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Chapter 1

Introduction

To estimate the familial contribution to the risk of diseases that aggregate in fami-

lies valuable information is provided by considering the number of affected relatives,

their degree of relationship and age at diagnosis. If such information is recorded in

population-based registers, then these offer very efficient means of immediate elec-

tronic follow-up of study cohorts and identifying cases. Regional or nation-wide reg-

isters have contributed vastly to the study of familial cancer [1],[2],[3]. However, such

resources are incomplete due to the start-up date truncation, ascertainment bias from

inclusion/exclusion criteria [4],[5],[6], length-time bias [7],[8] and broken family links

due to unknown parents [9]. While these realities of register-based data induce bias

in the estimates of familial aggregation, the statistical methodology offered to correct

for such shortcomings [10],[11] is many times cumbersome to implement.

This thesis aims to investigate the potential bias from analyzing incomplete fam-

ily data in population-based registers. Secondly, it will focus on developing simple

methodology to correct for such biases and demonstrating the methods on follow-

up cohorts from the Swedish MultiGeneration Register [12] and the Swedish Cancer

Register [13].
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Chapter 2

Background

2.1 Family studies in genetic epidemiology

Genetic epidemiology focuses on related individuals and their family histories. Fam-

ily studies first aim to identify whether a certain disease or trait clusters in families.

They are usually based on specific relationships, such as twin pairs or parent-offspring.

The presence of familial clustering and excess familial risk can be due to many factors

other than common genes, including shared family environment, cultural influences,

enhanced awareness among family members, or chance [14], [15]. Even though evi-

dence of familial aggregation is not a sufficient condition to claim a genetic background

for a disease, the absence of such an evidence makes the genetic component much less

likely, especially when environmental factors are considered in the analyses [16].

Once the familial aggregation is established, further research is conducted in sug-

gesting the most plausible explanation of this finding (e.g., via segregation analysis),

and to distinguish the relative contributions of environmental and genetic factors

[17], [18], [19], [20], [21]. When disease-associated genes are identified, the next step

is to determine the genetic model that underlies the disease (e.g, possibly several loci

on different chromosomes might trigger the onset of disease), measure the increased

risk for individuals with the putative genetic susceptibility (penetrance) and study

interactions with other genetic and environmental risk factors [22], [23], [24].

Various designs provide the framework for quantifying the relative importance of

environment and genes determining susceptibility. They include case-control fam-
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ily studies, case-families with or without population controls, and population-based

case-control-family design, and they can all be grouped into population-based family

designs.

The case-control family design includes information about the disease status (or

other characteristics) of the relatives of cases. Since the accuracy of the information

may depend on the disease and on the degree of relatedness, these studies are often

restricted to first-degree relatives.

Case-family studies recruit relatives of cases for comparisons between cases and

unaffected family members. The most typical comparison is with siblings, and a

special example is disease discordant twin pairs. In this design, genetic effects and

effects of environmental exposures, separately as well as their interactions can be

estimated. For rare genetic variants it may be the only feasible design.

The population-based case-control-family design recruits cases and their relatives

as well as controls and their relatives. It has been used especially in cancer studies

where complete population registries facilitate recruitment. Over-sampling of cases

with earlier onset is often a feature, given that familial and hence most likely genetic

factors are more pronounced in those case families.

One application of family studies has been to determine genetic models for sus-

ceptibility. The inclusion of different relative types permits the examination of the

consistency of familial aggregation with the assumed model of inheritance. This

approach is known as segregation analysis and asks what model best explains the

pattern of familial aggregation of the disease. It involves the specification of the

mode of inheritance, the population frequency of individuals at high genetic risks,

and the associated genetic risks themselves. A particular example of family studies

is the kin-cohort design, where relatives of a case with a particular genetic variant

constitute a subpopulation with increased likelihood of carrying the same variant.

Twin pairs and twin families also constitute special examples of the family design,

and are particulary efficient in teasing apart the effects of shared genes and shared

environment. Twin models compare the similarity between monozygotic twins (MZ)

with same-sex dizygotic twins (DZ) via a measure called pairwise concordance rate,

which is the proportion of pairs with both twins affected of all twin pairs with at

least one affected [15]. The classical assumption behind these models is that MZ
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and DZ twins display a comparable degree of similarity due to shared environment,

and the difference in concordance rates is only a reflection of genetic factors. For

example, a higher risk to the co-twin of an affected twin in monozygotic rather than

dizygotic pairs suggests that genetic effects may be explaining familial aggregation;

a higher risk to siblings of cases than to their offspring suggests recessive or X-linked

genetic components; a greater risk in the maternal aunts or uncles in the absence

of increased risks between paternal aunts or uncles indicates X-linked effects; and a

rapid decline in familial relative risk with the degree of relationship may indicate a

polygenic model.

Adoption studies are very efficient family designs, and compare the biological

relatives of affected with control adoptees [25]. They have been especially used in

dissecting genetic from environmental contributions to human behavioral variations

[26], [27]. Although they target an extended range of investigations, from the rela-

tive importance of nurture and nature on the cognitive development to the etiology

of various psychiatric disorders [28], data for such studies are unfortunately rarely

available.

In summary, the population-based family design to be employed is a function of the

research question under investigation, how common/uncommon the genetic variant

or phenotype of interest and recruitment possibilities (access to family members). Po-

tential analytical limitations should also be considered, due to the non-independence

and possible incompleteness of data within families and the way families have been

chosen for study.

2.2 Various measures of familial aggregation

Several measures of familial aggregation have been proposed, but only few are de-

signed to be implemented at the individual level, among which the most common

is an indicator of whether one or more first degree relatives (parents, siblings, and

offspring) have been diagnosed with the disease. Moreover, these measures will be

influenced by the definition of ”family history”, which can consider various types of

relatives, number of affected members or the age at incidence [29], [30]. A positive

family history is a function of the number of relatives, the background incidence risk
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and the correlation in risk among relatives [31]. Understanding the dependence of dis-

ease on the familial history is essential in distinguishing hereditary from non-familial

forms, and thus identifying causal factors.

In a paper from 2001 [32], Boucher and Kerber propose to consider the complete

risk experience of all observable biological relatives, adjusted for the age, sex, number

and degree of the relatives. This total familial risk is summarized either as a familial

standardized incidence ratio (FSIR) or as a familial rate (FR). FSIR is defined in

terms of the kinship coefficient c(i,j)

c(i, j) = (1/2)

Pi,j∑
p=1

2−l(p) (2.1)

where Pi,j is the total number of distinct shortest paths through a common an-

cestor between individuals i and j, and l(p) is the length in number of reproductive

events of the path p. As a simple example, if i and j represent indices for full siblings,

this coefficient is 0.25.

FSIR for the ith individual is defined as

FSIRi =

∑
j 6=i Ijc(i, j)∑K

k=1

∑
j 6=i tjkλkc(i, j)

(2.2)

where the summation over j runs over all related individuals in the pedigree, K is

the number of strata in the population, λk is the incidence in the kth stratum and Ij

is the indicator for the disease of individual j.

The authors point that FSIR is a very efficient measure for identifying the indi-

viduals at high risk, but such detailed family history data is often not available.

Another example of familial aggregation measure is the familial risk ratio (FRR),

defined as the risk to a given type of relative of an affected individual divided by

the population prevalence [15]. A more common terminology for this measure is

familial relative risk (or recurrence risk ratio). While for the most common cancers,

the familial relative risk for first-degree relatives ranges from 2 to 4, for less prevalent

cancers such as thyroid and testis [33], [34], [35], and for many nonmalignant diseases,

such as multiple sclerosis, schizophrenia and type I diabetes it can range from 5 to

20 [17].
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2.3 Familial risk in studies of cancer

It is widely believed that most forms of cancers occur either sporadically, or from

a hereditary background [15], [36]. The inherited predisposition to cancer has been

documented as far back as from the sixteenth century, when familial clustering of

some distinctive phenotypic features was noticed [37]. Long-established hereditary

examples include the cancer of colon in familial adenomatous polyposis, and the

breast-ovarian cancer syndrome with BRCA1/BRCA2 mutations. The familial com-

ponent contributing to the development of cancer is widely illustrated in the modern

era of scientific research [38], [39], [40], [41], [42], [43], [44]. Evaluating the ”famil-

iarity” of cancer constitutes the basis for identifying genes associated with familial

cancer syndromes, and it is essential to genetic counseling targeting individuals at

high risk of disease [36].

Typically, familial cancers are presumed to account for 5-10% of all cancers [165].

