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ABSTRACT 
Natural killer (NK) cells are innate immune cells that contribute to defense 
against infected and transformed cells by target cell killing and cytokine 
release. In addition, data suggest that NK cells contribute to immune 
homeostasis and reproduction. In this thesis, we assessed the contribution of 
individual receptors and intracellular effector molecules to the function of 
freshly isolated, resting human NK cells.  

A reductionist approach, using Drosophila cells transfected with ligands for 
human NK cell receptors, revealed that combinations of synergistic signals 
from distinct receptors were required to induce efficient NK cell cytotoxicity. 
Engagement of CD16 by IgG was sufficient to induce degranulation, whereas 
engagement of LFA-1 by ICAM-1 was sufficient to induce not only adhesion, 
but also granule polarization. Efficient antibody-dependent cellular cytotoxicity 
required the combination of granule polarization induced by LFA-1 and 
degranulation induced by CD16. Receptors NKp46, NKG2D, 2B4, DNAM-1, 
and CD2 have previously been implicated in natural cytotoxicity. Unexpectedly, 
engagement of these receptors by specific antibodies failed to induce resting 
NK cell cytotoxicity. For natural cytotoxicity, co-engagement of specific pairwise 
combinations of activating receptors synergistically induced degranulation and 
cytokine production. Thus, the term “co-activation receptor” has been proposed 
to describe natural cytotoxicity receptors that function as synergistic pairs. 
KIR2DL4 is an evolutionary conserved member of the KIR family of receptors. 
Unlike other NK cell receptors, KIR2DL4 was shown to reside in intracellular 
vesicles. Thus, soluble, but not solid-phase agonists of KIR2DL4, including 
natural ligand HLA-G, induced cytokine secretion by NK cells. Without eliciting 
cytotoxicity, this distinctive activation has putative implications for pregnancy. 

Further, NK cells were assessed from patients diagnosed with familial 
hemophagocytic lymphohistiocytosis (FHL), an early onset, fatal 
immunodeficiency syndrome associated to mutations in genes implicated in 
cellular cytotoxicity. Analysis demonstrated a requirement for Munc13-4 and 
syntaxin 11 in resting NK cell degranulation. Remarkably, IL-2–stimulation 
partially restored degranulation and cytotoxicity by syntaxin 11–deficient NK 
cells. This could explain the later onset and less severe disease progression 
observed in FHL caused by nonsense mutations in STX11, relative to 
mutations in PRF1 or UNC13D. In accord, an UNC13D mutation allowing 
residual degranulation and cytotoxicity was also associated with later disease 
onset. Our data suggest that the observed defect in NK cell degranulation may 
contribute to the pathophysiology of FHL, that evaluation of NK cell 
degranulation in suspected FHL patients may facilitate diagnosis, and that 
these new insights may offer novel therapeutic possibilities.  

Our findings provide detailed insight into the molecular triggering and regulation 
of human NK cell function. Appreciation of the contribution of individual genetic 
elements to immune function promises increased understanding of disease. Of 
clinical relevance, new techniques facilitate improved diagnosis, whereas 
fundamental understanding may assist in development of better treatment. 
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FOREWORD 
This thesis is divided into five main sections. Section one comprises a common 
introduction to the present work. It contains a basic introduction of defence 
reactions in general, immunology in particular, and the general aims of this 
thesis. This section is written so that readers outside the field can understand it. 
The following two sections provide an introduction the current view regarding 
the regulation of NK cell activity and the physiological and clinical significance 
of NK cells. Section two provides a detailed review of the molecular specificity 
of and events leading to human NK cell activation. Section three appraises the 
functions of NK cells as revealed by in vitro experiments, genetics, and clinical 
studies. The fourth section presents and discsses the findings contained within 
the work in this thesis. Finally, section five briefly derives some general 
conclusions and speculates on future prospects and perspectives in relation to 
the results in the presented work. 

This thesis concerns the activation of human NK cells freshly isolated from 
peripheral blood. Papers I and II deal with NK cell recognition and elimination 
of target cells. The first papers identify the contributions of spefic receptors to 
NK cell activation. Paper III focus on activation of NK cells by an unsual 
receptor with putative implications for human reproduction. Papers IV–V 
assess NK cell cytotoxic function in patients suffering from a rare 
immunodeficiency syndrome characterized by excessive inflammation. The 
findings provide mechanistic insight into NK cell cytotoxicity, demonstrate 
applicability of laboratory research findings to the clinical diagnosis of 
immunodeficiency disorders, and offer clues to the biological significance of NK 
cell function. 

 

Yenan T. Bryceson  Stockholm, July 22, 2008 
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ABBREVIATIONS 
ADCC antibody–dependent cellular cytotoxicity 

ALPS autoimmune lymphoproliferative syndrome 

β2m beta2-microglobulin 

CHS Chediak-Higashi syndrome 

CIP Cdc42 interacting protein 

CMV cytomegalo virus 

CTL cytotoxic T lymphocyte 

DNA deoxyribonucleic acid 

FHL familial hemophagocytic lymphohistiocytosis 

GS Griscelli syndrome 

HCV hepatitis C virus 

HIV human immunodeficiency virus 

HLA human leukocyte antigen 

HLH hemophagocytic lymphohistiocytosis 

HPS Hermansky-Pudlak syndrome 

HVEM herpes virus entry mediator 

ICAM intercellular adhesion molecule 

IFN interferon 

IL interleukin 

ITAM immunoreceptor tyrosine-based activation motif 

ITIM immunoreceptor tyrosine-based inhibition motif 

ITSM immunoreceptor tyrosine-based switch motif 

KSHV Kaposi’s sarcoma herpes virus 

KIR killer cell immunoglobulin-like receptor 

LAD leukocyte adhesion deficiency 

LFA leukocyte functional antigen 

LIR leukocyte immunoglobulin-like receptor 

MAPK mitogen–activated protein kinase 

MHC major histocompatibility complex 

MIP macrophage inflammatory protein 

MTOC microtubule organizing center 

NCR natural cytotoxicity receptor 
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NK natural killer 

NLR nucleotide-binding domain, leucine-rich repeat containing 

PI3K phosphatidylinositol 3-kinase 

PKC protein kinase C 

PLC phospholipase C 

RNA ribonucleic acid 

SNARE soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

SHP Src homology 2 domain-containing phosphatase 

TLR Toll-like receptor 

TNF tumor necrosis factor 

TRAIL tumor necrosis factor-related apoptosis-inducing ligand 

VCAM vascular cell adhesion molecule  

WAS Wiskott-Aldrich syndrome 

WASp Wiskott-Aldrich syndrome protein 

WIP Wiskott-Aldrich syndrome protein interacting protein 
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1 INTRODUCTION 
1.1 CONCEPTS OF LIFE 

What life is remains an open question. However, the discovery of DNA as a 
common thread containing the blueprint for living organisms (1), and more 
recently the deciphering of whole genomes for many different species, 
including humans (2, 3), have provided an unprecedented framework for 
understanding the inner workings of life itself. Sustenance of life requires an 
orderly division of tasks. Evolution has given rise to increasingly complex 
assemblies of cells adept to a wide range of environments. Multicellular 
organisms strive to preserve order and integrity through intricate but precisely 
defined interactions. Maintaining such equilibrium, a process commonly termed 
homeostasis, is vital to life and requires sophisticated regulation. To counter 
threats to their existence and ensure biological fitness, organisms have 
developed a variety of genetically programmed defence reactions.  

A prerequisite for a defence reaction is the recognition of an event as a threat 
to the wellbeing of the organism. Higher cognitive perceptions aside, an 
organism must recognize and discriminate between what is normal “self”, i.e. 
everything constituting an integral part of a given individual, and whatever “non-
self”, whether foreign or altered “self”. Such recognition could, in theory, be 
positive or negative. In positive recognition, the organism actively recognizes 
“non-self”, whereas negative recognition implies reactions triggered by the 
failure to recognize “self”. Such discrimination is exemplified by biological 
systems in place to avoid self-mating in unicellular eukaryotes, whereas more 
complex organisms invest considerable resources in similar systems used to 
defend against pathogens (4). Pathogens are infectious agents that cause 
disease to their host. To a large extent, the experimental part of the present 
study deals with strategies for recognition and elimination of infected or 
aberrant cells that might otherwise pose a threat to the wellbeing of humans. 
 
1.2 BASIC ASPECTS OF IMMUNOLOGY 

The word “immunology” is derived from immunis, Latin for “exempt”. In this 
context, “exempt” usually is referred to being free of a particular disease. 
Individuals resistant to a disease were said to be immune to them. Thus, the 
status of a specific resistance to a disease is referred to as immunity.  

Immunology covers the study of all aspects of the immune system in living 
organisms. The immune system is an organism’s physiological defence against 
infection. Infectious diseases are a leading cause of morbidity and mortality 
worldwide and are a major challenge for the biomedical sciences. Striving to 
preserve homeostasis, the immune system can also protect against cancer, 
another primary cause of death, by control of malignantly transformed cells. 
Thus, immunology aspires to improve human health. 

In its broadest sense, the study of immunological defence reactions 
encompasses all cells in an organism. For example, cytosolic recognition 
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systems like the NLR (nucleotide-binding domain, leucine-rich repeat 
containing) family of proteins are widely expressed and sense diverse cellular 
insults such as microbial infections, reactive oxygen species, and crystal 
deposits (5). Likewise, cells ubiquitously express multiple endosomal and 
cytosolic receptors that sense viral nucleic acids (6). Such evolutionary 
conserved defence systems do not only act as cell intrinsic sentinels for 
pathogens. In complex organisms, these sentinels may also alert extrinsic 
systems consisting of specialized immune cells. Immune cells have long been 
the focal point of immunology. In classical terms, the study of vertebrate 
immunology has been divided into the study of defence reactions mediated by 
soluble products in the body fluids, referred to as humoral (from humour, Latin 
for “liquid”) and those mediated directly by cells, referred to as cellular. This 
thesis deals with cell-mediated immune reactions. 

To determine appropriate action, immune cells rely on, together with soluble 
cues, surface receptors that engage target cell ligands and dictate the 
functional responses of the immune cells. To a large part, this function is 
dependent on specific recognition of foreign, “non-self” molecules, termed 
antigens. In addition, tissue damage or loss of “self” may also alert the immune 
system. The thousands of genes dedicated to immune function underscore the 
significance of the immune system to life. Based on the mechanisms by which 
different immune cells use to identify antigens, the immune system can 
logically be divided into two cooperative arms: the adaptive and the innate 
immune systems. 

B and T lymphocytes constitute the adaptive immune system. These cells each 
express a unique antigen-specific receptor generated by somatic 
recombination of a limited number of genetic elements. In vertebrates, RAG 
proteins facilitate the generation of vast receptor diversity. The evolutionary 
appearance of the RAG genes in the vertebrate lineage coincided with the 
vertebrate species radiation approximately 500 million year ago (7). Upon 
encounter with a cognate antigen, cells expressing a receptor with appropriate 
specificity to the antigen are clonally expanded, a process involving cellular 
proliferation that in effect takes 1-2 weeks. Providing immunological memory, 
the adaptive immune system can mount a more rapid and effective response 
on subsequent encounters with the same antigen.  

The innate immune system is often viewed as a primordial first line of defence 
against infection. In contrast to adaptive immune cells that undergo somatic 
recombination, innate immune cells rely on germline-encoded receptors that 
recognize conserved molecular patterns discriminating microorganisms from 
our own cells. Many pathogens are cleared rapidly without the aid of adaptive 
immune functions. In situations where the innate immune system is unable to 
eliminate a pathogen on its own, it acts to limit the infection until antigen 
specific clones of B and T cells have been sufficiently expanded to ensure 
elimination. Although adaptive B and T cells have been a principal focus of 
immunologist for their ability to confer protection to numerous pathogens, the 
fundamental role of innate immune cells in conferring protection and eliciting 
immune responses is increasingly being appreciated (8). 
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The adaptive and innate immune systems collaborate in a concerted fashion to 
destroy pathogens, reciprocally enhancing each other’s actions (9). Through 
release of cytokines and presentation of peptides, cells of the innate immune 
system initiate and direct adaptive responses. Conversely, B cells secrete 
antibodies that activate complement and identify targets for phagocytosis or 
lysis by innate immune cells.  

Together, immune cells possess potent weaponry to eliminate pathogens and 
maintain homeostasis. At the same time, mechanisms must be in place to 
contain such effector functions, avoiding excessive damage to host cells and 
tissues. Disproportionate immune reactions may culminate in pathological 
conditions such as autoimmunity. Therefore, a well-functioning immune system 
exerts self-constraint, at once counter-balancing signals for activation with 
others that contain or terminate responses, thereby avoiding tissue damage 
and limiting energy expenditure. Through evolution of genetic elements, life 
itself seeks a balance between efficient pathogen elimination and self-
tolerance. Understanding the mechanisms underlying proper immune function, 
and what happens when they go awry, will hopefully provide us with knowledge 
and ability to manipulate the immune system for the benefit of human health. 
 
1.3 GENERAL AIMS OF THIS THESIS 

This thesis will focus on cell-mediated cytotoxicity by natural killer (NK) cells. 
Originally, NK cells were described as large granular lymphocytes with the 
ability to kill tumor cells without prior sensitization through parallel efforts by 
Rolf Kiessling at the Karolinska Institute, Stockholm, Sweden, and Ronald 
Herberman at the National Institutes of Health, Bethesda, MD, USA, 
respectively (10, 11).  

In the 1980s, work by Klas Kärre and Hans-Gustaf Ljunggren provided 
evidence for NK cell recognition of target cells based on the absence of certain 
self-markers, rather than the presence of foreign antigen (12, 13). Later, NK 
cell receptors that confer protection to normal cells were identified in mice and 
humans by the laboratories of Wayne Yokoyama and Eric Long, respectively 
(14, 15). More recently, a number of receptors involved in activation of NK cells 
have been characterized by several different laboratories (16, 17). Still, the 
individual contribution of disparate activating receptors to NK cell effector 
function is not clear. 

One general aim of this thesis was to define the minimal requirements for 
activation of NK cell effector functions, thereby providing insight into the 
strategies employed by NK cells for target cell recognition. To facilitate 
translation of basic findings into clinical use, the studies focused on the 
activation of freshly isolated NK cells from human subjects. Furthermore, 
techniques established through basic research were applied to the diagnosis of 
severe immunodeficiency syndromes, with the prospect of improving treatment 
of patients and facilitating further understanding of the immune system. 

For details about the protocols of the experiments, the reader is referred to the 
material and methods section of the individual papers (I–V).  
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2 NK CELL ACTIVATION 
2.1 DEFINITION, ONTOGENY, AND DISTRIBUTION 

NK cells represent a third lymphocyte lineage and an arm of the innate immune 
system. NK cells were originally defined based on their ability to kill tumor cells 
without prior sensitization (10, 11). Nowadays, NK cells are usually defined 
phenotypically as CD3– CD56+ cells in humans and CD3– NKR-P1+ cells in 
mice (18). Alternatively, a definition of NK cells as NKp46+ cells has been 
proposed (19). Because NKp46 is a marker almost exclusively expressed on 
NK cells (20), and is conserved among mammalian species (21-24), such a 
definition could facilitate improved cross-species comparisons of NK cell 
function. Still, it should be noted that NK cells remain a heterogeneous 
population of cells differing in regards to expression of chemokine, adhesion, 
activation, and inhibitory receptors, as recently reviewed (25, 26). 

