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ABSTRACT
There are two estrogen receptors (ERs), ER  and ER , which are ligand activated 
transcription factors. Estrogen, which exerts its effect via ERs, is not only a female 
reproductive hormone, but acts almost ubiquitously in the human body and is involved 
in physiological and pathological states in both males and females. Estrogen has effects 
in bone maintenance and the cardiovascular and central nervous systems as well as the 
reproductive system. Estrogen reduces blood lipid levels and blood pressure as well as 
increases insulin sensitivity and endothelial function. The effects of estrogen on skeletal 
muscle tissue have not been studied extensively, although a few reports indicate a role 
in muscle strength development and involvement in carbohydrate and lipid metabolism. 
Just like estrogen physical activity reduces blood lipid levels and blood pressure as well 
as insulin sensitivity and endothelial function. Interestingly, physical activity 
transcriptionally activates similar genes as estrogen does, for example vascular 
endothelial growth factor (VEGF). Thus, considering that physical activity and estrogen 
have actions in common, the question whether estrogen signalling is induced by 
physical activity and thus could be involved in down-stream exercise-induced gene 
expression arises. 
 The overall aim of this thesis was to study the expression of ERs and their 
activation in skeletal muscle tissue. The specific aims were to investigate if ER  and 
ER  are present in human skeletal muscle. Thereafter, the ER expression was studied in 
subjects with low endogenous estrogen levels such as men, children and 
postmenopausal women. Furthermore, the localisation and possible co-expression of 
the both receptors were investigated. The expression levels of ERs were compared in 
highly endurance-trained men and moderately active men together with the target gene 
VEGF. Finally, the activation of ERs by estrogen as well as by muscle contractions was 
investigated. It was hypothesised that ERs in skeletal muscle are functional and 
activated by estrogen and by muscle contractions and are involved in the adaptation of 
skeletal muscle to physical training. 
 For the first time ER  and ER  were shown to be expressed in human skeletal 
muscle representing both sexes and various ages. Approximately 65 % of all nuclei 
expressed ER  and 70 % expressed ER . The ER  and ER  were located not only to 
the nuclei of muscle fibres themselves but also to capillaries. Of all ER - or ER -
positive nuclei about 25 % were located to capillaries. The two receptors were to a 
major extent co-expressed in the same nuclei. Endurance-trained men had a higher 
steady-state mRNA level of both ER  and ER  compared to normally active men, 
together with higher expression of VEGF. Muscle contractions of myotubes from rat 
also increased ER  mRNA levels without any effect on ER  mRNA. An increase in 
ER  mRNA was also seen with estrogen stimulation of the myotubes. Muscle 
contractions had a similar functional effect as estrogen in myotubes causing activation 
of estrogen response elements (ERE). In contrast to estrogen, the effects of muscle 
contractions were most likely independent of ERs.  
 That ERs are present in the skeletal muscle fibres suggests that this tissue is a 
target for estrogen action, which was confirmed in myotubes by ERE activation when 
stimulated with estrogen. In the muscle tissue, estrogen might also have direct effects 
on the capillaries, since ERs are located to capillaries too. The finding that contraction 
of myotubes activates ERE-sequences and increases ER  mRNA levels as well as the 
higher mRNA levels of ERs in endurance trained men suggest an involvement of ERs 
and ER target genes in the adaptation of skeletal muscle to physical exercise. 
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INTRODUCTION 
 

 
SKELETAL MUSCLE HISTOLOGY 
The muscular system represents one of the largest systems in the body and comprises 

over 40 % of the body’s mass. Skeletal muscle is composed of elongated cells called 

muscle fibres and contains several nuclei in contrast to other cell types that have only 

one nucleus. The nuclei are located just beneath the plasma membrane (sarcolemma). 

Basal lamina (basement membrane) is located just outside of the sarcolemma and 

contains collagen IV. Satellite cells are located between the plasma membrane and the 

basal lamina (fig. 1). They are reserve cells that when activated can proliferate, 

differentiate and fuse together to form myotubes, which in turn undergo further 

differentiation to become mature muscle fibres. Mature and functional muscle fibres are 

parallel to their neighbour and are arranged in bundles called fascicles, which are 

surrounded by connective tissue. Contracting muscle requires tremendous quantities of 

energy. Each muscle fibre is also surrounded by an extensive network of capillaries that 

supply the cell with the necessary oxygen and nutrient required by the activated skeletal 

muscle (Peachy et al. 1983). 

Resting skeletal muscle fibres rely mostly on the aerobic metabolism of fatty 

acids, which are absorbed from the circulation. When skeletal muscle contractions 

occur, mitochondria break down glucose either from the surrounding or from glycogen 

reserves. During physical activity the milieu surrounding the skeletal muscle changes, 

the temperature increases, pH and oxygen levels decrease. These and other factors 

affect a lot of proteins in the muscle cell. For example the degree of phosphorylation of 

protein kinases are affected which in turn can activate genes that lead to an adaptation 

to training (Saltin and Gollnick 1983).  
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Figure 1. Schematic figure of a muscle and a cross-cut of a muscle fibre indicating the location of 

the muscle nuclei, capillaries and satellite cells.  

 

 

ESTROGENS 
Estrogens are steroid hormones that are synthesized from cholesterol. The most potent 

and dominant estrogen in humans is 17 -estradiol (E2), but lower levels of the 

estrogens estrone and estriol are also present. Estrone is the most abundant estrogen in 

postmenopausal women. In premenopausal women, most of the estrogens are produced 

in the ovary, while in men and postmenopausal women it is produced by aromatization 

of androgens in peripheral tissue (fig. 2). Tissues that have been reported to synthesise 

estrogen includes muscle, fat, liver and brain (Brodie and Inkster 1993; Matsumine et 

al. 1986; Miller 1991; Naftolin et al. 1975). The great mass of muscle and fat could 

thereby be expected to be the main contributor to total peripheral estrogen formation.  

Although aromatase activity and level of expression are low in skeletal muscle, such 
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small activity can be compensated for by the bulk of the tissue in the body (Larionov et 

al. 2003).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Steroid synthesis.  

 

When estrogens are released into the circulation most of it is bound to plasma proteins 

and transported to target tissues. The steroid hormones are lipophilic and have a low 

molecular weight that enables them to enter the target cells by passive diffusion. 

Estrogens have a broad range of target tissues in the human body (Nilsson et al. 2001). 

For example, estrogens are required for female sexual maturation and affects growth, 

differentiation and function of the female reproductive system. In addition, estrogens 

have an important role in for instants the liver (Fisher et al. 1984), in bone metabolism 

(Manolagas 2000), the nervous system (Joels 1997), the cardiovascular system 

(Mendelsohn and Karas 1999) as well as the development and function of the immune 

system (Carlsten et al. 1989) in both sexes. In skeleton, estrogens prevent bone 

resorption and estrogen replacement therapy are known to reduce osteoporosis in 

postmenopausal women (Rossouw et al. 2002). In the nervous system estrogen has a 

numerous of different effects such as beneficial for learning and memory as well as 

controlling the hypothalamic-pituitary-gonadal axis (Birge 1996; Lamberts et al. 1997). 

In the cardiovascular system estrogen exerts protective effects by influencing the 

vascular function with effects on vascular tone and blood flow and subsequently arterial 

blood pressure (Mendelsohn and Karas 1999). 
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SIMILARITIES OF PHYSICAL ACTIVITY AND ESTROGEN 
 
 
Estrogen and skeletal muscle 
Very little is known about the effect of estrogen in skeletal muscle. Some animal 

studies indicate that estrogen can influence skeletal muscle growth. Estrogen 

administrated to ovariectomized immature female rats increased the weights of 

gastrocnemius and soleus muscles (Sillence et al. 1995). In humans high estrogen 

levels during the normal menstrual cycle have been suggested to influence muscle 

strength with increased maximum voluntary muscle force when the level of estrogen 

is highest in healthy regularly menstruating women (Phillips et al. 1996; Sarwar et al. 

1996). In addition, some published prospective randomized studies, strongly suggest 

that estrogen has an anabolic effect on skeletal muscle, as shown by a positive or 

preserving effect on muscle strength in postmenopausal women (Heikkinen et al. 

1997; Skelton et al. 1999). However, the effects of estrogen on muscle strength are 

conflicting since other studies have not been able to detect any effect of hormone 

replacement therapy (Greeves et al. 1997; Ribom et al. 2002; Taaffe et al. 1995). 

Furthermore, estrogen has been shown to be an important factor in protecting muscle 

from exercise-induced muscle damage (Tiidus 1995). 

