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ABSTRACT 
This thesis describes the relation between skin cancer and electrical 
impedance. On the cellular level, electrical impedance measured at 
clinically relevant frequencies is affected by e.g. membrane structure and 
orientation, and composition of and relation between the intra- and 
extracellular environments, i.e. similar properties used by histopathologists 
to diagnose skin cancer. The aim is to detect skin cancer using the electrical 
impedance technique. The overall objective is to develop a complement to 
visual skin cancer screening. 
 
Impedance was measured with a depth selective impedance spectrometer 
between 1 kHz and 1 MHz of various skin cancers and benign lesions 
including e.g. malignant melanoma, squamous and basal cell carcinoma, 
dysplastic nevi, actinic keratosis, and benign pigmented nevi. The lesions 
were subsequently excised and diagnosed by histopathology. Various pattern 
recognition tools were used to analyse the impedance data. 
 
First of all it was concluded that impedance of lesions differs from healthy 
skin, which confirms previous publications. It was also concluded that 
healthy skin varies within small areas on the body, which is a factor, amongst 
others, that might lower the signal-to-noise ratio of skin cancer impedance. 
Extensive measurements with a new version of the impedance spectrometer 
facilitated separation between skin cancer and benign nevi with clinically 
relevant accuracy. To improve the signal-to-noise ratio, a novel type of 
electrode that penetrates the outermost layer of the skin was introduced, 
and it was found that the accuracy varies with electrode and cancer type. 
Area under ROC curve was 91% for the separation of nevi and melanoma, 
and 98% for nevi and basal cell carcinoma. 
 
The results strongly suggest that the electrical impedance technique can be 
used to detect skin cancer, i.e. proof-of-principle has been achieved. 
However, before the technique can be used as a routine instrument in the 
clinics, additional studies are required. 
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1 BACKGROUND 

HE experience of the group working with electrical skin impedance 
is that everything that can be seen histologically in a microscope can 
be measured with electrical impedance. What you see in a 

microscope is mainly structural properties of the tissue, such as size, shape 
and orientation of the cells, amount of intra and extra cellular water, and 
structure of the cell membranes. These structural properties are to a high 
degree reflected in the impedance spectra. Skin cancers and other lesions are 
histologically diagnosed based on their unique cell structures, and hence, 
clinically (histopathologically) relevant skin cancer information can be found 
in multi-frequency electrical impedance spectra. The aim of this thesis is to 
describe how this information can be extracted from the impedance, and 
how it can be used to distinguish harmful and harmless skin lesions. 
 

1.1 ELECTRICAL IMPEDANCE 

LECTRICAL impedance is measure of a material's opposition to the 
flow of electric current. Impedance includes both resistance and 

reactance, and, according to Encyclopædia Britannica Online [6], �The 
resistance component arises from collisions of the current-carrying charged particles 
with the internal structure of the conductor. The reactance component is an 
additional opposition to the movement of electric charge that arises from the changing 
magnetic and electric fields in circuits carrying alternating current.� Electrical 
impedance, Z, is the ratio between alternating voltage and alternating 
current, described by Ohm�s law. Impedance is a complex measure of the 
resistance, R (ohm), and reactance, X (ohm), as shown in figure 1, that can 
be expressed in the complex impedance plane according to Z = R + iX, or 
in polar coordinates using the magnitude, |Z| (ohm), and phase, θ (deg), 
according to Z = |Z|eiθ, where |Z| = (R2 + X2)0.5, and θ = arctan (X/R). 

T
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1.1.1 Electrical bio-impedance 

The membrane around living cells acts like an electrochemical membrane, 
i.e. it is semi-permeable and allows certain ions to pass through the 
membrane and others not. This makes the membrane behave like a leaky 
capacitor. Moreover, the intra- and extracellular environments consist 
mainly of electrolytes and have primarily resistive properties. Thus, cell 
suspensions and biological tissues have both capacitive and resistive 
properties, and impedance of biological tissues are highly frequency 
dependent. Different biomaterials have different electrical properties � 
tissue structure and chemical composition of a biological material may 
correlate with its electrical properties, and thus bio-materials have different 
frequency characteristics [7]. Generally, the low-frequency region is affected 
by the extracellular environment and high frequencies also by the properties 
of the intracellular space, demonstrated in figure 2. Since cell membranes 
have a high capacitance, low frequency currents and dc currents must pass 
around the cells, i.e. they travel in the extracellular environment. High 
frequency currents, on the other hand, have the ability to penetrate through 
cell membranes and other electronic barriers in the cell structure by 
polarisation, i.e. the barrier is charged, uncharged, and reversely charged, 
and so on, like a simple capacitor. Thus, different frequency regions are 
affected by different fundamental properties of the tissue. 
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Electrical impedance spectra of biologic materials contain frequency regions 
where the impedance decreases with increased frequency, and others where 
the impedance is almost constant, shown in figure 3. The regions where the 
impedance decreases with frequency, i.e. the steep slopes in figure 3, 
corresponds to specific electrochemical processes or phenomena, called 
dispersions. Bio-impedance spectra plotted in a Nyquist diagram, i.e. a plot 
of real vs. imaginary part of the impedance, displays sections of semicircles, 
and each semicircle corresponds to a specific dispersion. Schwan was the 
first to correctly identify three major dispersions of electro bio-impedance 
spectra in 1957 [8], the α-, β- and γ-dispersions, visualised in figure 3. The 
α-dispersion (Hz to tens of kHz) reflects mainly polarisation of ionic clouds 
around the cells. Structural membrane changes, oedema, and polarisation of 
cell membranes affect the β-dispersion (kHz to hundreds MHz). The γ-
dispersion (over hundreds MHz) reflects relaxation of water and other small 
molecules. Hence, the β-dispersion often contains most of the clinically 
relevant information. Later on, a fourth dispersion, called the δ-dispersion, 
was discovered in the lower GHz region. 
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Electrical impedance of biological materials is thoroughly reviewed in [9], 
where the major contributors are exposed historically along with some 
examples of impedance applications. Apart from the skin cancer impedance 
assessments, there are not many examples of applications where the bio-
impedance is used clinically: it is used e.g. to evaluate body composition, to 
make impedance images, and to detect caries. Whole body electrical bio-
impedance is correlated to various body composition parameters, such as 
total body water, fat free mass, and body fat, and the technique is used as a 
routine instrument for total body composition analysis and evaluation of 
nutritional status [10]. Electrical impedance tomography (EIT) is an imaging 
technique that is mainly used for research, reviewed by Brown in [11], and 
impedance measurements of teeth can be used to detect caries, described in 
[12]. 
 

1.1.2 Skin impedance 

Generally, human skin consists of two layers, epidermis and dermis, 
described in [13]. The main function of the lower layer, dermis, is to 
provide the skin with mechanical strength and elasticity. Thickness of this 
layer varies between 0.3 mm to a couple of millimetres. The dermis has a 
complex structure and contains e.g. connective tissue, blood vessels, hair 
follicles, sensory nerves, and sweat glands. 
 
Epidermis is the outer layer. This layer is thin, typically around 0.05-0.5 
mm (the thickness varies with location), and acts as a barrier against 

��
�* ���+,-.

��


�
*
��
�
��
�+
�
�
�
. �

�

�

�**/�*0 ,-

�*1/�*2 ,-

3�*2 ,-

��
�* ���+,-.

��


�
*
��
�
��
�+
�
�
�
. �

�

�

�**/�*0 ,-

�*1/�*2 ,-

3�*2 ,-

�

��
�	��1���4�����
�����
�	�����
����	�%����������������������� ��	 �(�����	��
�	� 
�� �

���
�����
��
�����������
	�������������������� ������"����
�������
�	�����



 

5 

radiation, microbes, and chemicals, especially water. Epidermis is composed 
of closely packed cells with small amounts of extracellular water. Cells in 
epidermis keratinise, become more and more flattened, and migrate closer 
to the surface over time. When the cells reach the outermost layer of 
epidermis, the stratum corneum (SC), they are scaly and compressed, and in 
the end they fall off. Hence, the epidermis and the SC are constantly 
renewed. The thickness of the SC varies to a large extent with body site, 
and the average thickness is approximately 15 µm. 
 
A typical non-invasive electrical impedance spectrum of healthy skin is 
shown in figure 4. The complex impedance in the Nyquist plot in figure 4b 
resembles a straight line, at least in the low frequency region from 1 kHz up 
to about 100 kHz, which implies that impedance of skin with intact SC can 
be approximated by linear regression, or described by only two frequencies, 
without loosing too much information, discussed in section 1.2.1.2. 
 
Non-invasive impedance of skin is dominated by the very high impedance of 
the stratum corneum, specially in the low-frequency region up to some kHz 
[9]. Stripping the skin with common adhesive tape, described in [14], 
removes stratum corneum cells and hence lowers the skin impedance [15]. 
If stratum corneum cells are removed, the dispersion of the underlying skin 
layer is accentuated, i.e. impedance spectrum of stripped skin has different 
shape and is much lower than skin with intact SC [16, 17]. This is 
exemplified in figure 5, where skin of a healthy volunteer was measured 
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before, during, and 2 weeks after tape stripping with common adhesive 
tape. It can be seen that the impedance decreases with the number of strips, 
and that the graphs gradually takes on the shape of a section of a semicircle. 
After stripping the skin with 90 tape strips, sections of two different 
semicircles were discernible, which implies that the α- and β-dispersions of 
viable skin are uncovered when removing the SC. The skin was fully 
recovered after two weeks. 
 
