X, = {X1, Xy, ..., X;}. Suppose that dietary intake is also mea-
sured at each occasion. We let L; denote dietary intake at time ¢, and define
Ly = {Ly, Ly, ...,L;}. At the end of follow-up, weight (Y) is measured for
each subject. By convention, we assume that L; occurs before X;. Thus, the
temporal ordering of the variables is {Lq, X1, L2, Xs, ..., L7, X7, Y'}.  Sup-
pose, for simplicity, that all variables are dichotomized. Given this setup, a
standard way of assessing the association between weight and activity is to
regress the mean of Y on activity history, X;. One possible regression model
is

T
logit B(Y[Xr) =a+ 8> X;. (2)
j=1

Suppose that L, is observed to be associated with both X, and Y. Then we
may suspect that L; affects both X; and Y, i.e. that L; is a confounder for
X; and Y. Thus, we may be tempted to ‘adjust’ for dietary intake by adding
Ly to the set of regressors, for example as

T T
logit E(Y[Xr, L) =a+8Y X;+v) _L;. (3)

j=1 j=1

! Although this is how many epidemiologists would define a ‘confounder’, this definition
is not unproblematic, see Pearl (2000), Chapter 6, for a discussion



In model (2), the parameter 3 quantifies the marginal (over diet history)
association between weight and physical activity history. In model (3), [
quantifies the conditional (on diet history) association between weight and
physical activity history. Does (3 in any of the models carry a causal interpre-
tation? If so, in which? The answer, which probably appears counterintuitive
to many epidemiologists, is that # may not have a causal interpretation in
any of the models, even if there is no unmeasured confounding. More specif-
ically, Robins (1986) showed that # may not have a causal interpretation in
any of the models, even if there are no variables that affects both X; and Y,
at each occasion t, apart from X, ; and L;. The example demonstrates the
value of a formal approach to causal inference; using intuition alone it is often
hard to determine whether a specific statistical analysis produces the desired
causal inference. Moreover, without a formal approach it may not even be
clear what the desired inference is. We will return to this example in Section
2. We will demonstrate how the the causal effect of activity on weight can
be defined, why the standard analysis fails, and under what conditions the
causal effect is identifiable.

The quest to formalize causality was initiated by Donald Rubin in the
70‘s, when he introduced the framework of counterfactual variables®. James
Robins made important contributions to this framework in the 80‘s. Dur-
ing the 90‘s, Judea Pearl proposed a major generalization of this framework,
based on non-parametric structural equations (NPSEs) and directed acyclic
graphs (DAGs). In Section 2 we give a brief overview of these approaches.
Using a formal causal framework it has been demonstrated that a number
of ‘standard solutions’ are biased, i.e. do not produce a causal effect. The
most well-known examples are probably the marginal and the conditional
approaches in (2) and (3), examined by Robins (1986). Hence, the introduc-
tion of a formal framework has naturally led to a need for new statistical
methodology. Examples of novel statistical methods, developed for making
causal inference in situations where standard methods may fail, are propen-
sity scores (Rosenbaum and Rubin, 1983), g-estimation (Robins, 1986), in-
verse probability weighting (Robins, 1997), principal stratification (Frangakis
and Rubin, 2002), and instrumental variable techniques (Hernan and Robins,
2006).

2The main idea seems to have appeared originally in Rubin (1974), but the nomencla-
ture was developed later.



A generic problem, to which special attention has been devoted in causal
inference, is to make inference on a parameter (causal effect) which is not
identifiable from data. Indeed, papers I, II, and III in this thesis deal with
this problem. In Section 3 we briefly review the major approaches which have
been proposed in the causal inference literature for dealing with unidentifia-
bility.

Another common problem in causal inference is to estimate the direct
effect of an exposure on an outcome. That is, the effect component which
is not relayed by a specific intermediate variable. This problem is addressed
in papers II and III. There are three common definitions of the direct effect
in the literature. In Section 4 we review these definitions and discuss their
interpretations.

Some of the definitions given below are formulated slightly more generally
than in the cited papers, where they originally appear. In the text below I
do not explicitly comment on the generalizations which are trivial (only on
those which are not). For example, I claim in Section 4 that Pearl (2001)
defined the controlled direct effect as some comparison of Pr{Y (z/, 2)}, with
Pr{Y (2", 2)}. In fact, Pearl (2001) proposed the more restrictive definition
E{Y(2',2)} — E{Y (2", 2)}.

2 The main causal frameworks

2.1 Counterfactuals

Suppose we want to learn about the causal effect of an exposure, X, on an
outcome, Y. We let X (u) and Y (u) denote the exposure and outcome for
subject u, respectively. Naturally, the exposure level varies from subject to
subject. To define the causal effect of X on Y, however, we think of a hy-
pothetical intervention which forces X to level x for each subject. We let
Y (z,u) denote the outcome Y for subject u under this intervention. The
subject-specific outcomes X (u), Y (u), and Y (z,u) are assumed to be deter-
ministic functions of u?. We treat u as an outcome of a random variable
U. Thus, the value of X (U), Y(U), and Y (z,U) becomes random as well,
abbreviated as X, Y, and Y (x), respectively. Since the intervention which
forces X to x is hypothetical, we say that Y (z) is a counterfactual variable.

3More precisely, we define a ‘subject’ within this context to be a set of variables, or
attributes, rich enough to render the outcomes X (u), Y (u), and Y (x,u) deterministic.