 Proliferation and/or activation of muscle satellite cells may be involved in 

steroid-induced muscle growth. Satellite cells from mice stimulated with estrogen 

shows an increased proliferation (Deasy et al. 2007). Estrogenic influence on satellite 

cell proliferation may be mediated by insulin like growth factor-1 (IGF-1), which is 

known to simulate satellite cell proliferation. Treatment of bovine satellite cell 

cultures with estrogen increase IGF-1 mRNA level and proliferation (Kamanga-Sollo 

et al. 2004). This is consistent with in vivo studies showing that treatment of steers 

with estrogen increases muscle IGF-1 mRNA levels and muscle growth (Pampusch et 

al. 2003). RALGRO , an estrogen-active compound, also exerts strong anabolic 

effects in farm animals (Pfaffl et al. 2001). In a study by Tiidus et al. (2005) downhill 

running in male rats was shown to significantly elevate the number of satellite cells in 

both soleus and white vastus muscle samples (Tiidus et al. 2005). Interestingly, 

estrogen supplementation resulted in greater post-exercise increase in satellite cells 
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detected compared to trained muscle without estrogen and this was mediated by ERs 

(Enns et al. 2008). 

 
Estrogen and the cardiovascular system 
The female sex and physical activity are both well-known factors that reduce the risk to 

die in cardiovascular disease. The incidence of cardiovascular disease demonstrates 

significant gender-based differences and is low in premenopausal women, rises in 

postmenopausal women and is reduced in postmenopausal women who receive estrogen 

therapy (Mendelsohn and Karas 1999), although available data on the benefits of estrogen 

therapy are inconsistent (Rossouw et al. 2002). The biological function of estrogen has 

been studied in a man with no functional estrogen receptors (ERs), which demonstrates, 

among others, evidence for early endothelial dysfunction, atherosclerosis and low levels of 

the good cholesterol (Sudhir et al. 1997). All these are risk factors for cardiovascular 

diseases and indicate that estrogen has a protective role in the development of 

cardiovascular disease. If the positive effects of estrogen involve the skeletal muscle 

system is unknown. 

Endothelium dependent vasodilatation varies during the menstrual cycle along with 

the estrogen level and vasodilatation through endothelial production of nitric oxide (NO) 

can be enhanced in females by estrogen through both short-term and long-term effects on 

the vasculature. Flow mediated dilatation is enhanced by estrogen in vessels (Kublickiene 

et al. 2008). Thus, the rapid vasodilatation caused by estrogen may be mediated by 

estrogen receptors located to the cell membrane and activates endothelial nitric oxide 

synthase (eNOS) to release NO (Chen et al. 1999). Estrogen have also long-term effects on 

eNOS gene expression (Mendelsohn 2002). Furthermore, estrogen regulates the 

expression of a number of other vasodilators and vasoconstrictor proteins as well, 

including multiple components of the renin-angiotensin system (Mendelsohn 2002).  

Estrogen has also indirect beneficial effects on the vasculature by affecting plasma 

lipoproteins by decreasing low density lipoprotein (LDL) cholesterol and increasing high 

density lipoprotein (HDL) cholesterol, which has been shown in postmenopausal women 

receiving estrogen.  

There are now a number of studies, both in humans and rodents, that link 

estrogen to the maintenance of glucose metabolism (Louet et al. 2004). Knockout mice 

with a deletion of the aromatase gene cannot synthesise estrogen. These animals 
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develop insulin resistance. The same is true for the estrogen receptor knock out 

(ERKO) mice where the ER  gene has been deleted. In addition, postmenopausal 

women have a higher risk for type 2 diabetes than younger women and treatment of 

healthy postmenopausal women with estrogen has been shown to improve insulin 

sensitivity and lowers blood glucose levels (Crespo et al. 2002; Espeland et al. 1998; 

Saglam et al. 2002). 

 Several studies on hormone replacement therapy after the menopause reveal a 

substantial reduction in the incidence of cardiovascular disease. However, estrogen may 

not prevent further cardiovascular events in women who already have established disease 

at the time of instituting hormone replacement therapy. Also negative effects have been 

shown with hormone therapy such as genital bleeding and increased risk of breast cancer 

and thrombosis (Mijatovic et al. 1999). A clinical trial including 17.000 postmenopausal 

women on a combined hormonal replacement therapy (estrogen and progesterone) was 

interrupted because of an increased incidence of myocardial infarction in the hormonal 

treated women (Rossouw et al. 2002). Several authors have heavily criticized this study, 

claiming that the conclusions drawn were not warranted due to flawed design of the study.  

 

Physical activity and skeletal muscle 
Skeletal muscle is a tissue that can easily adapt to changes. Physical activity is known 

to have a great impact on the structure and function of the muscle depending on 

subjects, training mode etc (Fluck 2006; Saltin and Gollnick 1983). A typical 

adaptation to for instance endurance training is an increase in the number of 

mitochondria and capillaries. An obvious effect of increasing the number of capillaries 

would be to reduce the diffusion distances within the muscle, which may be crucial for 

gas and substrate transport from the blood to the muscle cell. The number and volume 

of mitochondria increase, which increases the surface area for the exchange of 

metabolites and end products between the cytosol and the mitochondrial matrix. These 

changes give rise to a reduced anaerobic metabolism at a certain work load. Adaptation 

to resistance training on the other hand results in increases in muscle bulk with 

increased fibre areas (Saltin and Gollnick 1983). 

 
Physical activity and the cardiovascular system 
Regular physical activity is an important factor in the prevention of cardiovascular 

diseases and the skeletal muscle system of course plays an important role in this 
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prevention. During the last decades a great number of studies have shown that regular 

physical activity, in a dose-dependent manner, is associated to reduced morbidity and risk 

to die in cardiovascular disease (Booth et al. 2000; Kushi et al. 1997; Manson et al. 1999). 

The positive effects of physical activity are possibly related to reduced blood lipid levels, 

increased insulin sensitivity and fibrinolytic activity and an adaptation of the circulatory 

system with increased endothelial function and decreased blood pressure (Libonati 1999; 

Linke et al. 2006; Shephard and Balady 1999).  

A suggested beneficial effect of physical activity is the endothelium-dependent 

vasodilatation in the vasculature caused by NO. Release of NO is stimulated by a rise in 

shear stress associated with increases in blood flow in activated muscle during physical 

exercise (Miller and Vanhoutte 1988). Exercise-mediated increase in NO levels are largely 

due to an up-regulation of eNOS mRNA and protein expression (Sessa et al. 1994; 

Woodman et al. 1997). Another positive example is that physical exercise has been shown 

to increase both the number and the diameter of arterial blood vessels in skeletal muscle 

and the myocardium. These changes of architecture of the vascular tree are likely 

associated with functional changes and improved organ blood flow (Linke et al. 2006; 

Shephard and Balady 1999).   

Contracting skeletal muscles increase their glucose uptake. The insulin sensitivity 

and glucose tolerance are both increased with physical activity due to an increase in 

glucose transporters (GLUT-4) in the membrane of the skeletal muscle, which facilitates 

the uptake of glucose (Yu et al. 2001). Body composition and fat distribution are linked to 

cardiovascular mortality and are improved by exercise which increases muscle mass that 

utilizes more glucose than does adipose tissue.  

Furthermore, exercise leads to a reduction in total cholesterol, in LDL and an 

increase in the good cholesterol HDL. After just one bout of exercise, changes in blood 

lipid levels are detected with an increase in HDL and a decrease in the levels of 

triglycerides and very low lipoprotein (VLDL) (Borsheim et al. 1999). These rapid 

changes in blood lipid composition are one of the factors behind the reduced risk of 

cardiovascular disease found in well-trained subjects.  HDL has an important function in 

the reverse transport of LDL from the periphery tissues back to the liver, thereby reducing 

LDL. Furthermore, muscle cells take up LDL and degrade it (Gurusinghe et al. 1988). 

High LDL levels are a leading factor in the formation of atherosclerosis. 
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To observe is the great similarities between the possible effects of estrogen and 

regular physical activity (fig. 3). During the menstrual cycle systemic vascular resistance, 

blood pressure and cardiac output changes. These fluctuations trigger the cardiovascular 

system comparable to the in the present study described effects of physical activity. Since 

the estrogen level fluctuates during the menstrual cycle and all of these changes can be 

induced by estrogen, it seems to be responsible for the cardiovascular changes occurring in 

menstruating women which are comparable to the circulatory efforts of athletes (Eskes and 

Haanen 2007). This continuous biological challenge during the reproductive years creates 

optimal cardiovascular compliance in women comparable to the effects of exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Effects of estrogen and physical activity. 

 

 
ESTROGEN RECEPTORS 
In the early sixties the presence of an estrogen binding receptor was first reported by 

Jensen and Jacobsen (Jensen 1962). This was isolated and cloned in the middle of the 

eighties by Green et al. (1986) and was for a long time believed to be the only existing 
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ER (Green et al. 1986). Then in 1996 an additional ER was discovered (Kuiper et al. 