Several key aspects of NK cell development occur in the bone marrow. These 
include commitment of hematopoietic precursors to the NK cell lineage, 
education of immature NK cells towards self markers, acquisition of receptors 
involved in target cell recognition, and establishment of functional competence, 
as has been reviewed (26-28). Recent evidence suggest that NK cells may 
also develop in the thymus and secondary lymphoid organs (29-31). 
Nonetheless, athymic humans and mice have functionally competent NK cells 
(32-34). Thus, the ontogenic relationship between different NK cell subsets and 
relevance of thymic NK cell development is not clear (26).  

In regards to distribution, NK cells are widespread throughout lymphoid and 
non-lymphoid tissues, as has been recently reviewed (35). In mice, the 
frequency of NK cells in relation to all lymphocyte subsets is highest in non-
lymphoid organs such as the liver and lung (35). Human NK cells are also 
abundant in liver (36). Effector memory CD8+ cytotoxic T lymphocytes (CTL) 
display a similar pattern of distribution in peripheral tissues (37). Of note, at 
birth, human cord blood NK cells are functionally mature, whereas T cells are 
predominately naïve. Effector CTL develop gradually as a result of infections, 
accumulating in peripheral tissue in an age-dependent manner (38). In 
humans, peripheral blood NK cells are readily accessible for ex vivo analysis 
and constitute approximately 5-20% of adult circulating peripheral blood 
lymphocytes (39). Human NK cell turnover in blood is around 2 weeks (40), 
consistent with data in the mouse (20, 41). Noteworthy, NK cells are the 
predominant lymphocyte population in the placenta during pregnancy (42), 
where they constitute a phenotypical and functional unique NK cell subset (43, 
44). A fundamental enigma of pregnancy it that the fetal cells constitute an 
allograft. Yet, in normal pregnancies, they are in effect not perceived as foreign 
and are not rejected by the maternal immune system.  
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2.2 MOLECULAR SPECIFICITY OF TARGET CELL RECOGNITION 

NK cells contribute to host defence by their ability to rapidly secrete cytokines 
and chemokines, as well as to directly kill infected or malignant host cells. 
Distinct from T and B lymphocytes, NK cell function is controlled by a limited 
repertoire of germline-encoded receptors that do not undergo somatic 
recombination (16, 17). Together with CTL, NK cells share a common 
mechanism for target cell killing that relies on directed exocytosis of secretory 
lysosomes that contain lytic proteins such as perforin, granzymes, Fas ligand, 
and TRAIL (45-47). In addition, NK cells are a major source of chemokines, 
such as macrophage inflammatory protein (MIP)-1α (CCL3) and MIP-
1β (CCL4), and cytokines, such as tumor necrosis factor (TNF)-α and 
interferon (IFN)-γ. MIP-1α and MIP-1β recruit other immune cells to sites of 
inflammation (48). Impeding their function can impair the generation of adaptive 
CTL responses (49). TNF-α initiates pro-inflammatory cytokine cascades (50), 
while IFN-γ promotes Th1 differentiation (51), enhances major 
histocompatibility class (MHC) I expression (52), and has potent anti-
mycobacterial, anti-viral, and growth inhibitory effects (53, 54). In addition to 
target cell recognition, NK cells produce cytokines and chemokines in response 
to soluble mediators, such as IL-12 and IL-18 (55). 

According to the prevailing view, NK cells distinguish normal, healthy cells from 
sensitive target cells by a balance between signals from numerous activating 
and inhibitory receptors (56-58). The net income of key positive and negative 
signaling events is thought to determine the capacity of NK cells to kill target 
cells. However, the precise molecular checkpoints where signals from inhibitory 
receptors abrogate activating receptor pathways are not well defined (59). Most 
receptors either belong to families of genes encoding highly polymorphic 
extracellular domains, or bind to polymorphic ligands. The apparent plasticity in 
NK cell receptor recognition is further underlined by the fact that genetic 
context varies among individuals in a population and functional orthologs of 
some genes are not conserved among different mammals. Thus, the genetics 
of NK cell receptors and the actual recognition of target cells are complex 
processes. The following sections will examine the specificity and proximal 
signaling of human NK cell receptors. 

 

2.2.1 Inhibitory receptors 

In combat with rapidly evolving pathogens, NK cells must achieve specific 
recognition of infected or transformed cells, yet maintain tolerance for self. The 
‘missing-self’ hypothesis (60) advocates a central role for NK cell inhibitory 
receptors and target cell major histocompatilibility (MHC) class I expression in 
determining NK cell specificity. MHC class I molecules present endogenous 
peptides to T cells for adaptive immunity to intracellular pathogens, a strategy 
for recognition of “non-self”. Thus, by eliminating cells with decreased MHC 
class I expression, NK cells form a functional complement to T cell–mediated 
immunity. Inhibitory receptors expressed on human resting NK cells and their 
ligands are listed in Table 1. 
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Table 1.  Human NK cell inhibitory receptors. Inhibitory receptors expressed by freshly 
isolated resting NK cells, their ligands, and their function are listed.  

Surprisingly, inhibitory receptors for classical MHC class I molecules in humans 
(killer cell immunoglobulin-like receptors, KIR, CD158) and rodents (lectin-like 
Ly49), separated by 70 million years of evolution, are structurally distinct (14, 
15). However, the genetic loci that encode receptors for MHC class I in the two 
species represent a striking example of convergent evolution (61). First, both 
KIR and Ly49 loci contain rapidly evolving genes that have arisen through 
extensive gene duplications (62). Second, the loci are highly polymorphic 
among different individuals at the level of gene content (63). Some alleles even 
encode an activating counterpart to an inhibitory receptor. Third, different 
receptors for MHC class I are expressed on distinct peripheral blood NK cell 
subsets. Other inhibitory NK cell receptors for human leukocyte antigens (HLA, 
or human MHC class I), such as NKG2A (CD159a) and leukocyte 
immunoglobulin-like receptor (LIR)-1 (ILT2, CD85j), also display variegated 
expression patterns. Recent analysis has revealed that all possible subsets of 
inhibitory receptor combinations are expressed within the NK cell population of 
any given individual (64). Fourth, in spite of diversity in the extracellular ligand 
binding domains, NK cell inhibitory receptors appear to use a common 
mechanism for inhibition. Upon engagement of classical MHC class I 
molecules (HLA-A, -B, -C), KIR can mediate inhibition of NK cell responses 
through the recruitment of the Src homology 2 domain-containing 
phosphatases (SHP)-1 and SHP-2 to phosphorylated, cytoplasmic 
immunoreceptor tyrosine-based inhibition motifs (ITIMs) (65-67). Similarly, 
CD94/NKG2A, LIR-1, and mouse Ly49 receptors also contain cytoplasmic 
ITIMs that are capable of recruiting SHP-1 and SHP-2 (68). The ligand of the 
CD94/NKG2A lectin heterodimer is the non-classical MHC class I molecule 
HLA-E, which in turn serves as a gauge of classical MHC class I expression 
through its unique requirement for stabilization by leader peptides from HLA 
molecules (69-71). LIR-1 is an Ig-superfamily receptor that binds several alleles 

Receptor       Cellular ligand     Function  
KIR2DL1 (CD158a)      HLA-C group 2   Assess loss of MHC class I alleles     
KIR2DL2/3 (CD158b1, b2)HLA-C group 1   Assess loss of MHC class I alleles          
KIR3DL1 (CD158e1) HLA-B alleles   Assess loss of MHC class I alleles
KIR3DL2 (CD158k)  HLA-A alleles   Assess loss of MHC class I alleles 
LIR-1/ILT2 (CD85j)      Multiple HLA class I  Assess loss of MHC class I expression    
NKG2A (CD94/CD159a)  HLA-E    Gauge MHC class I expression 
KLRG1       E/N/P-cadherin   Assess loss of tissue integrity 
NKR-P1 (CD161)      LLT1     ?     
LAIR-1 (CD305)  collagen    Control activation in extracellular matrix
Siglec-7 (CD328)      sialic acid    ?
Siglec-9 (CD329)      sialic acid    ?
IRp60 (CD300a)   ?     ?
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of classical MHC class I, in addition to the non-classical MHC class I molecules 
HLA-G and HLA-F (72-74). Functional and crystallographic studies suggest 
that KIR may exhibit a degree of peptide selectivity (75-79). Interestingly, as a 
result of cellular stress, peptides derived from heat-shock proteins may replace 
MHC class I leader peptides in HLA-E, abrogating NKG2A binding to HLA-E 
and inhibition of NK cells (80). The high resolution crystal structure of 
CD94/NKG2A, in combination with results from mutagenesis studies, has led to 
a model for the CD94/NKG2A–HLA-E complex. According to the model, the 
CD94 chain has a more dominant role in the interaction with HLA-E, as 
compared to NKG2A (81). Thus, in spite of a degree of peptide selectivity, 
these receptors are generally considered to bestow NK cells with means of 
evaluating target cell expression of multiple “self” molecules. 

Inhibitory receptors for MHC class I are thought to mediate NK cell self-
tolerance (82, 83). However, in spite of defective MHC class I expression, NK 
cells are self-tolerant in β2m–deficient mice (84, 85) or TAP–deficient humans 
and mice (86, 87). Remarkably, defective MHC class I expression leads to 
attenuated NK cell responses (84-87). Furthermore, a subpopulation of NK 
cells that lack known inhibitory receptors for self-MHC class I exists in humans 
and mice, but display reduced responsiveness relative to NK cells expressing 
inhibitory receptors (88, 89). Likewise, expression of inhibitory receptors 
specific for self-MHC confers greater responsiveness to NK cells (89, 90), a 
property termed “licensing”, which requires functional ITIMs (90). Thus, NK cell 
reactivity is somehow ”calibrated” by the MHC class I environment. The 
potency with which NK cells reject cells with aberrant MHC class I expression 
appears to correlate with the number and strength of inhibitory receptor – MHC 
class I interactions (90, 91). 

Furthermore, non-MHC class I ligands for other ITIM-containing inhibitory 
receptors have been identified. The inhibitory lectin-like receptor KLRG1, 
expressed on a subset of NK cells (92, 93), binds members of the ubiquitously 
expressed cadherin family of cell-junction proteins in both humans and mice 
(94, 95). Loss of E-cadherin expression during metastasis and invasiveness of 
epithelial tumors has been suggested to facilitate NK cell surveillance of 
epithelial tumors (95). Indeed, mutations in E-cadherin that abrogate KLRG1 
binding have been detected in diffuse type gastric carcinomas (96). Another 
inhibitory lectin-like receptor, NKR-P1 (CD161), binds the related lectin–like 
molecule LLT1 in humans or other LLT1–homologues in mice (97-100). LLT1 is 
expressed on activated plasmacytoid and monocyte-derived dendritic cells, in 
addition to B cells stimulated through Toll-like receptor (TLR) 9, surface Ig, or 
CD40 (101). LAIR-1 (CD305) is an inhibitory receptor that binds collagen and is 
widely expressed on immune cells (102). Notably, LAIR-1 has a unique ability 
to inhibit independently of tyrosine phosphatases SHP-1 and SHP-2. Even 
though its phosphorylated ITIM binds to the SH2 domain of SHP-1 and SHP-2, 
as is typical for ITIM-containing receptors, LAIR-1 can also deliver inhibitory 
signals by binding the SH2 domain of tyrosine kinase Csk (103), which 
negatively regulates Src-family kinases by phosphorylation of a C-terminal 
tyrosine (104). Subsets of human NK cells also express inhibitory, sialic acid–
binding Siglec-7 (CD238) and Siglec-9 (CD239) receptors (105-108). 
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Furthermore, the inhibitory receptor IRp60 (CD300a) is expressed by all resting 
NK cells (109), but ligands have not been identified. Whether inhibitory 
receptors for non-MHC class I ligands contribute to NK cell calibration has yet 
to be investigated. 
 
2.2.2 Activating receptors 

The discovery of ITIM-containing inhibitory receptors suggested that their 
interaction with MHC class I governed the specificity of NK cells for target cells. 
However, it has become clear that activation receptors contribute substantially 
to NK cell specificity. NK cells kill preferentially hematopoietic cells, whereas 
many tumors derived from other tissues are resistant to NK cells (110). This 
property has been exploited to improve the outcome of bone marrow 
transplantation. NK cells in T cell–depleted allogeneic hematopoietic grafts can 
mediate beneficial graft-versus-leukemia effects, without necessarily causing 
graft-versus-host disease (111, 112). These and other data imply that NK cell 
reactivity can be limited even in the absence of MHC class I on target cells. 
Although inhibitory receptors for non-MHC class I ligands may also control NK 
cells, the available evidence suggests that NK cells are not pre-wired to kill any 
encountered cell but depend on the expression of sufficient ligands for positive 
recognition. 

A large number of structurally distinct activating NK cell receptors have been 
characterized (113, 114). In contrast to inhibitory receptors, most activating 
receptors are expressed by all NK cells. Furthermore, activating receptors 
induce diverse signaling cascades, whereas inhibitory receptors appear to use 
a common mechanism for inhibition. Some of the activating receptors 
expressed on human resting NK cells are listed, together with their ligands, in 
Table 2.  

Activating receptors associated with immunoreceptor tyrosine-based activation 
motif (ITAM)-containing adaptor proteins propagate strong activation signals 
through the recruitment of the tyrosine kinases Syk and ZAP-70 (113, 114). 
Such receptors can be further subdivided into two groups; the first includes 
rapidly evolving receptors expressed on subsets of NK cells, such as KIR2DS, 
KIR3DS, and NKG2C (CD159c). The extracellular domains of these receptors 
are closely related to MHC class I–specific inhibitory receptor counterparts. 
These receptors associate with the ITAM-containing adaptor chain DAP12 
(115). Some activating KIRs bind classical MHC class I (116), whereas NKG2C 
binds HLA-E (69, 117). Generally, binding of activating receptors to MHC class 
I exhibit lower affinity than that of their related inhibitory receptor counterparts. 
Interestingly, one report suggests that KIR2DS1 recognizes particular MHC 
class I-peptide complexes expressed on Epstein-Barr virus (EBV) infected cells 
(116). Conservation of homologous activating and inhibitory receptor pairs 
through evolution may be important for maintaining immune system equilibrium 
(68), or may result from the selective pressure imposed by pathogens (118, 
119).  
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Table 2.  Human NK cell activating receptors. Activating receptors expressed by freshly 
isolated resting NK cells, their ligands, and their function are listed.  