It is evident that the status of the SC dominates the non-invasive impedance 
of human skin, and impedance can thus be used to evaluate the status of the 
barrier function of skin, e.g. by assessing skin hydration and oedema. Skin 
hydration is an essential parameter for the barrier function of skin that 
modulates the electrical properties of the SC [17, 18]. Oedema, is one 
result of skin irritation, characterised by excessive amount of watery fluid 
accumulated in the extracellular environment, can easily be detected by 
electrical impedance in the α- and β-dispersion regions. This can be 
explained in terms of current paths of high and low frequency currents 
through tissues with closely packed cells (e.g. healthy normal skin) and 
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tissues with oedema (e.g. irritated skin), exemplified in figure 6. For the 
high frequencies, the impedance of normal tissue is similar to the impedance 
of oedema. For lower frequencies, on the other hand, where currents 
mainly travel in the extracellular environment, the impedance of the normal 
tissue is much higher than the oedema. Electrical impedance has previously 
been used to characterize and quantify reactions in skin [19-23]. Skin 
impedance can also be used to e.g. map baseline properties of healthy skin 
[24-30], and to assess skin diseases [31, 32]. Electrical impedance 
measurements of skin originates from Gildemeister [33] almost 100 years 
ago. Reviews on electrical impedance of skin can be found in [16, 17, 34]. 
 

1.1.3 Non-invasive and microinvasive impedance 

Non-invasive impedance of skin can be measured between two electrodes, a 
two-point measurement, by applying a small alternating voltage and 
comparing the measured current with the voltage according to Ohms law. 
Depth penetration of the currents in skin and other biological material is 
correlated to frequency, distance between and size of the electrodes, and 
physical properties of the tissue under study, in particular the multi-layered 
structure with different electrical properties. A rule of thumb is that depth 
penetration of the currents within the layers of the skin are roughly half the 
distance between the electrodes, as demonstrated in figure 7. High 
frequencies penetrate deeper than lower frequencies in a double layer 
structure where the top layer is less conductive and more capacitive than the 
deeper layer. 
 
The relation between depth penetration and distance between electrodes 
can be used to make a depth selective skin impedance meter. The principle 
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of the SciBase (SB) depth selective non-invasive impedance probe is shown 
in figure 8. The non-invasive probe consists of a concentric ring system. The 
rings represent voltage drive (current injection) points, current detector, 
and a guard ring. The voltage drive supplies a small, not noticeable, 
alternating voltage in the tissue, and the detector measures the resulting 
current. The guard ring eliminates currents on the surface of the tissue, e.g. 
in the surface furrows of the skin, which otherwise can cause artefacts. 
There are two rings that supply voltage, and the relation between the two 
will generate a virtual injection point located between the two. Adjusting 
the voltage relation between the two injection points will move the virtual 
injection back and forth, and hence the depth penetration in the tissue is 
selectable. The currents from the SB instrument equipped with the non-
invasive probe penetrate the skin in five steps approximately between 0.1 
and 2 mm into the epidermis and dermis. The electrode system on the tip of 
the non-invasive probe is shown in figure 9, and the whole handheld probe 
is shown in figure 10. 
 
The Thévenin�s theorem and the principle of superposition tell us that any 
linear system can be expressed as an algebraic sum of individual 
contributions. This implies that all depth settings can be calculated from two 
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measurements for any electronically linear system, i.e. all depth related 
information could be achieved from only two observations of the tissue, and 
multiple depth measurements are only linear combinations of each other. 
However, human skin is a complex, heterogeneous, and anisotropic 
multilayer structure with electronically non-linear properties. The most 
non-linear properties are located to the SC, which does not obey the Cole-
equation [35]. Therefore, there is information in all depth measurements 
that cannot be calculated by interpolation or extrapolation from two depths, 
although the different depths are highly correlated. 
 
As pointed out previously, non-invasive electrical impedance spectra of skin 
are dominated by the dielectric properties of the stratum corneum, 
especially at low frequencies. The stratum corneum has a very large and 
broad α-dispersion that overshadows the α- and β-dispersions of the 
underlying viable skin, i.e. the physical information of the dispersions is 
confounded, and the clinically relevant information from the viable skin is 
thus diluted. This makes it difficult to assess electrical impedance of 
phenomena that manifest below the stratum corneum, e.g. skin cancer and 
allergic reactions, while other phenomena, such as skin irritations, that 
affect both the stratum corneum and the viable skin below, and  barrier 
damage that only affects the SC, will be assessable using regular non-invasive 
electrical skin impedance. One way to access electrical impedance of the 
viable skin beneath the SC is, as described above, to remove the SC with 
e.g. tape stripping. Another possibility is to penetrate the SC and measure 
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the impedance below using dedicated electrodes with micro-spikes, 
demonstrated by Griss et al. in [36]. They made the micro-needles in silicon 
using micro-electro-mechanical systems (MEMS) techniques. Subsequently, 
depth selective impedance electrodes with micro-needles were developed 
for the SB spectrometer, as shown in figure 11. The surface of the 
electrodes is covered with gold, and the spikes are approximately 150 µm 
long and 30 µm in diameter. The spiked electrodes are mounted onto a 
handheld probe, as shown in figure 12. The probe has three beams furnished 
with spikes � one beam is for current detection and the other two are drive 
electrodes facilitating depth selectivity according to the same principle as the 
regular non-invasive probe. There is no need for a guard electrode because 
there are no disturbing currents on the surface of the skin in this case. The 
area of the electrode is approximately 5 x 5 mm2. The spikes are designed to 
penetrate through stratum corneum, but not into the dermis (unless 
excessive pressure is applied), and the spiked electrode is, by definition, not 
non-invasive, but since the spikes do not reach the blood vessels or the 
sensory nerves in dermis, we classify the probe as microinvasive. 
Measurements with the micro-invasive electrodes are painless (a 
measurement feels like holding a piece of sandpaper to the skin), and it is 
harmless as long as the spikes are clean. The electrodes are used as 
disposables. The terms �minimally invasive probe�, �micromally invasive 
probe�, �spike probe�, and �spiked probe� used in previous publications, e.g. 
[37, 38] and in papers III and IV, are different names of the same 
microinvasive electrode system. 
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Skin impedance measured non-invasively is affected by many biological 
factors, such as gender, age and body location, that dilute the clinically 
relevant information from the tissue under study. Thus, this biological 
variation is a drawback when the impedance technique is used in skin 
investigations, and in particular when subtle skin phenomena are under 
study. The biological variations are typically dominating in the outermost 
layer of the skin, and eliminating the SC with the microinvasive electrodes 
would therefore reduce biological variations and enhance the clinically 
relevant signals from the viable skin. This is of special interest when 
assessing phenomena that are located beneath the SC layer, e.g. phenomena 
that do not affect the SC, such as early stage malignant melanoma and 
allergic reactions. 
 

1.1.4 Skin cancer 

There are different skin cancer types, where malignant melanoma (MM), 
basal cell carcinoma (BCC), and squamous cell carcinoma (SCC) are the 
most significant [39-44]. BCC and SCC are called non-melanoma skin 
cancers (NMSC) [45]. Actinic keratosis can progress to SCC [46], and hence 
is considered as a potentially harmful lesion type. The benign pigmented 
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nevus, on the other hand, is a harmless and very common lesion type. 
Dysplastic nevi are lesions with atypical features, and has an increased risk of 
progressing to MM [47]. Seborrheic keratosis is one of the most common 
benign skin lesions in adults [48]. Dermatofibromas are benign lesions that 
can develop after e.g. a viral infection or an insect bite [13, 49]. Benign 
lesions, such as pigmented nevi and seborrheic keratoses, can be mistaken 
for MM, and are therefore often excised for diagnostic purposes. Dysplastic 
nevi may be confused with both MM and benign nevi. A reduction of the 
number of benign lesions excised is economically motivated and would e.g. 
reduce discomfort and the risk of infections for the patients. 
 
Screening for skin cancer is usually made by visual inspection of the lesions 
using e.g. the ABCD rule for MM [50], and atypical lesions are excised and 
examined histopathologically. The clinical accuracy of the screening ranges 
from poor to fair [51]. It is desirable to replace this subjective procedure 
with a non-invasive, reliable, simple, and objective technique with high 
accuracy, but at the time of writing there are no practical alternatives. 
Electrical impedance has been used to assess skin cancer with positive 
outcome and it has been proposed that electrical impedance could be used as 
a possible alternative to visual screening for skin cancer [52-57]. 
 