1996). This new ER was named ER  and consequently the first ER was renamed ER .  

 The ERs belong to the nuclear receptor super family and share a common 

structure including five distinguishable domains. They are named A/B, C, D, E and F 

domains (fig. 4). The N-terminal A/B domain contains a transactivation function that 

activates transcription of target genes. This domain varies the most between ER  and 

ER . The C domain, the DNA-binding domain, is involved in specific DNA binding 

and receptor dimerization. This domain is highly similar between ER  and ER , which 

indicates that the target genes are the same for the two receptors. The D domain works 

as a flexible hinge between the DNA-binding domain and the E domain. The E domain 

is referred to as the ligand-binding domain. It is important for ligand binding, receptor 

dimerization and transcriptional activation. The function of the F domain is still poorly 

understood. There are two activation function sites in the ER, AF-1 and AF-2.  

 

 

 

 

 

 

 

 
Figure 4. Schematic figure of ER  protein with its different domains. The percentage number 

indicates the sequence similarity with ER . The locations of the two activation functions and their 

possible activation are also indicated. 

 

The AF-1 is located in the N-terminal and AF-2 within the ligand binding domain of 

the receptor and induces ligand-dependent activation of transcription. They are believed 

to function by binding co-activators and bringing them to the promoter of the target 

gene. It can function autonomously and in the absence of estrogen. AF-1 is not well 

understood but seems to be weaker in ER  than the AF-1 of ER . To give full 

transcriptional response of an ER agonist, a synergism between the weaker AF-1 and 

the stronger hormone inducible AF-2 is required (Kraus et al. 1995). 
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Several different spliced forms of ER have been reported, whether all are translated to 

protein and have any biological function is not established. Even though ER  and ER  

are highly homologous their alternative splicing pattern differs. Two splice variants of 

ER  have been shown to inhibit the wild-type receptor and might act as regulators of 

gene transcription (Bollig and Miksicek 2000). Also for ER  different splice variants 

have been identified. ER cx has a deletion which makes it unable to bind ligand. 

However it can heterodimers with preferentially ER  and inhibit ER  induced gene 

transcription. Another ER  splice variant is called ER 2 and shows impaired E2 

binding ability. ER 2 may function as a dominant negative partner of both ER  and 

ER  with reduced transcriptional activity. The expression of splice variants appears to 

be tissue specific (Poola et al. 2002). 

  

Tissue distribution of ERs 

The tissue distribution of ER  and ER  is in part different. Classical oestrogen 

targets are the uterus, mammary gland, placenta, central nervous system, 

cardiovascular system and bone. These tissues have a high ER  content. Non-

classical target tissues include prostate, testis, ovary, adrenals, pancreas, skin and 

urinary tract (Ciocca and Roig 1995). The expression of ER  is either low or not 

measurable in these tissues. Besides the classic estrogen tissues, ER  is also highly 

expressed in many non-classical estrogen target tissues (Taylor and Al-Azzawi 2000). 

ER  has a broader tissue distribution than ER  suggesting that the two receptors have 

distinct biological functions. This is evident when studying the different phenotypes 

of ER  and ER  knock-out mice ( ERKO and ERKO, respectively). Both single 

and double knock-out mice can survive to adulthood, albeit with retarded growth. The 

most striking phenotypes in ERKO mice are complete infertility in both sexes. In 

contrast, male ERKO mice are fertile whereas the females are sub fertile; they have 

fewer litters with reduced number of pups (Couse and Korach 1999). The basal 

release of endothelium-derived NO is decreased in male ERKO (Rubanyi et al. 

1997) and the estrogen mediated production of NO is abolished (Pendaries et al. 

2002). ERKO mice develop hypertension in both sexes as they age (Zhu et al. 2002), 

which confirms their role in the cardiovascular system. 
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ERs in skeletal muscle 
At the start of the work with this thesis there were only a few reports on ER in the 

non-classical estrogen target tissue skeletal muscle. ER  mRNA had been detected in 

mouse (Couse et al. 1997) and binding studies had indicated the protein expression of 

ERs in skeletal muscle of various animals (Dahlberg 1982; Saartok 1984). Direct 

evidence for ER protein in skeletal muscle had not been found in humans or in any 

other species. In parallel with the work of the present thesis studies on different 

species showed an expression of ER  in skeletal muscle, among them human skeletal 

muscle (Couse et al. 1997; Lemoine et al. 2002; Lemoine et al. 2003; Pfaffl et al. 

2001). Pfaffl et al. (2001) showed for the first time the expression of ER  mRNA in 

skeletal muscle from heifer. Immunohistochemical studies of sex steroid receptors in 

human skeletal muscle (m. levator ani) demonstrated nuclear expression of 

progesterone and androgen receptors but not of ERs (Copas et al. 2001; Oettling and 

Franz 1998). Recently, however both ER  and ER  protein has been found to be 

present in mouse and pig skeletal muscle as well as in myoblasts from rat and mouse 

(Barros et al. 2006; Kalbe et al. 2007) which confirms the findings of this thesis.  

 

 

ESTROGEN RECEPTOR SIGNALLING 
It was for many years believed that the only mechanism by which estrogen affected 

expression of estrogen-responsive genes was by direct binding of the activated ER to 

specific estrogen response elements (EREs) on DNA. However, evidence for signalling 

pathways that deviate from this classical model has emerged. Today, it is accepted that 

ER may regulate transcription from target genes by a number of distinct mechanisms, 

both in the presence and absence of estrogen (fig. 5). Activation of ER appears to be a 

multi-step process relying on a number of molecular events, including dimerization, the 

actual binding of ligand, phosphorylation, interaction with cofactors and DNA binding. 

If ERs are functional and how they are activated in skeletal muscle is largely unknown. 

In myoblasts, Kahlert et al. (1997) demonstrated functional ERs, which were activated 

by estrogen. 

 



Anna Wiik 
 

 

12 

Classical ligand-dependent activation of ER 
In the absence of ligand, ERs are located to the cell nucleus in a multiprotein complex 

containing heat shock proteins (Baulieu et al. 1990). When estrogens, which can diffuse 

across the plasma and nuclear membranes of cells, bind to the ER a conformational 

change occurs that promotes receptor dimerization. The activated ERs bind as 

homodimers or heterodimers to EREs located in the regulatory regions of target genes. 

The ERE sequence is a 13 base par palindromic inverted repeat with the consensus 

sequence: 5’ –GGTCAnnnTGACC-3’. The binding of ERs to EREs facilitates the 

assembly of basal transcription factors into a stable pre-initiation complex and increases 

transcription rate for target mRNA synthesis (Nilsson and Gustafsson 2002). The 

conformational change of activated ERs also lead to that an interaction surface for co-

activators is provided. Ligand-dependent activation of transcription by ERs is mediated 

by the interactions of a number of different nuclear receptor co-activators. 

 

Ligand-independent activation of ER 
The ERs can also be activated without any estrogen present. Within the AF-1 site of ER 

there are well-conserved serine residues, which are target for phosphorylation. Binding 

of growth factors, such as IGF-1 and epidermal growth factor, to its cognate receptor 

results in the intracellular activation of mitogen-activated protein kinase (MAPK) 

signal transduction cascade that influences the transcriptional activity of the ER  by 

phosphorylation of serine residues (Bunone et al. 1996; Kato et al. 1995). Trembley et 

al. (1999) showed a similar ligand-independent activation of the ER  (Tremblay et al. 

1999). Phosphorylation events have been demonstrated to be the foremost mechanism 

in the ligand-independent activation of ER. Estrogen also induces phosphorylation of 

serine residues, but this appears to be independent of MAPK (Joel et al. 1998). It is also 

described that a combined stimulation with growth factors and estrogen gives 

potentiated effect (Smith 1998). In bone cells, mechanical strain has a similar effect on 

increasing ERE activity as more prolonged exposure to estrogen (Zaman et al. 2000). It 

is suggested that strain has its effects on increased ERE activity by phosphorylation of 

the ER using kinase-dependent signalling pathways (Lee and Lanyon 2004). Strain-

induced ER phosphorylation does not require the presence of estrogen, but is dependent 

on extra-cellular regulated kinase (ERK), a member of the MAPK family (Jessop et al. 

2002). 
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ER may also be activated by cAMP induced signalling (El-Tanani and Green 

1997). Activation via cAMP signalling pathways requires the AF-2 site, in contrast to 

the MAPK which requires the AF-1 site, and appears to be dependent on protein kinase 

A that is activated by cAMP. This represents a pathway distinct from activation via 

peptide growth factors.  

