
 
Department of Women’s and Children’s Health 

Astrid Lindgren Children’s Hospital 

Karolinska institutet, Stockholm, Sweden 

 

 

Studies on Neuronal Signaling 

in the Hippocampus related to 

Development, Pathogenesis and 

Treatment of Mood Disorders 
 

 

Nermin Sourial-Bassillious 

 

 

 

 

 

 

 

Stockholm 2010 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published papers and figures have been reprinted by permission from: 
Pediatric research, no. 2536401349151, Oct 26, 2010, Wolters Kluwer Health. 
Neuroscience, no. 2536110518052, Oct 25, 2010, Elsevier. 
Published by Karolinska Institutet. Printed by [US-AB] 
© Nermin Sourial-Bassillious, 2010 
ISBN [978-91-7457-148-6] 
  



 
 

“The God of heaven Himself will prosper us; therefore we His servants will 

arise and build” Nehemiah 2:20 

 

“Nothing can make a human being happier than thinking” (Wise Father) 

 

"Not everything that counts can be counted, and not everything that can be counted 

counts." Albert Einstein  

 

 

 

 

 

 

 

TO MY PRECIOUS KIDS 

(GEORGE, MARY, JOY, JANIE AND JOHN) 

 

 

 

 

 

 

 



 

 

 

  



 

 

Abstract: 

The hippocampus is a central organ in the brain which is interconnected with different 

cortical regions and plays an important role in memory and learning processes. The 

anatomical position of the hippocampus together with the special sensitivity of its 

neurons renders it vulnerable to brain injury. This vulnerability is more pronounced 

during the developmental stages of the hippocampus and more specifically to hypoxic 

ischemic injuries. Such injuries affect the neuronal circuit formation and the synapses 

between neurons, which in turn affect the crucial functions of the hippocampus. MHC-I 

molecule has been found to play a role in the development and function of some 

neuronal systems in the visual cortex. It is also expressed in the hippocampus and plays 

a role in the functional plasticity of this organ. Dysregulation of this molecule, by 

different cytokines released during hypoxic ischemic brain injuries, speculated to be 

among the reason of hippocampal dysfunction. Recent findings point to the 

involvement of the hippocampus in the pathology and treatment of several mood 

disorders. This is more evident in depressive disorders, including major depression 

disorder and bipolar disorder, which are becoming more recognized among adolescents 

and children. Selective serotonin reuptake inhibitors and lithium are considered the 

most reliable in treating such disorders even among children and adolescents. However 

their use is still debatable due to severe side effects and increased suicidal ideations. 

Further research providing more information on the possible mechanisms of actions of 

these pharmacological therapies would lead to a better understanding of the cellular 

mechanisms behind depressive disorders. Such understanding would help in developing 

more target specific drug therapies for treating depressive disorders in young patients.   

In this study, and first, we provide further evidence for the vulnerability of the 

hippocampus during the perinatal period. The expression of MHC-I and CD3ζ in the 

hippocampus is vulnerable during selective periods of development. TNF-α is a factor 

that would alter the MHC-I/CD3ζ signaling system. Taking into consideration the dual 

role of MHC-I and CD3ζ molecules as regulators of development and plasticity in the 

CNS, we hypothesize that alterations in the expression levels of these molecules may 

be involved in the pathogenesis of neuropsychiatric disorders.  

Second, we highlight the fact that down-regulation of glutamate mediated calcium 

signaling is a potential target for lithium action. Together with previous reports on the 

hyperactivity of intracellular calcium ion mobilization in the peripheral cells of bipolar 

patients, one can speculate that calcium hyperactivity may play a role in the 

pathogenesis of bipolar disorder. Considering the importance of neuronal calcium 

homeostasis for the normal function of neuronal circuits and synapses, the use of 

lithium when treating children and youth can have advantages as where neuronal 

circuits and synapses are in the phase of maturation.  

Third, we describe a unique distribution and vesicle trafficking of 5-HT1BRs in the 

dendrites of hippocampal neurons. This finding sets 5-HT1BRs apart from the majority 

of postsynaptic receptors and opens a new channel for a receptor-specific approach to 

5-HT signal regulation. Using such channel could provide a more target specific anti-

depressive therapy that would have more specific action with less side effects, when 

treating children and adolescents.   
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1 Introduction 

1 INTRODUCTION 

1.1 HIPPOCAMPUS ANATOMY AND FUNCTION   

1.1.1 Gross anatomy 

The hippocampus is a horseshoe shaped sheet of neurons placed bilaterally in the 

medial temporal lobes, and adjacent to the amylgdala (Bear et al.). It has a 

charecteristic, curved shape that has been matched to the sea horse shape of Greek 

mythology and the ram's horns of Ammun in Egyptian mythology, given the name 

Cornu Ammonis (CA) (Duvernoy, 2005). It is seen anatomically as an extension at the 

edge of the cerebral cortex. It can be identified as a zone where the neocortex narrows 

to become a single layer of densely packed neurons (Amaral and Lavenex, 2006). This 

gross structure is well conserved across all mammalian species. The course of the 

hippocampus follows the medial aspect of the ventral floor of the inferior horn of the 

lateral ventricle, ending at the temporal pole where it becomes continuous with the 

fornix below the splenium of the corpus callosum. The cortical region adjacent to the 

hippocampus is known as the parahippocampal gyrus, it includes the enterorhinal 

cortex and the perirhinal cortex [Figure 1]. These two regions derive their names from 

their relation to the rhinal sulcus (Duvernoy, 2005).  

 

The brain gets blood supply from the internal carotid artery, which is commonly 

divided into its intracranial part and its extracranial part. The extracranial part of the 

carotid artery branches into the middle cerebral, anterior cerebral and posterior cerebral 

arteries to form the Circle of Willis. Blood supply to the hippocampal region is quite 
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variable between individuals. The main blood supply to the hippocampus usually arises 

from the posterior circulation through the posterior cerebral artery via single or multiple 

middle and posterior hippocampal arteries. The head of the hippocampus is supplied by 

the anterior hippocampal artery which arises from the anterior choroidal artery 

(Thammaroj et al., 2005).  

1.1.2 Regions and neuronal cell types 

The hippocampus is part of the hippocampal formation, which is a complex structure 

composed of the cornu ammonis (CA), subiculum, dentate gyrus (DG) 

parahippocampal gyrus, fimbria, and fornix. On the basis of fiber connections and the 

type of neurons, the hippocampal formation has been subdivided to the hippocampus 

proper and the DG (Amaral, 1978). The hippocampus proper can also be subdivided 

into the CA and the subiculum fields, the principal cells in these fields are the 

pyramidal cells. The CA can be further into 4 fields (named by Lorente de No in 

1934) CA1, CA2, CA3 and CA4 (Graham et al., 2002), depending on the appearance 

of the pyramidal neurons. The DG comprises the granular cell layer. The 

hippocampus is a region of the brain that is crucial for memory formation; which is 

supposed to be due to the neuroplasticity phenomena within hippocampal neurons 

(Amaral and Witter, 1989, Bayer, 1985). 

1.1.3 Interconnection with cortical regions 

Investigating the anatomy of the hippocampus and its connection to the surrounding 

cortical areas is an important step in understanding the hippocampal neuroplasticity. 