1.2 NUMERICAL ANALYSIS OF IMPEDANCE DATA 

HE major problem when analysing bio-impedance spectra is that the 
data are multivariate and the impedance is complex, i.e. all depth 

settings and frequencies are correlated to each other, and each data point is 
represented by two numbers i.e. magnitude and phase, or real and 
imaginary part. When analysing impedance data there are often many 
variables (an impedance spectrum measured with the SB impedance 
spectrometer generate 310 highly correlated variables), which implies that it 
is ambiguous to perform univariate analysis of each variable, i.e. to analyse 
one variable at a time, because of the information redundancy. 
Furthermore, it is not obvious how to analyse complex numbers 
numerically. In order to interpret bio-impedance spectra, it is necessary to 
fit the raw data in a model or, in some other way, to simplify the data to a 
few clinically relevant parameters. When the data are simplified, post-

T
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processing is often required, e.g. classical statistical analysis or classification. 
Numerical classification of skin lesion impedance spectra is of special 
interest in this thesis. 
 
Some of the numerical tools described in this section are based on 
projections of data from multivariate dimensions to lower sub-spaces. Such 
methods are best described with linear algebra. In linear algebra, bold 
capital letters, X, means matrices, and bold lower-case letters, x, means 
vectors. Transposed data structures are marked with an apostrophe, e.g. x´. 
Multi-way data arrays are indicated with bold underlined capital letters, X 
[58]. 
 

1.2.1 Parameterisation techniques 

Four feature extraction techniques that are relevant for the analysis of 
impedance data will be described in this section: Cole-Cole modelling, 
impedance indexation, principal component analysis (PCA), and parallel 
factor analysis (PARAFAC). Cole-Cole modelling is a semi empirical 
approach that focuses on the dielectric behaviour of materials. Basically, the 
intention is to find equivalent electronic circuits with properties that 
resemble the material under study. The outcome of the Cole-Cole models is 
a set of simple electronic elements, i.e. Cole-Cole modelling is a reduction 
of impedance spectra to a handful lumped parameter electronic 
components. The indexation is an empirical approach, and the indices are 
based on the ratio between impedance at low and high frequency. It is a 
simple and straightforward method, and the indices are efficient in 
monitoring damages in stratum corneum, such as skin irritations that distort 
impedance spectra heavily. However, there are other numerical approaches, 
such as PCA and PARAFAC, that capture more information from the whole 
impedance spectra, which are more appropriate when studying subtle 
phenomena. PCA and PARAFAC are based on linear projections of data to 
lower subspaces.  
 
1.2.1.1 Cole-Cole modelling 

Traditionally, bio-impedance of a dispersion has been fitted to Cole-Cole-
type equivalent circuits, virtual electronic circuits that fit the measured 
impedance spectra [9]. From the equivalent circuits it is possible to extract 
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empirically absolute values, such as membrane conductivity, and resistance 
of the extra- and intracellular environments (figure 13), provided the model 
is a reasonable description of the tissue. 
 
According to Cole [59], bio-impedance, Z, is a function of frequency, f, 
which can be approximated by the Cole-Cole equation, given by: 
 

( ) 0
1

c
1 i

R R
Z f R

f

f

α
∞

∞ −
−

= +
 

+   
 

, 

 
where fc (Hz) is the characteristic frequency of the actual dispersion. R0 and 
R∞ (ohm) are resistances at low and high frequency, respectively. The α is a 
constant that, to some degree, reflects the heterogeneity of the tissue. The 
α attains a value between zero and 0.5, where zero represents a very 
homogeneous tissue. 
 
In practice, Cole-Cole approximation is basically curve-fitting of 
experimentally measured impedance to a semi-circle arc in the complex 
impedance plane, visualised in figure 14. The Cole-equation is solved using, 
for example, a least-square deviation method, or any other appropriate 
numerical method. 
 

The Cole-Cole model reduces a complex impedance spectrum to four 
parameters with physical units, and it is possible to interpret the Cole-
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parameters as physical properties of the biological tissue. A change of α, for 
example, is interpreted as a homogeneity change of the tissue under study. 
 
The Cole-Cole equation is a simple model valid for one dispersion with 
characteristic frequency fc. It is possible to extend the model to fit the three 
fundamental dispersions (the α-, β-, and γ-dispersions), so called multiple 
Cole systems [9]. However, this basic multiple Cole model will return 12 
Cole parameters (4 parameters for each dispersion). The multiple Cole 
model can be extended to fit real life skin impedance spectra by adding 
more virtual electrical components that corresponds to specific elements in 
the Cole-Cole equations. As mentioned in section 1.1.2, skin contains layers 
(epidermis and dermis) and several sub-layers (e.g. stratum corneum), and 
each layer contains a set of fundamental dispersions. Hence, a multiple Cole 
model of three skin layers will generate at least 36 Cole parameters. 
Moreover, including additional Cole elements that correspond to e.g. 
electrode polarisation, sweat ducts, and deeper tissue, will increase the 
complexity of the multiple Cole model even further. Of course, it is 
possible to simplify the model of skin impedance by using some 
assumptions, but the point is: the more elements included in the model, the 
more variables will come out of the equations, and the fc, R0, R∞, and α of 
the different dispersions are not necessarily independent of each other, i.e. 
they might be redundant. Thus a multiple Cole model is not necessarily an 
efficient data reduction tool, and the outcome of a multiple Cole model is 
still a multivariate data set with possible high inherent cross-correlation. By 
adjusting the Cole equivalent circuits, e.g. introducing additional fictive 
electronic components, like the so called constant phase elements (CPE), it 
is always possible to get at good fit between experimental values and 
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mathematical equations. However, good fit between measured impedance 
spectra and a multiple Cole model is not a proof that the theoretical 
assumptions behind the model are correct. Yamamoto and Yamamoto [35] 
described that the SC does not obey the Cole-equation, discussed in [18], 
which implies that it is ambiguous to fit non-invasive electrical impedance of 
skin with intact SC to any Cole model. Nevertheless, Cole-models have 
been widely used to simplify bio-impedance spectra of various tissue types, 
including skin with intact stratum corneum, often without adequate 
justification of the chosen model. 
 
1.2.1.2 Impedance indexation 

A Nyquist plot of non-invasive impedance of healthy skin with intact 
stratum corneum in the β-dispersion region is close to a straight line 
(exemplified in figure 4b). The squared correlation coefficient, r2, of linear 
relation between real and imaginary parts of non-invasive skin impedance 
with intact stratum corneum typically varies between 98% and 100%. This 
implies that two points will capture most of the variance in a spectrum. 
Ollmar and Nicander [60] introduced four impedance indices � magnitude 
index (MIX), phase index (PIX), real part index (RIX), and imaginary part 
index (IMIX) � given by the relation between impedance at low (20 kHz) 
and high frequencies (500 kHz), according to: 
 

MIX = |Z20 kHz| / |Z500 kHz| 
PIX = θ20 kHz � θ500 kHz 

RIX = R20 kHz / |Z500 kHz| 
IMIX = X20 kHz / |Z500 kHz| 

 
The impedance indices have shown to be very effective when describing 
various skin conditions and phenomena, especially skin irritations that affect 
the barrier function of the SC. It was concluded in [19, 61, 62] that skin-
irritations show unique index-patterns. Using the indices and numerical 
pattern recognition it was proposed that non-invasive skin impedance 
measurements could be used as a diagnostic decision support tool for various 
types of skin-related diseases. It was also found that the detection limit of 
the indices was lower than traditional visual scoring [20]. However, using 
holographic neural networks [63], it was found that there is additional 
information in the spectra not captured by the four indices. This implies 
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that, in the case subtle skin impedance changes are to be found, the indices 
are not powerful enough to capture all available biological information and 
it requires more powerful data-mining techniques, e.g. artificial neural 
networks and multivariate data analysis, discussed in [64]. Moreover, the 
indices depend on each other, e.g. according to MIX2 = RIX2 + IMIX2, 
discussed in [65], and hence they describe redundant information. 
 
Real vs. imaginary part of impedance spectra of the viable skin below the SC 
is not linear and do not fit very well to a straight line. The impedance 
indices do not account for the dispersive properties of the viable skin, and 
thus the indices will miss significant clinical information from the α- and β-
dispersions. Hence, the indexation technique is inappropriate for 
microinvasive impedance or impedance of skin with damaged SC. Then 
other numerical tools are preferable, such as Cole-approximation or 
projection methods (e.g. PCA). 
 
1.2.1.3 Principal component analysis (PCA) 

It is easy to measure many variables with modern technique. When 
measuring many variables (K variables) on a population (N observations) the 
data can be arranged into a multivariate matrix, X, with the size NxK, i.e. 
N points in a K-dimensional space, or K points in an N-dimensional space. 
In the impedance case, a number of impedance spectra, N, measured in a 
frequency range, K frequencies, can be arranged in a multivariate 
impedance data matrix. 
 