 

Non-ERE-dependent actions of ER  
In addition to binding to the ERE, the activated ERs can interact with other DNA-

bound transcription factors to regulate the transcription of certain sets of genes. In this 

mechanism, ERs do not themselves bind DNA; instead it is tethered by protein-protein 

interactions to a transcription factor complex that contacts the DNA. AP-1 sites and SP-

1 sites are well characterized motifs that could mediate estrogen signalling via other 

bound transcription factors, such as FOS/JUN (Bjornstrom and Sjoberg 2005; Porter et 

al. 1997; Webb et al. 1995). The discovery of this mechanism explains how estrogen 

regulates genes in which no consensus ERE has been found.  

 

Non-genomic signalling 
There is evidence suggesting that estrogen has non-genomic effects too, since very 

rapid effects of estrogen have been observed (Mendelsohn 2002). These effects are too 

rapid to be accounted for by transcriptional activation or repression of target genes, 

which occurs with a time lag of several hours. These effects occur within seconds to 

minutes after estrogen treatment and cannot be blocked by transcription or translational 

inhibitors. Studies have suggested that these effects may be the result of estrogen 

activation of MAPK and ERK signalling (Pedram et al. 2006) or release of intracellular 

calcium (Mermelstein et al. 1996). The MAPK pathway is rapidly activated by estrogen 

in various cell types, for example endothelial cells (Chen et al. 1999). Some of the 

protective effects of estrogen in the cardiovascular system are mediated by a non-

genomic mechanism involving rapid activation of eNOS by estrogen through the 

MAPK pathway (Simoncini and Genazzani 2000). The activated eNOS releases NO 

which promotes vasodilatation. eNOS is also regulated on the genomic level by 

estrogen by activating an ERE-sequence in its promoter region (Mendelsohn 2002).  
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Figure 5. Proposed mechanisms of ER signalling pathways. 

 

 

ESTROGEN RELATED RECEPTORS 
There are three estrogen related receptors (ERRs) ERR , ERR  and ERR . These 

receptors as well as ERs belong to the nuclear receptor super family and have high 

similarity to ERs, especially in the DNA-binding domain. The ERRs can bind to the 

same EREs as ERs. Thus, the ERs and ERRs can regulate common target genes and in 

tissues where they are both expressed, collaborate with each other to dictate the overall 

response. The ERRs cannot bind estrogen; they are orphan receptors with no known 

ligand. ERR  is ubiquitously expressed in adult tissues (Giguere et al. 1988; Sladek et 

al. 1997) and is highly expressed in skeletal muscle (Bonnelye et al. 1997; Sladek et al. 

1997), while ERR  expression in adult tissues appears to be low and is found only in a 

few organs (Giguere et al. 1988). ERR  appears to be expressed in several tissues, in 

particular brain and kidney (Heard et al. 2000). In adults, ERR  and ERR  expression 
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is enriched in tissues that rely primarily on mitochondrial oxidative metabolism for 

energy generation, such as heart, brown adipose and slow-twitch skeletal muscle (Huss 

et al. 2004).  

 ERR  is one of the major regulators of mitochondrial function in response to 

exercise and is also involved in a novel angiogenic pathway of oxygen and substrate 

delivery (Arany et al. 2008). ERR  activates genes involved in multiple key energy 

production pathways and is a critical regulator of energy metabolism in heart and 

skeletal muscle. A potent co-activator for ERR are the PPAR gamma co-activtor-1 

(PGC-1) family.  PGC-1 is a transcriptional co-activator and a key regulator of an array 

of cellular energy metabolic pathways, but its primary effect in target tissues is to 

enhance mitochondrial oxidative metabolism by increasing cellular mitochondrial 

number, fatty acid oxidation and respiration via co-activation of nuclear receptor 

transcription factors (Vega et al. 2000). PGC-1 distinguishes itself from other co-

activators by its tissue specificity and regulated expression (Kamei et al. 2003). ERR  

interacts physically with PGC-1 and enables activation of transcription and suggests 

that ERR  plays a role in some of the known PGC-1 -regulated pathways (Huss et al. 

2004).  

 PGC-1 , which was first called ERR ligand 1, can function as a protein ligand of 

ERRs and activate ERR-mediated transcription, at least in cell cultures. PGC-1  

mRNA is highly expressed in skeletal muscle and generally the expression pattern of 

PGC-1  closely resembles that of ERR  (Kamei et al. 2003).  
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AIMS OF THE STUDY 
 

The overall aim of this thesis was to study the expression of estrogen receptors and 

their activation in skeletal muscle tissue. It was hypothesised that ERs in skeletal 

muscle are functional and that estrogen as well as muscle contractions induce activation 

of ERE-sequenes in skeletal muscle and that this activation is ER dependent.  

 

The specific aims of the thesis were: 

 

 To investigate if ER  and ER  are present in human skeletal muscle. 

 

 To study the protein expression of ER  and ER  in skeletal muscle in relation 

to sex and age. 

 

 To study localisation of ERs in human skeletal muscle with regard to:  

1. distribution between muscle fibres and capillaries  

2. co-localisation to the same nuclei. 

 

 To study the skeletal muscle expression of ER  and ER  in trained muscle and 

to compare the expression level of ERs and its target gene VEGF.  

 

 To investigate the activation of EREs by estrogen and muscle contractions in 

skeletal muscle and to assess whether the activation is ER dependent.  
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MATERIAL AND METHODS 
 
 
SUBJECTS AND SKELETAL MUSCLE BIOPSIES 
All subjects participating were healthy volunteers. The subject characteristics are 

presented in table 1. In paper I and II the presence and location of ERs were studied 

in men and women. To characterize the ERs in different age groups children and 

postmenopausal women not on hormone replacement treatment were included in 

paper III. In paper IV highly endurance-trained men (elite cyclists and triathletes) 

were compared to normally active men. The level of physical activity in all studies 

was assessed by the subjects’ evaluated leisure-time physical activity. Prior to the 

respective study, the procedure was explained in both oral and written forms. All 

subjects gave their informed consent before inclusion in the study, as did the parents 

of the children. The Ethics Committee of the Karolinska Institutet approved all 

studies. Muscle biopsies were performed at rest from the vastus lateralis of the 

quadriceps femoris muscle using percutaneous needle biopsy (Bergström 1962). The 

muscle tissue samples were frozen in isopentane precooled in liquid nitrogen and 

stored at –80° C until analysed.  

 
Table 1. Subject characteristics 

Study Subject n Age Weight Height 
      (years) (kg) (cm) 
I Women 3 25 (24-26) 59 (56-62) 168 (166-171) 
  Men 3 22 (19-24)     
II Women 2 25, 26 58, 58 167, 171 
  Men 2 19, 21 85, 74 179, 182 

III Women 4 24 (21-28) 65 (50-75) 170 (160-176) 
  Postmenopausal women 2 54, 59 54, 55 155, 166 
  Girl 1 10 36 152 
  Men 4 24 (21-29) 74 (58-92) 176 (169-185) 
  Boy 1 10 50 155 

IV Trained men 10 22 (18-27) 72 (65-81) 182 (174-195) 
  Control men 10 24 (19-28) 74 (65-92) 180 (174-190) 
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PRIMARY RAT SKELETAL MUSCLE CELL CULTURES 
Wistar male rats (M&B, Denmark) weighing 100 g were anaesthetized with 0.1 ml 

sodium pentobarbital (50 mg/ml). All treatment of animals complied with the European 

Convention for the Protection of Vertebrate Animals Used for Experimental or other 

Scientific Purposes (Council of Europe No. 123, Strasbourg, France, 1985). 

Carefully the muscle fascia was removed and soleus, gastrocnemius and 

quadriceps femoris were removed and minced into small pieces with scissors and then 

digested to extract the satellite cells. The cells were suspended in primary growth 

medium counted and seeded out onto 35 mm dishes (Nunc, Denmark) coated with 1% 

matrigel and incubated at 8% CO2 and 37º C. Rat myoblasts were grown to a density of 

90-95% confluency in phenol red-free Dulbecco’s modified Eagles’ medium (DMEM) 

supplemented with dextran-coated charcoal-treated serum. Phenol red-free medium was 

used throughout all experiments, as phenol red is known to act as a weak estrogen. 

Cells were transfected with ERE-LUC, a reporter containing three copies of the 

vitellogenin estrogen responsive element driving expression of the firefly luciferase 

cDNA. Transfection was performed using Lipofectamine 2000 (Invitrogene) in Opti-

Mem (Invitrogene) according to standard protocol. A plasmid expressing -

galactosidase was included to allow for normalization of the transfection efficiency and 

to exclude a general effect of estrogen in the transfected cells. After 5 h the transfection 

medium was changed to phenol red-free DMEM. The cells were than differentiated into 

myotubes by changing to primary fusion medium. After 5-6 additional days the primary 

skeletal muscle cells were ready for experiments.  