The second group of ITAM-associated receptors, includes CD16, NKp30 
(CD337), and NKp46 (CD335), that are expressed on most resting NK cells. 
CD16 signals through the Fc RI -chain and the CD3 -chain and induces 
antibody-dependent cellular cytotoxicity (ADCC) (120-122). CD16 binds the 
lower hinge region of IgG (123). Natural cytotoxicity receptors (NCRs) NKp30, 
NKp44, and NKp46 were identified for their role in natural cytotoxicity towards 
tumor cells (21, 124, 125) in vitro. NKp44 is expressed only on IL-2–cultured 
NK cells (124). NKp30 and NKp46 are not structurally related, but contain a 
transmembrane arginine residue, which forms salt-bridges with transmembrane 
aspartate residues in CD3 -chain homodimers (126). The nature of the ligands 
for NCRs is still unclear. Although NKp46 has been reported to bind viral 
hemagglutinins via sialic acid modifications on infected cells (127, 128), cellular 
ligands have not been defined. NKp46 contributes to the enhanced killing of 
mitotic cells by NK cells, suggesting a role for NKp46 in controlling expansion 
of rapidly dividing cells (129). NKp30 mediates killing of immature dendritic 
cells by NK cells (130). Surprisingly, an intracellular protein implicated in the 
induction of apoptosis after DNA damage or endoplasmic reticulum stress, 
called BAT3, was recently described as a ligand for NKp30 (131). How BAT3 
becomes exposed at the cell surface is not known. Furthermore, 
immunostaining of several tumor cells with soluble forms of NKp30 and NKp44 
resulted in intracellular straining, suggesting that translocation from the inside 
to the surface of cells may be a common theme among ligands for NCRs (132). 
In support of this notion, the human cytomegalovirus tegument protein pp65, 

Receptor      Cellular ligand    Function  
CD16 (FcγRIIIA)       IgG    Elimination of antibody-coated cells (ADCC)
NKp30 (CD337)     BAT-3    Surveillance of genotoxic stress/transformation
NKp46 (CD335)     ?    Surveillance of mitotic cells 
KIR2DS1–2      HLA-C (low affinity) ?  
KIR2DS3–6      ?    ?
KIR3DS1 (CD158e2) ?    ?
NKG2C (CD94/159c)       HLA-E   ?   
NKG2D (CD314)     ULBPsMICA, MICB  Surveillance of tumor cells and genotoxic stress
NKp80   AICL    NK cell-myeloid crosstalk
DNAM-1 (CD226)     PVR (CD155), CD112 Surveillance of tissue integrity
2B4 (CD244)      CD48    Interaction with hematopoetic cells
CRACC (CD319)      CRACC (CD319)  Interaction with hematopoetic cells
NTB-A      NTB-A   Interaction with hematopoetic cells
CD2       LFA-3 (CD58)  Interaction with hematopoetic cells and endothelial cells
CD7          SECTM1, Galectin  ? 
CD59      C8, C9   Complement regulatory protein
BY55 (CD160)   HLA-C   ?
KIR2DL4 (CD158d)     HLA-G (soluble)  Trophoblast-induded vascular remodeling?
CD44     Hyaluronan   Interaction with extracellular matrix
LFA-1 (αLβ2, CD11a/18)  ICAM-1–5   Recruitment and activation during inflammation, polarization
MAC-1 (αMβ2, CD11b/18) ICAM-1,iC3b,Fibrinogen Adhesion
CD11c/18    ICAM-1, iC3b   Adhesion
VLA-4 (α4β1, CD49d/29) VCAM-1, Fibronectin Recruitment during inflammation, adhesion to matrix
VLA-5 (α5β1, CD49e/29) Fibronectin   Adhesion to extracellular matrix
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which is not expressed at the cell surface of infected cells, has also been 
identified as a ligand for NKp30 (133). However, binding of pp65 results in the 
inhibition of NK cell cytotoxicity induced by NKp30, which may represent one of 
the many evasion tactics developed by human cytomegalovirus to counter 
detection by NK cells. 

A second category of activating receptors do not contain ITAMs or associate 
with ITAM–carrying adaptors. They include NKG2D (CD314), the CD2 family 
members CD2, 2B4 (CD244), CRACC (CD319), and NTB-A, DNAM-1 
(CD226), and NKp80. Human NKG2D associates with the adaptor protein 
DAP10 (134-137), which carries a phosphatidylinositol-3 kinase (PI3K) binding 
motif. The phosphorylated form of this tyrosine motif can bind the p85 subunit 
of PI3K and Grb2 (138). Ligands for NKG2D, such as MICA, MICB, and ULBP, 
are expressed on some tumor cells, and on infected or stressed cells (139-
141). NKG2D ligands can be induced by genotoxic stress and stalled DNA 
replication, conditions that activate DNA damage checkpoint pathways (142). 
Detection of tumor cells by NKG2D can be counteracted by soluble NKG2D 
ligands, which are shed from the cell surface after cleavage by the plasma 
membrane associated protease Erp5 (143). While NKG2D provides an 
important defence against tumors (144, 145), it can also contribute to 
autoimmunity (146, 147). 

CD2 signaling in NK cells is largely unknown. CD2 binds to CD58 (148). 2B4 
(CD244) can recruit SAP and Fyn through cytoplasmic immunoreceptor 
tyrosine–based switch motifs (ITSMs) (149, 150). The ligand of 2B4 is CD48, 
which is expressed on hematopoietic cells (151). CRACC and NTB-A also 
contain ITSMs, and are involved in homotypic interactions between 
hematopoietic cells (152-154). The crystal structures of CRACC homophilic 
interactions and 2B4 in complex with CD48 were recently solved (155, 156). At 
11 and 11.5 nm, the membrane spacing required for homophilic CRACC 
interactions and 2B4-CD48 interactions, respectively, is similar to the space 
required for KIR-MHC class I interactions (77, 155, 156). Thus, activating 
receptors such as 2B4 and CRACC could potentially intermix with inhibitory 
KIR at the NK cell immune synapse, facilitating dynamic assessment of 
activation thresholds. DNAM-1 is associated with leukocyte functional antigen 
(LFA)-1 in NK cells (157), is phosphorylated by a protein kinase C (PKC) (158), 
and binds to the polio virus receptor (PVR, CD155) and Nectin-2 (CD112) 
(159). On NK cells, DNAM-1 may facilitate surveillance of damaged 
endothelium and transformed cells (160, 161). NKp80 is another NK cell 
activation receptor with unknown signaling properties (162). The cellular ligand 
of NKp80 was recently identified as activation–induced C-type lectin (AICL) 
(163). The NKp80 and AICL genes are closely linked on in the NK cell gene 
complex on chromosome 12. Expression of AICL is confined to granulocytes 
and macrophages, and is up-regulated by inflammatory stimuli (163). Thus, 
NKp80-AICL interactions may be important for NK cell-myeloid cell crosstalk 
during immune reactions. Signaling by NKp80 has so far not been 
characterized. Similar to ITAM–associated receptors, receptors within this 
category are capable of inducing target cell lysis by IL-2–cultured NK cells in 
redirected lysis assays (139, 153, 154, 158, 162, 164-167). A possible caveat 
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of several of these studies is that IL-2–cultured NK cells might not fully 
resemble physiological NK cells. 

Additional activating receptors expressed by all resting NK cells include CD7, 
CD44, CD59, KIR2DL4 (CD158d), and BY55 (CD160). CD7 encodes a 
cytoplasmic PI3K binding motif, binds SECTM1 or Galectin-1 (168, 169), can 
enhance NK cell cytokine secretion and β1-integrin–dependent adhesion to 
fibronectin, but does not induce cytotoxicity (170). CD44 binds hyaluronan, a 
constituent of the extracellular matrix. Engagement of CD44 on does not 
induce cytotoxicity, but can co-stimulate CD16–dependent cytotoxicity by 
resting NK cells (171, 172). Engagement of CD44 on IL-2 or IL-12–activated 
NK cells can induce cytotoxicity (172). CD59 lacks a cytoplasmic tail but 
associates with NKp30 and NKp46 (173). Engagement of CD59 induces CD3 
ζ-chain phosphorylation (173). Generally, CD59 binds complement C8 and C9, 
whereby formation of a membrane attack complex is prevented. Engagement 
of CD59 co-stimulates human NK cells (173). KIR2DL4 is an evolutionary 
conserved framework member of the KIR gene family (174). Atypical among 
KIRs, KIR2DL4 is expressed by all KIR haplotypes and in all NK cells (175). 
KIR2DL4 contains both a cytoplasmic ITIM and encodes a transmembrane 
arginine residue, through which it can associate with the FcεR γ-chain (176, 
177). KIR2DL4 binds the non-classical MHC class I molecule HLA-G (178, 
179). HLA-G exhibits limited polymorphism and has a unique expression 
pattern restricted mainly to trophoblast cells that invade the maternal decidua 
during early pregnancy (180). HLA-G expression may be inducible in other cell 
types in response to inflammation, infection, or transformation (181). 
Engagement of KIR2DL4 does not induce cytotoxicity but cytokine production 
by freshly isolated NK cells (182). Signaling by BY55 (CD160) is not well 
characterized. BY55 binds HLA-C and induces cytokine production by NK cells 
(183). Of note, recent data suggest that BY55 on T cells can bind HVEM and 
inhibit T cell activation (184). 

Integrins represent a different category of NK cell activating receptors, which 
are heterodimers of α and β subunits, such as the αL and β2 subunits of LFA-1 
(CD11a/CD18). LFA-1 binds intercellular adhesion molecules (ICAM)-1 through 
-5 (185). LFA-1 facilitates natural cytotoxicity and ADCC, as anti–LFA-1 
blocking antibodies impair these processes (186-189). NK cells also express 
lower levels of β2-integrins Mac-1 (CD11b/CD18) and CD11c/CD18.  

The β1-integrins expressed on NK cells, namely α4β1 (very late antigen (VLA)-
4, CD49d/CD29) and α5β1 (CD49e/CD29), contribute activation signals upon 
binding to their ligands, vascular cell adhesion molecule (VCAM)-1 and 
fibronectin (190). Fibronectin coated on plates is sufficient to induce activation 
of mitogen–activated protein kinases (MAPK) in NK cells, specifically Erk and 
p38 (191). Interestingly, β1-integrin engagement induces IL-8 production by NK 
cells, through a signaling pathway that involves Vav1/Rac1 and p38 MAPK 
activation (191).  

Engagement of α4β1 integrin activates Pyk2 and tyrosine phosphorylation of 
paxillin (192), and co-stimulates NK cell cytotoxicity (193). The complexity of 
intersecting signaling pathways in NK cells is illustrated by the inhibition of 
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CD16–induced phospholipase D activation and degranulation, upstream of 
Ca2+ release, by co-ligation of α4β1 integrin (194). The reason for this β1 
integrin–mediated negative regulation is unknown. In addition, LFA-1–
dependent migration of T cells is transactivated by α4β1 through binding of 
paxillin to the α4 cytoplasmic tail and activation of Pyk2 (195). These data 
suggest that β1-integrins may also regulate LFA-1–dependent signals in NK 
cells. Trans-regulation is mutual, as LFA-1 engagement up-regulates ligand 
binding by β1-integrin (196). 

Inhibitory NK cell receptors, which display variegated expression patterns on 
resting NK cell populations, may on the one hand potentiate NK cell effector 
function through calibration (82, 83), and on the other restrict activation towards 
targets expressing ligands for inhibitory receptors. Further, it is likely that cells 
in many tissues normally are not susceptible to NK cell mediated surveillance, 
because they do not express sufficient levels of ligands to induce NK cell 
activation. Which of the many receptor–ligand interactions are sufficient or 
required for NK cell activation, and how receptors integrate to mediate NK cell 
activation requires further knowledge of the activation process. The multiplicity 
of NK cell activation pathways may in part have been selected to counteract 
attempts by pathogens to circumvent NK cell-mediated immune surveillance. 
The next section will review the molecular events involved in activation of NK 
cells. 

 
2.3 DISCRETE EVENTS IN NK CELL ACTIVATION 

Recruitment of NK cells to sites of inflammation is a prerequisite for 
participation of NK cells in immune responses. NK cells express a number of 
chemokine receptors that can facilitate extravasation and recruitment to sites of 
inflammation in response to chemokines released by tissue resident cells (197, 
198). This section will focus on events that comprise NK cell recognition of 
target cells and activation of effector function.  

The induction of NK cell effector functions, including cytotoxicity, requires 
contact of NK cells with target cells. This ensures precise targeting of the 
cytolytic response to individual aberrant cells, thereby limiting potential damage 
to bystander cells. Several discrete events occurring on interaction between 
cytotoxic effector cells and target cells have been described (199-201). A 
central concept is the immunological synapse, relating to an organized 
arrangement of receptor-ligand interactions at the interface between the 
effector and the target cell (202) (Figure 1). In NK cells, accumulation of F-
actin, intracellular signaling molecules, adhesion receptors, activating 
receptors, and inhibitory receptors has been observed upon target cell 
recognition (203-205). The immunological synapse itself has been proposed to 
serve as a platform for integrating signaling and directing secretion (202, 206). 
Clearly, further understanding of the significance of immunological synapses 
necessitates studies addressing the formation of immunological synapses and 
their function in live cells. The following sections will consider tangible events 
leading to NK cell effector functions and discuss their molecular basis. 
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Figure 1.  The NK cell immune synapse. Images depict a resting NK cell in conjugate 

with a target cell susceptible to NK cell lysis, as indicated. Cells were fixed, 
permeabilized, and stained with perforin (red) for visualization of secretory 
lysosomes, phalloidin (green) for visualization of polymerized actin, and nuclear 
stain DAPI (blue).  

 
2.3.1 Contact 

It is not clear which receptors provide initial signals upon NK cell contact with 
target cells. Studies of T and B cells have suggested a prominent role for 
antigen–specific receptor signaling in the initiation of adhesion. Which of the 
many NK cell activation receptors signal upstream of LFA-1–mediated 
adhesion? Using a reductionistic model target cell system, where ligands for 
human NK cell receptors are expressed in Drosophila cells, Barber et al. (207) 
have demonstrated that expression of human ICAM-1 is sufficient to induce 
signaling-dependent adhesion by resting NK cells. Moreover, recombinant, 
plate-coated ICAM-1 also induces adhesion of resting NK cells (207). Together, 
this suggests that LFA-1 can provide autonomous signals for adhesion in 
resting NK cells. Importantly, the potential of numerous other NK cell receptors 
to initiate contact and provide signals for adhesion remains to be assessed.  

 
2.3.2 Adhesion 

Adhesion is thought to be a prerequisite for NK cell effector functions, providing 
stable contact with the target cell and leading to the formation of an immune 
synapse. Interaction of integrins with ligands on target cells must be regulated 
dynamically, as release from adherence is required for lymphocyte movement. 
Importantly, these initial stages in NK cell recognition likely occur prior to the 
molecular patterning observed in immune synapses.  
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LFA-1 has previously been attributed a central role in NK cell adhesion (208). 
In the Drosophila cell system, adhesion was evaluated by formation of 
conjugates between NK cells and target cells expressing specific ligands. 
Engagement of LFA-1 by ICAM-1 is sufficient to induce adhesion by human 
resting NK cells (207). LFA-1–dependent adhesion can be augmented by 
stimulation with exogenous IL-2 and IL-15 (207). Resting NK cell adhesion is 
also augmented by the co-expression of ligands for CD2 and 2B4 (207). 
Engagement of CD2, or 2B4 alone does not induce adhesion (207). The use of 
pharmacological inhibitors of the actin cytoskeleton, Src-family kinases, or PI3K 
indicated a signaling–dependent role for CD2 and 2B4 in enhancing LFA-1–
dependent adhesion (207). In LFA-1–deficient mice, IL-2–activated NK cells 
have a profound deficiency in target cell adhesion (209). Interestingly, the 
immunoglobulin superfamily molecule CD44 facilitates LFA-1–dependent 
adhesion, as LFA-1–dependent adhesion is diminished in CD44–deficient mice 
(209). Analysis of cells from patients affected by leukocyte adhesion deficiency 
(LAD) type 1, caused by mutations in the gene encoding the 2-subunit, 
revealed that IL-2-cultured NK cells from LAD1 patients can kill target cells 
(210). However, lysis of murine target cells by human IL-2 cultured NK cells 
from these patients was impaired (210). Moreover, previous studies of similar 
patients have noted a defective lysis of human NK cell-sensitive target cells by 
peripheral blood lymphocytes from affected individuals (211). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Regulation of LFA-1–mediated adhesion. Inside-out signals from NK cell 
activating receptors may promote conformational changes leading to a high-
affinity, ligand-binding conformation of LFA-1. They may also promote LFA-1 
avidity through signals for clustering of LFA-1. Upon ligand binding, LFA-1–
mediated outside-in signals are conveyed into the cell.  