We define the causal effect of taking X from 2’ to z”, as some comparison of
the distribution Pr{Y (z')}, with the distribution Pr{Y (z”)}. Suppose, as in
the weight-physical activity study from Section 1, that X and Y are binary,
taking values 0 and 1. Then each subject u possesses two counterfactual
outcomes, Y (0,u), which is realized if the subject is forced to X = 0, and
Y (1,u), which is realized if the subject is forced to X = 1. We may for
example define the causal relative risk as

5B} "

E{Y(0)}

Note that E{Y (z)} is an average over the whole population, under the in-
tervention which sets X to z for each subject. Thus by comparing E{Y (1)}
with E{Y'(0)} we are comparing the same group of subjects, under two hypo-
thetical interventions. In contrast, E(Y|X = z) is an average over the subset
of the population for which X is observed to take value x. By comparing
E(Y|X =1) with E(Y|X = 0), as in the relative risk (1), we are comparing
two different groups of subjects.

Since the intervention which forces X to x for each subject is hypothetical,
the causal effect of X on Y is a hypothetical quantity as well. Nevertheless,
we intuitively feel that it is sometimes possible to infer causal knowledge from
observed associations, under reasonable assumptions. More specifically, we
feel that randomization of the exposure should guarantee that an observed
association can be interpreted causally. The following assumptions formalize
this notion:

1. Consistency: X(u) =z = Y(z,u) =Y (u).
2. Weakly ignorable exposure assignment: Y (x) 11 X Vz.

‘Consistency’ assures that if a subject attains levels X = z and Y = y in the
absence of intervention, then the subject would also attain level Y = y when
forced to level X = z. Hence, the counterfactual outcome Y (z) is observed
and equal to Y whenever X is observed to take value x. ‘Weak ignorability’
assures that the distribution of counterfactual outcomes Y (z) is the same
within levels of X. To appreciate the idea, it is useful to consider Y (x,u)
to be an intrinsic characteristic of subject u, which is determined (although
unobserved) before the subject-specific exposure level is determined. If the
exposure is assigned randomly, then the characteristic Y (z) should be inde-
pendent of the exposure X. Weak ignorability thus follows naturally from



randomization of X*. Under consistency we have that
Pr(Y =yl X =2) = Pr{Y(z) = y| X = z}. (5)
Under weak ignorability we have that
Pr{Y (x) =y X = o} = Pr{Y(2) = y}. (6)

Hence, from consistency and weak ignorability it follows that the distribution
Pr{Y(x)} of counterfactual outcomes Y (z) is observed, and equal to the
distribution Pr(Y|X = z) of outcomes Y among those subjects who attained
level X = x in the absence of intervention. It follows, for example, that

g =5, (7)

where 3 is the relative risk as defined in (1). We emphasize that whereas
consistency is a rather weak assumption, and is routinely assumed in counter-
factual analysis, weak ignorability is much stronger and often only reasonable
within levels of covariates.

In papers II and IV we rely on the assumption of weak ignorability. To
derive the results of paper III, however, it is necessary to assume strong ig-
norability.

A technical remark

Above, we defined Y (z,u) as the outcome Y, for subject u, under the hy-
pothetical intervention which forces X to x. We related this counterfactual
variable to the factual variable Y through the consistency assumption. This
definition is in line with Pearl (2000). There is a subtle difference, however,
between this definition and how Y (z,u) is usually defined in the papers by
Donald Rubin (see for example Rubin (1974); Rosenbaum and Rubin (1983)).
To understand the difference, consider the following quotation from Rosen-
baum and Rubin (1983), page 41: ‘We consider the case of two treatments,
numbered 1 and 0. In principle, the ith of the N units under study has both
a response rq; that would have resulted if it had received treatment 1, and a
response rg; that would have resulted if it had received treatment 0. ... Since
each unit receives only one treatment, either r1; or ry; is observed, but not

4 Actually, physical randomization implies strong ignorability, defined as Y (-)I1.X, where
Y'(+) is the entire function (over z) of counterfactual outcomes. Strong ignorability implies
weak ignorability, but not the other way around.

6



both ...”. In our notation, a ‘unit’ 7 is a ‘subject’ u, and the response r,; is
the counterfactual variable Y (z,u). Rosenbaum and Rubin (1983) make no
reference to interventions. Instead, they use the more vague formulation ‘..
had received treatment ...", without explicitly stating how the treatment had
been received. Moreover, they appear to define Y(x,u) =Y when X = x,
rather than formulating this as an assumption.

2.2 Non-parametric structural equations

The basic quantity in the counterfactual framework is the counterfactual vari-
able. The counterfactual variable is used to define causal parameters of inter-
est, and to formulate assumptions under which these parameters are identi-
fiable. Typically, these assumptions are of the form V; I V5|V3, where Vi, V3,
and V3 may be counterfactual variables, observed variables, or a combination
of both. Weak ignorability is an example. The problem with counterfactual
independence statements, such as weak ignorability, is that they are often
hard to interpret. As a consequence, it is difficult to determine whether all
relevant counterfactual independencies have been articulated, whether some
of the articulated independencies are redundant, or even whether they are
plausible and self-consistent.

As an illustration, consider the longitudinal weight-physical activity study
from Section 1. Using counterfactual notation we let Y (Z) denote the random
variable Y under the intervention which sets X to Z. We define the causal
effect of taking X from Z to Z’ as some comparison between Pr{Y (z)} and
Pr{Y(z’)}. Robins (1986) showed that this causal effect can be consistently
estimated from observational data, if the following relation holds:

Y(z) 0 X4 X1, Ly VIt (8)

The relation in (8) is a time-dependent generalization of weak ignorability
(see Section 2.1). Robins (1986) also demonstrated that even if (8) holds,
neither marginalization over Ly (as in (2)), nor conditioning on Ly (as in
3), will in general produce the causal effect. In words, (8) states that the
counterfactual weight level Y (Z), under the intervention which forces X to z,
is independent of the factual activity level X, conditional on activity history
X,_1 and covariate history L, for all occasions t. Many epidemiological
researchers would probably have a hard time understanding the scientific
meaning of the assumption in (8), let alone judging it’s plausibility. The



reason why counterfactual independence statements are difficult to interpret,
is that the human mind typically understands associations as by-products
of causal mechanisms. For example, we explained the assumption of weak
ignorability in Section 2.1 by referring to a specific assignment mechanism
- randomization. When the independence statements are more complex, as
in (8), it becomes increasingly difficult to mentally reconstruct an explaining
mechanism, and thus, to interpret the statement.