The hippocampus is a site of neuroanatomic convergence in the brain. It receives 

projections from different adjacent cortical areas, which in turn form circuits into the 

hippocampus. The entorhinal cortex (EC) is the major source of hippocampal input, as 

well as a target of hippocampal output. The EC regions are also strongly and 

reciprocally connected with many other parts of the cerebral cortex. The superficial 

layer of the EC provides the most prominent input to the hippocampus, and the deep 

layers of the EC receive the most prominent output from the hippocampus (Suzuki and 

Amaral, 1994). Within the hippocampus, the flow of information is rather 

unidirectional. Neurons of layers II and III of the cortex projects to the granule cells of 

the DG. The granule cells in turn project to the large pyramidal cells of the CA3 field. 

Finally the CA3 pyramidal cells project to the pyramidal cells of the CA1, then back to 

the cortex [Figure 2] (Amaral and Insausti 1990, Andersen, 1975). The interconnection 
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between the hippocampus and the adjacent medial temporal cortical areas mediate the 

memory functions of the hippocampus (Swanson, 1982). 

 

1.1.4 Role in memory and mood 

The hippocampus is well known to play important role in memory. It is essential in the 

formation of new memories of experienced events as well as in recalling old memories 

(Suzuki, 2007). The hippocampus is also responsible for long term memory, by which 

one can store larger quantities of information for potentially unlimited periods of time 

through stable and permanent changes in the neuronal connections (Jarrard, 1993). 

This form of neuronal plasticity - known as long term potentiation (LTP) - was first 

discovered and best studied in the hippocampus. LTP is a long-lasting enhancement in 

signal transmission between two neurons, which result from synchronous stimulation 

(Wittenberg and Tsien, 2002, Behr, 2009). This phenomenon is considered to be one of 

the major neuronal mechanisms that underlie learning and memory function of the 

hippocampus (Gruart and Delgado-García, 2007).    

The idea that the hippocampus is a purely cognitive structure involved only in 

memory has been challenged during the last 2 decades. Results from extensive 

research in the molecular basis of depression and depression-related mood disorders have 
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led to a variety of hypotheses that indicate the involvement of the hippocampus in 

mood disorders (Lee et al., 2010).  

Alteration in hippocampus size and disturbances in the hippocampus neurogenesis in 

mood disorders are among the evidences of the hippocampus involvement in the 

pathology of mood disorders, particularly in depressive disorders (Rigucci el al., 

2010, Balu and Lucki, 2009, Savits and Drevets, 2009). Data from preclinical studies 

suggested that regulation of hippocampal plasticity and neuronal survival may be 

associated with the therapeutic effects of mood stabilizers (Frey et al., 2007). 

Furthermore, reductions in synapses and synaptic proteins were evident in bipolar 

disorder (BD) patients in the hippocampal ventral CA1 region (Eastwood and 

Harrison, 2000, Rosokilja et al., 2000). 

Chemical neuroimaging studies in BD further implicate altered excitatory glutamate 

neurotransmission as well as cellular and membrane metabolism, which is especially 

pronounced within the hippocampus (Ng et al., 2009). N-methyl-D-aspartic acid 

(NMDA) receptors (Toro and Deakin, 2005, Scarr et al., 2003) as well as group I 

metabotropic glutamate receptors (mGluR) (Pilc et al., 1998, Palucha and Pilc, 2002) 

are implicated in depressive disorders, via modifications in the LTP and synaptic 

plasticity in the hippocampus (Popoli et al., 2002). Another neurotransmitter system 

that has been implicated in the pathophysiology of psychiatric affective disorder is the 

serotonergic system. Pharmacologic and genetic studies have suggested specifically, a role 

for 5-hydroxytryptamine receptor 1B (5-HT1B) receptors in the pathophysiology of 

depression (Coppen and wood, 1982, Moret and briley, 2000). 

A brief summary: The current information indicates that the hippocampus is a central 

organ that through its interconnections with adjacent brain regions and the characters 

of its neurons plays an important role in memory and mood regulation.   

1.2 HIPPOCAMPUS DEVELOPMENT AND VULNERABILITY 

1.2.1 The course of development  

The structure of the human hippocampus is easily recognized at birth (Arnold and 

Trojanowski, 1996), but it undergoes substantial postnatal maturation throughout 

infant and juvenile development (Giedd et al., 1996). The majority of the neurons in 

the primate hippocampus migrate prenatally (Eckenhoff and Rakic, 1988, 

Nowakowski and Rakic, 1981), and therefore, the fundamental cytoarchitectonic 

appearance of the hippocampal subfields is stable after birth. Moreover, there is 
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progressive neuronal enlargement and a decrease in neuronal density throughout 

childhood and adulthood (Humphrey, 1967, Seress, 1998).  

In the early postnatal period, growth cones start to appear; dendrites grow and 

become covered with spines (Lang and Frotscher, 1990). The early neuronal 

development including exuberant outgrowth of axons and the formation of 

connections with multiple targets is an essential component of a well-functioning 

nervous system. The axons develop by forming several projections that are later 

refined through axonal pruning to establish the final connectivity that is maintained 

into adulthood (Low and Cheng, 2005, Luo and O’Leary, 2005).  

Another essential component of a well functioning nervous system are well formed 

and functioning synapses. Significant synaptic modifications occur during 

hippocampal maturation. Differences in the developmental profile for synaptophysin 

expression show that not all the synapses in the hippocampal region have the same 

levels of maturation, which reflects differential maturation of distinct functional 

circuits. Moreover, electron microscopic and stereological studies shows selective 

overproduction of asymmetrical, axospinous synapses during infancy, which then 

declines towards adulthood (Eckenhoff and Rakic, 1991, Lavenex et al., 2007). 

Abnormalities of neuronal growth and maturation, and synapses formation might 

underlie various behavioral disorders. Furthermore, various factors as well as 

pharmacological treatments can affect these processes.  

A brief summary: The concept of developmental neurobiology indicated changes over 

time including environmental effects which is of great importance for understanding 

psychopathology and possibly offers new strategies for the treatment of psychiatric 

disorders. 

1.2.2 Selective vulnerability  

The hippocampus is one of the most vulnerable areas in the brain, being responsible for 

learning and memory (Cai et al., 1999, De Jong et al., 1999). Animal studies revealed 

that the hippocampus, and particularly the CA1 area, was selectively vulnerable to the 

consequences of hypoperfusion and brain ischemia (Schmidt-Kastner and Freund, 

1991). Furthermore, magnetic resonance imaging of children with perinatal hypoxia, 

revealed lateral ventricular hypertrophy with abnormal intensity of the adjacent white 

matter in the anatomical position of the hippocampus (McQuillen and Ferriero, 2004). 

The main reasons behind the selective vulnerability of the hippocampus are the high 

sensitivity of the pyramidal neurons of the CA1 region, the rather limited arterial blood 
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supply to the hippocampus, and the anatomical position of the hippocampus, as it is 

adjacent to the lateral ventricle (Thammaroj et al., 2005). 

Studies done on both rodents and primates indicate that perinatal hypoxia alters the 

normal development of the hippocampus. This early hippocampal insult has significant 

impact and yields profound losses of context-rich memory abilities later in life. Clinical 

follow up on human perinatal hypoxic infants reported learning impairment and 

developmental amnesia in children (Zola-Morgan and Squire, 1986, Bachevalier et al., 

1999, Pascalis and Bachevalier, 1999). 

 Furthermore, in primates, neurogenesis in the hippocampus proper and DG occur 

almost entirely during prenatal life, in contrast to rodents. However, many 

morphological and neurochemical changes, together with the refinement of the synaptic 

connections within the hippocampus, persist into the first postnatal years (Machado et 

al., 2002, Seress, 2001, Benes et al., 1994). Thus, although the structural items and 

synaptic connections essential for memory formation are present in the newborn 

primates, the adaptations of hippocampal circuits from birth to adulthood postulate a 

basis for hippocampal-dependent memory process to continue to mature during 

childhood (Utsunomiya et al., 1999, Nelson, 1995, 1997).  