Adhesion and signaling by LFA-1 is a carefully orchestrated process. Activating 
receptors may provide inside-out signals, which increase LFA-1 affinity through 
conformational changes (Figure 2) (212, 213).  Alternatively, signals from 
activating receptors may also induce LFA-1 clustering, whereby LFA-1 avidity 
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is enhanced (Figure 2) (212, 213). In the resting state, the αL and β2 
cytoplasmic domains are in close proximity and the extracellular domain is 
closed, but either inside-out signaling or ligand binding induces an extended 
conformation of the extracellular domain coupled to a spatial separation of the 
cytoplasmic domains (214). In the ligand binding conformation, LFA-1 itself can 
transduce outside-in signals (Figure 2). Apart from the LFA-1 outside-in signals 
themselves promoting LFA-1 adhesion (thereby conferring inside-out signals) 
(207), evidence of inside-out signaling by other NK cell receptors has not been 
directly assessed in terms of LFA-1 affinity or avidity. Data remain 
circumstantial, demonstrating a combined contribution by LFA-1 and other 
receptors such as CD2 and 2B4 in augmenting LFA-1–dependent adhesion. 

Many signaling molecules and pathways have been implicated in the 
modulation of LFA-1 affinity (215). In other cell types, LFA-1 affinity is intimately 
coupled to regulation of the actin cytoskeleton. For example, LFA-1 affinity can 
be promoted by calpain, a Ca2+–dependent protease (216). Calpain–mediated 
cleavage of talin, a cytoskeletal component, produces a talin fragment that 
binds the cytoplasmic tail of integrin β chains, thereby inducing separation of 
the cytoplasmic tails and augmenting LFA-1 affinity (214, 217). Evidence 
suggests competition for β chain binding between talin and another actin-
binding protein, filamin. Binding of filamin inhibits integrin affinity. Talin and 
filamin binding sites on the β chain overlap, and talin binding might be 
promoted by phosphorylation of threonine residues in the filamin binding site 
that would displace filamin (218, 219). PKC δ and βI/II are the major kinases in 
lymphocyte extracts able to phosphorylate β-chain residues involved in filamin 
binding (220). 

In T cells, a distinct role has been described for the GTPase Rap1 in regulation 
of LFA-1 avidity. In resting T cells, a fraction of LFA-1 is phosphorylated on αL 

Ser1140. Phosphorylation of this residue is required for induction of LFA-1 
clustering by Rap1 (221). Activation of Rap1 by chemokine stimulation or T cell 
receptor engagement can induce RAPL binding to the αL cytoplasmic tail, 
which in turn leads to redistribution of LFA-1 to the immunological synapse 
(222). 

Thus, although genetic evidence suggests a major contribution of LFA-1 to NK 
cell adhesion, the potential contribution of other receptors to NK cell adhesion 
and signaling pathways that regulate NK cell adhesion remain to be assessed. 
 
2.3.3 Polarization 

For cytotoxic cells in general, polarization of the secretory lysosomes (also 
called cytotoxic granules) precedes target cell cytotoxicity (223). Early studies 
of the interaction between NK cells and sensitive target cells revealed that 
adhesion was accompanied by NK cell polarization of the actin cytoskeleton, 
the Golgi apparatus, and microtubules towards the target cell interface (224-
226). Live cell imaging experiments during natural cytotoxicity by lymphokine–
activated killer cells demonstrated that NK cells establish cytoskeletal polarity in 
a stepwise fashion, suggesting a series of checkpoints, as opposed to cytolytic 
T cells where antigen induces rapid and robust cellular polarity (199).  
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In T cells, engagement of the antigen receptor is required to induce polarization 
(227). The receptor–ligand interactions required or sufficient for polarization in 
NK cells were until recently undefined. In IL-2–cultured NK cells, target cell 
expression of ICAM-1, leading to LFA-1 engagement on NK cells, is sufficient 
to induce granule polarization (228).  

The signals that regulate granule polarization in NK cells are not well defined, 
but expression of dominant–negative Rac1 and RhoA does inhibit polarization 
of perforin in IL-2–cultured NK cells, whereas over-expression of Vav1 
enhances polarization (229). Further, pharmacological inhibitors of PI3K 
inhibited polarization of perforin and suppressed cytotoxicity in an IL-2–
dependent NK cell line (230). Moreover, expression of dominant negative PYK-
2 or inhibitors of Erk interfere with microtubule organizing center (MTOC) 
polarization and NK cell cytotoxicity (231, 232). As highlighted, LFA-1 is 
sufficient for both adhesion and polarization in NK cells. In both IL-2–activated 
NK cells and T cells, engagement of LFA-1 by ICAM-1 induces activation of a 
Vav–Rac–PAK1 pathway (233-235). Furthermore, chemoattractans can induce 
PI3K activity associated with LFA-1 in a manner dependent on the association 
of the Src-family kinase Fyn with the LFA-1 cytoplasmic tail (236). In T cells, 
Fyn has been demonstrated to be upstream of Vav1–mediated signals for T 
cell polarization (237). Supporting these findings, Fyn-deficient mice have 
defective tubulin cytoskeleton rearrangements in T cells and granule 
polarization in mast cells (238, 239). NK cell function has been studied in Fyn–
deficient mice. Notably, Fyn is required for efficient, NK cell-mediated lysis of 
target cells which lack both self-MHC class I molecules and ligands for NKG2D 
(240). In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A 
was independent of Fyn, suggesting that Fyn is specifically required for NK cell 
activation (240).  

Studies of T cells have shown that upon actin-dependent formation of an 
immunological synapse, perforin-containing granules move towards the minus-
end of microtubules (241). The centrosome becomes juxtaposed to the target 
cell by an actin-dependent process and secretory lysosome delivery is 
independent of plus-ended motility. Recently, a link between the actin and 
microtubule cytoskeleton formed by the Cdc42 interacting protein 4 (CIP4) has 
been shown in NK cells (242). Knockdown of endogenous CIP4 impairs 
granule polarization to the immune synapse, but does not impair actin 
reorganization (242). Upon mixing with susceptible target cells, the formation of 
a WIP, WASp, actin-, and myosin IIA complex was observed in the NK cell line 
YTS (243). RNA interference-based knockdown of WIP demonstrated a pivotal 
role in granule polarization and NK cell cytotoxicity (243, 244). Future studies 
using genetic approaches will hopefully elucidate the signaling pathways 
responsible for granule polarization in NK cells. 

2.3.4 Inhibitory signals 

The potent inhibition of NK cells by ITIM-containing receptors is mediated by a 
block at an early step of the signaling pathway for activation. Phosphorylated 
ITIMs represent optimal sequences of direct binding of SHP-1 and SHP-2 Src 
homology 2 (SH2) domains (245). Moreover, the crystal structure of SHP-2 has  
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Figure 3.  Model for inhibitory receptor signaling by KIR in NK cells. Early, actin-
independent, dephosphorylation of Vav1 prevents actin-dependent processes, 
such as recruitment of activating receptors to lipid rafts, and receptor tyrosine 
phosphorylation.  

shown that recruitment of tyrosine phosphatases through binding of their SH2 
to phosphorylated peptides releases them from an inhibitory intramolecular 
interaction (246). The engagement of inhibitory receptors prevents actin 
cytoskeleton dynamics (243, 247), thereby preventing actin-dependent 
processes, such as coalescence of lipid rafts (248), recruitment and 
phosphorylation of co-activation receptors 2B4 and NKG2D to lipid rafts (249, 
250), and dephosphorylation of ezrin-radixin-moesin proteins, which connect 
actin filaments to membrane structures (247). A direct substrate of SHP-1 
during inhibition is Vav1, which is an essential regulator of actin dynamics 
(251). Interestingly, Vav1 and its close relatives Vav2 and Vav3 have been 
implicated in different signaling pathways downstream of several NK cell 
activation receptors, such as CD16, NKG2D (252), 2B4 (149), and 2-integrin 
(234). Therefore, it is possible that dephosphorylation of Vav during inhibition 
by KIR is a way to stop different signaling pathways at a common point. 
Trapping of Vav1 was insensitive to cytochalasin D, suggesting that 
dephosphorylation of substrates occurs independently of actin polymerization 
(251). As phosphorylation of activation receptor 2B4 is dependent on actin 
polymerization, the inhibition mediated by KIR may preceed full engagement of 
receptor 2B4. The revised view of the inhibitory pathway is one where KIR 
operates independently of activation signals, thereby preventing activation at a 
very early step, including signals delivered by LFA-1 (Figure 3). Adding 
complexity to inhibitory receptor signaling, a recent report has demonstrated 
the involvement of -arrestin 2, a intracellular scaffolding molecule, in inhibitory 
receptor signaling (253). The mechanisms whereby -arrestin 2 facilitates ITIM-
mediated inhibtion remains to be elucidated. 
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Much remains to be learned about the precise way in which ITIM–based 
inhibitory signals intersect the many signals received by NK cells, and how 
inhibitory receptors control the various steps in NK cell activation, such as 
inside-out signals to LFA-1, signals for granule polarization, and signals for 
degranulation. 
 

2.3.5 Degranulation and cytokine production 

Unless antagonized by inhibitory receptor signaling, the interaction of an NK 
cell with a target cell may culminate in a productive response. Degranulation 
(exocytosis of secretory lysosomes) can be measured by the release of 
hexosaminidase or granzyme B into supernatants. Another assay, which can 
quantitate degranulation at the single cell level, is based on the appearance of 
CD107a (LAMP-1) at the cell surface upon degranulation. CD107a is a 
lysosomal membrane protein that colocalizes with perforin in secretory 
lysosomes and redistributes to the cell surface when granules fuse with the 
plasma membrane (254, 255). 

Although F-actin reorganization is required for MTOC and lytic granule 
polarization, degranulation is thought to require actin disassembly and 
clearance of conduits in the cortical actin cytoskeleton (204, 205, 256). The 
transit of secretory lysosomes or even the MTOC together with secretory 
lysosomes through such conduits might require cytoskeletal motor functions. 
Myosin IIA is proposed to facilitate this process, as biochemical inhibition of 
myosin IIA or down-regulation by small interfering RNA specifically impairs 
degranulation, but not polarization (257).  

NK cell degranulation requires calcium and is induced by PKC and G protein–
dependent pathways (258). Patch clamp experiments have shown that 
cytosolic Ca2+ is sufficient to induce degranulation in an NK cell line (259). 
PLC-γ2–deficient mice have defective NK cell natural cytotoxicity and ADCC, 
and display increased viral loads upon infection with cytomegalovirus (260-
262). Although NK cells from PLC-γ2–deficient mice polarize granules towards 
sensitive target cells, no intracellular calcium mobilization is observed after 
engagement of multiple activating receptors, and degranulation induced by 
sensitive target cells is abolished (262). While mouse NK cells predominantly 
express PLC-γ2, human NK cells express both PLC-γ1 and PLC-γ2 (261, 263). 
Experiments in our laboratory also suggest that inhibition of PLC-γ with the 
pharmacological compound U73122 abrogates resting NK cell degranulation 
induced by both ITAM–dependent and –independent pathways (200). Inhibition 
of Src-family kinases by PP2 also blocks degranulation. Further, 
pharmacological inhibition of PLC-γ by U73122 also inhibits Ca2+ mobilization 
and cytotoxicity induced by mAb–mediated cross-linking of CD16 alone, or 
NKG2D and 2B4 together, in resting NK cells. Likewise, pharmacological 
inhibitors of PI3K abrogate NK cell degranulation, cytotoxicity, and cytokine 
production, but do not necessarily impair mobilization of intracellular calcium 
(200). The study of PI3K function in NK cells is complicated by the fact that 
knocking out two out of the four p110 subunits results in embryonic lethality. 
Analysis of viable p110γ and p110δ knockout mice has revealed a requirement 
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for p110δ in NK cell cytokine production, while NK cells from p110γ and p110δ 
double knockout mice demonstrate impaired cytotoxicity as well (264, 265). 
Thus, signals from PLC-γ and PI3K are important for induction of NK cell 
degranulation, leading to killing of target cells, as well as the induction of 
cytokine release by NK cells. 

The point at which signals for degranulation and cytokine production diverge is 
emerging (59). The final steps in secretory lysosome release will be dealt with 
in the results and discussion section, as they are a major theme of the work in 
this thesis. 

In regard to cytokine production, an important role of the Carma1/Bcl10/Malt1 
complex in activation of NF-κB and induction of multiple cytokines by ITAM-
coupled receptors has been demonstrated in mouse knockout models (266, 
267). Absence of Bcl10 or Malt1 impaired also activation of p38 and JNK (267). 
In contrast cytokine production induced by IL-12 and IL-18 was normal in 
Bcl10-deficient mice (267). CD45-deficient mice exhibit decreased cytokine 
production but normal cytotoxicity (268-270). Receptor tyrosine phosphatase 
CD45 deficiency augments tyrosine phosphorylation upon stimulation of ITAM-
associated receptors, but impairs phosphorylation and activation of Erk, and 
JNK, abrogating cytokine transcription (269). IFN-γ production is exacerbated in 
adaptor protein MIST-deficient CD4+ T cells, suggesting that MIST negatively 
regulates IFN-γ production (271). Expression of the Src-family kinase Fgr 
paralleled the suppressive effect of MIST in NK cells, and an Fgr–MIST 
interaction is required for the suppression of NK cell receptor-induced IFN-γ 
expression (271). Several soluble factors, such as IL-12 and IL-18, induce 
cytokine production by NK cells. IFN-γ release by NK cells in response to 
interleukins is augmented by the protein SET (272). SET mediates this effect 
by suppressing PP2A phosphatase activity, a negative regulator of NK cell 
cytokine production (272). Thus, proteins specifically implicated in the induction 
of NK cell cytokine responses are being unravelled. Understanding the 
divergence of pathways for NK cell effector functions such as cytotoxicity and 
cytokine secretion can have ramifications for the role of NK cells in disease, as 
particular balances in NK cell responses to challenges might be required in 
order to maintain immune homeostasis. 
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3 FUNCTIONS OF NK CELLS 
Several lines of research have provided insight into the physiological role of NK 
cells in immune function. NK cells were first recognized for their ability to kill 
certain autologous tumors in experimental model systems. Later, the ability of 
NK cells to provide a first line of defence against viruses was recognized. In 
addition, NK cells are also implicated in immunity to certain bacterial and 
parasitic infections. Furthermore, recent data reveal an important role for NK 
cells in the regulation of other immune cell subsets. Relating NK cell function to 
clinical conditions provide invaluable insights to the role of NK cells in human 
disease. However, the paucity of NK cell-selective deficiencies underlines a 
division in thinking of immunobiology in cellular or genetic terms. After all, 
genes are the elementary units selected upon through evolution. In terms of 
disease, dissecting the contribution of individual genes, rather than particular 
cell types, is of high clinical relevance. However, in terms of NK cell 
immunotherapy, an increased understanding of cellular functions is still 
required. The next sections will review facets of NK cell function as revealed by 
different experimental and clinical approaches, followed by a more 
comprehensive review of immunodeficiencies where NK cell dysfunction has 
been characterized.  
 