Structural equations (SEs) represent an extension of the ‘counterfactual
approach’. In SEs, causal mechanisms are encoded explicitly. In this sense,
SEs provide a more intuitive tool box for formulating causal assumptions than
the counterfactual framework. Counterfactual variables can be derived from
SEs, and independencies between counterfactual variables can be verified by
simple visual (i.e. ‘graphical’) algorithms. Consider the equation

Y=a+0X+e e~ N(0,1). 9)

The equation in (9) is a simple linear regression equation, which is com-
monly used in statistics. By labeling the equation as ‘structural’, however,
we state that the left hand-side variable Y is not only associated with the
right hand-side variable X, but generated by X, through a linear mecha-
nism. The equality is assumed to hold irrespectively of how the value of
X was generated. In particular, the equality is assumed to hold under in-
tervention on X. This mechanistic interpretation of the regression equation
stands in sharp contrast to the traditional ‘associational’ interpretation, un-
der which X predicts Y in the absence of intervention, but may no longer be
able to predict Y under intervention. In this sense a SE is asymmetric, and
the equality sign in (9) behaves like the ‘assignment equality’, :=, commonly
used in programming languages.
The equation in (9) can also be reformulated as

X=Y—-a—¢)/p. (10)

This formulation gives the false impression that knowing Y and € (and («, 3))
renders X known. This is only true in the absence of intervention. If we
intervene and force Y to, say y, then the value of X can no longer be read
off from (9), since X causes Y, but not the other way around.

In many causal inference applications, we want to express which explana-
tory variables affect (generate) a certain outcome, without specifying how the



mechanism behaves (i.e. whether the correct structural model is linear, log-
linear, non-linear etc). It is for this purpose that non-parametric structural
equations (NPSEs) are used. The non-parametric version of the structural
equation in (9) is given by

Y =F(Xe), (11)

where F'(-) is an unspecified function, and the error term e follows an un-
specified distribution.

We often encounter problems in which several variables appear, which
may be related to each other through a complex scheme of causal mecha-
nisms. To express this scheme, a NPSE system is used. Formally, a NPSE
system is a triple (U, V| F), in which U is a set of exogenous variables, fol-
lowing an unspecified joint distribution, V is a set of endogenous variables
(disjoint from U), and F = {Fy(Ry)|V € V}, where Fyy(Ry) is a function
that deterministically assigns a value to V' for each setting of the remaining
variables Ry = UUV \ V. The words ‘endogenous’ should be interpreted as
‘explained by the model’. Similarly, ‘exogenous’ means ‘not explained by the
model’. Without loss of generality, the exogenous variables can be assumed
to have no common causes, which implies that they are independent. As an
example, consider the NPSE system

X = Fx(Uyx)
Y = (X, Uy) (12)
For this example, U = {Ux, Uy}, V ={X,Y},and F = {Fx (Ux), Fy (X, Uy)}.

A NPSE system is assumed to be autonomous, which means that an
intervention which forces a variable V' to a certain value, v say, and thus
overrides the function Fy (Ry ), leaves the remaining functions unaltered.
Forcing X to « thus modifies the NPSE system in (12) as

X =z
Y = Fy(X,Uy) (13)
Forcing Y to y modifies the system as
X = Fx(Uyx)
v (1)

The connection between counterfactual variables and NPSE systems is
clear if we think of one particular realization, u, of the exogenous variables

9



U as representing a ‘subject’ in the counterfactual framework. For the system
in (12), the counterfactual outcome Y (x,u) is obtained by forcing X to z,
and is thus equal to Fy(x,uy). In contrast, the factual outcome Y (u) is
obtained by letting X attain its factual value of X (u) = Fx(ux), and is thus
equal to Fy(X(u),uy) = Fy(Fx(ux),uy). The random variables Y (z) and
Y are obtained by considering U = {Ux, Uy} as random; Y (z) = Fy (z, Uy)
and Y = Fy(Fx(Ux>, Uy)

We demonstrated in Section 2.1, that the causal effect of X on Y, de-
fined as some comparison of Pr{Y (1)} against Pr{Y'(0)}, is identifiable in
the absence of intervention on X, if both consistency and weak ignorability
hold. Assume that we want to investigate whether the causal effect of X on
Y is identifiable in system (12), in the absence of intervention. Consistency
of counterfactuals is implied in NPSE systems by the assumption of auton-
omy. Thus, it remains to investigate whether weak ignorability holds for the
system in (12). We can do this algebraically as follows. From the previous
paragraph we have that X = Fx(Ux) and Y (z) = Fy(z, Uy). By convention,
Ux I Uy. Hence, for the structural system in (12), Y'(z) IT X, which implies
that Pr{Y (z)} is identifiable and equal to Pr(Y|X = x). This example high-
lights that the system in (12) encodes an important structural assumption,
namely that X and Y do not have any common causes (Ry URy = (). The
immediate implication of this assumption is that the causal effect of X on
Y is identifiable in the absence of interventions. If we find the assumption
of no common causes implausible, we may add a common cause, Uxy, of X
and Y, by modifying the system in (12) as

X = Fx(Ux,ny) (15>
Y = FY(X7UXaUXY)

For the system in (15) we have that X = Fx(Ux,Uxy) and Y (z) = Fy(z, Uy, Uxy).

Since the random variable Uxy appears in both the expression for X and

Y (x), it follows that X and Y'(z) are dependent, and weak ignorability does

not hold.