1.2.3 Cytokines release in perinatal hypoxia 

Perinatal hypoxic-ischemia is an important factor affecting normal development and 

maturation of the central nervous system (CNS).  Studies done on the periventricular 

white matter in hypoxic ischemic rats revealed damage to the axons and the 

oligodendrocytes (Dammann et al., 2001, Ness et al., 2001).  This is considered to be 

the reason behind the disruption of the white matter fiber tracts and disturbances of the 

function of neural networks, leading to neurobehavioural syndromes (Filley, 2005) or 

neurological abnormalities (Mulhern et al., 2001).  

The pathogenesis of the damage in perinatal hypoxia is a complex process and not fully 

understood. Recent studies have shed light on the role of activation of microglia cells in 

this pathogenesis. The release of proinflammatory cytokines has been implicated in this 

process (Kaur and Ling, 2009, Chew et al., 2006). Several cytokines are up-regulated in 

the cerebrospinal fluid (C.S.F) and blood of infants exposed to hypoxic ischemia. 

Among these cytokines are Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6) and Tumor 

necrosis factor alpha (TNF-α), all of which are associated with hypoxia-triggered brain 

damage (Shalak and Perlman, 2002, Aly et al., 2006, Shohami et al., 1999). Several 
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follow up studies evaluating the brain damage through magnetic resonance imaging, 

showed that the extent of posthypoxic brain lesions is correlated with elevated levels of 

IL-1β and TNF-α, in both blood and C.S.F (Oygur et al., 1998, Bartha et al., 2004, 

Foster-Barber et al., 2001). 

1.2.4 MHC-I dual role  

Major histocompatibility complex class I (MHC-I) molecules are immune molecules 

that play an important role in the protection against harmful agents, being responsible 

for antigenic peptide presentation to cytotoxic T lymphocytes. MHC-I molecules are 

recognized by several families of receptors in the immune system, including T cell 

receptors (TCRs), natural killer (NK) receptors, and cluster of differentiation 8 (CD8) 

dimers (Ugolini and vivier, 2000, Moretta et al., 1997). Of these, cluster of 

differentiation 3-zeta (CD3ζ) is a transmembrane glycoprotein, known to couple with 

TCRs and some NK receptors (Bakkeret al., 2000, Kane et al., 2000).  

The discovery of MHC-I in the brain has challenged the concept that the brain is an 

immune privileged organ that express immune molecules only in vitro or under 

pathological conditions (Howard and Thompson, 1998, Wekerle, 2002, Syken and 

shatz, 2003).  MHC-I was initially discovered by Carla Shatz (Corriveau et al., 1998) 

in the brain, through an unbiased differential screening of the mRNA of several 

proteins, aiming to identify molecules required for activity-dependent refinement of 

connections during visual system development. Their in-situ hybridization and 

immunohistochemistry studies revealed that the MHC-I and CD3ζ are expressed on the 

neurons of different brain regions, such as the lateral geniculate nucleus (LGN) and the 

CA1 area of the hippocampus. Furthermore, they also found that class I mRNA levels 

were dynamically regulated during the development of the lateral geniculate nucleus. 

The peak period of expression of class I MHC mRNA in the LGN coincides with the 

periods of most extensive retinal ganglion axon arbor growth and remodeling (Sretavan 

and shatz, 1986a). This occurs during the prenatal formation of the eye-specific layers 

(Shatz, 1983, Sretavan and shatz, 1986b) and the early postnatal period when ON and 

Off center retinal ganglion cell axons are known to be prone to activity blockade 

(Dubin et al., 1986). Moreover, in the hippocampus, the MHC-I was found to be 

expressed at lower levels prenatally, but was subsequently expressed at high levels in 

the mature neurons. Adult forms of activity-dependent plasticity, such as long-term 

potentiation (LTP) and long-term depression (LTD), are known to be present in mature 

neurons (Malenka, 1994; Crair and Malenka, 1995; Kirkwood and Bear, 1995). These 
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observations indicated that MHC-I may play a novel role in neuronal signaling and 

activity-dependent changes in synaptic connectivity. 

Further research in this field using knockout mice indicated that MHC-I function is 

required for the developmental refinement of the retinal projections. Axonal projections 

of the reticulogeniculate neurons are altered in mice lacking any of the components of 

the MHC-I complex. Electrophysiology studies show that the MHC-I/CD3ζ signaling 

complex is important for mediating activity dependent synaptic plasticity (Huh et al., 

2000, Katz and shatz, 1996, Feldman et al., 1999). This supports the role of MHC-I in 

the refinement of retinal projections, where activity-dependent structural 

reorganizations during development are thought to arise from cellular mechanisms of 

synaptic plasticity (Goodman and shatz, 1993). MHC-I immunostaining is localized in 

the postsynaptic densities and dendrites of hippocampus neurons in culture, suggesting 

a role for MHC-I in the homeostatic regulation of synaptic function and morphology in 

the hippocampus (Goddard et al., 2007). The evidence to date generally supports a 

model, in which class I MHC functions in the CNS by engaging CD3ζ-containing 

receptors to signal activity-dependent changes in synaptic strength, ultimately leading 

to the establishment of appropriate synapses. Class I MHC may act directly at the 

synapse to assist the elimination of unsuitable connections. This is thought to occur via 

signaling mechanisms already characterized in immune cells (van Leeuwen and 

Samelson, 1999) such as phosphorylation of CD3ζ by fyn [a kinase previously 

implicated in hippocampal plasticity] (Grant et al., 1992). However there are no 

experimental evidences yet to support this hypothesis. 

MHC-I and CD3ζ being immune molecules, can be altered by different immune 

responses, where cytokines are released such as infection and hypoxia. Several in vitro 

studies have reported that different cytokines such as Interferon gamma (INF-γ) and 

TNF-α regulate the MHC-I and the CD3-ζ cell surface expression (Neumann et al., 

1997, Isomaki et al., 2001). Furthermore, recent in vivo studies have now demonstrated 

a normal role of cytokines such as TNF-α, in LTD (Beattie et al., 2002) and in-vivo 

occular dominance plasticity (Kaneko et al., 2008). In contrast increasing evidences 

suggest that TNF-α can exert destructive effects on CNS cells (Louis et al., 1993; 

Talley et al., 1995; Vartanian et al., 1995).  

Thus, damage and inflammation might cause changes in synaptic plasticity and 

memory function through disturbance in MHC-I expression. It is not yet established 

whether alterations in the MHC/CD3ζ induced by the different cytokines, is responsible 
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for the damage coinciding with perinatal hypoxia in the hippocampus. The lack of such 

evidence essentiate further research in this field.   

1.3 HIPPOCAMPUS IN MOOD DISORDERS 

1.3.1 Mood disorders 

According to the World Health Organization (WHO) (Murray and Lopez, 

2002), mental health disorders are one of the leading causes of disability 

worldwide. Three of the ten leading causes of impairment in people between the ages 

of 15 and 44 are mental disorders, and the other causes are often accompanied by 

mental disorders. 

Mood disorders such as major depression disorder and BDs are among the most 

pronounced psychiatric disorders in modern society. About 16% and 1% of the 

population are estimated to be affected by major depression and BD respectively one or 

more times during their life time (Kessler et al., 2005). The presence of the common 

symptoms of these disorders gave them collectively the name 'depressive syndrome'. 

Both disorders includes a long-lasting depressed mood, feelings of guilt, anxiety, and 

recurrent thoughts of death and suicidal ideations (Nestler et al., 2002). 