3.1 NK CELLS AND CANCER 

3.1.1 Experimental evidence 

Since the discovery of NK cells, numerous in vitro studies have demonstrated 
NK cell killing of different tumor cell lines. Several studies in rodents have 
documented a role for NK cells in the eradication of grafted tumor cell lines, as 
revealed by the antibody-mediated depletion of NK cells or use of mice with 
deficiencies in the development of NK cells (273, 274). More specifically, in 
mice tumor cells can be rendered susceptible to NK cell mediated lysis by the 
lack of MHC class I expression or induced expression of ligands for NKG2D or 
CD27 ligands (12, 275-277). Intriguingly, elimination of tumor cells by NK cells 
can induce subsequent tumor-specific T cell reponses to the parental tumor 
(275, 277). 

What is the biological relevance of NK cells in tumor development? In 1909, 
Paul Ehrlich postulated a role for the immune system in protecting the host 
against cancer. This concept was modified in the 1950s by Macfarlane Burnet 
and Lewis Thomas, as recently reviewed (278). However, studies of tumor 
development in nude mice, which lack T cells and B cells, surprisingly revealed 
that spontaneous tumors and carcinogen-induced tumors developed at a 
similar frequency to that of wild-type mice (279). Thus, these results lead to 
abandonment of the tumor immunosurveillance hypothesis. However, recently, 
a growing body of evidence is providing support for the immune system in 
having an important role in tumor surveillance, as recently reviewed (280-282). 
Key findings include the demonstration of increased spontaneous tumor 
incidence in mice lacking an intact IFN-γ receptor (283, 284), and increased 
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incidence of spontaneous B cell lymphomas in perforin-deficient mice (285, 
286). These studies have led to a further refinement in the theory now termed 
“cancer immunoediting” (287). According to this theory, cancer development 
encompasses three phases: elimination, equilibrium, and escape. During the 
elimination phase, nascent tumor cells are destroyed by elements of the innate 
and adaptive immune systems, including NK cells. Providng the first genetic 
evidence for immunosurveillance of primary tumors by an NK cell activating 
receptor, David Raulet and colleagues (145) elegantly demonstrated that 
NKG2D-deficiency in mice results in increased indicence of epithelial and 
lymphoid malignancies when crossed to tumor prone backgrounds. The 
elimination phase is complete when all tumor cells are cleared, or incomplete 
when only a portion of tumor cells are eliminated. In the case of partial tumor 
elimination, the theory of immunoediting is that a temporary state of equilibrium 
can then develop between the immune system and the developing tumor, with 
the tumor being dormant or continuing to evolve. The pressure excerted by the 
immune system on the tumor during this phase is sufficient to control tumor 
progression. Eventually, if the immune response still fails to completely 
eliminate the tumor, the process results in the selection of tumor variants that 
through various mechanism are able to resist, avoid, or suppress the antitumor 
immune response. This process is defined as the escape phase (288). 

In humans, experiments using freshly explanted tumors and peripheral blood 
NK cells are elucidating specific receptor ligand interactions involved in NK cell 
recognition of tumor cells. NK cells from KIR–HLA incompatible donors can kill 
solid tumors, including melanoma cells, renal cell carcinoma, and ovarian 
carcinoma cells in vitro (289-291). In addition to NKG2D, NCRs and DNAM-1 
have been implicated in postive recognition of tumor cells (291-293). 
Importantly, delineating the activation of NK cells may allow prediction of tumor 
cell sensitivity to NK cell killing based on phenotypic analysis of ligand 
expression, and thus predict the potential efficacy of NK cell–mediated 
immunotherapy. 
 

3.1.2 Clinical insights and perspectives 

In humans, evidence for NK cell targeting of human tumors have also come 
from the clinical studies in the settings of hematopoietic stem cell 
transplantation (HSCT) and adoptive transfer of NK cells to cancer patients. NK 
cells can kill allogeneic cells in hematopoietic transplantation (294) and have 
clinical potential by conveying graft-versus-leukemia activity (111, 295, 296). 
Interestingly, a Japanese 11-year follow-up epidemiological study revealed an 
association between increased cancer risk and low NK cell activity, as 
assessed by lysis of susceptible cell lines by peripheral blood lymphocytes 
(297). Thus, given the evidence for NK cell anti-tumor activity, there is 
considerable interest in harnessing NK cells for cancer immunotherapy (298, 
299). Several prospects for the use of NK cells in the clinic have been put forth. 
The next paragraph will examine such possibilities in more detail.  

Cytokines such as type I IFN, IL-2, IL-12, and IL-18 enhance NK cell activity 
(300, 301). Controlled exogenous administration of cytokines could provide a 
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valuable tool for up-regulating NK cell effector functions in vivo. Moreover, 
therapeutic blockade of inhibitory receptor–ligand interactions could potentially 
allow reactivity from wider NK cell subsets and facilitate the use of NK cells in 
an autologous setting.  

In addition to inhibitory receptor blockade, natural cytotoxicity against tumors 
can potentially be aided by preferential engagement of activating NK cell 
receptors. One strategy is to design bispecific proteins that can simultaneously 
engage tumor markers and NK cell activating receptors. In a recent article a 
fusion protein of ULBP2 and an anti-CD138 antibody fragment was described 
that can mediate antitumor activity in a xenograft model of multiple myeloma 
(302). Another approach would be to adoptively transfer gene-modified NK 
cells with targeted chimeric receptors for tumor antigens fused to potent 
activating NK cell receptor components, such as a CD4-ζ chain chimera that 
binds to HIV-infected cells (303).  

We have argued that the engagement of CD16 would be the most applicable 
and affordable approach to harness NK cells for immunotherapy (200). Indeed, 
several human IgG mAb–based treatments are increasingly applied in 
immunotherapy against haematological and non-haematological malignancies 
(304, 305). Examples include rituximab (anti-CD20) for B cell lymphomas, 
alemtuzumab (anti-CD52/CAMPATH) for B cell chronic lymphoid leukemia, 
trastuzumab (anti-HER2) for breast cancer, and adecatumumab (anti-EpCAM) 
for prostate and breast cancer. The extent to which these antibody–based 
tumor therapies are NK cell–mediated is not clear, but all are capable of 
triggering NK cell–mediated cytotoxicity in vitro (306, 307). The most 
convincing evidence for CD16 and possible NK cell involvement comes from 
studies with rituximab. In patients undergoing treatment for large-cell non-
Hodgkin’s lymphoma, rituximab (anti-CD20) administration induces NK cell 
degranulation in vivo (307). A positive correlation between better clinical 
responses to rituximab and a CD16 polymorphism with higher affinity for IgG 
have been reported (308, 309). Moreover, in a study of a combination therapy 
of rituximab and recombinant IL-2, NK cell expansions correlated with a 
favourable clinical response (310). In primary breast cancer, a recent report 
advocates an in vivo role for NK cells in the mechanisms of trastuzumab action, 
since the treatment significantly increased the numbers of tumor-associated NK 
cells (311). A consequence of NK cell activation by ADCC is production of T 
cell recruiting chemokines. They are increased in sera from patients with 
clinical benefit from rituximab treatment and have been shown to induce T cell 
migration (312). Thus, NK cell–mediated ADCC could promote beneficial 
adaptive immune responses. 

Appreciation of NK cell biology could also encourage new, combinatorial 
therapeutic approaches. Specifically, enhancing NK cell effector function 
through up-regulation of inducible ligands, for receptors such as LFA-1 or 
NKG2D might be feasible. Proinflammatory cytokines can rapidly up-regulate 
ICAM-1 on several tissues (313), while NKG2D ligands can be induced by 
radiation or chemotherapeutic drugs (314). In combination with engagement of 
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specific triggering receptors on NK cells, desired cytolytic activity could be 
accomplished. 

 
3.2 NK CELLS AND INTRACELLULAR PATHOGENS 

3.2.1 Viral evasion strategies 

In animal models, NK cells can control infections by many viruses, such as 
herpes simplex virus (HSV), cytomegalovirus (CMV), influenza virus, or the 
ecromelica poxvirus (315). Several viruses have evolved strategies to avoid NK 
cell recognition of virally infected cells (316, 317). The rapid evolution of MHC 
class I receptors provides insight into an interesting strategy in the conflict 
opposing microorganisms and the vertebrate immune system. Viral subversion 
of T cell–mediated immune surveillance through MHC class I down-regulation 
can render infected cells susceptible to NK cell lysis. Therefore, NK cell 
inhibitory receptors are targeted by counter-acting viral immune evasion 
strategies. Certain viruses can express MHC class-like decoy molecules that 
can engage certain NK cell inhibitory receptors or enhance expression of 
endogenous MHC class I molecules.  

Genetic associations between combinations of KIR and HLA genotypes and 
susceptibility to viruses imply that KIR–HLA interactions are crucial to anti-viral 
immunity (318). Human CMV expresses US2 and US11 proteins that 
preferentially down-regulate HLA-A, without interfering with HLA-E expression 
(319). Moreover, human CMV encodes UL18 which can bind LIR-1 with high 
affinity (73, 320), and UL40 which can enhance expression of endogenous 
HLA-E (a ligand for CD94/NKG2A) (321, 322). However, due to the variegated 
expression pattern of inhibitory receptors, effective NK cell inhibition requires 
co-ordinated targeting of several inhibitory modalities. Individuals display 
considerable variation in the numbers of inhibitory receptor–MHC class I 
interactions. Most individuals possess a minimum of three interactions 
(KIR2DL–HLA-C, CD94/NKG2A–HLA-E, LIR-1–HLA class I) that would have to 
be circumvented by pathogens for evasion of NK cell activation. Thus, the 
variation in NK cell inhibitory receptor interactions provides robustness to the 
organisms both at individual and species level. Conceivably, viral evasion of 
inhibitory receptors could be a driving force for the rapid genetic evolution of 
these receptor systems (62).  

To avoid viral escape from NK cell–mediated immunosurveillance, redundancy 
in recognition systems is employed by NK cells. Again, studies of human CMV 
proteins have demonstrated interference with expression of ligands for 
activating NK cell receptors NKG2D and DNAM-1. Human CMV proteins UL16, 
UL141, and UL142 proteins interfere with expression of ULBPs, CD155, and 
MICA, respectively, suggesting that NKG2D and DNAM-1 contribute to NK 
cell–mediated immune responses to CMV (140, 323, 324). A recent paper 
suggests that human CMV also encodes a micro RNA, miR-UL112, 
responsible for preventing translation of MICB mRNA (325). Notably, both 
NKG2D and DNAM-1 can bind several divergent ligands, complicating viral 
efforts to block recognition by ligand down-regulation. Using a different 
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mechanism, human CMV also encodes UL83/pp65, a protein that can directly 
bind the activating receptor NKp30 and block NKp30–dependent immune 
activation (133).  

Another member of the herpes virus family, Kaposi’s sarcoma herpes virus 
(KHSV) also interferes with the recognition by activating NK cell receptors. As a 
central mediator of NK cell adhesion and granule polarization, LFA-1 is an 
attractive target for viral escape of NK cell recognition. Indeed, KHSV encodes 
a protein that selectively down-regulates ICAM-1 expression on virally infected 
cells (326). In addition, KSHV encodes a protein with ubiquitin E3 ligase activity 
that down-regulates MICA and AICL expression, ligands for activating NK cell 
receptors NKG2D and NKp80, respectively (327). 

Infection of dendritic cells with influenza virus induces IFN-γ production by NK 
cells in vitro (328). NK cell cytokine production is dependent on secretion of 
type I interferon and IL-12 by dendritic cells (328). The NK cell activation 
receptor NKp46 can mediate NK cell recognition of influenza virus 
hemagglutinin on infected cells (127). In mice, NKp46-deficiency confers higher 
mortaility relative to wild-type mice upon infection with influenza virus (329). 
Thus, genetic studies provide clues to multiple evolutionary struggles between 
viruses and host immunity mediated by particular NK cell receptors. 

Epidemiological studies have demonstrated an intriguing relationship between  
polymorphic HLA and KIR genes in the resolution of hepatitis C virus (HCV) 
infection (330). Moreover, as for HCV, KIR and HLA polymorphisms have been 
reported to significantly influence the progression to disease in human 
immunodeficiency virus (HIV)-infected individuals. HIV-infected individuals 
possessing the HLA-B alleles with the Bw4 epitope in addition to certain 
KIR3DL1 or KIR3DS1 alleles demonstrate a significantly delayed onset of 
disease (331). The mechanisms whereby certain HLA and KIR combinations 
protect against HIV disease progression are not clear. Of note, the HIV Nef 
protein selectively down-regulates HLA-A and HLA-B, sparing HLA-C (332), 
potentially providing a mechanism for HIV-infected cells to avoid CTL 
recognition, but engage inhibotry receotors on NK cells.  

It is possible that ADCC may contribute to resistance to viruses, in addition to 
the protection provided by natural cytotoxicity. However, individuals with 
mutations leading to CD16–deficiency or polymorphisms with reduced binding 
of IgG are not reported to have increased viral infections, but increased 
incidence of autoimmunity (333, 334). CD16 mutations have been reported that 
do not abrogate NK cell–mediated ADCC, but impair natural cytotoxicity and 
viral immunity, suggesting a potential ADCC–independent role for CD16 (335). 
Nonetheless, other studies suggest that NK cell–mediated ADCC might 
contribute to HSV, human immunodeficiency virus (HIV)-1, and influenza virus 
protection (336-339). Physiologically, the availability of IgG against target cell 
epitopes is probably limiting in early adaptive immune responses.  

3.2.2 NK cell recognition of intracellular parasites and bacteria 

There is evidence for NK cells contribution to host protection from intracellular 
parasites and bacteria (340, 341). 
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NK cells have been implicated in the response to Plasmodium falciparum, the 
parasite that causes malaria. Experimental infection of non-immune volunteers 
with P. falciparum has revelated elevated levels of soluble granzyme A 1-2 
days prior to clinical symptoms and microscopically detectable parasitaemia 
(342). Elevated granzyme A in serum coincided with increases in IFN-γ, IL-12 
p40 and IL-8, while granzyme B and IL-10 levels increased 24-48 h later (342). 
The elevation of soluble granzyme A and IFN-γ in non-immune volunteers 
suggests that NK cells are activated upon release of parasites by infected liver 
cells and subsequently during blood stage infection. Additional evidence for NK 
cells involvement in innate immune human host resistance in the early phase of 
a malaria infection comes from in vitro experiments. NK cells IFN-γ production 
in response to infected erythrocytes cells varies among donors and is 
dependent on myeloid cell derived IL-12 and IL-18 production (343, 344). 
Specific NK cell receptors involved in the recognition of infected erythrocytes 
are not well characterized, but KIR receptors might play a role because 
associations were found between the KIR genotype and donor suceptibiilty to 
malaria (345). Interestingly, polymorphims in NKp30 have been associated to 
malaria (346), and some evidence exist for direct recognition of P. falciparum 
proteins by NK cell receptors NKp30 and NKp46 (347). 