They are characterized by an early age of onset of cancer and the occurrence of cancer

in multiple members of the same family [14], [45]. Table 2.1 presents evidence of the

familial component of cancer from two studies: the Utah study, with data obtained

from merging the Utah Genealogic Database to the Utah Cancer Register [1], [38],

[46], and a population based study based on the Swedish MultiGeneration and Cancer

Registers. In the first study, FRR was calcuated as the ratio of the observed number

of cancer cases among the first degree relatives of the cases divided by the expected

number among relatives of controls, with matching for the year of birth. Similarly,

FRR for relatives of cases with a young age at incidence was calculated, where young

age was defined as ”before 50 years” for breast, melanoma and brain/central nervous

system (CNS) and ”before 60 years” for the other sites. Risch combined the SIRs as

originally calculated in the second study to obtain a more comparable measure with

FRR, and the SIRs presented in the table are assessed for offspring with an affected

parent and with/without an affected sibling, and for offspring with an affected sibling

and with/without an affected parent. These results show that the most prevalent

cancers should not be expected to be the most familial, FRR spans a relatively narrow

range for these cancer sites, and that the familial risk increases with an early age at

diagnosis.
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Cancer site Utah study [35] Sweden study [33]

FRR FRR FRR FRR

(total) (early onset) (offspring) (sibling)

Prostate 2.21 4.08 2.82 9.41

Breast 1.83 3.70 1.86 2.01

Colorectal 2.54 4.53 1.86 4.41

Lung 2.55 2.50 1.68 3.16

Melanoma 2.10 6.43 2.50 3.41

Bladder 1.53 5.00 1.53 3.30

Non-Hodgkins lymphoma 1.68 2.40 1.68 2.37

Brain/CNS 1.97 8.95 1.72 2.37

Cervix 1.73 1.93 2.39

Table 2.1: ”Familiarity” of cancer for first degree relatives of cancer, in decreasing

magnitude of prevalence in the Utah populations, assessed in 2 population-based

studies. Adapted from Risch 2001, Cancer Epidemiol Biomarkers Prev [15]
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The various settings that are available for assessing the familial risk of cancer, such

as clinical studies, twin studies, population based studies or studies of informative

families, have already been mentioned. Their validity, generality and interpretation

rely on complete information being obtained on the considered family members. With

interviews as the means to obtain family history for cases or controls, the accuracy of

the data (a high and/or non-differential response independent of the disease status)

may be questionable [17], [47], [48], [49]. Table 2.2, adapted from [17], shows the

positive predictive value (the probability that a self-reported family history is true)

by case/control status and cancer site. The accuracy of self-reported family history

decreases with the rarity of the cancer, and is higher for cases than for controls.

Positive predictive value

Case Control

Breast 93% 74%

Prostate 85% 68%

Colon 81% 71%

Ovarian 69% 25%

Endometrial 37% 17%

Table 2.2:

Thus, when available, merged population and disease registers are invaluable

sources in obtaining medically verified family data. Estimating familial risk of cancer

from using registered data will be discussed below.

2.4 Register-based studies

The emerging potential of registries for studying the epidemiology of cancer has been

acknowledged as early as the 1970s [50]. Present efforts include setting-up of na-

tional cancer registers linked to pedigree (genealogical) information [51] and the use

of multinational registers [52], [53], [54].

Nation-wide population- and disease-registers have been available in the Nordic

countries for the past 50 years [55], [56], [57], [58]. Not surprisingly, an impressive
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number of scientific publications emerged from these excellent resources [59], [60],

[61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75]. In Sweden,

the MultiGeneration Register [12] and the Cancer Register [13] have been extensively

used in studying the epidemiology of cancer.

2.4.1 The Swedish MultiGeneration Register (MGR)

MGR (Swedish: Flergenerationsregistret) is a database of individuals, initiated in

1961 from written records maintained by church parishes and county registration of-

fices. Updates of the MGR are carried out yearly. The recorded individuals, called

index persons, are persons registered in Sweden at some time since 1961, including

those born in Sweden since 1932 and individuals who immigrated to Sweden. Each

index person has information on the personal identity number of biological (or adop-

tive) parents, the year of birth or immigration, year of death, sex and country of

birth. In 2002, the registry contained 9 million index persons and a total of 13.5

million individuals. Figure 2.1 shows a simplified flowchart of how MGR is produced

from various registered data sources. The target population in the MultiGeneration

Register is illustrated in Figure 2.2.

Figure 2.1: How the MultiGeneration Register is produced
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Figure 2.2: Population in the MultiGeneration Register
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2.4.2 The Swedish Cancer Register (SCR)

SCR records primary cancers incident in Sweden since 1958, based on compulsory re-

ports from all physicians in hospitals and other establishments for medical treatment

under public or private administration in Sweden [13]. Furthermore, pathologists and

cytologists report separately every cancer diagnosis. Only persons with an official res-

idency in Sweden are included in the Cancer Register. If a person has more than one

primary tumor, each tumor is registered separately. The register records the unique

personal identification number, site of the tumor, ICD 7, stage and date of diagno-

sis. New cancers are not recorded based on death certificates, due to the uncertainty

in the death certificates, especially for older individuals. The completeness of this

register, and the accuracy of the reported cases of cancer are estimated to be close

to 100% [76]. Based on the data published in the Swedish Cancer Register, Figure

2.3 illustrates the incidence rates (per 100000), by calendar year for all cancer sites.

Figure 2.4 shows the incidence profile for five cancer sites that are going to be studied

in the present thesis.

Year of diagnosis

pe
r 

10
00

00

1960 65 70 75 80 85 90 95 2000

0

100

200

300

400

500

600

700

Males
Females

Figure 2.3: Cancer incidence in Sweden, all sites combined. Data source: the Swedish

Cancer Register [13].

12



2.4.3 Potential limitations in using register-based data

The unquestionable potential of registers for research into familial aggregation of dis-

eases has to be balanced by the awareness of the possible limitations of the data,

such as incompleteness, causes of ”missing-ness” [9], or lack of recording various ex-

posures of interest [77]. Even with extensive coverage of the population members,

the Scandinavian population registers were initially started for administrative, and

not for research, purposes. In the Swedish MultiGeneration Register, for example,

familial relationships are not complete due to inclusion/exclusion criteria for the in-

dex subjects at the start-up time of registration, non-identifiability of the parents of

index persons who immigrated to Sweden as adults, and technical matters associated

with the conversion of written archives to computerized information as well as the

management of the register by different authorities.

Figure 2.5 illustrates the poor knowledge on parental identity in the initial years

of registration, and how it differs substantially between Swedish-born individuals and

immigrants. In addition, a large proportion of individuals who died before 1990s have

the parental identity missing, and furthermore information on the father is usually
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Figure 2.4: Cancer incidence in Sweden, five cancer sites. Data source: the Swedish

Cancer Register [13].
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less well recorded than information on the mother (Figure 2.6).
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Figure 2.5: Percentage of index persons with known parents in the MultiGeneration

Register, by year of birth, stratified by the place of birth (whether or not in Sweden)

The Swedish Cancer Register records incident cases after 1958, and cancers in-

cident before this start-up date are not recorded. Thus, when merging this register

with MGR to collect the family history of cancer, this exposure will be misclassified

from failing to identify relatives as affected when disease occurs before the start-up

date of registration. Such left-truncation of family history may cause dramatic biases

in familial aggregation measures.
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Figure 2.6: Percentage of index persons with known parents in the MultiGeneration

Register, by year of death
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2.5 Forms of bias: selection bias, information bias

and confounding

Bias is a systematic error, and as opposed to random error, it cannot be reduced

by increasing the population/sample size. Researchers should design epidemiologic

studies in such a way as to avoid or minimize known or suspected biases. If they

are unavoidable biases, a required step is to explain how they may affect the study

results, in terms of direction and magnitude [78].

There are many and various forms of bias, and they have been listed over time

[79], [80]. Among them, confounding, selection bias and information bias are the

most common encountered in epidemiological studies. If the bias is not acknowledged

and accounted for it can render illusory associations, and thus undermine both the

internal and external validity of the findings [81], [83], [84].

Confounding bias is a distortion of the estimated effect of exposure on the out-

come, as a result of an extraneous factor associated both with the exposure and

outcome. Selection bias results from systematic differences between those participat-

ing in a study and those who do not, while information bias results from inaccurate

measurement (or classification) of the study participants [82]. Selection biases can

be further classified into self-selection bias, diagnostic suspicion bias, assembly bias,

publication/reporting bias, and information biases into recall bias, surveillance (de-

tection) bias and misclassification bias.

For example, when film photography was used in astronomy, observations typically

found more blue galaxies than red ones. This was not because blue galaxies are

actually more common, but rather because photographic film was more sensitive to

blue light than red light. With the conversion of astronomy to digital cameras, which

are more sensitive to red light than blue, the opposite bias is now the case.

http://en.wikipedia.org/wiki/Selection bias

An example of detection bias that results in the inflation of the familial risk of a

disease can be imagined when increased surveillance among family members shortly

after diagnosis of the first familial tumor results in the earlier detection of asymp-

tomatic familial cancers [85]. Such overestimation of the familial risk can obviously
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impact on clinical and genetic counseling policies.

Confounding can be controlled for through randomisation (random allocation to

make the experimental and control groups similar with respect to the suspected con-

founders), restriction and matching. Confounding can be also adjusted for in the

analysis phase via stratification or multivariate analysis (modeling that estimates the

effect of one variable while controlling for many other factors simultaneously). The

later approach has a strong advantage over stratification in situations where sparse

numbers would result for certain strata [82].

Misclassification of exposure, which is a form of information bias, will be discussed

in the next section, as this is a central theme in the present thesis.

2.5.1 Misclassification of exposure

Two types of misclassification are usually considered: non-differential and differential.

The existent statistical literature has dedicated ample attention [86] to distinguish

between these two forms and to the methods to correct for these biases. Shortly,

non-differential misclassification of exposure occurs when the probability of exposure

misclassification is not related to disease status i.e. diseased and non-diseased in-

dividuals have the same probability to be misclassified according to exposure [87].

Similarly, probabilities of exposure misclassification which are dependent of the dis-

ease status render differential misclassification [88], [89], [90]. Misclassification of

exposure is usually quantified in terms of sensitivity and specificity. Sensitivity rep-

resents the probability of correct classification among those who are truly exposed,

while specificity is the probability of correct classification of those truly unexposed.

An example of differential misclassification is provided by a Norwegian study of

respiratory disorders in relation to occupational exposures (quartz dust), where expo-

sures where assessed both through self-reporting and interview [91]. The sensitivity

of self-reported exposure is calculated with respect to the interview assessment, which

is regarded as the gold standard. The sensitivity among those individuals presenting

respiratory symptoms was in the range 50% to 65%, while for free-symptom partici-

pants the sensitivity was below 30%.