Major depression and BD are two related disorders. BD is still supposed to be under-

diagnosed primarily due to misdiagnosis as unipolar depression (Manning, 2010).  

Depressive onset BDs begin earlier than the ones with manic onset, have a longer 

duration, chronic course with frequent recurrences, a depressive dominant polarity, 

higher lifetime rate of suicidal behavior, less psychotic symptoms and more rapid 

cycling (Besnier et al.,2010). 

Retrospective and prospective research has shown that most adulthood mental disorders 

begin in childhood and adolescence (Kessler et al., 2007). However, the symptoms of 

BD in children and adolescents seem to vary from its presentation in adults. Young 

people with BD often experience long episodes of mania, along with rage and 

irritability.  Co-morbid disorders in young patients with BD include both Attention-

Deficit/Hyperactivity Disorder (ADHD) and anxiety disorders. Early recognition and 

intervention are crucial (Chang, 2010) for improving clinical outcomes and future 

prognosis.   

Untreated early-onset BD is associated with higher rates of rapid cycling, increased 

co-morbidity, and more severe mania and depression than adult-onset BD. Proper 

diagnosis of BD early in its course can prevent treating young patient with hazardous 
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treatments that may exacerbate or worsen the progression of the disorder (Findling, 

2009). The use of lithium and SSRIs (selective serotonin reuptake inhibitors) the most 

commonly used therapies in adult BD and depression - is still debatable in children and 

adolescents. There is a strong need to develop new therapies with more specificity and 

fewer side effects that can be used during these vulnerable periods of life. 

Extensive research trials are directed towards better understanding of the pathogenesis 

and treatment of depressive syndromes. Clinical research using different advanced 

brain imaging techniques, together with genetic studies, shed light on the brain regions 

and the neuronal systems involved in depressive disorders. Furthermore, Studying the 

neurobiology and mechanism of action of different pharmacotherapies, would provide 

better understanding of the possible pathological mechanisms behind the disorders, and 

provide information on novel specific lines of treatment (Drevets et al., 2008). Most of 

the studies point to morphological and structural abnormalities in many brain regions, 

together with disturbances in the neural circuits between them. Several brain 

neurotransmitters systems including glutamate, serotonin and dopamine have been 

implicated in depression and mania (Kalia, 2005).   

1.3.2 Functional impairment and pathology 

Hippocampal and thalamic dysfunction are thought to contribute to the pathogenesis of 

psychotic conditions such as BD and major depression. BD and major depression are 

interrelated disorders in the category of depressive syndromes (Benes et al., 2001, 

Clinton and Meadow-Woodruff, 2004, Swayze et al., 1992).  

The hippocampus, located within the medial temporal lobe, contains the DG, CA 

subfields 1–4 (CA1–CA4) and the subiculum that reciprocally connects to the 

thalamus, cortical and other subcortical regions (Friedman et al., 2002, Öngur and 

Price, 2000). Since different brain regions are interconnected via neural circuitry 

(Mesulam, 1990), it is therefore likely that several regions are affected in mood 

disorders. Certain changes in the structure, function or chemistry within the 

hippocampus and thalamus may affect the circuitry involved in emotional regulation 

(Adler et al., 2007, Blunberg et al., 2003, Dolan et al., 1990, Strakowski et al., 1999). 

Current neuroimaging studies have provided new insights in the neurobiology of BD 

and Major Depressive Disorders (MDD), suggesting disturbances in the neuronal 

circuits to be the pathological factor behind disturbances in the function and structure of 

the brain and play roles in the development of mood disorders (Abou-Saleh, 2006, 

Konarski et al., 2007, Drevets et al., 2008).  
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Changes in the synaptic plasticity, occurring via LTP and LTD, commonly occur in the 

hippocampus and mediated by ionotropic glutamate receptor (GluR) 

neurotransmission, empathize the important roles of the hippocampus in cognitive, 

learning and memory functions (Bliss and Collingridge, 1993, Law and Deaken, 2001). 

There is a considerable number of studies on the glutamatergic abnormalities of the 

hippocampus in BD. Several studies on BD patients, have reported disturbances in the 

ionotropic glutamate NMDA receptor expression and activity within the hippocampus. 

Furthermore, reductions in hippocampal NMDA receptor subunits NR1/2 and NMDA 

receptor open ion channel expression have been found in some studies (Benyto et al., 

2007, Law and Deaken, 2001, McCullumsmith et al., 2007, Scarr et al., 2003). NMDA 

receptor dysfunction in the hippocampus and disturbances in the ionotropic (NMDA) 

glutamatergic intracellular signaling causes disruption in the neural circuits regulating 

mood (Clinton and Meadow-Woodruff, 2004, Law and Deaken, 2001). It is also well 

established that the serotonin system is dysfunctional in several disease states, 

including depression, anxiety, and schizophrenia. It has also been reported that 

serotonin receptors plays a role in modulating the NMDA receptor function and 

plasticity in the hippocampus with special implication to major depression disorders 

(Bennett, 2010).  

At present, available structural neuroimaging studies suggest a predominance of 

detrimental alterations in terms of hippocampal and thalamic volumetric changes in 

BD, as well as in MDDs. Several recent magnetic resonance imaging (MRI) studies on 

hippocampal volume abnormalities in depressive disorders, found strong evidence of 

hippocampal volume reduction in depressed patients, especially in those with repeated 

depressive episodes (Videbech and Ravnkilde, 2004). These also pointed to the 

vulnerability of the hippocampus, with volume reductions that may occur before the 

first clinical manifestation (references reviewed in Frodl et al., 2008). Investigators 

suggest that many factors affect hippocampal volume in patients with MDD. Among 

these are factors regarding the recurrence, severity and factors intrinsic to individual 

patients, which appear to be most important (Drevets et al., 2008, Eker and Gonul, 

2009). Reduction in the hippocampus, together with other related brain regions, are 

always found in depressed patients with more persistent forms of MDD (e.g. repeated 

recurrences, longer illness duration) (Lorenzetti et al., 2009). 

Findings from more recent studies of BD patients with properly documented treatment 

history highlight the possibility that hippocampal volume changes may be related to 
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treatment. Some studies showed increases in hippocampal volume involved BD 

patients undergoing treatment with lithium (Foland et al., 2008). Furthermore, a recent 

4-year longitudinal study reported increased bilateral hippocampal volumes and 

improvements in the verbal memory abilities in lithium-treated BD patients. These data 

suggest that hippocampal changes can occur with treatment over time and may be a 

marker of neuroprotective effects of lithium (Yucel et al., 2007). 

Recent findings concerning antidepressant treatment and clinical outcome, 

demonstrated that patients who remitted to depression had greater differences in 

bilateral hippocampal volumes before treatment, compared with non remitters 

(MacQueen et al., 2008). Other studies showed smaller hippocampal volumes in 

patients with a depression relapse, than in healthy individuals (Kronmuller et al., 2008). 

A Swedish study showed increase in the hippocampus volume in depressed patients 

after electroconvulsive therapies (Nordanskog et al., 2010). These results support the 

assumption that the hippocampus is a pivotal region in the outcome of depression. 

Results from experimental studies suggest that antidepressants may have an active 

effect on the hippocampus through neuroplastic processes (Santarelli et al., 2003). 

These findings have crucial implications on the timing of clinical interventions aimed at 

reducing the impact of depression on neuronal structure and function (Mckinnon el al., 

2009). 