Mouse models have suggested a role for NK cells in protection agains 
Trypanosoma cruzi infection, that causes sleeping-sickness in humans. 
Antibody-mediated depletion of NK cells does not affect survival with low doses 
of Trypanosoma cruzi (348), however reduced survival was observed in NK 
cell–depleted mice when a higher dose of parasite was administered (349). 

Although NK cells have been implicated in reponse to other intracellular 
parasites and bacteria, their role in control of infection is not clear and warrants 
further study (341). 

 

3.3 IMMUNE REGULATION BY NK CELLS 

Increasingly, roles for NK cells in interactions with other immune cells are being 
appreciated (350). NK cells may instruct and shape adaptive immune 
responses through cytokine release (300, 351) or by direct interaction with 
dendritic cells or T cells (352, 353).  

NK cells interact with dendritic cells in peripheral tissues and secondary 
lymphoid organs. In both humans and mice, NK cells can kill immature 
dendritic cells, thereby influencing dendritic cell homeostasis and potentially 
limiting immune responses (354, 355). Furthermore, NK cells can promote 
dendritic cell maturation through release of cytokines such as IFN-γ and TNF-α. 
Reciprocally, NK cell activity during immune responses triggered by various 
pathogens are regulated by dendritic and myeloid cell–derived cytokines (356, 
357). 

NK cell secretion of IFN-γ promotes priming of T helper cell type 1-mediated 
immunity (358, 359). In addition, NK cells can also kill activated T cells (360, 
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361). Thus, by suppressing immune reactions, NK cells may have an important 
role in preventing autoimmunity (362). 

 

3.4 NK CELLS AND IMMUNODEFICIENCY SYNDROMES 

Studies of NK cell function in primary immunodeficiencies has been an 
approach to gaining insight into the regulation of NK cells and their involvement 
in disease predisposition. Primary immunodeficiencies provide invaluable 
insight into in vivo immune responses to microorganisms, dependent on the 
variable vulnerability to pathogens and opportunistic infections. Although most 
primary immunodeficiencies described follow a Mendelian inheritance, 
mutations of a given gene can lead to an array of phenotypes based on factors 
such as the type of mutation, genetic background, environmental factors, and 
infection history, thereby adding considerable complexity to the diagnosis, 
management, and understanding of disease (363). Although exceedingly 
informative, only a few patients with selective NK cell-deficicies have been 
described in the literature (364). Two patients with NK cell deficiency have 
been reported to die from herpes virus infections (365, 366). Interestingly, a 
primary immunodeficiency with reduced frequency of circulating NK cells and 
susceptibility to viral infections was recently described (367). The genetic basis 
for these immunodeficiencies is currently not known. The paucity of patients 
described with selective NK cell-deficiencies highlights the difficulty with which 
the contribution a particular cell type to immunity can be dissected through 
studies of immunodeficiencies. One obvious reason being that the expression 
of most genes is not restricted to any given cell type.  

Other immunodeficiency syndromes caused by mutations in defined genes, 
that, in addition to other immunological abnormalities, are associated with 
absent of functionally deficient NK cells are providing clues to the role of NK 
cells in the immune system (335, 364). One group of such immunodeficiencies 
includes patients with severe combined immunodeficiency syndrome (SCID). A 
phenotype caused by mutations in the genes IL2RG or JAK3, encoding the 
common cytokine receptor γ-chain and the Janus kinase 3, respectively, 
present with defective NK cell development and reduced numbers of NK cells 
in circulation (368, 369). SCID represents a rare syndrome that may impair 
development of all lymphocyte lineages, and diagnosis typically occurs in 
infants suffering life-threatening disease from opportunistic infections. 

Another group of immunodeficiencies concerns mutations in surface receptors 
and ligands involved in regulating NK cell function. In bare lymphocyte 
syndrome, where MHC class I expression is severely reduced due to mutations 
in TAP1 or TAP2 (370), NK cell-mediated natural cytotoxicity is impaired (87, 
371). Interestingly, ADCC is not impaired (87). Therefore, impaired natural 
cytotoxicity in bare lymphocyte syndrome likely reflects defective licensing of 
NK cells, as has been observed in MHC class I-deficent mice (84-86). 
Remarkably, bare lymphocyte syndrome patients are usually characterized by 
chronic bacterial infections of the upper and lower airways, and in half of the 
cases, also skin ulcers with features of a chronic granulomatous inflammation. 
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The onset is generally late and even asymptomatic cases have been described 
(372). Despite the defect in MHC class I-mediated presentation of viral 
antigens to CTLs, the patients do not suffer from severe viral infections. 
Presumably, other efficient antiviral defence mechanisms such as antibodies, 
NK cells, and CTL responses to TAP-independent antigens compensate for the 
lack of endogenous peptide presentation, highlighting immune system 
redundancy and resilience. Of note, a single patient with mutations in CD8A, 
which encodes CD8α that is critical for high avidity CTL recognition of MHC 
class I, has been described in the literature (373). The CD8α-deficient patient 
presented with a chronic lung inflammation reminiscent of infections observed 
in bare lymphocyte syndrome patients. Thus, the clinical manifestations of bare 
lymphocyte syndrome might predominately relate to CTL, rather than NK cell, 
deficiencies. Individuals with leukocyte adhesion disorder (LAD) type 1, a 
syndrome due to β2-integrin subunit deficiency, suffer severe recurrent bacterial 
infections, susceptibility to herpes simplex virus (HSV) infections, and impaired 
immunity (374-376). Severely affected patients often die of infection in 
childhood or early adulthood unless a bone marrow transplantation is 
successfully accomplished. Lastly, a case of a patient with recurrent HSV-
infections has been attributed to mutations in CD16 (377). Astonishingly, 
natural cytotoxicity, but not ADCC, was impaired in this patient (377). 

A major group of immunodeficiencies with impaired or defective NK cell 
function typically present with similar clinical manifestations. A familial case 
involving two children suffering from fever, hepatosplenomegaly, and café-au-
lait pigmentation of the skin was first reported by Farquhar and Claireaux in 
1952 (378). In current literature the condition is generally termed 
hemophagocytic lymphohistiocytosis (HLH), a rare heterogenous sepsis-like 
disorder with both familial and acquired forms (379-381). The symptoms 
include prolonged fever and hepatosplenomegaly. Clinical guidelines for 
diagnosis of the disease have been established (382). Frequently, neurological 
symptoms such as seizures and ataxia are evident (383, 384). Clinical markers 
comprise elevated ferritin, triglycerides, and soluble IL-2 receptor α-chain 
(sCD25), in addition to low fibrinogen (385). Notably, a characteristic laboratory 
finding is defective NK cell-mediated cytotoxicity (386, 387). 
Hemophagocytosis is not necessarily demonstrable at onset, but is more 
frequently observed in advanced disease (388). Failure to demonstrate 
hemophagocytosis does not negate the diagnosis of HLH (382). Familial 
hemophagocytic lymphohistiocytosis (FHL) has an autosomal recessive 
inheritance, typically affects infants, has an incidence of 1/50000 births, and is 
usually fatal unless treated by chemo-immunotherapy and subsequent 
hematopoeitic stem cell transplantation, which is the only curative treatment of 
FHL (389). Besides defective cytotoxicity, patients typically display polyclonal 
CTL expansion, a lymphohistiocytic infiltration of visceral organs associated 
with macrophage activation, and systemically elevated concentrations of pro-
inflammatory cytokines such as IFN-γ, TNF-α, IL-6, and IL-18 (387, 390, 391). 
In regards to etiology, frequent triggers are infectious agents, in particular 
viruses of the herpes family (392, 393). The autosomal recessive inheritance 
FHL has facilitated elucidation of a genetic basis for the disorders. In humans, 
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a linkage analysis initially associated FHL with the genomic region 9q21.1-22 
(FHL1) (394), but a gene accountable for the disease has so far not been 
identified at this locus. Concurrently, linkage with 10q21-22 was reported and 
loss-of-function mutations in the perforin (PRF1) gene were attributed as 
causative for a large proportion of cases of FHL (FHL2) (395). Perforin is 
indispensable for delivery of granzymes to target cells, which in turn cleave 
cytosolic proteins and induce DNA fragmentation (396, 397). Upon infection 
with certain herpes viruses, perforin-deficient mice display similar 
characteristics as FHL patients (398-400). Animal models, together with data 
from patients, point to an important role for perforin–dependent mechanisms in 
maintaining immune homeostasis by controlling activated immune cells. Two 
additional human loci on chromosome 17q25 and 6q24 have subsequently 
been associated with FHL (401, 402). Mutations impeding the function of the 
Munc13-4 (UNC13D) gene are causative of FHL3 (401), while loss of function-
mutations in the syntaxin 11 (STX11) gene are causative of FHL4 (402). 
Recently, a mouse random mutagenesis screen for genes implicated in 
resistance to murine lymphocytic choriomeningitis virus identified a splice-site 
mutation in mouse Unc13d as causative of features similar to human HLH 
upon infection (403). Mutations in PRF1 or UNC13D account for approximately 
15-50% and 15-25% of FHL patients, respectively, depending on geographic 
region (404). Mutations in STX11 were initially identified in patients of Turkish 
origin, where they account for approximately 20% of FHL patients (404, 405). 
Other autosomal recessive syndromes associated with clinical manifestations 
similar to FHL, but additionally presenting hypopigmentation, include Griscelli 
syndrome type 2 (GS2), Chediak-Higashi syndrome (CHS), and Hermansky-
Pudlak syndrome type 2 (HPS2) which result from mutations in genes 
encoding Rab27a (RAB27A on 15q15-21), Lyst (LYST on 1q42.1-42.2), and 
adaptor protein 3 β subunit (AP-3, ADTB3A on 5q14.1), respectively (406-408). 
While HLH is a common feature of patients diagnosed with GS2 and CHS 
(406, 409), only a single HPS2 patient has been reported to develop HLH 
(410). The discovery that pigmentation defects were associated with defective 
NK cell cytotoxicity in humans and mice was first reported in 1980 by Tony 
Fauci and colleagues (411). NK cell cytotoxicity is also defective in GS2 and 
HPS2 (412, 413). However, a recent article suggests that only natural 
cytotoxicity is affected in GS2, whereas ADCC is intact (414). Furthermore, 
HLH is also prevalent in patients suffering from X-linked lymphoproliferative 
disease (XLP), an Epstein-Barr virus (EBV)-associated immunodeficiency. 
Patients with XLP type 1 (XLP1), caused by mutations in the gene encoding 
SAP (SH2D1A) (415, 416), may also manifest with HLH (417). Another recently 
identified locus associated with X-linked lymphoproliferative type 2 (XLP2) 
encodes the gene for X-linked inhibitor of apoptosis (XIAP, XIAP) (418). 
Patients with mutations in XIAP typically manifest with HLH (418). SAP is an 
intracellular adaptor molecule that signals down-stream of several receptors 
involved in interactions between lymphocytes (419, 420). Two studies of NK 
cells from XLP1 patients have revealed that 2B4 requires SAP in order to 
transmit signals for activation (421, 422). In the absence of SAP, 2B4 inhibits 
NK cell function. Moreover, immature NK cells contain low levels of SAP and 
engagement of 2B4 can therefore mediate tolerance of immature NK cells that 
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have not acquired expression of inhibitory receptors for MHC class I (423). 
These data partially corroborate divergent findings from 2B4–deficient and 
SAP–deficient mice, in which 2B4 has been attributed both positive and 
negative signaling functions (424, 425). Adding further complexity to the 
possible mechanisms of XLP1, a structural homologue of SAP that competes 
for binding to ITSMs has been described. EAT-2 is expressed in human NK 
cells and can bind ITSMs of 2B4 and other CD2-related receptors (426). In an 
NK cell line, Tassi et al. (426) observed that EAT-2 preferentially binds 2B4 in 
non-activated cells, whereas SAP binds with higher affinity after cell activation. 
Tentatively, 2B4–mediated activation could therefore be dynamically regulated 
by SAP expression and competition for ITSM binding with EAT-2. How SAP 
and EAT-2 competition in receptor signalling relates to disease remains to be 
established. The molecular mechanisms underlying disease caused by 
mutations in XIAP require further investigation.  

Papillon-Lefevre syndrome is characterized by early onset of peridontitis, which 
is in some cases thought to be viral in origin (364). Recent studies of patients 
with Papillon-Lefevre syndrome caused by mutations in the gene encoding 
cathepsin C, CTSC, suggest a role for this peptidase in mediating activation of 
granzyme B (427). Granzyme B, an effector of target cell apoptosis and major 
constituent of secretory lysosomes, requires proteolytic cleavage for activation. 
Interestingly, the stimulation of NK cells with IL-2 restored the ability to process 
granzyme B (427), consistent with a previous study that did not find any 
cytotoxic defect in cultured NK cells from Papillon-Lefevre patients (428). 

Defective NK cell function has also been noted in other immunodeficiencies 
caused by mutations in intracellular signaling proteins, such as Wiskott-Aldrich 
Syndrome (WAS) caused by mutations in WAS protein (WASp), WASP, 
autoimmune lymphoproliferative syndrome (ALPS) caused by mutations in 
caspase 8, CASP8, and NEMO-deficiency caused by mutations in the inhibitor 
of NF-κB complex, IKBGK, as recently reviewed (364). 

Formerly, primary immunodeficiencies were considered to be limited to a few 
rare, familial, monogenic, and recessive traits impairing the development and 
function of one or several immune cell types and resulting in opportunistic and 
fatal infections in infancy (429). These days, with more advanced techniques to 
assess genetics and immune function, the spectrum of individuals considered 
to suffer from immunodeficiencies is expanding. In the broadest sense, Jean-
Laurent Casanova and Laurent Abel argue that most individuals suffer at least 
one of a multitude of primary immunodeficiencies (430). Thus, with the 
advance of genetic and diagnostic techniques, the spectrum of 
immunodeficiency syndromes is expanding. Exemplifying the broadening 
notion of immunodeficiency disorders, extensive studies of KIR polymorphisms 
are revealing multiple disease associations (431). 
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4 RESULTS AND DISCUSSION 
4.1 ANTIBODY–DEPENDENT CELLULAR CYTOTOXICITY 

Due to the multiplicity of receptor–ligand interactions between NK cells and 
target cells, it has been difficult to assign specific functions to individual 
receptors and assess their relative contribution to NK cell effector functions. To 
overcome this complexity a reductionist target cell system was employed. 
Drosophila cells expressing individual or combinations of human NK cell 
ligands were generated and used as target cells for human NK cells (207, 228) 
(Figure 4). Unlike mammalian cells, insect cells are not expected to express a 
multitude of ligands for adhesion and activation receptors of human NK cells. 
Therefore, they are better suited for investigations on the individual contribution 
of, and crosstalk among NK cell receptors. A notable advantage of such a 
reconstituted target cell system is that activation of normal, unmanipulated NK 
cells can be studied with physiological ligands. The goal of this approach was 
to characterize the contribution of individual receptors NK cell activation and 
define a minimal requirement for ADCC by resting NK cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.  Reductionist Drosophila target cell system for assessment of individual 
contribution of receptors to NK cell activation. Drosophila S2 cells are 
transfected with individual or combinations of constructs encoding human NK 
cell receptor ligands. In cell mixing experiments with primary, resting NK cells, 
NK cell activation events or target cell lysis can be evaluated. 