2.3 Directed acyclic graphs

A NPSE system contains all relevant information about the causal relations
between the variables in U U V. This information, however, is captured in
a rather dense form. An expository way of presenting a NPSE system, is

10



through a directed acyclic graph (DAG). For a comprehensive introduction
to DAGs, see Pearl (2000). On a DAG, each variable in UUV is represented
by a node, and each direct causal influence is represented by a directed edge.
More specifically, we draw an arrow from X to Y iff Fy(Ry) is non-trivial
in X. By convention, exogenous variables which only appear in a single
equation in the NPSE system are not displayed on the DAG. For example,
the NPSE system in (12) is represented by the DAG in Figure 1. The NPSE
system in (15) is represented by the DAG in Figure 2.

X Y

Figure 1: Graphical representation of the NPSE system in (12).

Figure 2: Graphical representation of the NPSE system in (15).

Often, we want to investigate whether two variables, V; and V5, on a
DAG, are independent, possibly conditional on a third (set of) variable(s),
V3. Pearl (2000) presented a convenient algorithm for this task (the algorithm
originally appeared in Verma and Pearl (1988)). The following definition is
from Pearl (2000):

A path® p is said to be blocked by a set of nodes Vs if and only if

1. p contains a chain i — m — j or a fork i «<— m — j such that the
middle node m is in Vs, or

5The word ‘path’ refers to any unbroken, non-intersecting route along the edges of a
DAG, which may go either along or against the arrows.

11



2. p contains an inverted fork i — m «— j such that the middle node m 1is
not in Vs and such that no descendant® of m is in Vs.

A set Vs is said to d-separate nodes Vi and Vo if and only if V3 blocks
every path from Vi to V5.

According to Pearl (2000), V; and V5, are independent, given Vj, if Vj;
d-separates V; and V5. Conversely, if V3 doesn’t d-separate V; and V5, then
V) and V5 are in general associated, given Vj.

To appreciate the usefulness of d-separation, consider the longitudinal
weight-physical activity study from Section 1. Assume that 7' = 2, and that
the variables X1, Ly, and Y are causally related through the NPSE system
depicted in Figure 3. Under the structural model in Figure 3, there is no

U

Figure 3: A possible graphical representation of the longitudinal weight-
physical activity study.

unmeasured confounding in the sense that there are no variables that affect
both X, and Y, at each occasion ¢, apart from X,_; and L,. Nevertheless, we
can use d-separation to prove that neither marginalization over L (as in (2)),
nor conditioning on Ly (as in (3)), will in general produce the causal effect of
X7 on Yp. To do this, we proceed in two steps. First we modify the DAG in
Figure 3 so that it represents a possible null hypothesis of no causal effect of
physical activity on weight. Then we use d-separation to show that, for this
null hypothesis, X7 is associated with Y both marginally, and conditionally

6A node k is said to be a ‘descendant’ of m if k can be reached by following the arrows
from m.

12



on Lp. Hence, as shown by Robins (1986), neither marginalization over Ly
(as in (2)), nor conditioning on Ly (as in 3), will in general produce the zero
causal effect (i.e. 3 # 0). In the first step we modify the DAG in Figure 3 by
removing all arrows into Y, except from U. The resulting DAG is displayed
in Figure 4. In Figure 4, there is no directed path from X; to Y, for any ¢.

U

\

Y

Figure 4: A possible graphical representation of the null hypothesis of no
causal effect of physical activity on weight.

Thus, the DAG in Figure 4 represents a possible null hypothesis of no causal
effect of X7 on Y. By applying d-separation, however, we observe that Xy is
associated with Y marginally. This is because the paths X; «— L; «+— U — Y
and Xy <+ Ly «— U — Y are not blocked, according to the two rules above.
We also observe that X7 is associated with Y conditionally on Lp. This is
because the path X; — Ly « U — Y is not blocked in Figure 4 (according
to rule 2 it would have been blocked had we not conditioned on Lo, but then
the path X3 «— Ly «— U — Y would have been unblocked).

Pearl (2000) also demonstrates (Section 7.1.4) that the method of d-
separation can be extended to evaluate counterfactual independence state-
ments of arbitrary complexity. Using this extension, it is an easy task to
show that the statement in (8) holds for the DAG in Figure 3. Hence, the
causal effect of activity on weight is identifiable, under this structural model,
but can not be estimated with standard methods’.

The example illustrates that once a causal model has been formulated
in terms of causal mechanisms through a NPSE system/DAG, then complex

"Robins (1986) derived an expression for this causal effect, as a functional of the joint
distribution of (X7, L7,Y"). He called it the G-functional.
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statements such as (8) can be easily evaluated in a straightforward algorith-
mic fashion.

3 Identifiability, bounds and sensitivity anal-
ysis

3.1 Identifiability

Many problems in causal inference are concerned with making inference on
a parameter which is unidentifiable. This is indeed the case for papers I-111
in this thesis. To explain what we mean by ‘unidentifiable’, consider as a
motivating (toy) example a study in which the aim to estimate the effect of a
binary exposure X on a binary outcome Y. Specifically, the aim is to estimate
the causal relative risk 5* as defined in (4). A fixed number of exposed
subjects, and a fixed number of unexposed subjects, are enrolled. Suppose
that the outcome is only measured for a subset of the study participants, for
the remaining subjects the outcome is missing. Let M be a missing outcome
indicator, i.e. M = 1 if the outcome is missing, and M = 0 if the outcome
is not missing. Suppose, for simplicity, that the analysis is restricted to the
complete data, i.e. subjects with M = 1 are ‘thrown away’. The data thus
consists of one iid sample from Pr(y|X = 1, M = 0), and one iid sample from
Pr(y|X =0, M = 0). We define

p. = Pr(Y =1X =2 M=0),
p (Po, p1),

a = Pr(Y =1|X =0),

Pr(M = 0Y = 0)

Pr(M =0]Y =1)°

U

Suppose that we are willing to assume that the causal mechanisms relating
X,Y and M are as in Figure 5. The DAG in Figure 5 encodes the important
assumption that X does not have any influence on M, other than through Y.
In addition, it implies that (X,Y, M) have no unmeasured common causes.
It follows, that the causal relative risk §* is identical to the relative risk (3,
as defined in (1). Unfortunately, since missingness depends on the outcome,
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X > Y > M

Figure 5: A possible causal mechanisms for X, Y, and M.