Before stimulation, the cell medium was changed to serum free medium for 12 h. 

Muscle cells transfected with ERE-luc and non-transfected cells were either stimulated 

with estrogen (10 nM) for 6 h or were electrically stimulated to contract in an incubator 

for 1.5 h or 3 h at 10 V and a frequency of 50 Hz. The stimuli consisted of 0.5 s trains 

with 0.5 s pauses between the trains and 1 ms pulse width. The pure ER-antagonist ICI 

182 780 (100 nM) and the ER  specific antagonist methyl-piperidon-pyrazole (MPP) 

(1 µM) were added 30 min prior to the stimulation to study the ER-dependent 

activation. Directly after estrogen stimulation or at 3 h after the end of stimulation, the 

transfected cells were lysed and collected for determination of ERE activation. 

Luciferase activity was determined by a luciferase reporter assay (Biothema) and -

galactosidase by a Galacto-Star assay (Applied Biosystems) according to the 
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manufacturers’ instructions on a luminometer Tecan Infinite M200. The non-

transfected cells were lysed with Trizol reagent and collected for mRNA analysis. 

 

 

mRNA MEASUREMENTS 
Total RNA was prepared by the acid phenol method (Chomczynski and Sacchi 1987) 

and quantified spectrophotometrically by absorbance at 260 nm. Integrity of total 

RNA was determined by 1% agarose-gel electrophoresis. Two micrograms of RNA 

were reverse transcribed by Superscript reverse transcriptase (Invitrogene) using 

random hexamer primers (Roche Diagnostics GmbH) in a total volume of 20 µl. 

Real-time PCR analysis was performed with the ABI-PRISM  7700 Sequence 

Detector (Applied Biosystems). In paper I and IV oligonucleotide primers and 

TaqMan probes were designed by using Primer Express version 1.0 (Perkin-Elmer 

Applied Biosystems). The primers and probes designed for ER , ER  and VEGF are 

shown in Table 2. The probes were designed to cover exon–exon boundaries to avoid 

amplification of genomic DNA. The specificity of primers and probes for ER  and 

ER  was verified by sequencing the amplified products from ER  and ER  plasmids, 

respectively. In paper V primers and probes were achieved as pre-designed assays 

(Applied Biosystems, table 2). mRNA levels were calculated by the Standard Curve 

Method according to instructions in User Bulletin no.2 (Applied Biosystems). The 

mRNA expression levels were normalized to 18S rRNA or -actin (Applied 

Biosystems) to correct for potential variations in RNA loading. 

In paper I -actin and 18S were compared. The data expressed relative to 18S 

rRNA showed the same pattern as those related to -actin mRNA, when comparing 

the expressions of ER  and ER  mRNA. However, when making intra-individual 

comparisons for either ER  or ER , the agreement between 18S rRNA and -actin 

mRNA-related values was low. In repeated analyses on different days, the intra-

individual variability in 18S rRNA-related value was much greater than in -actin 

mRNA-related values. Therefore in paper I, we chose to present only the -actin 

mRNA-related values. In paper IV and V we normalized to 18S because in paper IV 

the -actin values differed between the two subject groups. The highly endurance 

trained men had higher -actin expression than the moderately active men. In paper V 

we thought that 18S might be more stable to muscle contractions than -actin. The 
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methodological error for repeated mRNA analysis from the same cDNA was 

calculated with the formula: 

SD differences/mean value x 100 x 1/ 2 and ranged between 0.3% - 1% (Ct values) 

for the different genes.  

 
Table 2. Primers and probes. The 5’ end of the probes was labelled with either FAM for ER , ER  

and VEGF and with TAMRA for 18S and -actin. 

 
Study Gene Species

GenEMBL 
Acc. Nr Primers and probes 

Applied 
Biosystems 
nr 

I, IV ER  Human M12674 F: GGCCCAGCTCCTCCTCAT   

        R: GGCACCACGTTCTTGCACTT   

        P: CCACATCAGGCACATGAGTAACAAAGGCA   

I, IV ER  Human AF051427 F: CGACAAGGAGTTGGTACACATGA   

        R: CGAACAGGCTGAGCTCCAC   

        P: AAGCCGGGAATCTTCTTGGCCCA   

I, IV VEGF Human M11167 F: ACTGCCATCCAATCGAGACC   

        R: GATGGCTTGAAGATGTACTCGATCT   

        P: TGGTGGACATCTTCCAGGAGTACCCTGAT   

V ER  Rat     

RN 

562610m1  

V ER  Rat     

 Rn 

664737m1 

I, IV, V 18S 

Human, 

rat     4310893E 

I -actin Human     4310881E 

 

 

 
IMMUNOHISTOCHEMISTRY 
Cross-cut sections from frozen skeletal muscle tissue were fixed in either cold methanol 

followed by cold acetone or in formalin. In study II, paraffin sections were also used 

and were deparafinised, rehydrated and processed in citrate buffer pH 6.0 for antigen 

retrieval by microwave treatment. Endogenous peroxidase activity was quenched with 

hydrogen peroxide and to reduce non-specific binding of the secondary antibody, the 

sections were treated with 5% normal rabbit or swine serum depending on the 

secondary antibody before incubation with primary antibody (see table 3 for details). 

The sections were incubated with primary antibody over night at 4° C and thereafter 
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extensively rinsed followed by secondary antibody. All dilutions were made in 

phosphate-buffered saline or tris-buffered saline containing 1% bovine serum albumin 

and 0.3% Triton X-100. For visualisation with light microscopy the colour reaction was 

developed either by aminoethyl-carbazol (AEC) or by 3,3´-diaminobenzidine (DAB). 

The biotin labelled antibodies had to be incubated with an avidin-biotin complex kit 

(Dako) before visualisation with DAB. To study the nuclear localization, sections were 

counterstained with haematoxylin (for light microscopy) and 4 ,6 diamidino-2-

phenylindole (DAPI) (for fluorescent microscopy), which binds to chromatin and stains 

the nuclei blue. As negative controls, the primary antibody was replaced with buffer or 

for ER  a pre-absorbed ER  503 antibody (Saji et al. 2000). The sections were 

mounted in Vectashield (Vector Laboratories, Burlingame, CA, USA) or Prolong Gold 

(Invitrogene, Eugene, OR, USA) and evaluated with a light microscope or fluorescence 

microscope equipped with the appropriate filters. 

There have been a lot of difficulties in finding the ER  protein in human skeletal 

muscle. In paper I we tried three different antibodies without any success in locating the 

ER  even though the uterine muscle tissue used as a positive control stained positive 

with all three antibodies. Although we tried several different antibodies and staining 

protocols with different fixations and amplification steps and used both fluorescence 

and light microscope we could not find ER  protein until recently. The antibody in 

paper III was the first to succeed in demonstrating ER  protein in human skeletal 

muscle. 
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Table 3. Overview of the immunohistochemistry protocols. 

  Primary  Secondary  Chromogen/  
Study Thickness Fixation ab Dilution ab labelling Dilution fluorochrome 

                

I 14 µm 

methanol/ 

acetone ER  503  1:100 peroxidase  1:100 DAB 

      ER  ID5   biotin   1:200  DAB 

      HC20        

      6F11        

II 3 µm paraffin Coll IV  1:450   1:100 AMCA 

      ER  503  1:45     FITC 

      CD34  1:75     

Rhodamine 

Red-x 

      CD45  1:30       

  5 µm 

methanol/ 

acetone ER  503  1:50 peroxidase  1:1000 AEC 

      Coll IV  1:800 biotin   1:20 DAB 

      CD3  1:40   1:200   

      CD11b  1:40    1:200   

III 5 µm formalin ER  C311  1:50 donkey  1:500 Cy3 

      ER  503  1:400    1:75 FITC 

      Coll IV  1:450    1:100 AMCA 

IV 5 µm 

methanol/ 

acetone ER  503  1:100 

peroxidase 

rabbit  1:1000 DAB 

 

 
Quantitative evaluation of immunohistochemistry 
For quantification of the immunostaining an image analysis system QWin 500IW was 

used (Leica Microsystems). An average of five different areas of each muscle section 

(approximately 200 fibres) were analysed and measured for the number of nuclei 

expressing ER , ER  and total numbers of nuclei. The area of each section was also 

measured. The proportions of ER - and ER -positive nuclei were calculated, 

respectively. The number of ER - and ER -positive nuclei was expressed per muscle 

fibre or per square millimetre.  