CONTACT?
ADHESION?
GRANULE POLARIZATION?
DEGRANULATION?
CYTOTOXICITY?S2

ligands
X+Y

S2
ligand X

NK

S2
ligand Y

S2



 

 34 

The focus of Paper I is the contribution of three NK cell receptors to cytotoxicity 
by human freshly isolated, resting NK cells. Receptors CD16, LFA-1, and 2B4 
are generally considered as activation, adhesion, and co-stimulation receptors, 
respectively. Different assays were used to measure cytolytic granule 
polarization and degranulation separately, rather than overall target cell lysis. 
Polarization of perforin–containing granules towards target cells was assessed 
by confocal microscopy, whereas degranulation was as assessed by CD107a 
surface staining. CD107a is a transmembrane protein that usually resides in 
secretory lysosomes, but upon degranulation of secretory lysosomes, CD107a 
is exposed on the plasma membrane.  

Antibody-coated Drosophila cells were sufficient to induce CD16–mediated 
degranulation by resting human NK cells, as determined by granzyme B 
release, induction of CD107a, and Fas ligand surface expression (Figure 5). 
Resting NK cell degranulation was observed within minutes of mixing with 
sensitive target cells, and parallels the rapid mobilization of calcium by 
interaction with target cells (199). CD16–mediated degranulation occured in 
spite of very low target cell adhesion. Furthermore, examination of conjugates 
between resting NK cells and IgG–coated target cells did not reveal granule 
polarization. Alone, engagement of LFA-1 by ICAM-1 on Drosophila cells was 
sufficient to induce low adhesion and granule polarization (Figure 5). Efficient 
ADCC by resting NK cells required the combined presence of IgG and 
expression of human ICAM-1 on Drosophila cells (Figure 5). The results define 
two separable signals for adhesion/polarization (LFA-1) and degranulation 
(CD16) that are required for target cell killing. Notably, ICAM-1 expression on 
target cells did not increase CD16–induced degranulation. Results are in 
agreement with a study of T cells (432), which concluded that LFA-1–ICAM-1 
interactions are dispensable for degranulation, but essential for effective target 
cell lysis through enhancement of TCR–dependent granule polarization 
towards target cells. In another report, perforin release induced by soluble 
ICAM-2 and ICAM-3 Fc fusion proteins, but not ICAM-1–Fc, was observed in a 
CD8+ subset of human NK cells (433). Because the Fc portion of the ICAM 
fusion proteins was derived from human IgG1, it is not possible to exclude co-
engagement of and activation by CD16, as has been described with other 
human IgG1 fusion proteins (434). 

Previous studies using cells from LFA-1–deficient patients or experiments with 
LFA-1–blocking mAbs have demonstrated a role for LFA-1 in ADCC. NK cells 
from LAD patients display attenuated ADCC (374, 435) and anti-LFA-1 
blocking antibodies inhibit lysis of anti-CD16 expressing hybridomas (188, 
189). The interpretation of these results used to be that LFA-1 is required to 
provide target cell adhesion, in order for activating receptors such as CD16 to 
trigger NK cell cytotoxicity.  

In the absence of LFA-1 engagement, CD48 expression by Drosophila cells 
enhanced ADCC (Figure 5). At comparable IgG concentrations, co-
engagement by target cell ligands of CD16 and 2B4 induced target cell killing 
as efficiently as co-engagement of CD16 and LFA-1. The mechanisms used by 
2B4 or LFA-1–dependent co-stimulation of ADCC are different. In contrast to 
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LFA-1–mediated co-stimulation, IgG in combination with CD48 expression on 
Drosophila cells did not induce strong adhesion. Instead, co-engagement of 
CD16 by IgG and 2B4 by CD48 augmented the signals for polarization and 
degranulation. CD48–mediated co-stimulation lowered the IgG concentration 
required to induce resting NK cell degranulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Summary of NK cell activation by Drosophila cells expressing ligands for 
human receptors (Paper I). Ligands expressed on S2 cells are indicated in 
yellow (CD48), blue (ICAM-1), and green (IgG). The outcome of interaction with 
NK cells is listed on the right. 
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So far, data obtained with the Drosophila target cell system suggest that no 
single receptor–ligand interaction is sufficient to trigger all activation steps. 
Conceptually, it could be envisaged that certain steps might be required for the 
triggering of consecutive events; for example, a sequence of adhesion followed 
by granule polarization and degranulation. However, in vitro mixing 
experiments with Drosophila cells and resting NK cells suggest that receptors 
may trigger discrete activation steps independently of each other. Thus, NK cell 
activation does not necessarily follow a sequence of events, but is guided by 
the engagement of receptor or receptor combinations upon encounter with 
target cells. Admittedly, requirements for NK cell activation could be more 
stringent in vivo, under conditions of shear flow and limited ligand availability.  

Although degranulation appears to be necessary for cytotoxicity by resting NK 
cells, it is not synonymous with target cell lysis. Neither granule polarization nor 
degranulation alone is sufficient for cytotoxicity. Rather, combinations of NK 
cell receptors cooperate to induce efficient elimination of target cells. The data 
imply a central role for LFA-1, not only in target cell adhesion, but also in 
signaling for cytotoxicity, and suggest that LFA-1 can prime NK cells for 
cytotoxicity. 

 
4.2 NATURAL CYTOTOXICITY 

A large number of receptors have been implicated in natural cytotoxicity, as 
discussed in the preceeding chapters. Two commonly used approaches to 
characterize NK cell activating receptors have been to identify mAbs that 
interfere with NK cell–mediated lysis of sensitive target cells and evaluate 
whether mAbs to such NK cell structures trigger redirected lysis of the FcR+ 
target cell line P815. In such experiments, IL-2–activated NK cells are 
commonly used as effectors. Remarkably, using Drosophila cells expressing 
ligands for different NK cell activation receptors, alone or in combination with 
ICAM-1, we did not observe any target cell lysis (Paper I and manuscript in 
preparation). Therefore, we hypothesized that receptors might cooperate for 
activation of resting NK cells. In Paper II, instead of generating an exhaustive 
repertoire of Drosophila cells expressing all possible combinations of ligands 
for activating NK cell receptors, well-characterized mAbs to activating NK cell 
receptors were used to study the requirements for activation of natural 
cytotoxicity and cytokine production. 

Analysis of mAbs to NKp46, NKG2D, DNAM-1, 2B4 and CD2 with resting NK 
cells demonstrated that these receptors do not induce efficient lysis. 
Nonetheless, K562 cells triggered both degranulation and lysis by resting NK 
cells, suggesting no impairment of natural cytotoxicity in resting NK cells per 
se. In addition, mAbs to CD16 induced lysis of P815 cells by both resting and 
IL-2–activated NK cells. Of note, the FcR+ mouse cell line P815 used as target 
cells in these redirected-ADCC assays express mouse ICAM-1, which binds 
human LFA-1 (436), thereby corroborating the results obtained in Paper I. 

In contrast to the degranulation induced by CD16 ligation, ligation of NKG2D or 
2B4 by Abs bound to the FcR+ mouse cell line P815 did not induce 
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degranulation. When mAbs were combined, NKG2D and 2B4 synergistically 
induced degranulation in resting NK cells (Figure 6). However, as P815 cells 
express mouse ICAM-1, which binds human LFA-1 (436), it is possible that 
recognition of mouse ligands by human NK cells contributed to activation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Coactivation of resting NK cells (Paper II). (A) Schematic representation of 
synergies among coactivation receptors for Ca2+ mobilization for receptors 
expressed on resting NK cells. (B) Coengagement on non-ITAM-associated 
receptors can synergistically induce Ca2+ mobilization and degranulation in 
resting NK cells. (C) Engagement of CD16 is sufficient to induce Ca2+ 
mobilization and degranulation in resting NK cells. Ca2+ mobilization and 
degranulation are enhanced by coengagement of costimulatory receptors such 
as NKG2D and 2B4. 

Upon closer examination, we found that mAb–mediated crosslinking of NKp46, 
NKG2D, 2B4, DNAM-1, and CD2 only induced weak intracellular Ca2+ 
mobilization, as compared to Ca2+ mobilization induced by mAb–mediated 
crosslinking of CD16. However, co-crosslinking of specific, pairwise 
combinations of receptors can induce synergistic Ca2+ mobilization. Results 
revealed a hierarchy of receptors for activation of resting NK cell cytotoxicity 
and cytokine secretion, as depicted (Figure 6). The unique pattern of receptor 
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combinations that provide synergy is consistent with the use of different 
signaling modules by each receptor to induce activation. We propose the term 
“co-activation” receptors, as they do not by themselves induce strong activation 
signals, but depend on co-engagement of other co-activating receptors for 
activation of NK cell function. Generally, the same combinations of mAbs that 
synergize for Ca2+ mobilization also enhance resting NK cell cytotoxicity and 
cytokine production. Moreover, while engagement of neither receptor alone 
induces degranuation, co-engagement of 2B4 with NKG2D or DNAM-1 by 
mAbs can induce strong synergistic signals that lead to degranulation. Thus, 
we speculate that receptor co-activation as observed between 2B4 and 
NKG2D, or 2B4 and DNAM-1, may be responsible for the ITAM–independent 
NK cell cytotoxicity observed in mice deficient in both SYK and ZAP-70 (437). 
In these mice, NKG2D can contribute to target cell lysis by IL-2–activated NK 
cells (438). 

So how might NKG2D and 2B4 signals synergize for PLC-γ recruitment, Ca2+ 
mobilization, degranulation, and cytotoxicity? NKG2D can recruit PI3K through 
DAP10 (135). In IL-2–activated NK cells recruitment of PI3K by DAP10 leads to 
activation of Vav, Rho family GTPases, and PLC-γ (439). In resting NK cells, 
this pathway only induces a minor, but reproducible Ca2+ mobilization that can 
be inhibited by wortmannin or Ly294002, which are pharmacological inhibitors 
of PI3K (200 and unpublished data). Similar to NKG2D, 2B4 activates PLC-γ in 
IL-2–activated NK cells (440). Unlike NKG2D and CD16 crosslinking, however, 
Ca2+ mobilization induced by 2B4 crosslinking is insensitive to PI3K inhibitors in 
resting NK cells (200). The synergy of 2B4 and NKG2D–DAP10 signals could 
result from enhanced PI3K–mediated membrane recruitment of PLC-γ through 
the PLC-γ pleckstrin homology (PH) domain. Surprisingly, the synergistic Ca2+ 
mobilization induced by NKG2D and 2B4 co-activation is insensitive to PI3K 
inhibitors in resting NK cells. Therefore, the NKG2D signal that augments Ca2+ 
mobilization in co-ordination with 2B4 signals is PI3K–independent. Although 
PI3K inhibition only partially inhibits CD16 and has no effect on NKG2D and 
2B4 synergistic Ca2+ mobilization, it abolishes resting NK cell degranulation 
(200) and cytotoxicity (unpublished data). The data demonstrate that NKG2D 
and 2B4 co-activation of Ca2+ mobilization is PLC-γ–dependent and PI3K–
independent, while resting NK cell cytotoxicity requires both PLC-γ and PI3K for 
degranulation. In line with these findings and providing mechanistic insights, a 
recent study (138) showed that NKG2D–DAP10 recruitment of both a Grb2–
Vav complex and the p85 subunit of PI3K is required for NKG2D–mediated 
cytotoxicity in IL-2–activated NK cells. Substantiating these findings, PLC-γ is 
activated independently of PI3K, but associates with Vav and SLP-76 in 
activated human mast cells (441). Thus, PLC-γ and PI3K are emerging as two 
critical signaling components for NK cell degranulation, and PI3K appears to be 
downstream of PLC-γ activation. 

The perception that ITAM–mediated signaling induces potent NK cell 
activation, similar to how T cell and B cell activation depends on antigen 
receptor signaling, is challenged by these results. Although engagement of 
ITAM–containing receptors by specific mAbs induces lysis of FcR+ cells in 
redirected lysis assays with IL-2–activated NK cells, this is not necessarily the 
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case in assays with resting NK cells. Comparison of cytotoxicity by IL-2–
activated and resting NK cells in redirected lysis assays revealed that mAbs to 
NKp30 and NKp46 do not efficiently trigger cytotoxicity by resting NK cells. This 
was not due to an intrinsic incapability of resting NK cell to mediate ITAM–
dependent cytotoxicity, as mAbs to CD16 efficiently triggered lysis by resting 
NK cells. Under some circumstances, signaling by ITAM has even been shown 
to inhibit the function of other cell types (442, 443). Furthermore, signaling by 
ITAMs is not required for NK cell effector function. Cytotoxicity towards certain 
target cells proceeds independently of ITAM, as NK cells from mice deficient in 
both Syk and ZAP-70 or a combination of the ITAM–containing adaptors 
DAP12, CD3 ζ-chain, and FcεR γ-chain can mediate cytotoxicity (437, 444).  

In terms of early signaling events, co-crosslinking of CD16 and 2B4 by specific 
mAbs synergistically augmented intracellular calcium mobilization relative to 
cross-linking of CD16 alone. MAb–mediated co-engagement of other NK cell 
receptors, such as NKG2D, DNAM-1, and CD2 also augmented CD16–
induced calcium fluxes. Therefore, expression of ligands for other activating NK 
cell receptors might also synergistically co-stimulate CD16–triggered 
degranulation and reduce the concentration of IgG required to trigger resting 
NK cell degranulation. Of interest, ITAM–mediated signals from different 
receptors do not enhance each other, as co-engagement of NKp46 with CD16 
did not result in enhanced responses. 

It should be emphasized that the outcome of specific receptor engagement on 
NK cells is not clear-cut. NK cell responses are not merely a function of 
engaged receptors, but also represent the expression levels and distribution of 
intracellular signaling molecules present in any given NK cell. The availability of 
signaling components is influenced by cell maturation stage, and is potentially 
modulated by inhibitory receptor calibration and extrinsic inflammatory signals. 
These factors combine to fine-tune and provide distinctiveness to the reactivity 
of individual NK cells. 

In conclusion, resting NK cells are not inherently non-responsive, but the 
regulation of their activation is far more stringent than that of IL-2–activated NK 
cells. Receptors can signal independently in resting NK cells, but cytotoxicity 
requires a combination of signals for adhesion, granule polarization, and 
degranulation, supplied by two or more interactions between different receptor–
ligand pairs. It appears that no receptor alone, but co-engagement of certain 
combinations of co-activating receptors induces efficient cytotoxicity, signifying 
redundancy in NK cell recognition. 