[ is unidentifiable. To see this, we use Bayes rule to rewrite p as

_ af
P ag (i —ap)
(6%
bo = a+n(l-a) (16)

The right hand-side of the system in (16) consists of three free parameters,
and the equation system can not be solved to yield a unique solution for (.
This implies that even if we knew the observed data distribution, p, we could
still not infer the true value of 3. We say that 3 is unidentifiable.
Generally, ‘identifiability’ can be defined as follows (Greenland, 1999):

Consider a vector Z of random wvariables having a distribution F(z) that
depends on an unknown parameter vector 0. 0 is identifiable by observation
of Z if distinct values for 0 yield distinct distributions for F(z).

In other words; 0 is identifiable by observations Z if # is a function(al) of
F(z):

0 =g{F(z)}

3.2 Bounds

That a parameter is unidentifiable does not mean that data carries no in-
formation about the parameter. For example, careful investigation of the
equation system in (16) shows that although it has no unique solution for
B, not every value § € (0,00) is a feasible solution. On the contrary, the
feasible solutions are given by
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Hence, (3 is bounded by the observed data distribution p. In practice, the true
value of p is unknown. Estimated bounds for § can be obtained by replacing
p in (17) by an estimate, p. To acknowledge the additional uncertainty in (3
due to sampling variability, we may for example report standard errors for
the upper and lower bound.

In general, we say that 6 and F'(z) are variation independent if the joint
space for 6 and F(z) is the cartesian product of the individual spaces for 6
and F'(z). That 6 and F(z) are not variation independent implies that not
all possible values of  are compatible with each specific distribution F(z).
Thus, if # and F(z) are not variation independent, then bounds for 6 can
be constructed, as a function of F(z). In practice, F'(z) is unknown and the
bounds for # have to be estimated from data. When Z is high-dimensional
and/or sparse, the practical usefulness of the bounds is often very limited
because of a large sampling variability.

3.3 Sensitivity analysis

In many practical situations we have prior knowledge which can be used to
sharpen our conclusions about an unidentifiable parameter. To continue the
motivating example, suppose that we believe that subjects who experience
the outcome (Y = 1) are more likely to be missing than subjects who don’t
(Y = 0). In terms of the model parameters, this assumption translates to
n > 1. In addition, we may find it implausible that subjects with ¥ = 1
are more than, say, twice as likely to be missing, as subjects with Y = 0.
Thus, we believe that 1 < n < 2. To see how this prior knowledge translates
into conclusions about (3, we may use the system in (16) to express 3 as a
function(al) of (po,p1), and n:

_ pi{l+po(n—1)}
po{l+p(n—1)}

Hence, for given values of p, each value of 7 maps to one single value for
B. If n = 1, then 8 = p;/po; we say that the missingness is ‘ignorable’. If
n # 1, then 3 # p1/py and we say that the missingness is ‘nonignorable’. By
varying 7 over the plausible range (1,2), we obtain a range of plausible values
for 8. We say that we perform a sensitivity (to nonignorable missingness)
analysis for 3. We call n a sensitivity analysis parameter. Replacing p with
an estimate yields an estimated range of plausible values for 3. Rotnitzky
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et al (1998) proposed a method of sensitivity (to nonignorable missingness)
analysis, which is applicable to longitudinal data.

In general, to perform a sensitivity analysis for an unidentifiable param-
eter A, we must find a parameter n such that, for each fixed value of 7, 6 is
identifiable (by observations Z). In other words, we must require that

0 = g{F(z),n}. (18)

If F(z) is known, we can use the relation in (18) to map each plausible
value of 7 into a value for #. In practice, F'(z) is unknown and 6 has to be
estimated for each value of 7. For low-dimensional problems, such as the
motivating example above, we may replace the population distribution F'(z)
in (18) by the sample distribution F'(z) to yield a non-parametric estimator
for #. For high-dimensional problems, additional parametric assumptions are
often required®.

In more complicated scenarios, the challenge in carrying out a successful
sensitivity analysis lies in the choice of sensitivity analysis parameter. A
minimal criterion for a parameter 1 to be able to function as a sensitivity
analysis parameter for 6, is that (18) holds. In addition, it is important that
1 is easy to interpret. If 7 is difficult to interpret, then it may be hard,
even for a subject matter expert, to specify a range of plausible values for
n. Finally, it is desirable that 7 is variation independent of F(z). If F(z)
is known, and n and F(z) are variation dependent, then we must restrict
a sensitivity analysis to the set of values for 1 which are compatible with
F(z). To find this set is sometimes non-trivial, which makes a sensitivity
analysis difficult. In most practical scenarios, we have a sample from F(z),
but the distribution itself is unknown. This makes the problem of variation
dependence more subtle. The sample obviously carries information about
F(z). Hence, if n and F(z) are variation dependent, the sample should, in
some sense, also carry information about 7. To extract this information from
data, however, is often not a trivial task. Thus, we may fail to notice when
7 is taken to values which are not consistent with data. This problem does
not arise if n and F(z) are variation independent.

8When 6 has to be estimated, the relation in (18) is not often used explicitly, Typically,
an estimate of  is obtained, for each value of 1, as the solution to an unbiased estimating
equation in (6,7), for example the ML score equation.
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4 Direct effects

4.1 Definitions

A common goal of epidemiological research is to separate direct effects from
indirect effects. As an illustration, consider the DAG in Figure 6. In Figure

X S 5 Y

V

Figure 6: A graphical illustration of direct and indirect effects.

6, X affects Y directly, but also indirectly through the intermediate variable
Z. Suppose we are interested in the direct effect of X on Y. There are three
common definitions of direct effects in the literature; controlled, natural, and
principal stratum direct effects. In this section I review these definitions, and
discuss their interpretations.