Staining the basement membrane collagen IV made it possible to identify the 

capillaries and differentiate between ER-positive nuclei within myofibres and positive 

nuclei outside the myofibres in the interstitium or the capillaries. In paper II and III 

the proportion of ER-positive nuclei in muscle fibres and capillaries, respectively, 

were calculated by dividing the number of ER - or ER -positive nuclei within the 
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capillaries with the total number of ER - or ER -positive nuclei in an area of a 

transverse cryostat section. Sections were viewed at a magnification of 500 times and 

readings taken until an area containing a total of approximately 50 muscle fibres was 

included for the following variables: number of muscle fibres, total number of ER - 

or ER -positive nuclei, and the number of ER - or ER -positive nuclei within 

capillaries. Three calculations were conducted from these measurements as follows: 

1) the proportion of ER - or ER -positive nuclei located in capillaries, 2) the 

proportion of ER - or ER -positive nuclei located in muscle fibres and 3) the 

proportion of ER - or ER -positive nuclei in capillaries per muscle fibre. Less than 

1% of the ER-positive nuclei were located outside muscle fibres or capillaries so they 

were not recorded separately and are included in the number of ER  or ER -positive 

nuclei, respectively, located to the capillaries.  

Of all stained nuclei the proportion of ER -positive nuclei that co-expressed 

ER  was also calculated.  

The methodological error for two different measurements of the number of ER-

positive staining from one section including approximately 50 fibres was 4%.  

 

 

STATISTICS 

Values are expressed as mean  standard deviation in study III and IV and  standard 

error in study V. Unpaired Student’s t-tests were used to test for any significant 

differences between groups in study III and IV. In study V, ANOVA was used to test 

for effects of stimulation and estrogen receptor antagonists. Single regression analysis 

was performed to study the relationships between variables in study IV. Significance 

was accepted at the statistical level of P < 0.05.  
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RESULTS AND DISCUSSION 
 

 

This study is the first one to demonstrate that human skeletal muscle express ER  and 

ER . The expression of ERs was demonstrated both at the mRNA and protein level. 

 

mRNA EXPRESSION 
In paper I we found that both ER  and ER  mRNA were expressed in human skeletal 

muscle from both men and women. The mRNA level of ER  was higher than ER . 

Whether there were any differences in ER expression between the sexes could not be 

determined because of lack of statistical power for that purpose. Both ER  and ER  

mRNAs were also expressed in both myoblasts and myotubes from rat.  

 

 

PROTEIN EXPRESSION 
In paper I-IV both ER  and ER  proteins were for the first time found and studied in 

skeletal muscle (fig. 6). Both types of ERs were present in all subjects tested, women 

and men as well as children and postmenopausal women. The ERs were located to the 

nuclei in muscle tissue, approximately 65% of all nuclei expressed ER  and about 70% 

expressed ER .  The localisation of ERs to the nuclei of the skeletal muscle fibres 

suggests that this tissue is a target for estrogen action. 

 

   

 

 

 

 

 

 

 

Figure 6. Immunohistochemical double-staining for A) ER  (red) and B) ER  (green) together with 
collagen IV (blue) in human skeletal muscle from an adult woman. 

A BA B
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Sex difference 
For ER  the immunohistochemistry results from paper I, III and IV were pooled 

together to look at sex differences. This includes 7 premenopausal women and 17 

moderately active men. Women have significantly higher number of ER  per square 

millimetre than men do (fig. 7). Also when looking at the number of stained muscle 

nuclei compared to all nuclei, there was a similar sex difference. In contrast, no 

significant difference was seen when relating the number of ER  positive nuclei per 

muscle fibre, which could be explained by the larger cross-sectional area of the fibres 

from men. 

 

 

 

 

 

 

 

 

 
 

Figure 7. Number of ER -positive nuclei in relation to sex. 

 

The statistical power was too low to study any sex differences in ER . 

The number of ERs in different fibre types was not studied, although all muscle 

fibres expressed ERs with no obvious difference between various fibres. In animal 

studies a fibre type difference between ERs has been suggested. In a binding study of 

rabbit muscle, Gustafsson et al. (1984) demonstrated that the total amount of ERs was 

higher in slow twitch oxidative muscle (soleus) than in the fast twitch oxidative-

glycolytic muscle (gastrocnemius/plantaris muscle complex) (Gustafsson et al. 1984). 

In rats, similar results were found with a higher mRNA expression of ER  in slow 

twitch muscle than in fast twitch oxidative-glycolytic or glycolytic muscle (Lemoine et 

al. 2002). 
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ERs in subjects with low estrogen levels 
An interesting question is why subjects with low estrogen level express ERs in muscle 

and relates to the mechanism of ER activation. There are several different possibilities. 

Firstly, substances such as androstenediol and estrone are beside estrogen also 

activators of ER (Maggiolini et al. 1999). These are breakdown products from 

dehydroepiandrosterone (DHEA), which is a hormone released from the adrenal glands 

(Kraemer et al. 2001). Physiologically it is important in its role in the peripheral 

synthesis of testosterone and estrogen. The level of DHEA determines the 

concentration of estrogen in peripheral tissue. Furthermore, DHEA can also function 

directly via ER as an agonist, although the activity at physiologically relevant 

concentration of DHEA is low (Chen et al. 2005). During exercise circulating levels of 

DHEA in blood are increased (Tremblay et al. 2004) to a level that might be able to 

activate the ERs (see fig. 14).  

Secondly, some natural dietary components, like genistein, may be another 

candidate for ER activation in skeletal muscle and has shown a preference for binding 

ER  (Kuiper et al. 1998). A third possibility is that aromatase may locally convert 

testosterone to oestrogen, which in turn activates the ERs. ER activation at low 

estrogen levels, such as in men, children and postmenopausal women, could also be 

due to ligand-independent pathways of activation. Recently, the activation of ERs in 

mice was studied by in vivo imaging (Ciana et al. 2003). In reproductive organs, it 

was shown that the peak transcriptional activity of ERs coincided with the highest 

level of circulating estrogen. This was in contrast to the findings in non-reproductive 

organs such as bone and brain, where the transcriptional activity of the ERs was 

inversely related to the circulating estrogen levels. Instead the ERs activity co-varied 

with circulating IGF-1 levels and IGF-1 was suggested for the activation of ERs in 

the non-reproductive organs. This was supported by administration of IGF-1 to the 

mice in the absence of estrogen, which also increased the transcriptional activity of 

ERs (Ciana et al. 2003). 

 

ERs in skeletal muscle capillaries 
Of all ER  positive nuclei, 25% were localized to the capillaries and 75% to muscle 

fibres. The same was true for ER  (fig. 8).  
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Figure 8. Immunohistochemical double-staining forA) ER  (red) and collagen IV (blue) and B) 

ER  (red) and collagen IV (green), which stains the basement membranes of the muscle fibres 

and capillaries. Arrows indicate ER -positive or ER -positive nuclei located to muscle fibres and 

ER - or ER -positive nuclei located to capillaries are indicated with asterisks. 

 

The ER-positive nuclei located to capillaries were interpreted as being those of 

endothelial cells, since triple-staining with ER  or ER  together with a marker for 

endothelial cells and collagen IV indicates that ER is present in endothelial cells (fig. 

9).  

 

 

 

   

   

 

 

 

 
Figure 9. A) Immunohistochemical triple-staining for ER  (red), endothelial cells (green) and 

collagen IV (blue). The star indicates an ER -positive nucleus located within a muscle fibre, while 

the white arrow points at an endothelial cell.  ER  present in an endothelial cell is indicated by a red 

arrow. In B) the green colour marks ER . The star indicates a localisation within a muscle fibre, 

while the white arrows point at endothelial nuclei. The blue colour marks the collagen IV basement 

membrane of the muscle fibres and capillaries. Endothelial cells are demonstrated by pink colour 

where the pink arrows point at capillary endothelial cells. ER  located in endothelial cells appear in 

yellow. 
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The relative distribution of ERs between muscle fibres and capillaries may be 

important in the physiological response to ER-mediated transcriptional activity and 

may thereby modulate the biological effects of estrogen. However, at this stage, we 

can only speculate upon the physiological role of ERs in skeletal muscle tissue. For 

instance, VEGF and NOS are both expressed in skeletal muscle (Frandsen et al. 1996; 

Gustafsson et al. 1999) and have been shown to be regulated by estrogen among other 

stimuli (Mueller et al. 2000; Weiner et al. 1994). The gene for VEGF has a functional 

estrogen response element in its promoter region (Hyder et al. 2000) and is known to 

enhance both myogenesis and angiogenesis in skeletal muscle (Arsic et al. 2004; 

Gustafsson and Kraus 2001). Nitric oxide can function as a signal transducer in 

muscle and as a vessel dilator (Steensberg et al. 2007), and the production of nitric 

oxide might be regulated by ERs. Such ER-mediated effects may favour muscle 

tissue repair and also muscle adaptation to physical training.  