1.3.3 Drug target in mood disorders 

1.3.3.1 Calcium signaling, glutamate receptors, and lithium 

Calcium ion (Ca2+) is the main second messenger that regulates neuronal function, 

and act as the key carrier of information inside the cell. Changes in intracellular Ca2+ 

concentration is an important and sensitive signaling mechanism and is an essential 

modulator of synaptic plasticity in the nervous system. The resting intracellular Ca2+ 

concentration is about 0.1microM, whereas the extracellular Ca2+ concentration is more 

than 10000 fold higher. Cytosolic calcium signals originate either from extracellular 

calcium entering through plasma membrane ion channels or from the release of 

intracellular stores in the endoplasmic reticulum (ER) via inositol triphosphate (IP3) 

receptors (Gleichmann and Mattson, 2010).   

Intracellular calcium ions [Ca2+]i concentration can be affected by several 

neurotransmitters, among which glutamate. Glutamate is the major excitatory 

neurotransmitter in the mammalian CNS and acts through a variety of ionotropic 
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(ligand-gated cation channels) and metabotropic (G-protein coupled) receptors. The 

ionotropic receptor group is further subdivided into NMDA, α-amino-3-hydroxyl-5-

methyl-4-isoxazole-propionate (AMPA) and Kainate receptors. Metabotropic 

Glutamate receptors couple via G proteins either to activate phospholipase C (PLC) or 

inhibit adenylate cyclase activity, according to the type of G protein they are coupled to 

(Nakanishi, 1992, Kew and Kemp, 2005). Based on the sequence similarities, the six 

metabotropic receptor subtypes can be further subdivided into three subgroups. This 

includes group I (mGluR1 and mGluR5), group II (mGluR2 and mGluR3), and group 

III (mGluR4 and mGluR6) (Houamed et al., 1991, Tanabe et al., 1992). NMDA 

receptors and group I metabotropic glutamate receptors modulate [Ca2+]i concentration 

in the neurons via the two different sources of the ion. NMDA receptors are ion 

channels that when stimulated by presynaptic release of glutamate induce calcium ions 

influx from the extracellular space to the neurons (Mori and Mishina, 1995). The group 

I mGluR couples to the Gq family of heterotrimeric G-protein and PLC proteins. This 

leads to the triggering of IP3, which binds to specific receptors on the ER and in turn 

causes the release of intracellular calcium into the cytosol and the activation of protein 

kinase C (PKC) (Abe et al., 1992, Masu et al., 1991). 

Local increase in calcium concentration can result in a number of short-term and long-

term synapse-specific alterations, including the insertion or removal of glutamate 

receptor subunits from the membrane. The changes in the synaptic protein function via 

posttranslational alterations such as phosphorylation, and the stimulation of the 

translation or degradation of proteins at the synapse, together lead to changes in 

synaptic function (Greer and Greenberg, 2008, Catterall and Few, 2008, Higley and 

Sabatini, 2008). Hyperactivity of [Ca2+]i mobilization in peripheral cells has been 

reported in patients with affective disorders (Dubovsky et al., 1992, Kusurai et al., 

1994). Therefore, a relationship between the pathophysiology of affective disorders and 

the abnormality of the intracellular calcium second messenger system has been 

proposed (Dubovsky and Frank 1983, Dubovsky et al., 1992). 

Calcium signaling pathways are hypothesized as targets of modification by long-term 

lithium treatment. Lithium was introduced into psychiatry almost half a century ago 

and it still remains the most effective treatment for patients with BD (Maj, 2000). The 

molecular mechanisms of lithium are still not completely known, however, numerous 

mechanisms of action have been suggested including regulation of neurogenesis, 

neuroplasticity and cell death (Manji et al., 2000). Berridge and co-authors suggested 
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that lithium might act by depleting the cells of inositol, the precursor for IP3, an 

important stimulator for [Ca2+]i release (Berridge et al., 1989). Since then, several mood 

stabilizers have been proven to inhibit Ca2+ channels in various neuronal cells (Kelly et 

al., 1990, Walden et al., 1992), suggesting that Ca2+ channel blockers may be useful 

therapeutic agents for some patients with BD (Brunet et al., 1990). More recently it has 

been reported that mood stabilizers may modify glutaminergic neurotransmission 

(Hough et al., 1996) and that chronic lithium exposure may attenuate glutamate 

triggered NMDA receptor-mediated calcium influx (Nonaka et al., 1998). 

Lithium is the only mood stabilizer approved by the United States Food and Drug 

Administration (US FDA) for the treatment of acute mania and BD in adolescents, 

specifically in ages 12–18 years. Some studies reported the use of lithium in children 

between 5 and 9 years of age in cases of severe aggressive and explosive behavior 

(Cambell et al., 1991). The evaluation of lithium use in treatment of BD and severe 

mood dysregulation in children and adolescents, demonstrated moderate effectiveness 

of lithium in managing both acute manic and depressive symptoms of pediatric BD. 

Youths with BD and ADHD co-morbidity have a worse response to lithium therapy 

than youths with BD only (reviewd in Hamrin and Iennaco, 2010).  

Lithium has a narrow therapeutic index, thus can easily become toxic. Lithium toxicity 

symptoms include loss of balance, vomiting, increased diarrhea, anorexia, ataxia, 

weakness, blurred vision, polyuria, muscle twitching, coarse tremor, irritability and 

agitation (Kowatch et al., 2005). Long-term treatment with lithium may also causes 

nephrogenic diabetes insipidus which results from lithium action on the distal tubules 

and antidiuretic hormone. These adverse effects may be more commonly observed in 

younger (5 – 9 years of age), rather than older children (Cambell et al., 1991). 

Furthermore, lithium can also cause cardiac conduction problems, including 

atrioventricular blocks and irregular sinus rhythms. It has been reported that younger 

children may be more likely to develop neurologic adverse effects, including cognitive 

blunting and headaches, than older children (Hagino et al., 1995). 

1.3.3.2 SSRI and serotonin receptors 

One of the first neurochemical theories for explaining the pathology of depression was 

the monoamine deficiency hypothesis (Prange 1964, Schildkraut 1965). This 

hypothesis has been studied extensively during the last three decades. Studies on the 

pharmacological and behavioral effects of antidepressant pharmacotherapies in 

laboratory animals, show that these therapies have prominent actions on 
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norepinephrine, serotonin and to a lesser extent, on dopamine signaling systems. New 

modern approaches, including in vivo imaging techniques in live patients, together with 

morphological and neurochemical investigations with high levels of anatomic 

resolution, implicate multiple system pathology in mood disorders, including 

abnormalities of monoamines as well as other neurotransmitter systems (Harro and 

Oreland, 1996, Mayberg 1997).  

Serotonin, also known as 5-Hydroxytryptamine (5-HT), is a monoamine 

neurotransmitter, biochemically derived from tryptophan, and is primarily found in the 

gastrointestinal tract, and the CNS of humans and animals. In the CNS, the neurons of 

the raphe nuclei are the principal source of 5-HT release (Frazer and Hensler, 1999). 

The two major nuclei, from which the majority of brain serotonergic innervations 

originate, are the dorsal raphe and median raphe nuclei. These nuclei provide an 

extensive innervation to different brain regions via two separate axonal pathways. For 

example, the hippocampus is innervated predominantly by the median raphe nuclei. In 

contrast, the striatum is innervated by the dorsal raphe nuclei. Serotonin is released into 

the synapses between neurons, and diffuses over a relatively wide gap (>20 µm) to 

activate 5-HT receptors distributed on the dendrites, cell bodies and presynaptic 

terminals of the nearby neurons. The widespread innervation of the brain by 

serotonergic neurons is the anatomic basis for the influence of 5-HT on many diverse 

brain functions. Serotonergic action is terminated primarily via uptake of 5-HT from 

the synapses by specific 5-HT monoamine transporter on the presynaptic neurons 

(Golden et al., 1992, Heninger et al., 1984).  