The most intuitive way to measure the direct effect of X on Y, is to hold
Z fixed by an intervention. The controlled direct effect (CDE) of taking
X from 2/ to 2", on Y, at level Z = z, is defined as some comparison of
Pr{Y (', z)}, with Pr{Y (2", z)}. For binary X, we may for example define
the controlled direct mean ratio, at Z = z, as

_ E{Y(1,2)}

%= By (0.1

The CDE is intuitively compelling. In some scenarios, however, it may
not answer the scientific question of interest. For illustration, consider the
following example, borrowed from Pearl (2001). Suppose that X represents
the intake of a medical drug (X = 1 for ‘intake’, X = 0 for ‘no intake’)
and Y represents a binary disease outcome (Y = 1 for ‘disease’, ¥ = 0
for ‘no disease’). Suppose further that the drug has a side-effect; it causes
headache. People who suffer from headache tend to take aspirin (Z = 1 for
‘aspirin intake’, Z = 0 for ‘no aspirin intake’), which, in turn may have its
own effect on the disease. Suppose that the drug manufacturer is considering
ways of eliminating the side-effect. A natural question to ask is whether the
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drug would retain its effectiveness when the side-effect is eliminated. The
CDE does not answer this question, since it refers to a specific aspirin level,
taken uniformly by all subjects. The target population is one where aspirin
intake varies from individual to individual, depending on factors beside drug-
induced headache. As a meaningful measure of effectiveness of the drug
for the target population, Pearl (2000) suggested to use the natural direct
effect (NDE). Let Z(x,u) denote the outcome Z for subject u, under the
hypothetical intervention which sets X to x. Pearl (2000) defined the NDE
of taking X from 2z’ to z”, on Y, at level X = x, as some comparison of
Pr[Y{a', Z(x)}], with Pr[Y{z”, Z(x)}]. For binary X, we may for example
define the natural direct mean ratio, at X = z, as

_EY(LZ@)
T EY{0.Z()]

If we let X = 0 correspond to ‘no drug’, then vy measures the effectiveness of
the drug for a population where everybody attains the same level of aspirin
as they would, had they not used the drug.

We may formulate the CDE and the NDE in terms of interventions in a
NPSE system. The DAG in Figure 6 represents the system

X = Fy(Uy)
7 = Fy(X,Uy) (19)
Y = Fy(X,ZUy)

The CDE refers to a scenario where the system in (19) is modified as

X ==z
Z = z (20)
Y = (X, ZUy)

The CDE is obtained by forcing Z to z in the second equation of (20), and
observing how Y varies in the last equation, when X is varied in the first
equation. The natural direct effect effect refers to a scenario where the system
in (19) is modified as

X =7

Z = Fz(l’, Uz) (21)

Y = (X, ZUy)

The NDE is obtained by forcing Z to Fz(x, Uy) in the second equation of (21),
and observing how Y varies in the last equation, when X is varied in the first
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equation. The NPSE formulation highlights an important difference between
the CDE and the NDE. The CDE can be directly measured in an experiment
where X and Z are controlled and can be forced to fixed values. To directly
measure the NDE, however, we must be able to carry out an experiment
where Z can be forced to follow a particular distribution. For this reason,
Robins (2003) referred to the NDE as a ‘non-manipulative’ parameter. In
some special cases, however, the NDE is indeed ‘manipulative’; in the sense
of Robins (2003). Consider the aspirin-example borrowed from Pearl (2001).
Suppose that the drug can be separated into two components, X; and X,
where X is the component which causes head-ache, and X5 is the component
which directly influences Y. More specifically, we assume that

X = Fy(Uy)
X, = X
Xy = X (22)

Z = Fz(X1,Uyp)
Y = FY<X2727UY)

The deterministic relation between X and (X, X5) reflects the fact that the
two components are present (X; = Xy = 1) if and only if the drug is taken
(X = 1). For the system in (22), the NDE of X on Y, at X = z, is a
manipulative parameter, since it can be obtained by holding X fixed at z,
and varying X5.

The CDE and the NDE may be of scientific interest if the intermediate
variable, Z, could, at least hypothetically, be manipulated. In some scenar-
ios, even hypothetical interventions on Z may be hard to imagine. As an
example, suppose that Z = 1 represents being alive 1 year after treatment
(X) assignment, and Y represents an outcome measured 1 year after assign-
ment. Obviously, Y is only defined if Z = 1. To measure the effect of X on Y
we might want to keep each subject alive until Y is measured. Doing so, we
would obtain the CDE of X on Y, at Z = 1. Preventing death, however, is
a highly hypothetical intervention, which raises the question of whether the
CDE is a meaningful quantity in this context. Rubin (2004) offered an alter-
native definition of a direct effect, based on principal stratification (Frangakis
and Rubin, 2002), which does not rely on intervention on Z. We say that a
subject, u, belongs to principal stratum z if Z(z,u) = z Va. Note that in
most realistic scenarios Z(x,u) is only observed for z = X (u) (see Section
2.1). Thus, a principal stratification is a hypothetical partitioning of the
population, which is often not possible to carry out in practice. For subjects
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within the principal stratum {Z(x) = z Vz}, a change in X never results in
a change in Z. Thus, if we observe that a change in X results in a change in
Y, for a subject within {Z(x) = z Vx}, we may conclude that, for this sub-
ject, X had a direct effect on Y. Rubin (2004) defined the principal stratum
direct effect (PSDE) of taking X from 2’ to 2", on Y, for {Z(z) = z Vz}, as
some comparison of Pr{Y (2)|Z(x) = z Va}, with Pr{Y (2")|Z(z) = z Vx}.
For binary X, we may for example define the principal stratum direct mean
ratio, at Z = z, as

_E{Y()|Z(2) = 2z Va}

0 = E{Y(0)|Z(z) = 2z Va}

When Z = 1 represents ‘being alive 1 year after assignment’, d; represents
the PSDE of X on Y, for those who stay alive regardless of whether they are
assigned to X =0 or X = 1.