Assessing the form of misclassification that would be present in a study is essential
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both for the interpretation of study results, in terms of direction and magnitude

of bias, and for the bias-correction approach. For a binary exposure, researchers

assuming non-differential misclassification will claim that the true disease-exposure

association is even stronger than their estimate, while even slight deviations from this

condition may result in bias away from the null. Where the exposure variable has

several categories, the consequences are even more intractable [92]. When the non-

differential hypothesis does not hold, simple correction methods are inappropriate

[93], [94], [95], and may lead to ”corrected” relative risks considerably higher than

the truth [96].

The apparent (biased) relative risk in the presence of non-differential misclassifi-

cation can be easily derived from basic principles [97]:

R̂ =
[SRP (E) + (1− V )P (E)] · [(1− S)P (E) + V P (E)]

[SP (E) + (1− V )P (E)] · [(1− S)RP (E) + V P (E)]
(2.3)

where R is the true relative risk, S and V are the sensitivity and, respectively,

specificity of exposure, P(E) the true prevalence of exposure, and P (E) the com-

plement of P(E). Thus, the apparent relative risk is a function of the true relative

risk, sensitivity and specificity. Flegal et al, 1986 [97] tabulate the effects of these

parameters on the apparent relative risk (table 2.3).

As it will be presented later in this thesis (section 4.5), left-truncation due to dis-

ease registration start-up causes non-differential sensitivity of the observed exposure

(i.e., family history of disease), and perfect specificity, as all unexposed individuals

are classified as such. In this context, with V = 1, expression (2.3) becomes:

R̂ = R · (1− SP (E)) · 1

(1− S)RP (E) + P (E)
(2.4)

When this last equation is re-arranged to provide an expression for R, R is referred

to as the bias-corrected relative risk, and subsequently denoted as Rbc:

Rbc = R̂ · P (E)

1 + P (E)((R̂− 1)S − R̂)
(2.5)

It is obvious from the expression of Rbc that, to carry out a bias-correction of the

relative risk, estimates of the true prevalence and sensitivity of exposure are needed.

The challenge is to obtain these quantities since the extent of misclassification in
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the real data is rarely known. Common approaches include the specification of a

misclassification model [98] or use of validation samples [99], [100], [101], [102], [103],

[104], [105]. The practical drawback of the later approach is that the validation

samples are many times expensive or cumbersome to obtain.

2.6 Simulation Methods

In the present thesis, a simulation approach is developed in order to obtain estimates

of the sensitivity of the observed (misclassified) exposure without the use of validation

samples.

The idea of simulating populations is not new. Even from the early 1980s, impor-

tant demographic work focused on creating electronic populations with the purpose

of predicting future population structures. These methods require the construction

of a realistic version of the present population with its relationships, and estimates of

future vital rates. Examples include studies on factors affecting the household forma-

tion in England [106], forecasting kin counts in the US population [107], depicting the

kinship networks of elderly for the United States of the year 2030 [108], investigating

True risk Sum S+V Apparent risk Direction of bias

R > 1.0 S + V > 1.0 1.0 < R̂ < R Underestimation

S + V = 1.0 R̂ = 1.0 Underestimation

S + V < 1.0 R̂ < 1.0 Reversal of direction

R=1.0 R̂ = 1.0 No bias

R < 1.0 S + V > 1.0 R < R̂ < 1.0 Underestimation

S + V = 1.0 R̂ = 1.0 Reversal of direction

S + V < 1.0 1.0 < R̂ Reversal of direction

Adapted from Flegal et al, 1986 [97]

Table 2.3: Dependency of the apparent relative risk (R̂) on the true relative risk (R),

sensitivity (S) and specificity (V).
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the effects of serial monogamy on the 2035 predicted Netherlands population [109]

and predicting the Chinese kinship of the year 2060 [110]. These mechanisms of de-

mographic simulation use as the unit of study either the individual, or a group defined

by certain characteristics (such as sex, age or residence location). The former method

is referred to as microsimulation and the later as macrosimulation. A mixture of these

two approaches can also be employed [109]. Numerous computer programs have been

developed in the field of population demography, including CAMSIM [111], POPSIM

[112], and SOCSIM [113], [114], [115], [116]. While SOCSIM creates virtual popula-

tions of a structure suitable for genetic epidemiology research (family registers where

all relationships are known), the emphasis is on the processes of cohabitation, mar-

riage and divorce, with the requirement of monthly follow-up of the events affecting

the simulated individuals and the implementation of competing risk schemes. As op-

posed to demographers, we are interested to obtain a correct version of the past (i.e.,

family history of disease), in order to study disease etiology, which can be approached

by investigating familial clustering, familial risk or predisposed sub-populations. For

example, to appreciate the magnitude of cancer risk posed by having a positive family

history, it is essential to have accurate information on whether the mother, siblings

or other identifiable relatives, were previously diagnosed with cancer. The simulation

package, Poplab, was designed to use simple and easily-available vital statistics, such

as age profile, fertility and cause-specific or general mortality, and disease incidence

to create virtual population registers.
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Chapter 3

Aims

This thesis aims to contribute to the understanding of potential biases arising from

analyzing incomplete family data from population-based registers. Dedicated focus

will be given to the left-truncation of family history of disease due to registration

start-up date and the missing family links due to the death of an index person, and

the effects of such incompleteness on estimates of familial association. Specifically,

the following objectives are to be addressed:

1) Creating a software package, Poplab for simulating virtual populations of re-

lated individuals using real vital rates (such as birth and death), with user-controlled

parameters of familial aggregation of diseases (background incidence rates, value of

familial association, familial model of disease) (Paper 1)

2) Studying the impact of truncation and missing family links in population-based

registers on familial risk estimates (Paper 2)

3) Deriving an easy to use correction for the bias in estimates of familial risk due

to the left-truncation of familial exposure (Paper 3)

4) Applying the methodology developed in 3) to correct for the bias in overall

and age-specific familial risks estimated from follow-up cohorts extracted from the

Swedish MultiGeneration Register and the Swedish Cancer Register (Paper 4)
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Chapter 4

Methods

In this thesis, we have used virtual populations simulated through the Poplab package,

that will be described in the following section, to mimic the Swedish population with

complete families. The size of the simulated populations is specific to each Paper.

Each virtual population experiences cancer incidence, and cancer is assumed to

aggregate in families. We are interested in the impact of incomplete family links

and/or incomplete exposure on estimates of familial risk of cancer. Our exposure of

interest is defined as a family history of cancer (i.e., affected first-degree relatives).

We have mainly used female breast cancer throughout Paper 1 to Paper 3, and inves-

tigated other four most common cancers (colorectal, lung, prostate and melanoma)

in Paper 4.

4.1 Simulating virtual populations: the Poplab pack-

age (Paper 1-4)

The simulation package Poplab, described in Paper 1, was developed in order to

create virtual populations of complete families. This package was written for the R

environment [117] (see [118] for free download). The first simulated year (baseline

year) is the earliest time point for which data are available, and the populations can

be constructed for as long as there are vital statistics. The technique allows the

simulated population to evolve dynamically over calendar years, not only to arrive at

a correct representation of the present, but to approximate the evolving population
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in all its intermediary states.

Figure 4.1: Input files required by Poplab

The required input files are, as illustrated in figure 4.1, a) the population profile

for the baseline year, separately for males and females; and b) for the each year

that is simulated, the female fertility rates, the mortality rates separately for males

and females, and disease incidence rates, all age-specific. The simulation creates a

pedigree structure (figure 4.2), which increases with every calendar year, as it contains

all individuals who ever belonged to the population at any time from the base year

to the latest simulated year. Each row in this data matrix represents an individual

with his or her vital information: ID number (ID), year of birth (YOB), sex (SEX =

1 for males, 2 for females), ID number of mother (ID.M), ID number of father (ID.F),

year of death (YOD), and year of incidence (YOI). These individuals are called index

persons. If death or disease have not yet occurred, YOD and YOI, respectively, are

set to missing (coded as 0 in the data).

For each new birth, the baby is added to the pedigree file with the parents correctly

identified. Figure 4.2 highlights that the baby girl (ID = 99117) is born in the year

2002, and her parents’ identity is recorded. ”Death” of a person is simply recorded in

the pedigree, by updating the year of death (YOD) for this person (see ID=50001).

The pedigree structure enables dynamic storage of all individuals and straightforward

identification of kinship at any time point. The simulation starts with the creation of

the baseline population of related individuals for the base year. The birth and death

processes are applied each year and the population is updated accordingly.
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4.1.1 Creation of the baseline population

The baseline population is a pedigree structure containing a scaled version of the

real population for the base year, and it constitutes the input population for the

calendar period to be simulated. The only feature regarding the baseline population

that is known before the simulation is the gender-specific age-profile, but a correct

representation of the base year should include related individuals with this age profile.

Starting with an assumed number of females and approximately the same number of

males with the age distributions of baseline year, we assign unique ID numbers and an

indicator for sex. The number of males is calculated based on the number of females

so that the sex ratio for the baseline year is preserved. We assume these individuals

were alive 100 years back in time, and regard them as the ”founder” population,

thus setting their parents ID numbers to missing. Their year of birth is calculated

as the difference between the year they were sent back to and their age. Their year

of death is set to missing (since we started with the living population). A ”run-in”

process of 100 years is simulated, where these founders and their descendants give

Figure 4.2: Pedigree structure generated by Poplab
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birth and die with the base year fertility and mortality rates, respectively. The ”run-

in” time is by default 100 years, but the value of this parameter can be changed by

the user. The details of the fertility and mortality processes are presented in Paper 1,

Appendix 1. Also, figure 4.3 illustrates schematically the technical steps in procedure

Give Birth(). In the population alive that results from this process, even the oldest

individuals (100-years-old) are linked to their parents, as they were born during the

run-in simulation. Thus, we construct a population in which no one is left unrelated.