For a multivariate data set it is most likely that the variables are, more or 
less, correlated, i.e. the variables are not necessarily independent. PCA is 
used to reduce the number of variables of multivariate data, to compress X, 
and to extract information from X using projections. A projection from 3D 
to 2D is exemplified in figure 15. 
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The main aim of PCA is to reduce dimensionality with a minimum loss of 
information. The idea behind the PCA is that data can be described as a 
structural part and a residual part that contain noise. PCA finds directions, 
principal components (PCs), that describe the structure, the main features 
of X. Each PC consists of a set of scores (ta) and loadings (pa). The PCA 
decomposition is formally given by: 
 

A

a a

a=1

′ ′+ + = +∑X =1x t p E 1x TP +E
, 

 
where T (NxA) is the score matrix ([t1, t2, ... , tA]), x  a vector of mean 
values of the variables of X, P (KxA) the loading matrix ([p1, p2, ... , pA]), 
and E (NxK) the residual matrix. The solution to the equation above is 
found in a least squares manner using the non-linear iterative partial least 
squares (NIPALS) algorithm [66]. A PCA model is graphically shown in 
figure 16. 
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The number of PCs, A, must be less than or equal to the smallest dimension 
of X, i.e. A ≤ min {N,K}. The PCs are said to be orthogonal, i.e. they are 
independent of each other. The PCs are size ordered according to the 
explained variance of X; the first PC describes the largest part of the 
variance of X. 
 
The scores describe how the objects relate to each other, and the loadings 
how the variables relate to each other. Analysing the scores makes it is 
possible to find trends and outliers. Analysing the loadings gives information 
of how the variables correlate to each other, and which variables are 
significant and which are unimportant for the model.  
 
The idea of projecting multivariate data to subspaces was first published in 
1901 [67] and the PCA technique is described in detail in [66, 68-70]. PCA 
was used to simplify electrical impedance data in e.g. [71-73], to simplify 
electrical skin impedance in [32, 74], and to simplify electrical impedance 
spectra of skin lesions in [52, 57]. 
 
1.2.1.4 Parallel factor analysis (PARAFAC) 

Some techniques and instruments generate a data matrix for each 
measurement, for example fluorescence excitation-emission measurements, 
and impedance spectra measured in a frequency interval at several depth 
settings. The data of such techniques can be arranged in multi-way arrays, X 
(figure 17). In the impedance case, the corresponding structure of the array 
would be subjects x depth settings x frequencies, i.e. a three-way data set 
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with three modes. 
 
The main idea behind PARAFAC is to simplify multi-way data to a 
structural part and a residual part using linear projections. Parallel factor 
analysis can be used to find directions, PARAFAC components, that 
describe the underlying pattern of the data, to decompose X into sets of 
loadings that describe the systematic variations of the data. Using 
PARAFAC, the data is reduced to a set of loading vectors, one vector for 
each mode and PARAFAC component, visualised in figure 18. Formally, 
each data point xijk of X is given by: 
 

R

ijk ir jr kr ijk

r=1

x = a b c +e∑ , 

 
where air, bjr, and ckr are typical elements of the loading vectors ar, br, and cr 
of mode A, B, and C, respectively. R is the number of PARAFAC 
components, and eijk is an element of the residual array E. 
 
The PARAFAC loadings describe how the variables in each mode relate to 
each other, and also how they relate to the other modes. Hence, the 
PARAFAC loadings can, to some extent, be interpreted in a similar manner 
as the PCA components. 
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The PARAFAC algorithm provides unique solutions for real multi-way data 
with acceptable signal-to-noise ratio. If the appropriate number of 
PARAFAC components is used, the loadings represent the true underlying 
pattern, i.e. PARAFAC can be used as a curve resolution tool. For example, 
PARAFAC decomposition of fluorescence excitation-emission 
measurements gives pure spectra of the excitation and emission spectra of 
the fluorophores in the measured samples [75, 76]. 
 
The most general multi-way models are Tucker models [77], proposed by 
the psychometrican Tucker in 1966 [78]. It is a generalization from two-way 
PCA to multi-way decomposition. The Tucker algorithm decompose a 
three-way X (IxJxK) to three sets of loading matrices, A (IxP), B (JxQ), 
and C (KxR), for modes A, B, and C, respectively, a core array G (PxQxR), 
and a residual array, E (IxJxK), according to: 
 

QP R

ijk ip jq kr pqr ijk

p=1 q=1 r=1

x = a b c g +e∑∑∑
. 

 
aip, bjq, and ckr are typical elements of the Tucker loadings matrices; and gpqr 
is a typical element of G. There can be different number of components for 
each mode, e.g. P, Q, and R components, for mode A, B, and C.  
 
The core array describes the interaction between individual loadings of 
different modes. The PARAFAC model is a constrained Tucker model, or a 
special case of Tucker. In PARAFAC, the diagonal elements of the core 
array are equal to one and the non-diagonal elements are equal to zero. 
Core consistency is a tool for finding the right number of PARAFAC 
components. The core consistency is a quality measure of how well a 
PARAFAC solution represents the variation in the data consistent with the 
core constraints. Ideally, the core consistency is 100%, which mean that the 
PARAFAC loadings give an appropriate description of X. A core consistency 
distant from 100% is an indication that a PARAFAC model with fewer 
components will provide a better solution. The core consistency diagnostics 
is described in detail in [79]. 
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PARAFAC decomposition was proposed simultaneously and independently 
by Harshman [80] and Carrol and Chang [81] in 1970, and is described and 
exemplified in [82-85]. Bro et al. [86] made a PARAFAC algorithm for 
complex valued three-way arrays, which might be useful for complex skin 
impedance spectra. PARAFAC decomposition of skin impedance is 
described in paper I. 
 

1.2.2 Classification techniques 

The aim of numerical classification of electrical impedance and skin cancer is 
to find rules that describe the relationship between impedance spectra and 
lesion type. The overall motivation is to use the classification rules to 
identify the group membership of new anonymous lesions using impedance 
measurements. In order to do so, the numerical classifier has to be trained, 
i.e. the rules have to be adjusted for the specific problem using a training 
set, i.e. impedance measurements of lesions with known group 
membership.  
 
It is important to evaluate the performance of the classifiers, to validate the 
classification models. Validation can be done in different ways, e.g. using 
measurements of new lesions, and cross-validation. Measurement of new 
lesions with known group membership, i.e. a test set, after the rules have 
been determined is the most reliable and fair way of validation, a procedure 
which mimics the intended use of the classifier. However, diagnosis of new 
lesions with the gold standard can be expensive in terms of time, money, 
and effort. In such case, the training set itself can be used as test set in cross-
validation to approximate the performance. It is an iterative process where 
the test set is randomly split in a number of subsets. For each iteration, one 
subset is left out of the training set, the remaining observations are used to 
model the classification, and finally the model is used to predict the class 
membership of the excluded subset. The process is repeated until all subsets 
have been used as test set once. The performance of the classification is then 
approximated using the relation between observed and predicted group 
membership of the subsets. If the number of subsets is equal to the total 
number of samples in the training set, the validation is called leave-one-out 
cross-validation. Cross-validation can also be used to determine the 
complexity of classification models. 
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Various classification techniques have been used to analyse impedance data, 
however this thesis focuses on a limited selection that have been used in 
papers II, III, and V, and in [57] to separate impedance measurements of 
benign nevi and skin cancers: linear discriminant analysis (LDA), soft 
independent modelling of class analogy (SIMCA), and receiver operating 
characteristics (ROC). Both LDA and SIMCA are based on projections. The 
LDA technique focuses on dissimilarities between groups of data, whereas 
SIMCA classification focuses the similarities within classes. ROC technique 
is simple classification of univariate data, and hence not very appropriate for 
multivariate problems. However, the ROC technique is useful in evaluating 
the performance of more advanced classification techniques, such as the 
outcomes of LDA and SIMCA classifications. 
 
1.2.2.1 Receiver operating characteristics (ROC) 

Suppose that we have measured a continuous variable in a population and 
we want to correlate this variable to a feature, i.e. to classify the population. 
According to a gold standard, some of the subjects have the feature, e.g. 
skin cancer, and the others do not, e.g. benign lesions. A subject with the 
feature is called positive, and a subject without negative. At a certain 
threshold, or a difference limit, a subject can be judged correct or incorrect, 
i.e. a true or false classification based on the measured variable. When 
separating overlapping groups a degree of misjudging is inevitable, and 
hence it is important to describe the performance of the classification, e.g. 
in terms of sensitivity and specificity. Sensitivity is the ability to single out 
those subjects with the feature tested for. For example, if the sensitivity 
equals 100% it means that all subjects in a population with the feature are 
detected. That is obviously a desired property of a method, but the 
sensitivity does not say anything about the number of misjudged negative 
subjects. The specificity, however, is the ability to identify those subjects 
without the feature. In terms of skin cancer detection, sensitivity is the 
probability that a malignant lesion will give a positive impedance test result, 
and specificity the probability that a harmless lesion will give a negative 
impedance test result, given by: 
 

sensitivity = TP/(TP+FN) 
specificity = TN/(TN+FP) 
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TP (true positive) is the number of skin cancers with positive impedance test 
result, TN (true negative) the number harmless lesions with negative 
impedance test result, FP (false positive) the number harmless lesions with 
positive impedance test result, and FN (false negative) is the number of skin 
cancers with negative impedance test result, shown in figure 19. Other 
parameters used to describe the performance of a medical diagnostic tests 
are the positive (PPV) and negative predictive values (NPV), given by: 
 

PPV = TP/(TP+FP) 
NPV = TN/(TN+FN) 

 
PPV is the probability that a lesion really is malignant given a positive 
impedance test result, and the NPV is the probability that a lesion is 
harmless given a negative impedance test result. The PPV and NPV depend 
on the prevalence of the disease, which implies that these parameters are 
useful when the test subjects are chosen randomly from the population. 
Interpretation of PPV and NPV is ambiguous if the test subjects in the study 
do not represent the overall population, i.e. PPV and NPV of a skin cancer 
screening technique is useful if the ratio between number of cancers and the 
number of benign lesions represent the true relation between skin cancer 
and benign lesions in the population that undergo screening. Sensitivity and 
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specificity do not depend on the prevalence. 
 