A number of neuroendocrine challenge tests have demonstrated that serotonergic 

activity is impaired in depressed patients. Repeated treatment of rats with different 

antidepressants shows that these drugs regulate serotonergic activity by different 

mechanisms, yet the net effect on enhancing serotonergic transmission is similar (Blier 

et al. 1990). This effect is regardless of the primary pharmacologic site of action of the 

drug and includes selective 5-HT reuptake inhibitors, Monoamine oxidase inhibitors 

(MAOIs), tricyclic antidepressants, and electroconvulsive shock. Selective 5-HT 

reuptake inhibitors and MAOIs enhance serotonergic transmission by desensitizing the 

somatodendritic 5-HT autoreceptors (Blier and de Montigny, 1994) and enhancing 

responsiveness of postsynaptic 5-HT receptors (Haddjeri et al., 1998). Long term 

administration of some tricyclic antidepressants, or a course of electroconvulsive shock 

to rats, do not appear to desensitize somatodendritic autoreceptors, although these 
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treatments enhance the responsiveness of postsynaptic 5-HT receptors (Mongeau et al., 

1994).  

Among the different antidepressant drugs, SSRIs are the most widely used drugs for 

treating depression and anxiety disorders. The use of antidepressants for the treatment 

of depressive symptoms in youth has become a common in the clinical practice. 

However, guidelines from the American Academy of Child and Adolescent Psychiatry 

together with expert opinion agree that, the use of medication is generally unwarranted 

unless the depression is severe or recurrent (Birmaher et al., 2007, Cheung et al., 

2008). Nevertheless, treatment of all ranges of depressive symptoms with medication 

has become common practice (Safer, 1997), with SSRIs being the most frequently 

prescribed drug for mood disorders in children and adolescents (Ingram and Trenary, 

2005). Several research studies have found that SSRIs are effective in treating 

depression in children and adolescents. An evaluation study of the SSRI fluoxetine, 

reported that with depressed youths between the ages of 7 and 17 years, fluoxetine was 

much more effective in reducing depression than a placebo (Emslie et al., 1990). On the 

other hand, there are no conclusive data about the safety of using SSRIs in children and 

adolescents. Several studies and reviews pointed to the controversy in the idea that 

SSRI treatment may be associated with increased risk of self-harm and suicidal 

ideation. It is generally agreed that the appropriate use of SSRIs in children and 

adolescents requires careful diagnostic assessment, evaluation of co-occurring 

conditions, and diligent monitoring (Schahill et al., 2005, Hamrin and Schahill, 2005, 

Murphy et al., 2008, Cohen 2007). A comparative study aiming to report the frequency 

of common treatment-emergent adverse events from SSRIs in children, adolescents, 

and adults, reported that children are particularly vulnerable to specific adverse events 

from SSRIs (Safer and Zito, 2006). 

The finding that postsynaptic receptors are targets for antidepressant treatment 

empathized the role of these receptors in neuronal function regulation. Among the 

serotonin receptors implicated in depressive disorders are serotonin 1A (5-HT1A), 1B 

(5-HT1B), 2A (5-HT2A), 2C (5-HT2C), 4 (5-HT4), 6 (5-HT6) and 7 (5-HT7) (Navines 

et al., 2008, Kato et al., 2009, Svenningsson et al., 2006, Shaikh et al., 2008, Benedetti 

et al., 2008, Rosenzweig-Lipson et al., 2007, Warner-Schmidt et al, 2009, Svenningsson 

et al., 2007, Mnie-Filali et al., 2007). Postsynaptic receptor trafficking in the dendrites 

has recently appeared to be an important pathway in the regulation of neuronal 

function. It appears to determine the efficiency of the neurotransmission response, 
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adjust the neuronal pathway specificity, regulate receptor sensitization and control 

signal plasticity (Renner et al., 2008, Lee et al., 2008, Petrini et al., 2009, Heine et al., 

2008, Park et al., 2004, Makino and Malinow, 2009). Such causal factors of dendritic 

receptor expression and organization have become a crucial target for novel 

neuropharmacological therapy research (Fumagalli et al., 2008, Kristiansen et al., 

2010, Marchese et al., 2007).  

Membrane receptors are described to undergo recycling upon activation via endo- and 

exocytosis, both within and outside of the synapse (Park et al, 2004, Yudowski et al., 

2007). Lateral diffusion of receptors is a new concept that describes passive Brownian-

like transport of proteins in the neuronal membranes, driven solely by the available 

thermal energy. This energy-efficient trafficking, illustrated by population and single 

molecule mobility studies, play a crucial role in the responsiveness to neurotransmitter 

release by tuning the availability of receptors at the synapse (Ashby et al., 2006, Jacob 

et al., 2008, Thriller and Choquet, 2003, 2005, Choquet and Thriller, 2003). Many 

neurotransmitter receptors are now known to undergo recycling and lateral diffusion for 

effective and efficient response modulation (Cognet et al., 2006, Makino and Malino, 

2009, Petrini et al., 2009). Changes in both lateral diffusion and receptor recycling 

rates are a principle means by which postsynaptic receptors alter neuroplasticity 

(Makino and Malino, 2009, Petrini et al., 2009). Better understanding of such 

regulation mechanisms of the synaptic neuroplasticity and the receptors that might have 

specific modes of mobility, opens the door towards finding new specific targets for 

antidepressant pharmacotherapies, with less side-effects than other conventional 

antidepressants.  
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2 AIMS OF THE STUDY 

The overall aim of this study is to elucidate the potential vulnerability of the 

hippocampus in the pathogenesis and treatment of neuropsychiatric disorder. Further, to 

study the expression and function of some of the receptors implicated to play a role in 

the hippocampus development and function in relation to mood disorders.  

The specific aims of the study are: 

1. To further elucidate the vulnerability of the hippocampus during certain 

developmental periods, using an immunological model that was recently 

found to play a role in the hippocampus neuronal Function. 

2. To get a better understanding of the mechanism of action of lithium, a 

commonly used drug in treating bipolar disorder, aiming to find a more target 

specific therapy.  

3. To highlight some novel aspects of some serotonin receptors and to study 

their mobility. This could provide a potential target for new anti-depression 

therapy.      
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3 EXPERIMENTAL PROCEDURES 

For detailed description of all materials and methods used in this study, please refer to 

the original papers enclosed. Here, is a general outline of the methods used.  

3.1 MATERIALS 

Hippocampus tissue extracted from Sprague Dawley rats at different ages was mainly 

used to prepare lysates for protein/RNA extraction or for primary neuronal cultures. All 

experiments were approved by the local committee on Ethics for Animal 

Experimentation, Stockholm, Sweden. 

For the work on MHC-I, animals were injected with Recombinant rat TNF-α and 

recombinant rat IL-1β, that were obtained from R&D Systems, UK. The study was 

performed on early postnatal (3-8 postnatal days, EPN), weanling (18-25 postnatal 

days) and adolescent (38-45 postnatal days) rats. Each group was divided into three 

subgroups composed of animals of equivalent body weight. Two subgroups were 

injected with cytokines and one group was injected with vehicle (control). Each 

cytokine was reconstituted in phosphate buffer saline (PBS) and injected intra-

peritoneal (IP); 1 µg for the EPN group, 2 µg for the weanling group and 5 µg for the 

adolescent group. These doses were selected since they have been shown to have effect 

on rat brain when injected IP (Anforth et al., 1998, Kubota et al., 2001). The serum 

level of TNF-α was found to be 1.2 + 0.9 pg/mL 24 h after the last injection. Four days 

after the last injection all animals were anesthetized and the brains were dissected after 

saline perfusion. Hippocampus tissues were extracted, frozen immediately in dry ice 

and was later used in all the experiments. We chooses to terminate the experiment after 

four days since it is well documented that this is the peak period for brain insult 

following injury, such as hypoxia (Von Gertten et al., 2005). Furthermore, it has been 

shown that intraperitoneal cytokine Interferon gamma injection has a maximal effect on 

MHC-I expression at four days (Xu and Ling, 1994). Control and cytokine treated 

animals had the same weight gain.  