Figure 4.3: Schematic representation of the GiveBirth procedure in Poplab: successive

selections of women (and men) eligible to become parents (spherical representation)

and random identification of parents (rectangular).
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Finally, we trim the created population to yield the real age profile for the base

year, using the trimming algorithm that is explained in the next section. Because our

goal is to obtain a baseline population of complete families, we add to the trimmed

population any parents that were removed by the trimming.

4.1.2 The trimming process

The basic idea behind the trimming process is to randomly delete a proportion of

the simulated individuals in each age group, in such a way as to yield the real age

profile. The proportion of individuals trimmed in each age group depends on two

descriptive features of the real population: the modal (i.e. most frequently occurring)

age category, which we call the reference age, and the ratios between each age-specific

count and this reference age count. The trimming process ’tailors’ the simulated

population so that it reflects these same two features, by using the reference age

group to ”tie down” the distribution. To do this, we calculate the ratio of age-

specific counts to the reference age count for the simulated population using the

same reference age as in the real population, and these latter ratios are referred to

as simulated ratios (Table 4.1). Since the method aims to impose the real ratios on

the simulated population, then any age groups which have a simulated ratio greater

than the real ratio, will have enough individuals from which to eliminate the surplus

proportion to match the real age profile. However, if this is not the case and there

are age categories in which the real ratio exceeds the simulated ratio (e.g, ages 8 and

34 in the illustration), we must first diminish the reference age count in the simulated

population to ensure that there are enough individuals in all age groups to impose

the real ratios. The algorithm for adjusting the reference age count is presented in

Paper 1, Appendix 2, together with a proof that all age categories can then have the

real ratios imposed.

By multiplying the adjusted reference age count in the simulated population by

the age-specific real ratios, we obtain the number of individuals in each age group

such that the real population age profile is imposed on our simulated population; these

age-specific counts are referred to as corrected counts. The last step, based on these

corrected counts, is to eliminate individuals that do not belong in the final population.
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age real count real ratio simulated count simulated ratio ratio corrected count

0 50251 0.797 1164 1.089 1.366 827

1 52342 0.830 1192 1.115 1.343 861

2 52298 0.829 1144 1.070 1.291 860

3 52202 0.828 1058 0.990 1.196 859

.....

8 63010 0.999 1044 0.977 0.978 1036

9 63077 1 1069 1 1 1037

......

34 61599 0.977 1013 0.948 0.970 1013

35 50829 0.806 946 0.885 1.098 836

36 51217 0.812 981 0.918 1.131 842

......

Table 4.1: Illustration of the ”trimming” technique, based on 50.000 female- and

50.000 male-founders. The real and simulated ratios are calculated by dividing the

age-specific real and simulated counts, respectively, to the count for the modal age

(here 9 years). Column 6, ratio represents the relative magnitude of the simulated

and real ratio, and is used to identify the adjustment factor for the simulated modal

count (see Paper 1, Appendix 2 for more details).

This is achieved by an age-specific Bernoulli process, applied to every individual, with

the probability of deletion equal to the proportion of surplus individuals.

4.1.3 The evolution of a population

The evolution of a simulated population over a calendar-period is achieved through

yearly birth and death events, as well as disease incidence, as this is a common feature

of interest for genetic epidemiology. Incident cancers are assigned both during the

run-in and evolution of the population, using a Bernoulli process that operates on

individuals who are alive and cancer free through procedure AssignCancer() (see

Paper 1, Appendix 1). Since cancer incidence is included in the run-in period, the
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baseline population has prevalent cases with the year of incidence recorded. The

AssignCancer() procedure requires the specification of the familial aggregation model,

with choice between the following: the model where the age-specific risk of disease

incidence for an individual is increased by a constant factor (the incidence rate ratio)

if their relative is a case, the odds-ratio model, where the odds of disease increases

by a constant factor in relatives of cases, and the age-dependent versions of these

models, where the risk (and odds, respectively) increases by a constant factor as a

function of the age at incidence in an affected relative. The user has also to choose

for ”affected relative” between a parent and a sibling. In simulating death events, the

age-specific mortality for diseased individuals, referred to as the case mortality ratio,

can be increased by a constant value, which is also specified by the user.

4.2 Statistical analyses of familial risk (Paper 1-4)

Familial risk of cancer was estimated from three standard analyses (Poisson analysis,

conditional logistic regression and Cox analysis), which are described below. The

study cohort consists of all individuals who were alive and cancer-free at the beginning

of follow-up and those who were born before the end of follow-up. Familial exposure

enters analyses as a binary variable for the parental-risk, sibling-risk and parental-

odds models, and as a categorical variable with the reference group consisting of

unexposed daughters for the model where familial risk changes with maternal age at

incidence.

Familial risk was assessed from all three regression models in Paper 1, while in

Paper 2-4 we use just the Poisson analysis.

For the Poisson analysis, data are first summarized for each calendar year to yield

the total number of persons at risk and the total number of cases in each stratum

defined by the familial exposure and age group. In illustrations where we have used

age-specific incidence rates constant over the entire simulated calendar period (Paper

1 and 2), the analysis will be adjusted for age groups, but not for the calendar period.

Thus, in these instances data are further collapsed to obtain the total number of cases

and total number of individuals at risk in each age stratum over the entire period. In

Paper 3 and 4, the familial risk was analyzed both within each stratum defined by
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age group and calendar period and as overall estimates adjusted for these strata (see

Methods section in these Papers for more details).

We also used a nested case-control design, where three controls are selected at

random for each incident case. The controls are chosen from individuals who are

alive and cancer-free in the year of incidence of the case, and of the same age with

the case. The data are analyzed by means of conditional logistic regression.

When the data are analyzed by means of Cox regression, the entry time is age

at the beginning of follow-up or zero for those born later. The exit time is age at

incidence, death, or end of follow-up, whichever is smallest. If, during the follow-up

of any individual, their relative (mother or sister, depending on the familial simulated

model) becomes a case, family history enters the analysis as a time-varying covariate.

4.3 Simulating the virtual Swedish population (Pa-

per 1)

We have used Poplab (see section 4.1) to create the virtual Swedish population for

the calendar period 1955-2002 from 50,000 female- and 50,000 male-founders, and

considered female breast cancer as the disease with familial aggregation. Figure 4.4

presents a simplified overview of running Poplab to create this population. To preserve

simplicity in this illustrative instance, we used age-specific constant incidence rates

(1980’s rates) over calendar time throughout the simulated calendar period. The value

of the case mortality ratio is 2. We simulate several models of familial aggregation:

(i) the maternal relative-risk model of disease aggregation, where a woman’s age-

specific risk of disease incidence is increased by a constant factor if her mother is

a case, (ii) the maternal odds-ratio model, and (iii) a model where the relative risk

is modified by maternal age at incidence. For the first two models, we simulate

separately a ”null hypothesis” population of no familial aggregation of disease, and

an ”alternative hypothesis” population where the risk and the odds, respectively, are

doubled in daughters of affected mothers. For the third model, the risk is increased

by a factor of 4 for women whose mothers were incident before the age of 50 years,

compared with daughters of unaffected mothers, and by a factor of 2 for daughters
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of women diagnosed after the age of 50. We also considered the sibling relative-risk

model where a woman’s age-specific disease risk is doubled after a diagnosis in any

of her sisters.

Figure 4.4: Simplified overview of running Poplab to create a virtual population for

the calendar-period 1955-2002. *FR: familial risk, OR: familial odds ratio; **rela-

tionship: parent/sibling.

In order to verify that the values of familial association parameter of incident

breast cancer that were employed in the simulation can be recovered accurately from

the virtual populations, we analyzed the cohort at risk for the calendar period 1955-

2002 using the three models introduced in Section 4.2. The study population consisted

of all individuals who were alive and cancer-free at the beginning of follow-up (1955)

and those who were born before 2002.
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4.4 Family data with missing links and truncation

(Paper 2)

Population and disease registers are subjected to various sources of missingness (see

Section 2.4.3), and, when merged, the effect on familial aggregation estimates from

using data that combines several patterns of incompleteness should be evaluated.

Virtual population registers with complete family history of disease and complete

family links, as created by Poplab, offer a golden standard for examining such effects.

We first mimic the left-truncation of family history of disease due to the start-up date

of the Swedish Cancer Register [13] and the missingness patterns seen in the Swedish

MultiGeneration Register [12]. Next we evaluate the bias in familial risk estimates

in relation with various background rates, age-pattern of incidence and population

structure.

4.4.1 Range of investigations

We simulated virtual populations for the calendar time 1955-2002, starting from

500,000 female- and 500,000 male-founders. We used the real Swedish age- and

calendar-year-specific mortality and fertility rates and the female breast cancer age-

specific incidence rates of the year 1980. Several features of this cancer, such as the

age-specific incidence profile, familial risk, and case mortality, indicate it as repre-

sentative for the common cancers [119]. Familial aggregation of disease is simulated

based on the maternal relative risk model where age-specific rates are multiplied by a

constant value for daughters of affected mothers from the time that a mother becomes

a case. Also cases experience a higher mortality compared to the general population.

Our investigations range over several levels of familial risk (2, 5, and 10), case

mortality ratio (2, 5, and 10) and background incidence rates (1980 Swedish breast

cancer rates scaled by a factor of 0.5, 1, and 2). The contribution of the disease age

pattern is examined by simulating populations with a ”constructed” incidence profile

where the actual 1980 age-specific breast cancer rates were shifted to younger ages

by 20 years (figure 4.5), so that in these populations a woman aged 30, for example,

experiences the 50 year breast cancer rate. For each combination of these parameters,
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an independent population was created.

age

ra
te

0 10 20 30 40 50 60 70 80 90 100

0

.001

.002

.003

.004

Brca incidence
Shifted incidence

Figure 4.5: Breast cancer incidence and shifted incidence profile (smoothed curves).