If the threshold in figure 19 is moved iteratively from minimal to maximal 
value of the measured variable, the sensitivity will increase from 0% to 
100%, whereas the specificity will decrease from 100% to 0%. A plot of 
(1 � specificity) on the x-axis and sensitivity on the y-axis of the iterations is 
called a receiver operating characteristic (ROC) curve. ROC curves are 
used to judge the discriminative ability of various statistical methods and test 
results for predictive purposes [87]. The area under the ROC curve (AUC) 
is an estimate of the probability that a randomly chosen subject is correctly 
diagnosed, i.e. the AUC is a representation of the overall diagnostic 
accuracy of the technique, described in [88-90]. Random guessing would 
result in an AUC of 0.5. If AUC is 1.0, the diagnostic accuracy of the test is 
ideal, which means that there is perfect separation between the groups, and 
sensitivity and specificity are close to 100%. The ROC analysis is a non-
parametric tool. Hence, there are no distribution constraints, e.g. the data 
does not have to have Gaussian distribution. The standard error, SE, of the 
AUC is given by [88]:  
 

( ) ( )( ) ( )( )2 2
A 1 N 2

A N

AUC 1-AUC + n -1 Q -AUC + n -1 Q -AUC
SE=

n n , 

 
where nN and nA are the number of normal and abnormal subjects, 
respectively. Q1 and Q2 are given by: 1Q =AUC/(2-AUC), and 

2
2Q =2AUC /(1+AUC). Generally, the SE decreases with increasing AUC, 

e.g. the error is higher when the groups are overlapping than when there is a 
clear separation between the groups. 
 
The ROC curve are remarkably useful tools in medical decision-making, 
and electrical impedance was used together with ROC e.g. in cervix cancer 
detection [91], in detection of malignancy areas in the bladder [92], and to 
describe the performance of separation of malignant and benign cutaneous 
lesions in [55, 56].  
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1.2.2.2 Linear discriminant analysis (LDA) 

A measured set of data X, with individual measurements xi, that 
corresponds to a specific binary feature y, e.g. malign or benign tissue, can 
be used to calibrate a numerical classifier. The classifier can then, if the 
model is accurate, be used to identify the group membership of unknown 
samples. Fisher�s linear discriminant analysis is a simple classifier that is 
based on linear projections of the variables of X onto a discrimination 
direction, w. The LDA technique was developed by Fisher in 1936, and is 
described in [93-96]. A brief summary is given in this section. The objective 
of LDA is to find an equation, ( ) bf ′= +x w x , that projects the samples, xi, 
linearly onto the discriminant direction, w, that separates the mean values, 
µk, of the two classes, k, while achieving a small variance around these class 
means, σk, Thus the projection maximises the between-class variation and 
minimises the within-class variation, as shown in figure 20. The discriminant 
direction is given by ( )-1

W 1 2= −w S x x . -1
WS is the within-class-covariance 

matrix, and kx the mean vector of class k, according to: 
 

( ) ( )
k kn nK

(k) (k) (k)
k i W i k i k

k i=1 k=1 i=1

1 1
=    and = - -

n n
′∑ ∑∑x x S x x x x

, 

 
where nk is the number of samples in class k, and (k)

ix is the i:th sample of 
class k. The bias of the discriminant equation, b, is calculated according to 

( )1 2b 0.5 ' '= − ⋅ +w x w x . Classification of an unknown sample xi is based 
on the outcome of the discriminant equation: if f(xi) is larger than or equal 
to zero, the unknown sample belongs to class 1, and if f(xi) is smaller than 
zero, xi belongs to class 2. In the skin cancer and electrical impedance 
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context, the classification rule might look like: 
 

( )
( )

i

i

"benign" if  =|Z|e 0

"cancer" if  =|Z|e 0

f
y

f

θ

θ

 ≥= 
<



z

z  

 
The linear discriminant approach is applicable when there is an inverse to 
the within-class-covariance matrix, when -1

WS  exists. For highly multivariate 
and collinear data, e.g. electrical impedance spectra, the -1

WS  can be 
unstable, or singular if the number of variables exceed the number of 
observations, and thus LDA cannot be used for ill-conditioned data. 
Reducing the dimensions of the data, e.g. with PCA, prior to LDA 
classification is a reasonable approach for multivariate data. The scores of 
the PCA model can then be used to find the -1

WS , described in [97]. 
 
Fisher linear discrimination analysis is one of the simplest forms of 
classification techniques, and it is appropriate when the classes are linearly 
separable (figure 21a). However, this is seldom the case for real life 
measurements, and especially not for skin cancer assessments where e.g. a 
benign lesion can progress gradually to malignancy and the classes are 
overlapping. Linear discrimination is useless for asymmetric data where e.g. 
classes are embedded (figure 21b), or for other highly complex data 
structures, such as the example in figure 21c. Then, other classification tools 
are preferable, such as soft independent modelling of class analogy, k-
nearest neighbours, and artificial neural networks, which can handle non-
linearities, discussed in [98]. Thus, the choice of classification technique is 
dependent upon the complexity of the data. As a rule of thumb, with 
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increasing data complexity, more advanced numerical classifiers are 
required to avoid misclassifications, and more measurements are needed in 
the training set to avoid over-fitting of the models. A practical consequence 
of this rule of thumb is that the choice of numerical classification technique 
is also dependent upon the number of subjects available in the training set, 
or the total number of samples if cross-validation is used. 
 
1.2.2.3 Soft independent modelling of class analogy 

(SIMCA) 

Soft independent modelling of class analogy is a supervised classification 
technique that is based on a set of PCA models, one PCAk model for each 
class k. The PCAk models capture the main features of a training data set, 
Xk, of each corresponding class and define limits around the classes. It is 
possible to use different number of principal components for each PCAk 
model, which makes SIMCA a flexible and versatile pattern recognition 
tool. In order to determine the group membership of an unknown 
measurement, xi, the sample is fitted to the PCAk models, and the 
distances, dk, between the unknown sample and the classes, as shown in 
figure 22, are used to classify the reading. The classification rule is: the 
sample belongs to the class closest to xi, i.e. the unknown sample belongs to 
the class with minimal dk. The distances are approximated from the scores 
and the residuals of the PCAk models. The SIMCA model is described in e.g. 
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[70, 99, 100]. 
 
Formally written, a separate PCAk model is calculated for the data, Xk, in 
each class, k, = + +�+ +k k1 k1 k2 k2 kA kA k′ ′ ′X t p t p t p E . Then, the new 
anonymous sample, xi, scaled the same way as the training set, is fitted to 
each separate PCAk model � � �= + +�+ +i k1i k1 k2i k2 kAi kA ki′ ′ ′x t p t p t p e . 
Scores of the unknown samples, �

kit , are approximated, and the residuals, 
eik, are calculated for each class, according to: 
� �,ki i k ki i ki k′ ′= = −t x p e x t p . For each sample, the distance to the 
models is calculated from the residuals, Q, and the scores, called Hotelling�s 
T2, shown in figure 23. The Qi for the unknown sample xi represents the 
lack of fit to the model, and is simply the sum of squares of the 
residuals, 2Q =i i∑e . The Hotelling�s T2 statistic is a measure of the variation 
in each sample within each PCAk model, a measure of the distance to the 
centre of the model. It is calculated from the scores of the unknown sample, 
�
iat , and the variation, s2, of the scores of the training set, iat , for every 

component according to: �
a

2 2 2
i ia tT = s∑ t . Confidence limits of the Hotelling�s 

T2 and the Q-residuals, T2
k95% and Qk95%, can be established for each 

individual PCA model (figure 23), which represent the normal range of 
samples within the actual models. The confidence limits are used to 
normalise the T2 and Q of the sample, according to: 2 2 2

ki ki k95%T red =T T , 
and ki ki k95%Qred =Q Q , and the normalised T2 and Q provide an estimate 
of the distance of the unknown sample from each class, according to: 

2 2 0.5[( ) ( ) ]2
ki ki kid T red Qred= + . The unknown sample is predicted to 
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belong to the closest class. 
 