3.2 EXPERIMENTAL METHODS 

3.2.1 Preparing primary hippocampus neuronal cultures 

Hippocampal cell culture is a commonly used model system for addressing a wide 

range of questions in molecular and cellular neurobiology. Cultured hippocampal 

neurons pass through defined stages of maturation (Dotti et al., 1988) and interconnect 
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with each other (Bartlett and Banker, 1984, Fletcher et al., 1994). Moreover, they are 

characterized by morphological features (Banker and Waxman, 1988) together with the 

specific expression pattern and localization of neuronal proteins in vitro, which appear 

to be essentially identical to those of neurons that develop within the intact brain 

(Gerrow et al., 2006). Since the pioneering work of Banker and Cowan (Banker and 

Cowan, 1977, 1979) who established the hippocampal culture system and initially 

characterized hippocampal neurons and glia, the method and techniques have not 

significantly changed (Kaech and Banker, 2006), rather some modifications in the 

medium is used to change the percentage between neurons and glia. 

We modified two previously reported protocols to focus more on the neurons in our 

second and third studies. In the second study we modified the protocol described by 

Mao and Wang (Mao and Wang, 2003), where cytosine-D-arabinofuranoside (AraC) 

was used for 24 hours to suppress glial growth. In the third study we used another 

protocol described by Kaech and Banker in 2006, where the medium was modified to 

nourish neurons and suppress glia. Primary hippocampus neuron cultures have been 

used in studies 2 and 3 for Calcium imaging, receptor biotinylation as well as receptor 

mobility and localization experiments.  

3.2.2 Studying mRNA levels using real time PCR 

Reverse transcription polymerase chain reaction (RT-PCR) is a variant of polymerase 

chain reaction (PCR). This laboratory technique is commonly used in molecular 

biology to generate many copies of a DNA sequence, with a process called 

"amplification". In RT-PCR, an RNA strand is first reverse transcribed into its DNA 

complement (cDNA) using the enzyme reverse transcriptase, and then the resulting 

cDNA is amplified using traditional or real-time PCR. Real time PCR allow the 

scientist to follow and view the increase in the amount of DNA as it is amplified. RT-

PCR is the most sensitive technique for mRNA detection and quantification, 

detecting even small changes. 

In the beginning of the first study we quantified the MHC-I with the traditional PCR 

technique. After preparing the cDNA, PCR mixture was added, which contain a 

standard PCR buffer (Promega, Madison, WI, USA), 2,5 mM MgCl2, 0,2 mM dNTP 

(Roche, Indianapolis, USA), 22 ρmol of each of the MHC-I primers, 44 ρmol Classic 

II Primers (with a ratio of 2:1, Classic pair to competimer) (Ambion, TX, USA), and 

12 U of AmpliTaq Gold (Perkin-Elmer, Foster City, CA, USA). The PCR mixtures, 

containing the cDNA, were divided into 5 reactions of 22 µl each, and subsequently 
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amplified in 25, 26, 27, 28 and 29 cycles, according to the following protocol [1) 

7minutes of denaturation at 95oC; 2) 29 cycles of, 30 sec denaturation at 94oC, 30 sec 

of annealing at 60oC, and 1minute of extension at 72oC; and 3) a final extension step 

of 5 minutes at 75oC. The thermocycler was paused after 25, 26, 27, 28 cycles, and 

samples were kept at 65oC for ten minutes]. The PCR products were run on 2% 

agarose gel with 1x TAE buffer, containing 1x concentration of Gel star Nucleic Acid 

Gel Stain (Cambrex Bio Science Rockland,U.S.A). GeneRuler 100 bp ladder 

(Fermentas, Vilnius, Lithuania) was used for sizing of PCR fragments. Digital images 

were acquired with use of a Flour-S MultiImager and analyzed with the original 

software Quantity One, version 4.2.1 (Bio-Rad Laboratories, Hercules, CA, USA). 

The MHC class I primers were selected from different exons to avoid amplification of 

genomic DNA. The classic II 18S Internal Standards (Ambion, TX, U.S.A) primer set 

was used as internal control, according to manufacturer’s protocol. The size of the 

18S PCR fragment is 324 bp, whereas the MHC class I PCR fragment is 223 bp. 

Through this method, the MHC-I was semi-quantified using the ratio between MHC-I 

and 18s. 

 

Agarose gel results are obtained from the end point of the PCR reaction which is 

time-consuming process. These results are based on size differentiation, and therefore 

may not be very precise. Furthermore, the end point product varies from one sample 
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to another. Agaros gels may not be able to resolve variations of 10-fold in yield, 

where gel resolution is usually very poor. To resolve these problems we moved to 

Real-Time PCR as it is a more sensitive way to detect changes than Agaros gels, and 

detecting as little as a two-fold change.  

RT PCR and real-time detection of PCR product accumulation was performed using 

iCycler (Bio-Rad). Primers for real-time RT PCR experiments were designed by 

PrimerSelect software (DNASTAR Inc, Madison, USA) and rat MHC-I mRNA 

structure (accession number NM_012645) was used to select MHCI- specific primers 

(Rada et al., 1990). Quantum RNA 18S Internal Standards (Ambion) were used as 

the “housekeeping” gene, where 18S stands for a ribosomal 18S RNA. This was used 

to normalize for variations in RNA quality and starting quantity, as well as random 

tube-to-tube variation in RT and PCR reactions. In our experience, commonly used 

“invariant” standard controls, such as β-actin, might varied from tissue to tissue, 

between cell types, or in response to the experimental treatments. The use of 

ribosomal 18S RNA, as endogenous control, overcome all these problems since the 

majority of RNA is rRNA. 

3.2.3 Studying protein expression, localization and interaction using 

western blot and immunostaining 

The Western blot is an analytical technique used to detect specific proteins in a 

prepared sample of tissue homogenate or cell extract. Proteins whether native or 

denatured, are separated according to their length of polypeptides by gel 

electrophoresis. The proteins are then transferred to a nitrocellulose or PVDF 

membrane, where they are probed using antibodies specific to the target protein. The 

proteins in the cell have different locations membranous, cytosolic or nuclear. The 

use of specific combinations of buffers, detergents and centrifugation speeds 

determines the different cellular fractions. Other related techniques that include using 

antibodies to detect proteins in tissues and cells by immunostaining . Antibodies are 

also used to study protein-protein interaction known by co-immunoprecipitation 

followed by western blot.  