4.4.2 Mimicking the incompleteness

Starting with the simulated populations, with complete family information, two types

of incompleteness are considered: the left-truncation of family history of disease due

to the start-up date of the Swedish Cancer Register and missingness patterns seen

in the Swedish MultiGeneration Register. While the accuracy and completeness of

incident cancer registration after the start-up date are prime features in the Cancer

Register [76], cancer events occurred before this date are not identifiable. To reflect

this, maternal cancer incident before the first year of registration is ”hidden” in the

simulated populations (i.e. maternal YOI becomes 0).

The completeness of family relationships in the MultiGeneration Register, such

as the identification of a biologic parent, has been shown to depend on the date of

birth and date of death (see Figures 2.5 and 2.6). Approximately 50 percent of those

persons who died prior to 1991 have unidentified parents, and, similarly, about 10%

of those who died between 1990 and 2002. We mimicked this by assigning to each

individual who died before 1990 a Bernoulli event that his/her mother is unknown
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with probability 0.5, and with probability 0.1 to those who died between 1990 and

2002.

4.4.3 The apparent relative risk

After imposing the two missingness patterns described above, we analyzed the cohort

at risk for the calendar time 1955-2002 in a fashion that ignored the incompleteness

and we obtained what will subsequently be called the apparent relative risk: for

the left-truncated data, daughters of mothers incident before 1955 were treated as

unexposed; in the analysis of data with missing family links, only those persons

with a known mother were included. Populations affected by these two forms of

incompleteness were created, first separately and later simultaneously, and analyzed

in Poisson regression models (see section 4.2).

4.5 Bias due to registration start-up, theoretical

considerations (Paper 3,4)

Familial risk estimates resulting from merged population and disease registers [119],

[120] are potentially biased, especially due to the effect of start-up registration of

disease events (see Paper 2). Left-truncation results in misclassifying the family

history of disease for those individuals whose relatives became affected before the

disease registration was initiated. In the following, the definition of family history is

restricted to affected parent. Since truncation depends on the registration start-up,

we expect that misclassification will be non-differential for diseased and non-diseased

individuals. In attempting to correct for such bias, common practice would employ

validation studies to collect, for a subsample of subjects, additional error-free covariate

data, that may offer information on the true prevalence and sensitivity of the observed

exposure. In the context of family studies, such proxy data are often not available.

We present in the following sections a bias-correction method that uses the Poplab

package to estimate the sensitivity of exposure. We illustrate this approach in a frame-

work mimicking the Swedish reality. First, we simulate virtual population registers

of related individuals where the family history of disease is complete. We will refer to
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these registers as the complete populations. Next, we mimic the lack of family history

knowledge due to the start-up of cancer registration. In addition, demonstrating the

extent of bias and the efficacy of this bias-correction approach in the real data will

follow in subsequent sections.

4.5.1 Testing the assumption of non-differential misclassifi-

cation

The non-differential misclassification of exposure assumption claims that there is no

relationship between misclassification and the disease status, or in our framework,

diseased and healthy individuals have an equal probability of ”loosing” their family

history of disease. We tested (Paper 3) a possible statistical association between dis-

ease status and knowledge of the family history of cancer (i.e. sensitivity of exposure)

[121]. The logistic regression model analyzed all exposed daughters from the cohort

at risk in the complete populations, where the dichotomous outcome is an indicator

for truncated maternal cancer (i.e. mother incident before registration start-up), and

the predictor variable is the disease incidence of the daughter. The model adjusted

for age, categorized in 5-year age-groups. The odds ratios, close to the null value,

suggested that the sensitivity of the observed exposure is non-differential. This form

if misclassification is assumed throughout the following sections.

4.5.2 The apparent relative risk

Let R denote the true relative risk and P(E) denote the true prevalence of exposure

i.e. the proportion of exposed individuals in the population at risk. The observed

prevalence of exposure (in the truncated population) is denoted as P (Ê). The ex-

pression developed by Flegal et al [97] for the apparent relative-risk R̂ was already

introduced in Section 2.5.1 of the present thesis. Basically, R̂ is a function of the

sensitivity, specificity and the true prevalence of exposure. The truncation of disease

events due to registration start-up affects only the sensitivity, and not the specificity,

of exposure. That is because all subjects truly unexposed are recorded as such, i.e.
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the specificity of exposure is 1. The sensitivity of exposure, S can be written as:

S = P [Ê|E] =
P (Ê)

P (E)
(4.1)

Thus, sensitivity is simply the proportion of exposures that are recorded by the

register.

The apparent relative risk can be written as:

R̂ = R · (1− SP (E)) · 1

(1− S)RP (E) + P (E)
(4.2)

where P (E) is the complement of P(E). Appendix 1 in Paper 3 provides the

derivation of this expression at length, as well as the form of the apparent relative-

risk in the context of differential misclassification of exposure.

From equation (4.2), the following algebraic properties of R̂ can be derived:

a) For R > 1, R̂ <= R i.e. the bias is towards the null

b) Keeping R and S constant, R̂ is a decreasing function of P(E). This means

that for a given true value of R, with higher P(E) (as would it be the case with more

incident diseases), the apparent relative risk becomes increasingly biased.

c) Assuming P(E) and R constant, R̂ is an increasing function of S; thus with a

longer life-span of a register, which improves sensitivity, R̂ becomes less biased.

Rearranging equation (4.2), the bias-corrected relative risk Rbc can be written as

Rbc = R̂ · P (E)

1 + P (E)((R̂− 1)S − R̂)
(4.3)

4.5.3 Bias-corrected relative risk, Rbc: point estimate and

variance

In any real data context, the prevalence and sensitivity of the observed exposure may

depend on several factors. Among these, the age-group of the individuals at risk

(the sensitivity for older age-groups will be lower than that of younger groups, at

least in the beginning of registration, since the former category has relatives whose

disease is more likely to be overlooked), and the calendar-period (sensitivity of expo-

sure increases with time after registration start-up as more familial exposures have
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the chance to be captured by the register). If this is the case, stratum-specific cor-

rections should first be calculated (for example, in the strata defined by age-groups

and calendar periods). Denoting the variance of the bias-corrected log relative-risk,

βi = log(Rbc,i), in stratum i as var(βi), the overall bias-corrected estimate of the

log-relative-risk for a specific subpopulation, such as a certain age-group, can be

calculated as the weighted average of the appropriate stratum-specific parameter es-

timates:

βW =

∑
wiβi∑
wi

(4.4)

where the weight wi is the inverse of var(βi), and thus the variance of βW simplifies

to:

var(βW ) =
1∑
wi

(4.5)

From expressions (4.4) and (4.5), Rbc,W and its variance can be written:

Rbc,W = exp(

∑
wiβi∑
wi

) (4.6)

var(Rbc,W ) = var(exp(βW )) = (exp(βW ))2var(βW ) (4.7)

4.5.4 Estimating the prevalence and sensitivity of exposure

We mimicked the lack of family history knowledge before the start-up date of regis-

tration by adding a new variable to the pedigree structure that stores the complete

populations (see Figure 4.2), called the apparent family history. Technically, it records

the year of incidence of the parent if this was affected after the start-up date and is

0 otherwise (i.e. parents incident before registration are assumed to be cancer free).

This variable is similar to family history as it would be observed in the real Swedish

data.

The sensitivity of exposure is calculated in the population at risk as the ratio

between the proportion of those with an apparent family history and the proportion

of those who truly have a positive family history. Since both these quantities use the
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number of individuals at risk as the denominator, the sensitivity reduces to a simple

ratio between the number of offspring in the study cohort with a parent incident

after the start-up date of registration and all offspring with an affected parent. As

the prevalence of exposure depends on the familial risk [129], the true prevalence

of exposure should be estimated from the apparent prevalence of exposure and the

sensitivity, according to expression (4.1).

4.5.5 The bias-correction

Using the estimates of R̂, S and P(E), we corrected the apparent relative risks (on

the log scale) in each of the strata defined by age-group and calendar-period. The

standard errors of these log-bias-corrected risks were estimated from 100 bootstrap

samples of the population at risk. Weighted averages (equation (4.4)) of the stratum-

specific estimates were then computed to obtain the calendar-period-specific and age-

specific log-relative risks. These were further exponentiated according to equations

(4.6) and (4.7)) to obtain the bias-corrected relative risks and their standard errors.

4.6 Correcting for the bias due to registration start-

up (Paper 3)

In Paper 3 we illustrate the bias-correction methodology on simulated populations.

We mimic the Swedish population for the time period 1955-2002. Female breast cancer

was chosen as an example of disease with familial aggregation, and for presenting

methodological ”advantages” such as the age-specific incidence profile, magnitude of

the familial risk and case mortality ratio, suggesting this disease representative of

many cancers [119]. For simplicity, we used constant age-specific incidence rates (of

the year 1980).

Our follow-up period was 1955-2002, and the study cohort is defined as in section

4.2. In the real Swedish population, approximately 3.5 million female individuals

match the follow-up definition. To create a virtual population of similar size, the

simulation started with 4 million founders (2 million males and 2 million females),

resulting in a baseline population of approximately 5 million related individuals for
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the year 1955. This population evolves until 2002, with an assumed relative risk

model, where for daughters of affected women, we multiplied age-specific rates of

cancer by a constant factor (the incidence rate ratio, IRR). Three familial risks are

considered, IRR = 2, 5 and 10, and an independent population is created for each of

these values. The case mortality ratio was 5.

The apparent relative risks in strata defined by age-groups (5-year) and calendar

period (decades) were estimated from Poisson regression models. Estimates of S and

P(E) were calculated in each strata, and the corrections were performed as explained

in section 4.5.5.

4.7 Evaluating the bias in the real data (Paper 4)

Using the bias-correction methodology described in Section 4.5, we examined the bias

in familial risk estimates in study cohorts obtained by merging the Swedish Multi-

Generation Register [12] and the Swedish Cancer Register [13]. From the real data,

we estimate the observed prevalence of exposure and the apparent relative risk (RR).