There are different ways to construct the classification criteria in SIMCA 
models, demonstrated in [101]. The procedure described above is 
implemented in the PLS Toolbox software for MATLAB [102], and was 
used in [57] to separate electrical impedance of BCC and benign nevi. 
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2 AIMS OF THE STUDIES 

HE overall aim of this work is to distinguish harmful from harmless 
skin lesions, i.e. to separate benign nevi from various skin cancer 
types and potentially harmful lesions using multi-frequency 

electrical impedance technique. Specific aims of the individual studies are: 
 

I to describe the impedance variations within volar forearms of normal 
skin of healthy volunteers, i.e. to investigate the baseline impedance 
variations within a small area of volar forearms 
 

II to compare lesion and reference impedance 
 

III to evaluate the accuracy of the non-invasive impedance technique to 
distinguish NMSC and MM from benign nevi 
 

IV to describe the novel microinvasive technique and to exemplify with 
non-invasive and microinvasive skin impedance measurements 
 

V to compare the accuracy of the non-invasive and microinvasive 
impedance techniques to distinguish skin cancer from benign nevi 
 

 

T
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3 MATERIALS AND METHODS 

HE depth resolved SciBase impedance spectrometer [SciBase AB, 
Huddinge, Sweden] was used in all experiments. The outcome of 
the instrument is magnitude (Ohm) and phase (deg) from 5 levels of 

depth penetration at 31 logarithmically distributed frequencies from 1 kHz 
to 1 MHz. The impedance spectrometer is connected to a laptop and a 
probe. The operator controls the instrument via the laptop and the laptop 
records all impedance spectra. The instrument set-up is shown in figure 24. 
The multi-frequency depth resolved impedance technique is described in 
[34]. 
 

T

�

�

��
�	��&0����� 
	����
� �
)����
�
�������	
���
����4�	
�	���'O6�	��

�
���
���

,P
�	
�
��4
��6������4$����N�
���4��5� ��������������� ���
	���
�	�$�
��
���

���	���(� �(���������)��(� �(�� 6����	�"� ����
���
���������
����������(����
��	�$�
��

�� � ���
��� �������
���"��6��



 

33 

There are two versions of the spectrometer, SB I and II (figure 25). The 
difference between the instruments is their detectors. In SB I there are two 
detectors; one is measuring magnitude, and the other phase angle, and in SB 
II there is just one detector. The SB II detector measures both the resistance 
and reactance, one at a time. Then the instrument converts the complex 
impedance to polar coordinates and the output is magnitude and phase. The 
main difference between the two instrument versions is the degree of 
immunity to external electromagnetic interference, and impedance spectra 
measured with SB I can, if the electromagnetic noise levels in the 
surroundings are high, be degraded, while SB II is virtually immune to 
external noise sources. 
 
All lesion measurements were made at the department of Surgery, 
Läkarmottagningen Hötorget, Stockholm, Sweden. The patients included in 
the studies came to the clinic after self-examination or by refferal from other 
physicians. At the clinic, an experienced surgeon screened the patients for 
skin cancer. Measurements of suspicious lesions were made with an 
electrical impedance spectrometer over the centre of the lesion, and an ipsi-
lateral reference skin site was measured for each lesion. The suspect lesions 
were located at various body sites, with some lesion types preferentially in 
the head/neck and shoulder regions, which are more exposed to sun 
radiation. Before the measurements, the reference skin and lesions were 
soaked with 0.9% physiological saline solution (pH 6) for approximately one 
minute to reduce the naturally high impedance of the stratum corneum and 
to increase the contact between the probe and tissue. An impedance 
measurement takes approximately 20 seconds. After the measurements, the 
lesions were excised and diagnosed by histology. The lesions in the studies 
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were 4 mm in diameter or larger. The same histopathologist diagnosed all 
lesions. Subclassifications of the lesion types have not been considered. The 
same operator was used throughout the studies. Huddinge University 
Hospital Ethical Committee for Human Research, Huddinge, Sweden, 
approved the electrical impedance measurements of lesions. 
 
In paper I, non-invasive skin impedance spectra and trans epidermal water 
loss (TEWL) were measured on 27 healthy volunteers (12 females and 15 
males) between 18 and 30 years of age at different locations on the volar 
forearms. The sites were oriented in a specific pattern, according to figure 
26. The directions sx, sy, and sz describe the locations in terms of outer or 
inner side of the arm (sx), upper or lower side of the arm (sy), and left or 
right arm (sz). 
 
TEWL is a value of the passive diffusion of water through the stratum 
corneum [103, 104]. The outcome of the Evaporimeter instrument is water 
mass per area and hour (g m-2 h-1). The TEWL was measured using the 
Evaporimeter EP1 [Servomed, Kinna, Sweden], and the SB II impedance 
spectrometer was used to measure the electrical impedance. 
 
TEWL and MIX of the three directions were investigated using three-way 
ANOVA in the SPSS 11.0 software [SPSS Inc., Chicago, IL, USA]. Full 
impedance spectra were simplified to two PARAFAC components using the 
PLS-toolbox for MATLAB [102], and the N-way toolbox for MATLAB 
[105]. 
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In paper II, non-invasive impedance spectra of 258 benign pigmented nevi, 
34 BCC, 17 dermatofibromas, 35 dysplastic nevi, and 26 seborrheic 
keratoses were measured using the SB I instrument. The differences 
between the lesions and their controls with respect to the four impedance 
indices were investigated using the Wilcoxon Signed Ranks Test for 
independent samples in the SPSS 11.0 software [SPSS Inc., Chicago, IL, 
USA]. 
 
In paper III, non-invasive impedance spectra of 511 benign pigmented nevi, 
94 NMSC and precancerous lesions (i.e. 79 BCC, 6 SCC, and 9 actinic 
keratoses), and 16 MM were measured using the SB II instrument. The 
impedance spectra were parameterized using squared correlation 
coefficients, r2, of the linear relation between lesion and reference 
impedance. Simple linear cut-offs of the r2-parameters were used to 
distinguish the harmless nevi and the skin cancers. 
 
In paper IV, non-invasive and microinvasive impedance spectra of healthy 
skin, an actinic keratosis, and a dysplastic nevus were measured using the SB 
II instrument. 
 
In paper V, non-invasive and microinvasive impedance spectra of 99 benign 
pigmented nevi, 28 BCC, and 13 MM were measured using the SB II 
instrument. The impedance spectra were parameterized using both PCA and 
the r2-parameters derived in paper III. Classification of the lesions was 
made using LDA, and the sensitivities and specificities of the techniques 
were estimated using cross-validation. PCA models were calculated using 
the PLS toolbox for MATLAB [102], and the Statistics Toolbox for 
MATLAB [MathWorks, Natick, Massachusetts, USA] was used to calculate 
the LDA models. 
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4 RESULTS AND DISCUSSION 

4.1 PAPER I 

HREE-way ANOVAs of TEWL and MIX showed that there was a 
significant difference between the outer and inner sites of the volar 

forearms (TEWL p<0.01, and MIX p<0.001), whereas PARAFAC of the 
full impedance spectra showed that there were substantial differences both 
for the outer vs. inner sides of the arms (figure 27a), as well as between 
right and left arms (figure 27c). 
 
Paper I demonstrates, in line with previous investigations [28, 106-110], 
that the baseline of human skin properties varies with body site. It is not 
clear why no difference between left and right arms was found for TEWL 
even though it has been reported in the literature that such differences exist 
[107]. Maybe it is an effect of the limited number of sites used. 
Nevertheless, differences between right and left arms were found for the 
impedance. This indicates that the impedance technique is more precise than 
TEWL, at least in this example. The advantage of electrical impedance over 
TEWL has previously been shown for several applications [34]. 
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The measurement order was not randomised, and for the majority of the 
volunteers the sites were measured in the order the sites are numbered in 
figure 26. This is a limitation, and sceptics might say that the results in this 
experiment show measurement variability rather than a body-location 
variation. This could be true for the TEWL, where it is known that e.g. 
nervousness and stress affect the readings, and there is a theoretical 
possibility that these properties varied throughout the experiment. The skin 
impedance technique is believed to be unaffected by such variations. 
However, the measurements were made by an experienced operator who 
calmed the volunteers and let them rest prior to the TEWL readings. 
Moreover, the TEWL readings did not show any chronological patterns, i.e. 
the amount water evaporating from the skin did not show any trends over 
time, which indicates that randomisation was not critical for the TEWL in 
this study. 
 
Within the relatively local area, such as the volar forearm, which is 
frequently used in skin research and cosmetological testing, the skin 
property variations are surprisingly big. This implies that utmost care in the 
study design must be enforced to facilitate observations of subtle reactions. 
To prevent the variability of the skin properties of volar forearm from 
overshadowing the dermal responses in skin testing, proper experimental 
design must to be used, e.g. randomisation, differential measurements, and 
repeated measures (replicates), and reference sites should be carefully 
located contra-laterally or ipsi-laterally � but following the same site in time 
is obviously optimal. As demonstrated in this work, any ipsi-lateral 
reference reading on volar forearms should be chosen lengthwise along the 
arms rather than sideways. 
 

4.2 PAPER II 

MPEDANCE indices of 4 out of 5 lesion types were significantly different 
from their controls: nevi vs. references (p<0.001), BCC vs. references 

(p<0.001), dysplastic nevi vs. references (p<0.01), and seborrheic keratosis 
vs. references (p<0.01). There was no significant difference between 
dermatofibroma and reference skin. 
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Of course, it is more interesting to classify individual readings rather than 
identifying statistical differences between lesions and their references. 
Classification was evaluated using multivariate numerical methods (e.g. 
PCA, PARAFAC, and PLS), but it was found that the degree of overlapping 
between the lesion types was too high and the impedance variance within a 
group was almost as high as between groups using this technical and 
numerical approach, and hence the accuracy was limited. 
 