 
Co-localisation 
ER  and ER  was to a large extent co-expressed in the same nuclei (fig. 10). Of all 

stained nuclei 72% co-expressed ER  and ER . The number of nuclei that only 

expressed ER  exceeded the number of nuclei expressing only ER . Men had more 

nuclei expressing only ER  than did women (P < 0.05). 

 
Figure 10. Immunohistochemical triple- 

staining for ER  (red), ER  (green) and  

collagen IV (blue). Co-localizations of ER   

and ER  appears as yellow.  

 

 

 

 

 

The co-localization of ER  and ER  in nuclei has implications for the action of 

estrogen in muscle. If both receptors are present in the same cell, they can form 

heterodimers and interact in the regulation of transcriptional activity (Pettersson et al. 

1997). ER  has the capacity to repress the transcriptional activity of ER . On the 

other hand, it can partially replace ER  if it is absent. In cells and tissues where ER  
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and ER  are co-expressed the ratio of ER  to ER  determines what type of action 

estrogen will have. In the case of muscle, manipulations that decrease the levels of 

ER  have been shown to improve glucose tolerance in mice (Barros et al. 2006). 

 

Methodological considerations 
Some of the ERs located to the capillaries might be nuclei of immune cells because 

such cells also express ERs as seen in paper II. However, in previous studies, immune 

cells were found to be rare and present only in the range of 0.02-0.05 cells per muscle 

fibre (Malm et al. 2000). We found approximately 0.7 ER -positive and 0.5 ER -

positive capillaries per muscle fibre which is more than 10 times the frequency of 

immune cells. Therefore, it is most likely that only a small fraction of the ER-positive 

nuclei located to capillaries could have been nuclei of immune cells. In our view, 

most of the ER-positive capillary nuclei do represent endothelial cell nuclei.  

Some of the ER-positive nuclei in the muscle fibres may have been nuclei of 

satellite cells. These can not be differentiated from nuclei of the mature muscle fibre 

with the methods used in the present study, so this possibility was not investigated. 

However, the proportion of satellite cells in human skeletal muscle is known to be at 

most 5% of the total number of nuclei (Kadi et al. 2005), which is apparently much 

fewer than the number of ER-positive nuclei found in the present study. Therefore, 

our results of the ER-positive nuclei located to the muscle cells mainly represent 

those of the mature fibres.  

It is important to be careful when interpreting morphometric data on the density 

of ER. The numbers of ER-positive nuclei per unit area and nuclei may be distorted 

due to possible section-thickness-dependent and volume-dependent redundancy in 

counting the nuclei twice as well as underestimating information about smaller 

nuclear fragments. At best immunohistochemistry provide only a semi-quantitative 

measure of the amount of protein, therefore group differences of ER at the protein 

level might be missed.  

 

 

ER EXPRESSION IN TRAINED VERSUS NORMAL SUBJECTS 
The mRNA levels for ER  and ER  were higher in skeletal muscle samples from 

highly endurance-trained athletes than from moderately active control subjects (fig. 11). 
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VEGF mRNA, which can be a target gene for ER, was also higher in the highly trained 

group. Muscle contractions of myotubes from rat increased the mRNA level of ER . 

ER  mRNA on the other hand was not increased by muscle contractions in contrast to 

the higher amount of both receptors among the highly endurance trained men. In an 

endurance training study in rats Lemoine et al. (2002) found increased expression of 

ER  mRNA in gastrocnemius muscle after training while ER  expression was not 

studied.  

 

 

 

 

 

 

 

 

 

 
 

Figure 11. ER  (A) and ER  (B) mRNA levels relative to 18S in myotubes from rat and in 

moderately and endurance trained men. Myotubes were electrically stimulated for 1.5 h or 3 h 

before harvesting 3h after end of stimulation. Bars represent the mean mRNA level of ER  

respectively ER  relative to 18S with standard error. * indicates a significant difference from control 

cells and # indicates a significant difference between the moderately active and endurance trained 

men. P < 0.05. 

 

As for ER mRNA the angiogenic factor VEGF mRNA was higher in skeletal 

muscle from highly endurance-trained athletes than from moderately active men. 

Estrogen has been shown to regulated VEGF mRNA levels in vivo (Charnock-Jones et 

al. 1993) and most likely through ER-mediated processes. In rat uterus VEGF has been 

shown to be up regulated by very low estrogen levels. Functional EREs are present in 

the VEGF gene (Hyder et al. 2000; Mueller et al. 2000). ERs might therefore be 

involved in the increase of VEGF mRNA and in the regulation of human skeletal 

muscle adaptation to physical training. However, other mechanisms behind exercise 

induced VEGF expression has been suggested such as activation by the hypoxia 
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inducible factor (Ameln et al. 2005; Tang et al. 2004). The higher VEGF mRNA levels 

in the trained athletes are probably related to the large differences compared to the 

controls regarding the amount of weekly training dose, which is supported by the 

differences in skeletal muscle oxidative characterization. 

Positive correlations between ERs and maximal oxygen uptake and the number 

of capillaries were observed as well as for muscle citrate synthase activity. This could 

indicate that ERs are involved in the regulation of mitochondrial biogenesis.  

Furthermore, ER  has been shown to be located to the mitochondria in human heart 

(Yang et al. 2004) and EREs have been found in the regulatory part of the 

mitochondrial genome (Demonacos et al. 1996). Thus, ERs have been proposed to be 

involved in the regulation of the mitochondrial transcription (Chen et al. 2004). The 

transcriptional activity of ER  has also been reported to associate with the important 

regulator of mitochondrial biogenesis PGC-1 (Tcherepanova et al. 2000). 

 For the protein level, no differences in the proportion of ER -positive nuclei or in 

the number of ER -positive nuclei per unit area or per fibre were observed between the 

trained and the control group. ER  was not studied at the protein level in these subjects. 

Why there is an increase in ER mRNA levels without any effect on the protein level in 

this study is unknown. A possible explanation is a shorter half-life for the protein than 

the mRNA. In different cell systems the half-life of ER protein has been shown to be 

quite short, 4-5 h. Ligand binding can influence the stability of the receptor and 

accelerates degradation, reducing its half-life to 3-4 h (Eckert et al. 1984). Without 

ligand, ER elimination is compensated by synthesis which maintains receptor 

homeostasis. Ligand-binding enhances the degradation by ubiquitination of the receptor 

via the proteasomal pathway (Nawaz et al. 1999) and essentially targets newly 

synthesized receptor molecules (Laios et al. 2005). In a study by Alarid et al. (1999) 

estrogen stimulation decreased ER protein levels without any decline in mRNA levels 

(Alarid et al. 1999). The increase in ER mRNA level in the present study could be due 

to an increased expression of ER or an increase in the stability of the mRNA.  

As mentioned earlier, group differences of ER at the protein level might also be 

missed because of difficulties in evaluating the immunohistochemistry staining because 

of the semi quantitative nature of such methods.  
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ACTIVATION OF ERs BY ESTROGEN 
Estrogen induces an activation of the ERs in skeletal muscle myotubes (fig. 12). The 

estrogen induced activation of the ERE-sequence is in line with the study by Kahlert et 

al. (1997), which in myoblasts showed an increase in ERE activation. The effect of 

estrogen was dependent of the ERs since the ERE activity was totally blocked by the 

estrogen receptor antagonist ICI 182 780. MPP, which is an ER  specific antagonist, 

showed a partially blocked ERE activity. The activity seen when co-incubating MPP 

with estrogen can be caused by ER , which is not affected by MPP. This suggests that 

both ER  and ER  are involved in the estrogen induced activation of the ERE 

sequence.  

 ER  mRNA levels were also increased after stimulation with estrogen, whereas 

ER  mRNA levels were unaffected. 
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Figure 12. Activation of an estrogen responsive reporter plasmid in myotubes from rat. Myoblasts 

were transfected, differentiated into myotubes and then exposed to estrogen for 6 h in the absence or 

presence of the estrogen receptor antagonists ICI 182 780 or MPP before harvesting. Bars represent 

the mean luciferase activity with standard error. * indicates a significant difference from control 

cells. # indicates a difference between estrogen stimulation and estrogen stimulation together with 

antagonist. P < 0.05. 

 

 

ACTIVATION OF ERs BY MUSCLE CONTRACTIONS 
Muscle contractions induced by electrical stimulation also activated the ERE-sequence 

(fig. 13). The activation by muscle contractions though, seemed to be independent on 
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ERs since ER antagonists did not affect the activation. An explanation to the increased 

activation of the ERE-sequence by muscle contractions could instead be due to 

activation of ERRs, which have been shown to be increased in human skeletal muscle 

by acute exercise (Cartoni et al. 2005).  
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Figure 13. Activation of an estrogen responsive reporter plasmid by muscle contractions in 

myotubes from rat. Myoblasts were transfected, differentiated into myotubes and than electrically 

stimulated in the absence or presence of the estrogen receptor antagonists ICI 182 780 or MPP for 3 

h before harvesting. Bars represent the mean luciferase activity with standard error. * indicates a 

significant difference from control cells. P < 0.05. 