From the simulated data, we estimate the sensitivity of the observed exposure. These

quantities are used in expression (4.3) to calculate the bias-corrected RR, which is

then compared to the apparent RR to evaluate the bias. Figure 4.6 displays this pro-

cess for five of the most common cancer sites (colorectal, lung, female breast, prostate

and melanoma). We investigated how age-group specific and overall estimates are af-

fected by the left-truncation in the Cancer Register.

4.7.1 The apparent relative risk

Follow-up for each individual was started at birth or January 1, 1961, whichever

occurred latest, and was terminated on diagnosis of first cancer, death, emigration, or

the closing date of the study, December 31, 2002, whichever occurred first. Individuals

who appear in different generations in the MultiGeneration Register, first as offspring

and later as parents, were considered independently. Multiple affected offspring in

the same family were treated as independent events. Apparent relative risks were

calculated from Poisson regression models.
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Figure 4.6: Schematic representation of the steps involved in the evaluation of the

bias in the apparent relative risk for five common cancers.
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4.7.2 Sensitivity and true prevalence of exposure

We use Poplab to simulate, for each investigated cancer site, an independent virtual

population register with complete individual family history, for the calendar period

1961-2002. Each baseline population is created from 6 million unrelated founders

(3000000 males and 3000000 females), and evolves to the year 2002. Cases have an

age-specific mortality that is five times that of the general population. Positive family

history of cancer is defined as an affected mother for breast cancer, an affected father

for prostate cancer, and an affected mother or father for colorectal cancer, lung cancer

or melanoma. We used a relative-risk model, where population age-specific rates of

disease are multiplied by a constant factor for exposed individuals from the year of

incidence of the parent. As we did not find an impact of the familial risk used in the

simulation on the sensitivity of exposure (see Figure 5.3), we used in the simulation

the apparent relative risk of that specific cancer.

We impose the effect of start-up of cancer registration on the complete virtual

populations, and estimate the sensitivity and true prevalence of exposure as described

in section 4.5.4.
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Chapter 5

Results

5.1 Paper 1

We illustrated the use of Poplab with the creation of the virtual 1955 - 2002 Swedish

population with related individuals, but of a smaller magnitude than the real popu-

lation. The age profile of the 2002 simulated population was very similar to the real

profile, and the sibship size distribution (the number of offspring in nuclear families)

displayed a reasonable agreement. All these investigations were stable across repeated

simulations. The average age at first birth for mothers of offspring born after 1932

and alive in 2002 resembled closely the real data in the MultiGeneration Register

(Paper 1, Figure 4). When female breast cancer incidence was included in the simu-

lation, we defined familial exposure as having an affected mother, and consequently

increased the age-specific risk of incidence for exposed individuals with a constant

factor. For all assumed models of familial aggregation, the parameters used in the

simulations were faithfully estimated (table 5.1). The age-specific incidence rate ratio

(IRR) extracted from the simulated populations were similar to those employed in

the simulation (figure 5.1).

5.2 Paper 2

Table 5.2 shows the results of Poisson analyses of three populations simulated with

different values of familial risk (2, 5 and 10), after imposing the left-truncation due
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Familial True Poisson regression

aggregation value IRR (95% CI)

RR 1 0.94 (0.81, 1.09)

2 1.97 (1.77, 2.19)

OR 1 1.02 (0.88, 1.18)

2 2.05 (1.85, 2.28)

RR changing

with MAI†

<50 4 3.71 (3.15, 4.36)

≥ 50 2 1.96 (1.75, 2.20)

CI confidence interval; IRR incidence rate ratio

RR relative risk; OR odds ratios

† MAI = maternal age at incidence

Table 5.1: Statistical analyses of familial aggregation of cancer for several simulation

scenarios
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Figure 5.1: Comparison of incident rate ratios (IRRs) used to simulate disease and

the IRRs estimated from the simulated population. Data is shown for the model with

FR = 2. Age is categorized in 5-year groups (represented here by their upper limits),

with the 85+ group as reference.
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to registration start-up, missing maternal identity based on the year of death of the

index person and the combined effects of these two sources of missingness. The

bias due to left-truncation increased with the value of familial risk, and it had a

dramatic impact when the familial risk was 10. With missing maternal identity, which

results in less individuals being analyzed as only those with maternal information are

included in the analyses, the risk estimates were very close to the true values, but

the associated 95%CI were somewhat broader than when analyzing the complete

populations (see Paper 2). Nevertheless, when the populations were simulated with

differential mortality for familial and non-familial cases, the estimates were biased

for all 3 values of familial risk, as it can be seen in table 5.3. When imposing both

left-truncation and missing mothers simultaneously, the patterns of bias were similar

to those caused by left-truncation only (i.e. increasing with familial risk), but of a

smaller magnitude. All these investigations were performed for 3 different values of

case mortality ratio (2, 5 and 10), but we found no impact of this parameter. The

results in Table 5.2 are shown for a mortality ratio of 5.

Truncated∗

FRR = 2 FRR = 5 FRR = 10

1.88(1.79, 1.98) 4.33(4.20, 4.47) 7.47(7.31, 7.64)

Missing mothers†

FRR = 2 FRR = 5 FRR = 10

2.01(1.94, 2.09) 5.09(4.96, 5.23) 10.14(9.93, 10.35)

Combined‡

FRR = 2 FRR = 5 FRR = 10

1.98(1.87, 2.09) 4.64(4.49, 4.80) 8.16(7.96, 8.36)

∗ Maternal cancer truncated before 1955.

† Missing mothers based on daughters’ YOD.

‡ Combining the truncation and missing mothers.

Table 5.2: Overall effects on familial risk
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We continue to investigate the impact of left-truncation for background incidence

rates of different magnitude, by simulating populations with age-specific incidence

rates that were half and double, respectively, those of breast cancer. Figure 5.2 shows

the results from analyzing the populations simulated with a familial risk of 5. The

bias was more pronounced as the disease was more common, and this effect was even

more visible for higher values of risk (Paper 2, Table 3).

We also investigated the contribution of the age distribution of disease and age

structure of the population to the bias from left-truncation. We ”constructed” a

theoretical disease incidence, in which the rate applied to each age group was the

breast cancer incidence rate for women 20 years older (figure 4.5), which results in

substantial incidence rates at young ages. We compared the populations simulated

with this incidence to those simulated with breast cancer incidence, and found a much

larger bias especially for a high familial risk (for FR = 10, the estimates were 5.87

95%CI (5.79, 5.95) and 7.47 95%CI (7.31, 7.64), respectively). We also mimicked

the real Swedish family data context, by restricting the study cohort to persons born

after 1932. The bias did increase with the true value of familial risk but was of a

lesser magnitude than the bias resulting from analyzing the unrestricted cohorts.

Based on these investigations, we concluded that the left-truncation of family his-

tory due to registration start-up would be the cause of most dramatic bias in familial

Non-differential MR†

FRR = 2 FRR = 5 FRR = 10

2.01(1.94, 2.09) 5.09(4.96, 5.23) 10.14(9.93, 10.35)

Differential MR‡

FRR = 2 FRR = 5 FRR = 10

1.72(1.66, 1.79) 4.61(4.49, 4.74) 9.23(9.04, 9.43)

† Case mortality ratio (MR) is 10.

‡ Case mortality ratio is 2 for nonfamilial cases and

10 for familial cases.

Table 5.3 Effects of missing family links on familial risk estimates
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risk estimates, and bias-correction methodology in the framework of population-based

registers should be developed.

5.3 Paper 3

In Paper 3 we focused on finding a bias-correction formulation of familial risk esti-

mates, that uses quantities which can be obtained from the simulated context. For a

range of familial risks, the truncation of family history is demonstrated to result in

non-differential misclassification of exposure, and sensitivity that has little or no de-

pendence on the familial risk or the incidence rates (figure 5.3). Figure 5.4 illustrates

the dependence of the prevalence of exposure on the value of familial risk.

As already concluded, the bias is most pronounced for high familial risks. We

found that estimates could be dramatically biased especially when data are extracted

from registers with a short life-span (Figure 5.5, panels (B:I) and (C:I)), and for

older study cohorts (panels (B:II) and (C:II)). In all the situations studied, the bias-

corrected estimates are in excellent agreement with the true values.

brca:2 brca brca*2

0
1

2
3

4
5

6

Figure 5.2: The impact of left-truncation on familial risk estimates changes with the

background incidence rates. The dotted line represents the true value of risk.
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Figure 5.3: Sensitivity for a cohort at risk of breast cancer, for the calendar period

1956-2002, for various background incidence rates (panel (A)) and 3 values of familial

risk (panel (B)).
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Figure 5.4: Prevalence of exposure (defined as ”affected mother”) for a cohort at risk

of breast cancer, for the calendar period 1956-2002, for 3 values of familial risk .
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Figure 5.5: Apparent relative risk (IRR) estimates recovered from Poisson analyses

of truncated populations (triangles), and corrected estimates computed by the bias-

correction formula (solid circles). The panels show, for three values of familial risk,

calendar-specific (on the left) and age-specific estimates (on the right): IRR = 2 (A:I

and A:II), IRR = 5 (B:I and B:II) and IRR = 10 (C:I and C:II). The dotted lines

represent the true values of familial risk.
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5.4 Paper 4

In the last study we evaluated the bias in familial risk estimates from using the

Swedish MultiGeneration and Cancer Registers, for five cancers: colorectum, lung,

breast, prostate cancer and melanoma. Corrected age-group specific and overall es-

timates were close to the apparent relative risks for the first four cancers, with over-

all values of 1.99 95%CI (1.85, 2.14), 2.05 (1.86, 2.26), 1.84 (1.76, 1.92) and 2.33