Later on, in addition to the statistically significant differences between 
lesions and references in paper II, the diagnostic power of classification of 
benign nevi, BCC, and references was investigated using ROC analysis of 
raw impedance spectra (the same data as in paper II) in the SPSS 11.0 
software. It was found that AUCs of nevi vs. references, BCC vs. 
references, and nevi vs. BCC were higher than 80%, as demonstrated in 
figure 28, i.e. the probability of correct classification was significantly higher 
than random guessing. The ROC analysis of the data clearly indicated that 
there is clinically relevant information in the impedance spectra that to some 
degree can be used to distinguish cutaneous lesions. The ROC analysis of the 
lesions in figure 28 is published in [56]. 
 

4.3 PAPER III 

T was possible to separate the non-melanoma skin cancers and actinic 
keratoses from the benign nevi with 86.9% specificity (444/511) at 100% 

sensitivity (94/94), as shown in figure 29 (left), and to identify the 
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melanoma lesions from the nevi with 75.3% specificity (385/511) at 100% 
sensitivity (16/16), shown in figure 29 (right). ROC area of the NMSCs vs. 
nevi was 98%, and 89% for MM vs. nevi, shown in figure 30. 
 
These results indicate that the non-invasive multi-frequency electrical bio-
impedance technique is a powerful tool in identifying skin cancer, in 
particular non-melanoma skin cancer, and actinic keratosis. Although we did 
not use dermoscopy, and the study was not designed to compare the 
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outcomes of conventional visual screening and impedance lesion detection, 
the sensitivity and specificity of the impedance technique seem to be as good 
as, or better than, visual screening made by general practitioners [111, 112], 
and in the same order as dermoscopy [113]. 
 
The outcome of the separation of NMSC and benign nevi is in line with [56], 
however a much higher accuracy was attained although the same frequency 
interval and depth settings were used. We believe that the improved 
accuracy is due to the fact that a different impedance spectrometer, virtually 
immune to external electromagnetic interference, was used in paper III. 
Moreover, we used more robust numerical methods, and a much larger 
population (e.g. 511 benign lesions is a significantly larger population than 
16) than Dua et al. [52] and achieved similar accuracy, which confirms their 
results. In the report by Glickman et al. [55] only one frequency (2 kHz), 
without depth the discrimination, was used to separate melanoma and 
benign lesions, which might explain their somewhat lower accuracy. 
 
A previously unpublished comparison between the two SB instruments is 
shown in figure 31. The two instruments were not used on the same sets of 
patients (SB I: 258 benign nevi vs. 34 BCC, and SB II: 467 benign nevi vs. 
72 NMSC). However, the same operator and experimental design was used 
throughout the two series and hence the two measurement series are 

* *�& *�0 *�: *�2 �
*

*�&

*�0

*�:

*�2

�

�) ��������
�

4
�
�
 
�

�(
�

�

4��5� ����

4��5� ���

* *�& *�0 *�: *�2 �
*

*�&

*�0

*�:

*�2

�

�) ��������
�

4
�
�
 
�

�(
�

�

4��5� ����

4��5� ���

�

��
�	��1�����9#���	(� ����
�������
�����
����������)��������� 6��������	���	�
���

4��5� ����+��$�	���	(�.�����4��5� �����+����	���	(�.��� 
	����
 �� ��
�
�����		���
����

����������
���	���
�	 ��F	�������	��9#���	(�����
���4��5� ������ 
	����
�$� �

*�;�8R*�*11������*�;2*R*�*�&���	�
���4��5� ������� 
	����
��



 

41 

considered somewhat comparable. Area under ROC curve of the SB I 
instrument was 0.915±0.033, and 0.980±0.012 for the SB II instrument, 
indicating that the accuracy of the SB II is, as mentioned above, higher than 
the SB I version. 
 
From figure 29 it can be concluded that electrical impedance of nevi is more 
related to reference skin than the cancers. The impedance difference 
between nevi and NMSC is most likely due to the status of the stratum 
corneum. The SC of benign nevi is intact, whereas the NMSC is often scaly 
and occasionally ulcerated, and the barrier function of SC of NMSC is thus 
degenerated, which easily can be detected with the non-invasive electrical 
impedance technique, as described in [17]. MM often manifest in the region 
between the epidermal and dermal layers, and does not affect the SC until 
the cancer has grown out to the surface of the skin, and the impedance 
difference between nevi and MM is more sublime because the features of the 
SC are similar. It is not fully investigated why the impedance of MM differed 
from nevi, but it is most likely correlated to the structural differences that 
can be seen histopatologically on the cellular level, e.g. shape, size and 
orientation differences. Hence, non-invasive impedance of nevi vs. MM is 
more overlapping than non-invasive impedance of NMSC vs. nevi, and the 
accuracy is thus higher for the NMSC than the MM lesions. 
 

4.4 PAPER IV 

T was shown that that the influence of the stratum corneum was 
substantially reduced for skin impedance measured with the microinvasive 

electrode system compared to skin impedance measured with the regular 
non-invasive skin impedance probe, as shown in figure 32. The results 
indicate that the alpha- and beta-dispersions are more discernible for the 
microinvasive impedance than the non-invasive. 
 
These results indicate that impedance measured with the microinvasive 
electrode system is fundamentally different from impedance measured with 
the regular non-invasive probe. The two electrode systems focus on 
different structures within the multilayers of the skin. Hence, different 
biological information can be found when using the two probe types: non-
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invasive impedance is dominated by the stratum corneum, and 
microinvasive impedance by the viable skin beneath. The non-invasive probe 
is therefore preferable when studying the barrier function of the SC, e.g. 
studies of skin irritations, atopic dermatitis and cosmetological effects, while 
the microinvasive electrodes seem more appropriate for quantification and 
classification of the living skin, such as monitoring of allergic reactions, and 
some skin diseases and in particular MM. 
 

4.5 PAPER V 

HE best separation between nevi and BCC was obtained using the 
regular non-invasive probe (96% sensitivity and 86% specificity), 

whereas the best separation between nevi and MM was found using the 
microinvasive electrodes (92% sensitivity and 80% specificity), shown in 
figure 33. One MM consisted of an atypical nevus with focal transition to 
MM, thus a somewhat ill defined MM. If this lesion had been excluded the 
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sensitivity would be 100%. Moreover, our results indicate that, for the 
microinvasive impedance, the PCA simplification seems to be more efficient 
than the r2-parameters in distinguishing skin cancer from benign nevi, 
whereas the accuracy of the two parameterisation methods is approximately 
in the same order of magnitude for impedance measured non-invasively. 
 
As described in paper IV, impedance measured with the non-invasive probe 
is dominated by the barrier function of the highly impedic stratum corneum. 
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BCCs are superficial and affect the stratum corneum, whereas MM often 
manifest in the region between the epidermal and dermal layers, and do not 
affect the stratum corneum unless the tumor has grown to the surface of the 
skin. These differences in tumor location within the multilayer structure of 
the skin is likely to be the reason behind our findings that the detection 
accuracy of BCC is higher for the non-invasive than the microinvasive 
electrodes, and the detection accuracy of MM appears to be higher for the 
microinvasive than the non-invasive electrodes. 
 
The number of tumors in paper V was limited, in particular the number of 
MMs. This means that there are numerical limitations in order to avoid 
over-fitting of the algorithms. The LDA model was chosen to classify the 
lesions because of its simplicity and generality. However, LDA works best 
with highly clustered groups that are linearly related to each other, which is 
not the case in this study, as demonstrated in figure 33. This study provides 
evidence that the choice of probe � non-invasive or microinvasive � is 
application dependent, using general numerical methods, the same methods 
for both types of probes. If optimised separately, higher accuracy could be 
achieved for both, but then the comparison, which was the purpose of this 
paper, would not be as straightforward. If more cancer readings were 
available, more advanced and complex pattern recognition tools could have 
been tried, such as partial least squares regression (PLS) [32, 69], soft 
independent modelling of class analogy (SIMCA) [57], and artificial neural 
networks (ANN) [52, 98], which most likely would improve the detection 
accuracy of the technique. 
 