Since the definition of the PSDE does not require Z to be manipulable,
the PSDE is applicable to a wider range of problems than the CDE and the
NDE. On the other hand, it is not always correct to interpret the PSDE
as a direct effect. In this sense, the term principal stratum direct effect is
a misnomer. To see this, consider the following example, which is adapted
from Robins et al (2007). Suppose that we don’t observe Z directly. Instead
we observe a coarse version of Z, defined as Z* = Fz«(Z). We would then
perhaps be interested in the effect component of X on Y which is not relayed
through Z*. We may for example seek to estimate the CDE of taking X from
2’ toz”, onY, at Z* = z*, defined as some comparison of Pr{Y (2, z*)}, with
Pr{Y (2", z*)}. But, since Z* is only a coarse measurement of Z, it is not clear
what we mean by ‘a hypothetical intervention which sets Z* to z*’. Hence,
Y (z, 2*) is not well defined. Nothing prevents us, however, from conditioning
on the event Z*(z) = 2* Va & Fz+(Z) = z* V. Hence, the PSDE of taking X
from 2’ to 2", on Y, for {Z*(x) = z* Vx}, is well defined as some comparison
of Pr{Y (2')|Z*(x) = z* Va}, with Pr{Y (2")|Z*(x) = 2* Vz}. On the other
hand, for this example a PSDE of X on Y is not necessarily ‘direct’. Suppose,
for example, that

Z = X+U, (23)
. [0t Z=0
2= {1 if Z40
Yy = Z (24)
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and that X and Uz are binary, taking values 0 and 1. Since X does not
appear in the equation for Y, X has no direct effect on Y. Calculating the
PSDE at {Z*(xz) = 1 Vx}, however, gives that E{Y (1)|Z*(z) = 1 Va} = 2
and E{Y(0)|Z*(z) = 1 Vx} = 1. The reason for this, is that X has an effect
on Y, which is mediated through Z. This ‘indirect effect” appears as a PSDE,
since Z* lumps together several values of Z. Informally, we may say that Z*
fails to completely block the path X — Z — Y.

4.2 Identification

For the DAG in Figure 6 (that is, when {X, Z, Y} have no common causes),
the CDE, the NDE, and the PSDE are all identifiable. To prove this we need
the following results, which all holds for the DAG in Figure 6:

Z(@)IIX  Va, (25)
Y(z,2) I (X,Z) Vax,z, (26)
Y(' 2)UZ(x) Vi z 2. (27)

The CDE is identifiable because

Pr{Y(z,2) =y} = Pr{Y(z,2)=y|X =2,7Z =z}
= Pr(Y =yl X =2,7=2), (28)

were the first equality follows from (26), and the second from consistency of
counterfactuals. The NDE is identifiable because

PriY{s', Z(x)} =9y] = /Pr{Y(x’, 2) =y|Z(x) = 2}Pr{Z(x) = z}dz

z

- /Pr{Y(x’, 2)=y|X =2, Z = 2}Pr{Z(x) = 2| X = x}dz

z

= /Pr{Y =y|X =2/, 7 = 2}Pr(Z = 2| X = x)dz,

z

where the first equality follows from consistency and standard probability
rules, the second from (25)-(27), and the third from consistency. The PSDE
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is identifiable because

Pr{Y(z") =y|Z(x) =2 Va} = Pr{Y(2',2)=y|Z(x) =2z Vx}
= PHY(,2) = )
= Pr(Y =y|X =27 =2),

where the first equality follows from consistency, the second from (27), and
the third from (28).

In more complicated scenarios, identification of direct effects is often non-
trivial. In paper II and III we consider a scenario in which Z and Y have
unmeasured common causes, as displayed by the DAG in Figure 7. For the

U

Figure 7: The DAG associated with papers II and III.

DAG in Figure 7, (25)-(27) do not hold and none of the three direct effects
is identifiable.

5 Summary of the papers

5.1 Paper I

In paper I we consider estimation of the effect of hormone replacement ther-
apy (HRT) on breast cancer. It is well known that women who use HRT
are more likely to use screening mammography, than women who do not
use HRT. Hence, existing tumors are also more likely to be detected in the
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treated arm, even if HRT does not cause cancer. A naive way to adjust for
this detection bias is to condition on screening behavior. We use DAGs to
formalize the problem. Using d-separation we demonstrate that the naive
analysis will not produce the causal HRT effect, ¢ (defined in equation (2) of
paper 1), if screening behavior and disease status have unmeasured common
causes. Under this scenario, v is not identifiable. We show that ¢ is not
variation independent of the observed data distribution. We use this result
to construct bounds for ¢b. We show how a sensitivity analysis for ¢ can be
carried out, using the relative screening efficiency, 1 (defined in equation (4)
of paper I), as a sensitivity analysis parameter. 7 is not variation indepen-
dent of the observed data distribution, which must be taken into account in
this sensitivity analysis.

Joffe and Colditz (1998) proposed a method of dealing with detection bias
in screening studies, based on ‘data restriction’. We show that the method
of data restriction is not valid.

A technical remark
As stated in the paper (page 2645), the method of data restriction is based
on the erroneous decomposition

E{Y(2)} =Y Pr(Z = z|X = 2)B{Y (2, 2)}. (29)

Equation (27) in the paper suggests one correct decomposition. To under-
stand why the decomposition in (29) is erroneous, it is instructive to consider
the alternative (correct) decomposition

E{Y(z)} = Y Pr{Z(zx)==2}B{Y(z,2)|Z(z) = 2}

= Y Pr(Z=z|X = 2)B{Y(2,2)|Z(x) = z}. (30)

The second equality in (30) follows from randomization of X (Assumption
1 in the paper). From (30) it follows that (29) is correct if Y (z,2) Il Z(z).
This is, however, not the case for the DAG in Figure 1 of the paper (the path
Y(z,2) <« Q(z,2) «— — — Z(z) in the corresponding twin network (Pearl,
2000) is open).