(2.19, 2.48), respectively. For melanoma, the apparent estimate, 2.68 (2.35, 3.07) was

somewhat smaller than the corrected estimate, 3.18 (2.73, 3.64), and the associated

apparent 95% CI did not include the corrected value. When the exposure of interest

is a parent affected at a younger age, the bias is more pronounced (Figure 5.6), with

the naive estimate for melanoma changing from 4.07 (3.21, 5.16) to 5.67 (4.51, 6.83)

after correction.
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Figure 5.6: Overall apparent relative risk (triangles) and bias-corrected estimates

(solid circles) in offspring with parental history of concordant cancer for 5 cancers:

Colorectal, Lung, Breast, Prostate, Melanoma. Exposure is defined as an affected

parent (panel (A)), and as a parent incident before 60 years of age for colorectal, lung

and prostate cancer, and before 50 years for breast cancer and melanoma (panel (B)).
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Chapter 6

Discussion

6.1 General overview of Poplab (Paper 1)

The objective of the present thesis was to assess the reliability of using population-

based registers in estimating measures of familial aggregation of diseases. The impact

of potential limitations of these data sources can be evaluated against a golden stan-

dard. We have developed a simulation tool, Poplab that creates virtual populations

of related individuals evolving over calendar time, with complete family history of

disease, by use of simple vital statistics, such as population fertility, mortality and

incidence rates. This tool generates first the web of family relations at a given point

in time, the baseline year, which by itself may be of interest. At the completion of the

evolved population, an ideal population register was mimicked, where all relationships

are fully known, and demographic and disease characteristics can be easily extracted

for any given year.

Poplab allows the choice between several family models, such as the relative-risk

and odds-ratio model, which could be constant across age-groups or vary with the age

at onset of the affected relative, as this is a known feature of many heritable diseases

[41], [122], [123], [124]. In addition, the familial aggregation could operate through

parents or siblings. A simulation tool equipped with several disease models enables

the investigation of the usual analytical strategies for their robustness to the assumed

underlying disease model.

We have applied this methodology to mimic the Swedish population, and found
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that the simulated population mirrors the real age-profile and the resulted average

age-gap between mother and first born was in excellent agreement with the real

population [12], as expected when using the correct age-specific fertility rates for

each year. These features were reproduced in repeated simulations. The baseline

and evolved populations both exhibit a reasonable sibship-size distribution, but they

differ somewhat from the real population. Some of this discrepancy may be due to

the incomplete family links in the MultiGeneration Register, especially for earlier

birth cohorts. However, the surplus of families of size one and the deficit of families

of size two are to be expected from simulating each birth as an independent event.

In reality, a woman’s childbearing is influenced by many factors, including desired

family size, economic status and societal norms [125], [126], [127], [128]. As an initial

illustration of how this environment can be used in studies of familial diseases, female

breast cancer incidence was simulated under several familial models which increased

cancer risk in offspring of affected mothers, by a known factor. We chose this disease

due to a well acknowledged contribution of family history to this malignancy and

a middle-range magnitude of familial risk (approximately 2.0) among those cancers

that aggregate in families [119], [15]. Through standard epidemiological analyses, the

value of the familial component of cancer used in the simulations was extracted from

the virtual populations. This provided the basis for using the created populations to

investigate how known values of familial risk would be modified by various sources of

incompleteness. We mimicked and examined mainly two such sources encountered in

the real Swedish registers: the lack of family history information and missing/broken

family links between population members. The former problem originates from the

absence of knowledge on affected individuals before the Cancer Register [13] was

started, while the later one arises from the various inclusion/exclusion criteria and

other administrative considerations of individuals present in the MultiGeneration

Register.
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6.2 How large is the bias, and what is causing it?

(Paper 2)

Our illustrations included levels of familial risk (2, 5 and 10) and case mortality ratio

(2, 5 and 10) that cover a spectrum of diseases with familial aggregation [33], [132],

[133], [134], [135]. Due to already mentioned methodological advantages, we mainly

relied on female breast cancer. To understand the contribution of each register to

the magnitude of bias, in a first step only cancer history is truncated and family

information is preserved, while in a second step family links are broken and the

history of cancer is kept intact. Naive statistical analyses were then performed by

using just the available complete data.

Left-truncation resulted in a downward bias for all models studied, thus yielding

conservative estimates of risk, as expected when the misclassification of exposure is

nondifferential [97], [136], [103]. The bias was of increased magnitude at high levels of

familial risk and for large background incidence rates. For example, the incidence rate

ratio estimates corresponding to the three levels of familial risk were 1.88 (resulting

in 6 percent bias), 4.33 (13 percent bias), and 7.47 (25 percent bias), respectively, for

the model with 1980 breast cancer incidence rates and a mortality ratio of 5. It is

clear that, in the early years of registration, the information from the cancer register

cannot give valid estimates of familial risk. However, as time passes, family history is

more faithfully recorded; thus, study designs that use, for example, only recent years

from a longer registry accrual time can produce valid estimates [137], [138]. We noted

(Paper 2, Figure 2) that, for cancers with a low familial risk, reasonable estimates

of familial risk can be achieved in a relatively short time (approximately 20 years).

However, when this risk is higher, there is a more long-lasting bias.

The age pattern of disease also has an impact on the magnitude of bias due to

left-truncation. In our illustrations, follow-up began in 1955; thus, cohort members

affected by loss of family history were in their twenties (the Multi-Generation Reg-

ister records only those persons born after 1932), and many had parents younger

than 50 years of age at start-up. Thus, when the studied disease affects mainly older

persons (for breast cancer, substantial incidence occurs after the age of 50 years),
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left-truncation of maternal cancer will have only a modest impact on familial risk

estimates since these mothers are unlikely to have developed the disease before regis-

tration start-up. However, when the disease affects younger individuals, as reflected

by the population simulated with an incidence profile that was shifted with 20 years

towards young ages, the loss of family history due to truncation can be substantial,

resulting in serious biases (Paper 2, Table 3). Thus diseases like melanoma, thyroid

and testicular cancer which are characterized by younger incidence profiles [70], [131],

[139], [134], [140] are expected to be the most impacted by this problem, and we have

demonstrated in Study 4 that truncating the family history of melanoma results in

the most serious bias. Left-truncation of cancer diagnoses in siblings biased the es-

timates of familial risk to a lesser extent compared with the loss of maternal cancer

diagnoses, as the overall age difference between sisters was considerably smaller than

the gap for mother-daughter pairs.

By using patterns of missingness similar to the Swedish MultiGeneration Register,

maternal identity was hidden in realistic proportions for individuals deceased within

certain time frames. For all studied levels of familial risk and mortality ratio, there

was little or no bias when mortality for familial and non-familial cases was the same.

However, for some diseases, familial cases may experience a differential mortality.

There are indications that carriers of the BRCA1 mutation for breast cancer might

have a poorer prognosis than sporadic cases [130]. When we simulated populations

with a higher mortality for familial cancer cases, we noted a bias with magnitude

depending on the value for familial risk (Table 5.3). This higher mortality leads

to preferential exclusion of exposed cases from the study cohort, when they do not

survive to the time point when good-quality parental information is available (1991

in the case of MGR). Thus, the differential mortality would be expected to lead to a

downward bias in the familial risk estimates, as we observed.

After separately studying left-truncation of family history and missing maternal

identity, we constructed study cohorts that would result from using real register data

subject to both of these sources of incompleteness. The bias in the familial risk

estimates followed patterns similar to the bias resulting from left truncation only but

was of a somewhat lesser magnitude (Table 5.2). This is a predictable consequence

of some age groups (mainly older persons) being subject to exposure truncation and
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exclusion from the study cohort because of an unidentified mother. Consequently,

persons whose family history would otherwise be truncated are excluded from the

study cohort, so that the bias of familial risk estimates is mitigated.

6.3 From evaluating the bias to bias correction

(Paper 3)

Failure to account for left-truncation of exposure (family history of disease) due to

registration start-up is likely to result in biased relative risks [10], [141], and the

magnitude of such biases, as illustrated in Study 2, is influenced by several factors,

such as the value of familial association, background incidence rates, the mortality

mechanism for cases, disease age pattern and the biological relationship between

case and relative. Considering the dramatic impact on the validity of estimates that

truncation may cause, we have developed a bias-correction method, for which the

required sensitivity of the observed exposure is estimated based on the simulation

context Poplab. The expression of the bias-corrected relative risk is adapted from the

published literature on non-differential misclassification of exposure [97].

The same values of familial risk were assumed as in Paper 2 (2, 5 and 10), and we

continued exemplifying with female breast cancer incident according to age-specific

1980’s Swedish rates. As the previous study suggested no impact of different values

of case mortality ratio on the apparent relative risk values, we assumed a value of 5

for this parameter in all our investigations. We simulated populations of larger sizes

(approximately 5 million founders as opposed to 1 million in the previous study) so

that the bias-correction can be performed both for overall estimates and for age-group

specific.

The correction performed well for all values of familial risk, and we obtained valid

estimates even for registers with a short life-span (10-20 years) and for sparse age-

groups. Our approach is a feasible alternative to the use of validation samples in

correcting for left-truncation bias in family studies.

The effects of making the assumption of non-differential misclassification of ex-

posure on both the direction and magnitude of bias and on the performance of bias-
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correction methods have received a lot of attention [93], [94]. If this assumption

does not hold, erroneous conclusions are drawn regarding the direction of bias, and

”corrected” relative risks considerably higher than the truth are calculated [96]. In

our case, we tested for an association between an indicator for family history knowl-

edge (or equivalently, a mother becoming incident after registration start-up) and

the disease status of her daughter. We did not expect the misclassification of ex-

posure to be differential, and the odds ratios close to the null value supported this

hypothesis. This finding simplifies the bias-correction methodology, as differential

misclassification would require the sensitivity among diseased individuals to be esti-

mated separately, which can prove difficult with sparse number of cases registered as

exposed.