The linear classifier used in paper V did not take into account that it is 
potentially lethal to miss a cancer in skin cancer screening, whereas it is, 
more or less, acceptable to misclassify a fraction of the benign lesions. The 
classification algorithm tried to find discriminant equations that maximised 
the total number of correct classifications in general, and did not account for 
the clinical considerations and consequences involved in skin cancer 
screening. Each measurement, x, is classified to group y based on the 
outcome of the linear discriminant equation, f(x)=w�x+b, according to: 
 

"benign" if  ( )
 = 

"cancer" if  ( ) < 

f a
y

f a

≥



x

x  
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Hence, when the data, x, is projected onto the discriminant direction, w, 
the lesions are classified based on a simple cut-off, a. By varying the cut-off 
it is possible to adjust the discrimination to agree with the clinical 
considerations of skin cancer, i.e. to maximise the sensitivity at the price of 
a somewhat lower specificity. Moreover, ROC curves can be constructed by 
varying the cut-off, and thus a fair estimation of the accuracy, the area under 
ROC, can be used to compare the techniques in paper V, shown in figure 
34. The ROC curves were calculated using cross-validation technique, and a 
random selection of 12.5% of the measurements were used as test set for 
each of the 8 cross-validation iterations. The cross-validation procedure was 
repeated 20 times to check the stability of the classification models. The 
median AUC of melanoma detection using microinvasive impedance PCA 
was 90.7%, and 96.5% for BCC detection using PCA and non-invasive 
impedance. The variation of the AUCs of the 20 cross-validation rounds 
decreased with increasing AUC. Cross-validation with random test sets will 
give a slightly different outcome each time, specially if the AUC is low 
because of poor separation between the groups � the SE of the AUC 
decrease with increasing area, as described in section 1.2.2.1, which means 
that the stability of the models increase with increasing separation. 
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5 GENERAL DISCUSSION 

HIS project has been under development for several years, and the 
papers in this thesis reflect the progress. First it was demonstrated 
that there are statistically significant differences between reference 

skin and various lesion types [paper II]. A new version of the instrument, 
virtually immune to external electromagnetic interference, improved the 
signal-to-noise ratio and it was possible to use the electrical bio-impedance 
to distinguish common benign nevi from NMSC and MM with clinically 
relevant accuracy [paper III]. It is known that baseline impedance varies 
with many factors, e.g. body site [paper I], gender, age, season, and blood 
glucose concentration. These biological variations dilute the cancer signals in 
non-invasive impedance spectra, and hence impair the accuracy of cancer 
detection. A novel electrode system with spikes that penetrate the SC 
should reduce some of these variations [paper IV], and the performance of 
MM detection was improved by using this microinvasive electrode system 
[paper V]. 
 
In parts of this thesis, the aim was to distinguish NMSC and actinic keratoses 
from common trivial pigmented benign nevi. Trained general practitioners 
can separate them by visual screening, and the clinical relevance of this 
comparison may thus be limited. However, technically, our results 
demonstrate a significant potential of the method, despite the fact that the 
choice of lesions was motivated by experimental availability rather than 
clinical urgency. 
 
The diameter of the outer electrode of the non-invasive probe is larger than 
most of the lesions in the studies. Measurements of small lesions will include 
impedance of both lesion and nearby skin, and the contribution of the 
nearby skin would thus dilute the lesion impedance. In [52] it was discussed 
that measurements of small lesions include impedance of both lesion and 
nearby skin, Z = Zlesion + Zskin, and the Zskin should be reduced to improve 
the accuracy. In theory, the Zskin proportion would increase with decreasing 
lesion diameter. The proportion Zskin would also increase with decreasing 
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thickness of the lesion. Moreover, the 3d shape of the lesion would also 
influence the impedance; the Zskin proportion would e.g. be higher for cone-
shaped lesions than for half-sphere-shaped. Moreover, the proportion Zskin 
would also increase with increasing depth penetration of the currents. It is 
easy to measure the diameter of the lesions on top of the skin, but the spatial 
factors affecting the Zskin proportion are unknown unless the lesions are 
excised and measured, which is practically inapplicable, or visualised using 
e.g. ultrasound. Moreover, the exact depth penetration of currents is 
unknown. Hence, it is ambiguous to adjust the measured impedance with 
lesion size in order to eliminate or reduce the Zskin contribution, which was 
proposed in [52], and thus it was found that simple normalisation using 
reference skin close to the lesion was better for skin cancer detection than 
adjusting the measured impedance with lesion size. The lesions included in 
our studies are obviously big enough to influence the pattern of the 
impedance spectra in a characteristic way. Of course there will be a lower 
limit that can be allowed in order to get data clearly above the noise level, 
but this is not sufficiently investigated at this point. It is possible to reduce 
the size of the electrode system somewhat to accommodate for smaller 
lesions but it must be kept in mind that the skin surface structure with its 
furrows and ridges sets a limit for meaningful reduction of the electrodes. 
 
At this point, impedance of cutaneous lesions has been measured at a 
surgeon�s clinic [Department of Surgery, Läkarmottagningen Hötorget, 
Stockholm, Sweden] for almost four years. Impedance spectra of thousands 
of lesions have been assessed. The experience of the personnel working with 
the measurements, both the operator and the highly experienced surgeon, is 
that plots of the raw impedance spectra are helpful in the screening process. 
They use the graphs as an aid when they sort out atypical lesions that should 
be excised and diagnosed by histopathology, i.e. they apply the technique in 
its intended use. This is not a scientific proof-of-principle, but it gives a 
good estimation of the practical usefulness of the technique. However, it 
takes time to learn how to interpret the raw spectra with the naked eye. 
Thus, the intention of this project is to convert the subjective experience of 
the personnel to an objective automatised screening tool for skin cancer that 
can be used by any medical personnel that can measure impedance.  
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Despite the remaining shortcomings, the technique seems at least as good as 
other techniques, and therefore clinically useful, although more data is 
needed to fulfil the regulatory requirements for a screening tool for skin 
cancer. 
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6 FUTURE STUDIES 

HE purpose of this impedance and skin cancer project is, of course, 
to develop a diagnostic decision support tool that can be used 
clinically as an addition to classical visual screening. The papers II-V 

strongly indicate that the electrical impedance technique can be used to 
detect skin cancer, i.e. proof-of-principle has been achieved. However, 
before the technique can be used as a routine instrument in the clinics, 
additional studies are required. A large number of additional measurements 
of MM lesions is necessary to thoroughly validate the technique. Since the 
incidence of melanoma is low, extensive data collection is needed, 
preferably through a multi-centre study to accelerate data accumulation. 
 
The accuracy of the gold standard for skin cancer diagnosis, the 
histopathological evaluation, is not 100%, and the accuracy of the 
impedance technique cannot be higher than the gold standard. Thus, further 
studies of lesions would preferably include at least three histopathologists 
diagnosing all lesions in order to increase the accuracy of the gold standard 
somewhat, and thereby facilitating fine-tuning of the impedance technique 
to higher accuracy. 
 
Dysplastic nevi are non-malignant lesions that can progress to MM, they are 
potentially harmful lesions that sometimes are referred to as pre-cancerous, 
and hence it is clinically relevant to detect the dysplastic lesions [47]. Paper 
II demonstrates that there are statistically significant differences between 
reference skin and dysplastic nevi, and in [55] electrical impedance was used 
to distinguish between dysplastic and benign lesions. Thus, dysplastic nevi 
affect impedance spectra, and future studies on such lesions are motivated 
since a diagnostic decision support tool for dysplastic nevi is needed. 
Preliminary unpublished results indicate that microinvasive impedance of 
dysplastic nevi is even more overlapping with benign nevi than MM, as 
shown in figure 35. 
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Moreover, when many impedance measurements of MM have been 
collected, advanced numerical pattern recognition methods can be used to 
detect the cancers, which should improve the accuracy. Possible numerical 
parameterisation tools that can be used include principal component analysis 
(PCA) [66], non-linear kernel PCA [114] (exemplified in figure 36), 
artificial self-organising maps (SOM) [116], and wavelets [117], and 
potentially useful numerical classifiers are linear discriminant analysis (LDA) 
[96], partial least squares regression (PLS) [118], soft independent 
modelling of class analogy (SIMCA) [100], and artificial neural networks 
(ANN) [119]. 
 
Apart from electrical impedance, there are other techniques that have been 
used to assess and detect skin cancer, such as near-infrared Fourier 
transform Raman spectroscopy [120], near infrared spectroscopy [121], 
laser Doppler perfusion [122, 123], dermoscopy [113], and high frequency 
ultrasound [124]. Combining impedance measurements with other 
techniques will increase the amount of cancer information, which most 
likely will improve the accuracy of skin cancer detection. A combination of 
multi-frequency total body bio-impedance and near infrared spectroscopy, 
described in [72], demonstrates the potential of combinations of physically 
independent non-invasive techniques. 
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7 CONCLUSIONS 

From the results of the studies in this thesis it can be concluded that: 
 

I There are intra-individual non-invasive impedance variations within 
small areas on the body. This implies that utmost care in the study 
design is essential in order to facilitate observations of subtle 
reactions. Moreover, it is also implied that proper numerical analysis 
of multi-frequency impedance is crucial. 
 

II There are statistically significant non-invasive impedance differences 
between reference skin and various skin lesions. 
 

III Non-invasive impedance spectra measured with the SB II instrument 
can be used to distinguish NMSC from benign nevi and, to some 
degree, distinguish MM from nevi with clinically relevant accuracy. 
 

IV Microinvasive impedance focuses on different skin layers than regular 
non-invasive impedance. Our results strongly suggest that the 
dominating contribution from the stratum corneum is substantially 
circumvented when using the microinvasive electrodes so that the α- 
and β-dispersions of living tissue are accentuated and biological 
variations, such as gender, age, and site-to-site variations, are 
reduced. The use of the microinvasive impedance electrodes is 
believed to enhance the clinical usefulness in several applications, in 
particular MM detection. 
 

V The microinvasive electrodes seem better for MM detection than the 
regular non-invasive, and the non-invasive probes seem somewhat 
better for BCC detection. This indicates that the choice of electrode 
system is application dependent. In the general clinical context, use 
of both electrode systems may thus be indicated. 
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