 
4.3 ACTIVATION OF NK CELLS BY KIR2DL4 

KIR2DL4 is an enigmatic NK cell receptor with both activating and inhibitory 
potential, and thus represents an anomaly among NK cell receptors. KIR2DL4 
contains a functional cytoplasmic ITIM, in addition to harboring a 
transmembrane arginine residue through which it can associate with the FcεR 
γ-chain (176, 177). KIR2DL4 is an evolutionary conserved framework member 
of the KIR gene family, is present in all KIR haplotypes, and is expressed by all 
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NK cells suggests it might subserve an important function (174, 175). 
Remarkably, engagement of KIR2DL4 does not induce cytotoxicity, but rather 
IFN-γ production by freshly isolated NK cells (182).  

In paper III, we explored the cellular distribution, signaling mechanisms, and 
transcriptional profile induced by KIR2DL4 engagement in further detail. Unlike 
other KIR family members, KIR2DL4 was constitutively internalized to 
intracellular Rab5+ compartments via a dynamin-dependent process. Thus, 
cell-surface staining of KIR2DL4 was weak, as KIR2DL4 resides in intracellular 
compartments. In contrast to mAbs to other NK cell activating receptors such 
as CD16, soluble but not solid phase mAbs to KIR2DL4 induced IFN-γ 
secretion. Mircroarray profiling of genes induced by mAbs to KIR2DL4 revealed 
a proinflammatory/proangiogenic response. Soluble HLA-G was endocytosed 
into KIR2DL4-containing compartments in resting NK cells and induced 
secretion of a similar set of cytokines and chemokines. Soluble HLA-G is 
produced naturally by alternative splicing (445, 446), and by proteolytic 
cleavage of membrane-bound HLA-G (447). Interestingly, chemokine secretion 
induced by KIR2DL4 transfection into 293T cells occurred only with 
recombinant forms of KIR2DL4 residing in endosomes, and was not dependent 
on the transmembrane arginine residue. Thus, KIR2DL4 appears to selectively 
signal from endosomes, recently emerging as a specialized signaling 
compartment (448, 449). However, the signaling pathways induced by 
KIR2DL4 require further study. 

Successful pregnancy implies accommodation of fetal cells that constitute an 
allograft. In normal pregnancies, fetal cells are in effect not perceived as foreign 
and are not rejected by the maternal immune system. Invading trophoblasts do 
not express classical class I HLA-A or HLA-B molecules and HLA class II 
molecules. Instead trophoblasts selectively express HLA-C, HLA-E, and HLA-G 
molecules (450, 451). Dysregulation of NK cells has been associated with 
reproductive failure, such as recurrent spontaneous abortions (452), infertility 
(453, 454), and pre-eclampsia (451). In conjunction with NK cells being the 
predominant lymphocyte population in uterine mucosa, the finding that 
KIR2DL4 binds HLA-G has lead to speculation of a role for KIR2DL4 in 
pregnancy (178, 179). IFN-γ contributes to initiation of uterine vascular 
modification and decidual integrity during normal murine pregnancy mice (455). 
Thus, IFN-γ and other factors released after KIR2LD4 engagement could 
contribute to successful pregnancy. Hopefully genetic associations studies can 
clarify the putative role for KIR2DL4 and HLA-G in human pregnancy, or in 
infectious diseases. 

 
4.4 MECHANISMS OF NK CELL GRANULE EXOCYTOSIS 

Studies of the minimal requirement of ADCC and natural cytotoxicity by resting 
NK cells raised several questions regarding the mechanisms whereby resting 
NK cells release secretory lysosomes. Due to the inefficiency of current 
technology to modify primary, freshly isolated NK cells in vitro, we wished to 
study the mechanisms of NK cell cytotoxicity by use of NK cells isolated from 
individuals with defined mutations affecting the ability of NK cells to kill target 
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cells. Patients diagnosed with HLH typically present with defective NK cell 
cytotoxicity. Importantly, understanding the molecular pathophysiology of 
immune disorders such as HLH does not only contribute to a better knowledge 
of the immune system, but may also aid development of improved diagnostic 
procedures and favor new therapeutic approaches.  

The identification of mutations in PRF1, UNC13D, STX11, RAB27A, LYST, and 
ADTB3A as causative of hemophagocytic syndromes combined with studies of 
the biological function of their protein products have provided a compelling link 
between impaired lymphocyte cytotoxicity and HLH (456, 457). The perforin 
gene is transcribed by cytotoxic T lymphocytes (CTLs) and natural killer (NK) 
cells. Such cytotoxic lymphocytes store perforin in secretory lysosomes, 
specialized granules that mediate cytotoxic function. Upon degranulation, 
perforin facilitates granzyme-mediated apoptosis of target cells (458, 459). The 
protein products of other genes associated with hemophagocytic syndromes 
have been shown to be involved in biogenesis, trafficking, and regulation of 
lytic granule release, thereby providing mechanistic insight into cytotoxic 
lymphocyte effector function. Lyst–deficiency interferes with lysosome 
biogenesis and degranulation (460), whereas AP-3–deficiency impairs 
secretory lysosome movement along microtubules, polarization and release at 
the immune synapse (461). Rab27a, a small GTPase, and Munc13-4 are 
ubiquitously expressed and are localized to the cytosolic face of secretory 
lysosomes (401, 462). Rab27a and Munc13-4 may associate with each other 
(462-464), and deficiency of either Rab27a or Munc13-4 impairs docking and 
degranulation of secretory lysosomes (401, 406, 464, 465). Syntaxin 11 is a 
protein of 287 amino acids containing a Qa soluble N-ethylmaleimide-sensitive 
factor attachment protein receptor (SNARE) motif from amino acid 201 to 277 
(466, 467). The SNARE protein syntaxin 11 localizes to punctuate intracellular 
structures, which correspond to late endosomes and the trans-Golgi network, 
as determined by co-localization with mannose-6-phosphate receptor (466-
468). Unlike Rab27a and Munc13-4, syntaxin 11 was reportedly expressed in 
monocytes, but not lymphocytes (402). Therefore, syntaxin 11 was proposed to 
regulate cytotoxic lymphocyte function indirectly through cell–cell interactions 
with antigen-presenting cells (402).  

Due to the strong link between defective NK cell cytotoxicity and HLH, we 
decided to examine NK cell function in syntaxin 11-deficient patients in more 
detail. Providing insight into the general mechanisms of lymphocyte 
cytotoxicity, studies focusing on NK cell functional deficits in HLH offer several 
advantages. As opposed to T cells, where antigen receptor specificities are 
clonally distributed, NK cells can be activated through a number of uniformly 
expressed activating receptors. Unlike T cells, where a only subset of effector 
CD8+ T cells express low levels of perforin and stimulation is required to 
augment lytic content, all NK cells contain abundant intracellular perforin (469). 
Accordingly, NK cells are particularly well suited for studies of distinct steps in 
cytotoxicity by freshly isolated, primary lymphocytes. 

In paper IV, we assessed the expression and function of syntaxin 11 in freshly 
isolated, resting NK cells. In contrast to a previous study (402), expression of 
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syntaxin 11 transcript and protein was demonstrated in cytotoxic lymphocytes, 
including resting NK cells and a cytotoxic NK cell line. Importantly, 
degranulation by resting NK cells in patients with disease-causing, 
homozygous mutations in STX11 was defective. The findings are corroborated 
by a study demonstrating that knockdown of syntaxin 11 results in impaired NK 
cell cytotoxicity (470). Thus, these studies were the first to identify a member of 
the soluble N-ethylmaleimide-sensitive factor attachment protein receptor 
(SNARE) domain containing family member in lymphocyte granule exocytotsis. 
The formation of a SNARE domain complex consisting of four different SNARE 
domains contributed by distinct effector proteins facilitates fusion of vesicle 
membranes (471). The exact vesicular fusion step that syntaxin 11 mediates 
and the partners involved in forming a SNARE complex required for membrane 
fusion remain to be elucidated.  

The steps leading to fusion of lytic granules with the plasma membrane still 
represent a conundrum in cytotoxic lymphocyte biology (472). This process 
was first assumed to entail direct fusion of lytic granules with the plasma 
membrane. Loss-of-function mutations in RAB27A, a member of the Rab 
GTPase family that regulate discrete steps of vesicle trafficking, cause 
defective CTL degranulation and cytotoxicity by impairing docking of granules 
at the membrane (406, 465, 473). Munc13-4, belonging to a family of proteins 
that mediate vesicle priming at synapses, is required for docking and fusion of 
perforin-containing granules with the plasma membrane in CTL and NK cells 
(401, 473, 474). In vitro binding assays have identified Munc13-4 as an effector 
of GTP-bound Rab27a (462, 463). Moreover, studies of a mast cell line have 
provided evidence for localization of transfected and tagged Rab27a and 
Munc13-4 to the limiting membrane of secretory lysosomes, as determined by 
electron and confocal microscopy (462). In platelets, however, endogenous 
Rab27a is associated with dense granules, while Munc13-4 is present on other 
membrane fractions (463). Recently, a study of cytotoxic T cells by Menanger 
et al. (475) revealed that Munc13-4 initially mediates assembly of Rab11+ 
recycling endosomes with Rab27a+ late endosomes independently of Rab27a, 
and thereafter primes granule fusion, possibly through Rab27a. The results 
imply that lytic granule exocytosis does not necessarily involve direct fusion of 
granules with the plasma membrane. Instead, the process appears to be more 
complex than previously appreciated. Furthermore, molecular pathways 
leading to lymphocyte cytotoxicity have been thought to converge for lytic 
granule release, with T cell receptor-mediated, Fc receptor-mediated, and 
natural cytotoxicity all sharing the same cytolytic machinery. Perplexingly, a 
dichotomy in the requirement for Rab27a in NK cell natural cytotoxicity versus 
antibody-dependent cellular cytotoxicity (ADCC) was recently described, 
suggesting that ADCC is Rab27a-independent (414). In contrast, Munc13-4 is 
indispensable for NK cell mediated degranulation and cytotoxicity induced by 
several stimuli (474). Clearly, further study of the intracellular components that 
instigate membrane fusion and specific role o syntaxin 11 are warranted.   

Unexpectedly, IL-2 stimulation partly restored degranulation and cytotoxicity by 
NK cells from syntaxin 11-deficient patients, which could explain the less 
severe disese progression observed in FHL4 patients relative to FHL2 and 
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FHL3 patients (405). Since the T cell compartment is still immature in infants, 
we speculated in Paper IV that the observed defect in NK cell degranulation 
contributes to the pathophysiology of FHL. Although genetic and functional 
evidence provides a strong link between HLH and perforin–dependent cellular 
cytotoxicity, the expression and function of syntaxin 11 in other cell types could 
also contribute to the pathophysiology observed in FHL4 (476). 

The results in Paper IV also have implications for diagnosis and therapy of 
FHL2, FHL3, and FHL4. Diagnostically, the CD107a assay for degranulation, 
combined with evaluation of cytotoxicity, offer a rapid and highly reproducible 
method for diagnosis of FHL and subclassification of FHL2 from FHL3 and 
FHL4, thereby providing guidance for genetic analysis, as also suggested by 
Marcenaro et al. (474). Therapeutically, our results suggest that reagents which 
would specifically activate NK cells or CD8+ T cells may be beneficial in the 
treatment of FHL4, by partially restoring cytotoxic function. Further, as we 
argue that NK cells are the major perforin expressing cell population in infants, 
an alternative therapeutic approach could be NK cell donor lymphocyte infusion 
to FHL patients lacking cytotoxic activity. Donor NK cells might stabilize 
patients prior to transplantation, by contributing to restoration of immune 
homeostasis. Thus, donor NK cell infusion could facilitate successful 
transplantation of patients. 

In Paper V, we described UNC13D mutations, causative of FHL3, in a cohort 
of patients and related genotype to phenotypic analysis. Most notably, 
UNC13D mutations in two siblings with late, adolescent onset disease were 
identified. The patients in this family were homozygous for a splice site 
mutation. NK cell degranulation in a patient from this family was severely 
impaired. However, compared to patients with early onset disease and 
UNC13D nonsense mutations, low levels of degranulation were evident. Thus, 
we speculate that mutations conferring some, residual protein activity might 
predispose to the development of HLH later in life. Therefore, mutations in 
PRF1, UNC13D, and STX11, in addition to other still unidentified genes could 
explain cases of late onset, yet unaccountable secondary HLH. Moreover, 
patients with mutations that impair cytotoxic lymphocyte function might 
predispose to other infectious diseases or malignancies due to reduced 
capacity for immunosurveillance. Supporting such a notion, both homozygous 
and heterozygous perforin mutations have been identified in lymphoma 
patients (477). Prospectively, classification of patients with reduced cytotoxic 
function could facilitate prognosis and treatment of disease. 
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5 CONCLUDING REMARKS 
The immune system, a pillar of life, is a mesmerizingly complex entity. However 
daunting, NK cell biology represents a fascinating view into the evolutionary 
struggles between intracellular pathogens and the immune system, with clinical 
implications for immunity to infection. Moreover, accumulating evidence 
suggests a significant role for NK cells in reproduction and tumor surveillance. 
The regulation of NK cell function is remarkably diversified in terms of 
recognition strategies and genomic diversity. By relating genetic studies of 
disease with carefully designed functional studies of immune cells, it is possible 
to decipher the role of individual genetic elements to proper immune function.  

By use of different experimental approaches, the work in this thesis has 
focused on the individual contribution of several gene products to human NK 
cell function. With reductionist target cell systems, we have defined 
requirements of receptor engagement for ADCC and natural cytotoxicity by 
physiological NK cells. Further, the contribution of individual receptors to these 
processes was dissected. Through study of NK cells from immunodeficent 
patients, we have assessed the role of intracellular effector proteins to NK cell 
function and identified critical mediators of NK cell granule release. 

Several important questions remain. In terms of NK cell biology, reductionist 
systems can feasibly expand our knowledge in relation the point at which 
inhibitory signaling intersects activating receptor signals and how diverse ligand 
engagements regulate NK cell functions, such as degranulation, cytokine 
release, and proliferation. Furthermore, modulation of NK cell function by 
extrinsic cytokines is of interest. Specifically, how do cytokines affect the 
thresholds for NK cell effector function? The expression of so-called NK cell 
receptors is seldom confined to NK cells. Therefore, assessment of their 
function on other cell types is also of interest. Arguably, NK cells represent a 
useful model system for studying the mechanisms of cellular cytotoxicity. The 
process of cytotoxic granule release remains convoluted. How does syntaxin 
11 facilitate granule release, and by which means is this requirement 
surpassed by cellular activation? Which SNARE proteins facilitate granule 
release and how are these proteins mobilized by different NK cell receptors? 

Meticolous studies will hopefully provide answers to such fundamental 
questions of NK cell biology. In addition, they should provide clinically relevant 
insight. The realm of immunodeficiency syndromes is expanding. Detailed 
understanding of NK cell activation promises to elucidate genetic causes of 
infectious and inflammatory disease, such as the many unaccountable cases of 
secondary HLH. In addition, predisposition to cancer and autoimmunity may be 
explained. Hypothetically, although redundancy and resilience prevails in NK 
cell recognition, defects in particular NK cell receptor systems should produce 
more subtle clinical phenotypes, compared to fatal immunodeficiencies such as 
FHL. Importantly, advanced knowledge of the immune system’s checks and 
balances will encourage new and improved treatment modalities. 

Surely, nature has plenty of marvel to entice our further pursuit of wisdom! 
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