As the prevalence of exposure depends on the level of familial risk [142], the

true prevalence of exposure should be calculated as the ratio between the observed

prevalence of exposure and the sensitivity, two quantities that are estimable without

knowledge of the true value of familial risk. Thus the bias-correction formula becomes

a simple function of factors readily provided by the available data (i.e. the apparent

relative-risk and observed prevalence of exposure) and an estimate of the sensitivity

of the observed exposure.

6.4 Bias in studies of cancer using the Swedish reg-

isters (Paper 4)

We studied the familial risk for common cancers using cohorts from the MultiGenera-

tion Register merged to the Swedish Cancer Register. We observed an age-dependent

familial risk for colorectal, breast, prostate cancer, and also for melanoma, with rela-

tively high risks at younger ages. For breast and prostate cancer, these observations

are in agreement with numerous previous studies [143], [42], [144]. For colorectal

cancer and melanoma, the literature has focused on the modification of familial risk

by age of the index case, although some studies of colorectal cancer provide indirect

evidence that younger relatives of cases are at higher risk [145], [146]. We found no

differences in familial risks by age at onset for lung cancer, indicating a low impor-
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tance of genetic factors (as compared to the effect of smoking habits) in this cancer

[147], [148].

We observed little or no bias in the overall estimates of familial risk of cancer,

with the exception of melanoma, a cancer with relatively young age at onset. The

lack of bias for most of these cancers is due to the relatively low familial risk (RR

approximately 2) and/or relatively low incidence in the population. Since melanoma

has both a poor sensitivity and a relatively large value of familial risk, it would be

expected to show the most biased RR (see Paper 2), as we observed. This bias was

worst for exposure defined as a young age at onset in a parent, where the apparent

relative risk in offspring of parents diagnosed before the age of 50 substantially under-

estimated the true (bias-corrected) risk. Such dependence on age is to be expected

since more parental cancers will be truncated at registration start-up. A similar effect

was observed for breast cancer.

We have focused on biases due to truncation of disease events, which is only

one of the potential sources of incompleteness in any real population. For family

studies, missing parental links will result in subjects whose exposure information

(family history) is missing and these will usually be dropped from analysis and only

complete nuclear families analyzed [149], [150]. Where the missing links depend on

calendar time (for example, improvement in completeness of family registration over

time) as is the case in the Swedish MultiGeneration Register [12], we have shown that

significant bias only occurs where there is a very strong differential mortality between

familial and non familial cases (Paper 2). We are aware of no differential mortality of

such magnitude; even BRCA1/2 breast cancer has been shown to have a somewhat

similar prognosis to sporadic breast cancer [151], [152], [153], [154].

In this study we have explored biases in the context of a positive family history

being defined as an affected parent. Since a sibling is also a first-degree relative, an

affected sibling provides important information about genetic susceptibility. Although

some studies investigate the risk due to an affected sibling [155] or any affected first-

degree relative [156], studies of parental relative risk are predominant in the literature.

This is understandable, as cancer is generally a disease of older people, so that the

parental generation provides more complete information about the disease profile in a

family. On the other hand, due to their younger age relative to parents, siblings will

57



be less subject to left-truncation, so we would expect minimal bias in the estimates

of sibling relative risks based on the findings presented here.

6.5 Simplifying assumptions and limitations

In all the simulations, the following simplifying assumptions were introduced:

(i) For each mother, we chose a spouse close in age (from 1 year younger to 4 years

older), which is realistic in our Swedish data. Although this could be extended to a

stochastic model, the age gap between spouses is not a primary factor of interest for

our investigations.

(ii) In applying fertility rates we assigned each new birth as an independent event.

Future extensions could accommodate more realistic fertility patterns (for example,

influenced by parity and gap between offspring) and other family structures such as

half-siblings and adoptions.

(iii) We simulated closed populations without immigration or emigration. Thus

our method is suitable for studies of homogeneous populations; it could be extended

to include immigration/emigration, provided the data are available.

When some of these simplifications interfere with the research questions under

consideration, additional programming effort could transform the software as needed,

provided also that appropriate population data are available.

One potential limitation, in Study 3 and 4, is that in creating the baseline popula-

tion we use the first available incidence rates of cancer in the run-in simulation. This

assumption has been used previously [10] in calculating the probability of a parent

being disease-free before the start-up of disease registration. Since most cancers have

a rising incidence with calendar time, these will overestimate the true incidence rates

experienced by the population prior to the baseline year. We investigated the im-

pact of the baseline incidence rates on the bias-corrected estimates, by simulating the

breast cancer baseline population with age-specific incidence rates that were half the

true rates. Both the age-group specific and the overall bias-corrected estimates were

very similar to those obtained for the population where the baseline was simulated

with the baseline rates.

Another potential limitation of our method is the assumption of a constant factor
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increasing the age-specific mortality rates from the general population for all cancers.

This is likely to overestimate the mortality in all but the oldest age groups or most

fatal cancers [157]. However, we have shown that the bias in the familial risk is

essentially independent of the mortality rate ratio.

Finally, we did not simulate with age-specific familial risks, but instead we used

an average value of familial risk across all ages for every simulated cancer. We do not

expect this assumption to influence our results, as we have found in Paper 3 that the

sensitivity does not depend on the value of familial risk used in simulations.
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Chapter 7

Conclusions

The software package Poplab is available for free download. With a running version

of R [117], the user can investigate the performance of various analytical approaches

to family data. Realistic settings for epidemiological exploration of diseases can be

created by specifying appropriate input data. The simulation can also be run to

a specified time point in the future (using projected vital rates or the latest rates

available) to extrapolate the estimates of population disease burden or other features

of interest.

Extensions of the package to incorporate additional features specific to other re-

search questions can create valuable tools for experimentation and investigation.

We studied the impact on familial risk estimates of left-truncation of family history

of disease and of missing parental identity, and we showed that truncation induces

considerable bias. The magnitude of such bias and the time needed for the register

to recover are specific to each study because they depend on the value of familial

association, background incidence rates, and the mortality mechanism for cases. They

also depend indirectly on disease age pattern and family relationship through loss of

family history at start-up.

Disease registration start-up was found to induce non-differential misclassification

of exposure. The sensitivity of the observed exposure has little or no dependence on

the value of familial risk or magnitude of background incidence rates, but only on

the start-up date of registration (i.e. whether the family relative was incident after

the beginning of registration). This implies that the estimates of sensitivity required

60



to correct for bias will be specific to each study, and that they can be obtained from

a population simulated with any reasonable assumed value for the familial risk, and

feasible incidence rates that display a realistic age-profile.

The strength of our bias-correction methodology resides in the use of estimates

of sensitivity obtained from simulated populations, without the need for validation

samples. With simple population vital statistics and disease incidence rates, familial

risks can thus be corrected for the unavoidable bias due to registration start-up.

Our final study of biases in familial risk of cancer based on register data is reas-

suring of the validity of the large body of literature that has used the Swedish and

other Scandinavian registers to estimate overall familial risks for common cancers.

However, where the exposure of interest is early age of onset in a parent, commonly

considered to be an indication of genetically determined cancer, estimates may be

biased, especially where familial risk is high.

Conclusions, in brief

• We offer Poplab for free download

• Poplab can be used to simulate populations with desired demographic and dis-

ease features

• Left-truncation due to start-up of disease registration induced considerable bias

• Missing links in the MultiGenation Register can potentially induce bias for

diseases with differential mortality for familial and non-familial cases

• We propose a bias-correction method that performs well and does not necessi-

tate validation samples

• Familial studies of cancer based on data from the Swedish Registers are expected

to be generally unbiased, except for those instances where large familial risks

and young age at onset combine
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Chapter 8

Future studies

As illustrated in the present thesis, both, the life-span of a register and the age of the

index persons at the beginning of registration, impact on the proportion of lost family

history. Since the Swedish incidence rates of cancer are not dramatically different from

the Scandinavian rates, comparisons of biases from population and cancer registries

in the Nordic countries could offer added insight into the relative weight of these

contributing factors. Our methodology can be used for such comparisons.

Future disease models that may be implemented in Poplab can specify an increased

risk for individuals having an affected parent from the time they reach that parent’s

age at incidence, a genetic ”doom” (from birth) for the descendants of a subpopulation

of cases, or offspring risk modified by sex of parent (i.e., affected mother versus affected

father).

Features of reproductive history known to be associated with disease, such as

reduced fertility, delayed childbearing, age at first birth and parity, can be included

in future risk models to study their role in familial aggregation [158]. For example, in

breast cancer studies one could model the input risk parameter as a function of age

at first birth, parity and age at menopause [159].

As studies of disease aggregation are complicated by the definition of familial

”exposure”, such as the biological relatives considered, the family size or age-gap

between relatives, the influence of various definitions of exposure on estimates of

familial risk can also be explored. These considerations impact on the power of a

research study, and are especially relevant when needing to incorporate expensive
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genetic data (e.g., biomarker or molecular information [160], [161], [162], [163], [164])

and for finding more efficient strategies for predictive genetic testing [165], [166].

Immigrant sub-populations may well have different background incidence rates

and a different age structure than their host population [167], [168], and left-truncation

is no longer a fixed point in calendar time but is specific to the person’s immigration

date. We have shown that the bias in familial risk estimates depends on all of these

factors, but understanding the nature of the dependence for migrant populations

requires further dedicated research.

While this thesis addresses left-truncation biases and simple corrections, it would

be of interest to investigate these issues for diseases that aggregate under family

patterns that are not specific to cancers, and with high incidence rates. Future

research could also address biases in disease-related survival.
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