 

However, an activation of ERs, which was indicated in the present thesis by the 

finding of increased levels of ER  and ER  mRNA, cannot be excluded. Physical 

exercise in vivo, in contrast to the in vitro isolated muscle cell contractions in paper V, 

involves a number of systemic factors that could affect ERs. For example, immediately 

after strenuous anaerobic exercise plasma levels of estradiol, testosterone and 

androstenedione are increased (Kuoppasalmi et al. 1976; Vincent et al. 2004), although 

with moderate endurance training or acute endurance exercise the circulation 

concentration of estradiol is not altered (Bullen et al. 1984). DHEA is produced from 

the adrenal glands especially during stress such as physical activity and serves as a 

precursor for testosterone and estrogen. The biosynthesis of active androgens and 

estrogens from DHEA is achieved by metabolism of DHEA first to testosterone by 

hydroxyl steroid dehydrogenases and than to estrogen by aromatase. All of the enzymes 

in this process are expressed and functional in skeletal muscle and are increased by 
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exercise (Aizawa et al. 2007).  The aromatase gene can be regulated  by different 

mechanisms, for example cAMP (Larionov et al. 2003) that is also increased during 

exercise (Goldfarb et al. 1989). Basal muscle estrogen levels are elevated by exercise in 

males (Aizawa et al. 2008) which shows a local and active metabolic pathway for 

synthesis of estrogen in skeletal muscle and provides further evidence for the role of 

steroid hormones in skeletal muscle function (fig. 14).  

 None of these possible effects on ER can be detected in the in vitro situation in 

paper V where the effect of muscle contraction alone is studied. Therefore, ER could 

still be activated by physical activity and involved in the process of adaptation, even 

though isolated muscle contractions do not seem to activate them. Furthermore, as 

described in the introduction, ERs can interact with other DNA-bound transcription 

factors at for example AP-1 sites to regulate the transcription of certain set of genes in 

an ERE-independent way. The MAPK-system is activated by muscle contractions and 

exercise (Widegren et al. 1998; Wretman et al. 2000) and IGF-1 levels have also been 

shown to increase by muscle contraction (Berg et al. 2007). MAPK and growth factors 

such as IGF-1 can activate ER to bind to ERE sequences and probably also to AP-1 

sites. 

 ERR  is another possible activator of the ERE-sequence. ERR  is increased in 

human skeletal muscle after acute exercise and its activity is increased by the MAPKs, 

which could explain the increase in ERE activation by muscle contractions. The co- 

activator PGC-1, which interacts with ERR  and further increases its activity, is also 

increased by exercise (Norrbom et al. 2004; Schreiber et al. 2003). 
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Figure 14. Possible mechanisms by which physical activity can influence ER signalling. Encircled 

substances can directly bind to ERs. 
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CONCLUSIONS  
 

 

From the work of this thesis it was concluded that:  

 

 Skeletal muscle expresses both ER  and ER  mRNA and protein in adult men 

and women as well as in children of both sexes and postmenopausal women. 

 

 The ER  and ER  are localized not only to the nuclei of muscle fibres 

themselves but also to the nuclei of capillary endothelial cells. The two 

receptors are to a major extent co-expressed in the same nuclei. 

 

 Endurance trained men have a higher steady state mRNA level of both ER  and 

ER  than normally active men. This is concurrent with higher expression of the 

angiogenic factor VEGF. The expression of ERs is correlated with muscle 

oxidative capacity. 

 

 Both estrogen and muscle contractions of skeletal muscle myotubes increases 

the mRNA of the ER target gene ER . 

 

 Estrogen activates ERs in primary skeletal muscle cells. 

 

 Muscle contractions have a similar functional effect as estrogen causing ERE-

sequence activation in skeletal muscle myotubes. In contrast to estrogen the 

effects of muscle contractions are most likely independent of ERs.  

 

These results suggest an involvement of ERs and ER target genes in the adaptation of 

skeletal muscle to physical training. 
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FUTURE PERSPECTIVE 
 

 

The findings of this thesis arises new questions and ideas for further studies. There 

seems to be a sex difference in the level of ER  protein in human skeletal muscle. If 

there is a sex difference for ER  protein as well is unknown and need further studies. In 

paper III we found that ER  and ER  are present in skeletal muscle in children and 

postmenopausal women as well as in women and men. Although the number of 

subjects included was too low for any conclusions to be drawn, children seemed to 

have higher concentrations of ER - and ER -positive nuclei per unit area than did 

adults, whereas the postmenopausal women showed fewer ER - and ER -positive 

nuclei. This needs further investigation. In addition, animal studies indicate a fibre type 

specific expression of ERs. This has never been studied in humans and should be done 

for the basic characterisation of ERs in human skeletal muscle. 

 In this thesis we suggest an involvement of ERs and ER target genes in the 

adaptation process of physical activity. This is based on the findings that ERs are 

present and functional in skeletal muscle, contractions of myotubes activate ERE-

sequences and endurance-trained men have a higher expression of ER mRNA than 

normally active men. The increased activation of the ERE-sequence by muscle 

contractions seemed to be independent of ERs and could instead be due to activation of 

ERRs. The activation of ERRs by muscle contraction needs further investigations. The 

effect of muscle contractions was studied in rat myotubes, which needs to be confirmed 

in human myotubes and than of course in a whole body system. If ERs and ER target 

genes are activated in exercising human skeletal muscle is still unknown and needs 

further investigations. For a better understanding of ER signalling and the different 

genes activated by ERs during physical exercise for example chromatin 

immunoprecipitation (ChIP) and the chip-on-ChIP techniques might be used. 
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SVENSK SAMMANFATTNING 
 
 
Kvinnors risk för hjärt-kärlsjukdomar ökar dramatiskt när östrogennivåerna i kroppen 

sjunker efter menopaus och är den vanligaste orsaken till sjukdom och död hos äldre 

kvinnor. För att utföra sin effekt binder östrogen till specifika transkriptionsfaktorer, 

östrogenreceptorer (ER), ER  och ER . Den klassiska aktiveringen av ER är via 

östrogen. När östrogen bundit till receptorn aktiveras den och kan då binda in till 

specifika sekvenser i målgener och öka deras uttryck. Ytterst intressanta alternativa 

singaleringsvägar har beskrivits där ER aktiveras utan närvaro av östrogen. Kanske 

fysisk aktivitet kan leda till en aktivering av ER och därmed ge liknande effekter på 

hjärta och kärl som östrogen. 

 För att karaktärisera uttrycket av ER i skelettmuskel inklusive tillhörande 

kapillärnät togs vilobiopsier från kvinnor i olika åldersgrupper och från män (både 

normalaktiva och uthållighetstränade). Uttryck och lokalisering av ER  och ER  

studerades med hjälp av realtids-PCR (TaqMan) och immunohistokemi. Aktiviteten av 

ER undersöktes i elektriskt stimulerade celler från råtta. 

 ER  och ER  uttrycks på både mRNA – och proteinnivå i human skelettmuskel 

hos både kvinnor och män oberoende av ålder och träningsstatus. Immunohistokemi 

visar att ER uttrycks både i muskelcellernas och i endotelcellernas kärnor. Östrogen 

skulle alltså kunna verka direkt på muskelcellerna och på kärlen i muskelvävnaden. 

mRNA-uttrycket av ER  och ER  i skelettmuskulaturen är uppreglerat hos 

uthållighetstränade jämfört med normalaktiva. Detsamma gäller för 

kapillärtillväxtfaktorn VEGF, som även är en målgen till ER. Myotuber uttrycker ER 

och muskelkontraktioner ökar den transkriptionella aktiviteten av målsekvenser till ER, 

detta verkar dock ske oberoende av ER. 

 Sammanfattningsvis uttrycks ER  och ER  i human skelettmuskel oavsett ålder 

och kön. Uthållighetsträning uppreglerar nivån av ER  och ER , vilket kan tyda på att 

ER är kopplad till adaptationsprocessen vid fysisk träning, dock visar el-stimulering på 

en ER-oberoende aktivering av målsekvenser. Våra fortsatta studier förväntas ge ökad 

kunskap om betydelsen av muskelarbete och östrogen för kardiovaskulär hälsa och bör 

kunna utnyttjas för en förbättrad rådgivning vad gäller fysisk träning i hälsofrämjande 

syfte. 
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