Known typos:
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1. Page 2640, paragraph 2, line 3: ‘... than women who do not use HRT"
should be ‘... than women who use HRT".

2. Page 2647, two line above (A5): > 1 should be < 1.

5.2 Paper II

Physical activity (X) is known to be associated with both body mass index
(Z) reduction, and a reduced risk for coronary heart disease (Y'). In paper
IT we consider estimation of the direct (not mediated through Z) effect of
X on Y. We focus on the PSDE. We assume that X can be considered
randomized, conditional on a set of measured covariates, but that Z and Y
may have unmeasured common causes. The scenario is illustrated by the
DAG in Figure 7. For this scenario, the PSDE of X on Y is not identifiable.
Gilbert et al (2003) have proposed a sensitivity analysis for the PSDE, which
is based on a biased selection model, and could be used in this context. We
propose a method of sensitivity analysis based on a pattern mixture model.
Biased selection models and pattern mixture models are common tools for
sensitivity analysis in the missing data literature (Molenberghs and Kenward,
2007). The difference between these two models lies in the parametrization.
We argue that for sensitivity analysis of the PSDE, the pattern mixture
model may be easier to interpret than the biased selection model. In Section
5 of the paper, we offer a detailed discussion of the pros and cons of the two
models.

In our practical application, body mass index is dichotomized as ‘obese’
(Z = 1) or ‘not obese’ (Z = 0). Since we use this coarse version of body
mass index, it may be problematic to interpret the PSDE as a ‘direct’ effect,
as discussed in Section 4. To use a finer classification of body mass index
would, however, introduce additional identification problems, as discussed in
the paper.

5.3 Paper III

In paper III we consider estimation of the NDE of an exposure X, on an
outcome Y. We assume that all three variables, X, Y, and the intermediate
variable Z, are binary. We assume that X and {Z,Y} have no common
causes, but allow for Z and Y to have (unmeasured) common causes. The
scenario is illustrated by the DAG in Figure 7. For this scenario, the NDE of
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X on'Y is not identifiable. We use a particular linear programming technique
to derive bounds for the NDE. Our results extends those of Cai et al (2007)
who derived bounds for the CDE under the same assumptions.

A technical remark
We claim in paper III (Section 2), but do not prove, that

{Y(0,1),Y(0,1),Y(1,0),Y(1,1), Z(0), Z(1)} I X (31)

implies that Pr{Y (z) = y} = Pr(Y = y|X = x). Here follows a formal proof.
Pr{Y(z) =y} = ) Pr{Y(z2) =y Z(x) =2}
= ZPr{Y(z, r)=y,Z(x) =2|X =z}

= ZPr(Y:y,Z:z|X:a:)
= Pr(Y =y|X =),

where the first equality follows from consistency and standard probability
rules, the second from (31), the third from consistency, and the fourth from
standard probability rules.

5.4 Paper IV

Several recent studies have reported that women who have used hormone
replacement therapy (HRT), and developed breast cancer, tend to have a
better prognosis than women with breast cancer who have not used HRT.
One possible explanation is that tumors caused by HRT are more benign
than tumors caused by other factors. Although it is relevant to quantify
differences in prognostic factors across subtypes of breast cancer, it is not
obvious how to do this correctly. This is because the tumors which occur
among women who are treated with HRT are a mixture of HRT-induced and
other tumors. In paper IV we combine the biological hypothesis that HRT
only influences prognosis for women with HRT-induced tumors, with the
framework of principal stratification, to discriminate between women with
different subtypes of cancers.

In the literature on principal stratification, both the exposure, X, and
the intermediate variable, Z, are often assumed to be binary (see Section
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4). This means that the number of possible principal strata is 2 x 2 = 4.
Our work is a novel contribution in that we manage to handle a continuous
exposure, X. When X is continuous, there are ‘infinitely’ many principal
strata, which makes the analysis more involved.

Remark The results in Appendix D of paper IV were derived by co-author
Stijn Vansteelandt.

6 Discussion

Causal inference has been an intense research field in statistics for the past
10-20 years. Even so, most of the novel causal inference methods which have
been developed have not yet found their way into the standard statistical
toolbox. There may be several reasons for this. For a long time, the only
way to phrase causal queries and assumptions was through counterfactual
variables. Many people have difficulties in interpreting counterfactuals (see
Section 2). More recently, DAGs have been proposed as a complement to
counterfactuals, Their introduction has made the causal inference language
more transparent and intuitively appealing. DAGs are likely to play a key role
in a future, happy symbiosis between traditional statistics and the modern
causal inference framework.

There is also a mathematical barrier to understanding the causal inference
literature for many epidemiologists and statisticians. Many of the ground
breaking papers in causal inference have been technical and mathematically
involved. This may indicate that causal inference is not a trivial topic, but
it may also reflect the personalities of the more productive researchers in the
field. In any case, there is an obvious need for pedagogical overview papers
and books, on a less technical level than the original papers, but without
compromising too much with the mathematical foundation (see Hernan and
Robins (2006) for an excellent example).

The slow acceptance of causal inference in statistics may also be due
to the discrepancy between peoples’ expectations on causal inference, and
the natural limitations of what causal inference methods can achieve. In
my experience, it is not uncommon that people think of causal inference as
a ‘magic toolbox” which allows those who are initiated to draw valid causal
conclusions from any kind of data. On the contrary, applying a formal causal
reasoning to the problem at hand often reveals the limitations of the study
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design, and that the assumptions necessary for making causal inference are
often unrealistically strong. Although such a message may be depressing, I
view it as an argument for a broader use of causal inference methods, not
against.
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