In this study we used different antibodies for western blot, immunostaining and 

co-immunoprecipitation. An important step before proceeding with any antibody is to 

test its specificity. Moreover, the size of the band in the western blot should be 

comparable to the size of the target protein. The size of the protein might vary 

depending on several factors such as glycosylation or dimerisation.  
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In the first study we used antibodies against MHC-I and CD3ζ. As for the MHC-I, 

blotting with OX-18 resulted in two distinct bands, corresponding to 37 and 53-kD,                  

in the lane loaded with whole cell lysates of weanling rats’ hippocampus. By using 

different buffers and centrifugation speeds we prepared cell membrane preparation of 

the hippocampus the same age rats, to compare the MHC-I protein expression in the 

total cell lysates and in the cell membranes preparations. The cell membrane 

preparations were enriched with 53-kD species similar in size with MHC-I protein 

found by Corriveau in membrane fractions prepared using brain tissues (Corriveau et 

al., 1998). MHC-I genes are divided in two subgroups, the classical and non-classical 

classes of MHC-I. Both types of MHC-I are expressed as soluble, as well as 

membrane-bound proteins. It has also been shown that an intact MHC-I molecule 

with size 37– 45 kD on SDS polyacrylamide gel may form aggregates with high 

molecular weight (Lau et al., 2003). The two distinct bands disappeared when 

omitting the primary antibody. As for CD3ζ, Immunoblot analysis of hippocampal 

homogenates revealed a band at approximately 37 kD, which corresponds to CD3-z 

dimers. The CD3-ζ chain is known to form disulphide-linked dimers in SDS 

polyacrylamide gel, where the two monomers associate via their transmembrane 

domains. These proteins share the ability to form disulfide linked dimers with 

themselves and with other members of the family (Rutledge et al., 1992). 

In the second study, we used the biotinylation technique to extract neuronal cell 

membrane proteins. The neurons were first labeled with EZ-Link® Sulfo-NHS-SS-

Biotin, a thiol cleavable amine-reactive biotinylation reagent. Cells were 

subsequently lysed with a mild detergent and the labeled proteins were then isolated 

with immobilized Streptavidin, 6% beaded agarose. The bound proteins were released 

by incubating with SDS-PAGE sample buffer and separated by gel electrophoresis. 

We then used antibodies against NMDA receptor 1 and mGluR5. As with the NMDA 

blots, we got a single band at the expected size of ~100kD, that disappeared when 

omitting the primary antibody. For mGuR5, we got a band at ~130 with the cell 

surface proteins blots, whereas we got a faster migrating band with the neuronal 

lysate blots.  

The specificity of the antibody was tested using HEK (Human Embryonic kidney) 

cell line T293 which is known not to express mGluR5. The same cell line was 

transfected with two different mGluR5 constructs, one of which is tagged with Venus 

and the other untagged. Total protein lysate of the different cell culture plates were 
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prepared and analyzed by 6% SDS-PAGE. The first lane was loaded with the total 

protein lysate of the native HEK cells. The second lane was loaded with the total 

protein lysate of the untagged mGluR5 transfected HEK cells, the third was loaded 

with the total protein lysate of the Venus-tagged mGluR5 transfected HEK cells and 

finally the forth was loaded with the total protein lysate of the Venus-transfected 

HEK cells. No bands were detected in the native HEK cells nor the Venus-transfected 

cells lanes, while a band of ~130kDa was detected in the untagged HEK cells lanes 

and a ~150 kDa band was detected in the Venus tagged mGluR5 transfected HEK 

cells as shown in figure 4. 

 

With regards to the difference in size between the cell surface protein and the lysate 

protein, we expected glycosylation and performed deglycosylation experiment.  

Membrane preparation from hippocampus was produced as previously described 

(Neuron, Vol.21, 505-520, September, 1998). The protein concentration was adjusted 

using Bradford. Deglycosylation was performed with PNGase F enzyme kit (New 

England Biolabs) with some modification to the manufacturers’ protocol. Briefly, 

20µg protein was mixed with 1µl of 10x glycoprotein denaturing buffer in a volume 

of 10 µl, and the protein was allowed to denature for 10 minutes at 100
o
C. NP40 and 

G7 buffers were added together with the deglycosylation enzyme and incubated over-

night at 37
o
C. Laemmli buffer was added and the samples were heated for 15 minutes 

at 80oC. Protein extracts were analyzed through 6% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). After immunoblotting on 

nitrocellulose membranes, proteins were probed with the anti-body used to recognize 
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mGluR5. Deglycosylation caused mobility shift of the protein band as seen in figure 

5. 

 

In the third study, two antibodies against 5-HT1BR, raised against different epitopes 

were used, according to the required experiment. One was used for western blot, where 

we prepared different cell fractions using specific buffers and centrifugation speeds. 

Another antibody was used together with antibodies against Gephyrin, post synaptic 

density (PSD-95) and Homer for co-immunoprecipitation. This antibody was also used 

for immunostaining of 5-HT1BR in the hippocampal neurons. 

3.2.4 Studying receptor protein localization and movement using confocal 

microscopy 

In the third study we transfected immune-florescent 5-HT1BRs in primary 

hippocampus neurons to study the localization and movement of this receptor. 

Confocal microscopy is an optical imaging technique with increased optical resolution 

and contrast of a micrograph. This is done through using point illumination and a 

spatial pinhole to eliminate out-of-focus light in thick specimens that are thicker than 

the focal plane. It allows the reconstruction of three-dimensional structures from the 

obtained images. This technique has become more popularly used in life sciences for 

studying of the ultra-structure of cells, more particularly neurons.  

Confocal imaging in our study was performed on an inverted Zeiss LSM 510 

microscope with 40X (1.2 NA, water) or 63X (1.4 NA, oil) objectives.  Emission was 

induced with laser lines at 458nm (WHAT), 488nm (argon) and 514nm (argon) for 

cyan, green and yellow labels, respectively. The Confocal imaging was used for 

studying the localization of the 5-HT1BR and for studying the receptor mobility and 
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recruitment. Furthermore, the receptor mobility was investigated by performing 

Fluorescence recovery after photobleaching (FRAP)    

3.2.4.1 Fluorescence Recovery After Photobleaching (FRAP) 

FRAP is an optical technique capable of quantifying the two dimensional lateral 

diffusion of a molecularly thin film containing fluorescently labeled probes. This 

technique is suitable for the analysis of receptor populations’ transport of in the 

dendrites. We expressed fluorescently labeled different G protein coupled receptors 

including 5-HT1B, 5-HT1B, 5-HT4, dopamine 1 (D1), D2, D5 and mGluR5 in 

hippocampal cultures. Therefore, FRAP recordings was utilized, where an area of the 

dendrites was chosen to be bleach and the recovery of the signals from a certain line 

(axial position) was recorded after bleaching (figure 6a), to detect the movement of the 

receptors.  Furthermore, we choose a small region to detect any intense signals. For all 

the receptors known to move by lateral diffusion, there is usually increase in the 

fluorescence that is consistently slow and diffuse indicating gradual population 

recovery in the bleached regions. Taking D1R as an example for this group we can see 

in figure 6b, a representative kymograph with gradual population recovery in the 

bleached region. In addition, FRAP curves for D1R receptor in figure 6c, show gradual 

population recovery in the bleached regions (green curves), with no striking intensity 

changes in the small region recordings (blue curves) other than small fluctuating around 

the full bleached region intensity.   
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As for 5-HT1BR, FRAP recordings indicate that there are two distinct modes of 

5-HT1BR transport: intracellular aggregate trafficking and lateral membrane diffusion 

(figure 7a).  Aggregate movement on a kymograph appears as slanted lines, whereas 

immobile aggregates appear as vertical lines. Discrete internal receptor aggregates 

appear to move with a constant speed, as indicated by nearly constant trajectory slopes. 

Gradual recovery of background fluorescence also indicates lateral diffusion of 

receptors.  Both modes of transport are seen in FRAP intensity curves in figure 7b. 

Recovery curves of the full bleached region (green) shows slow population diffusion of 

receptors in the membrane. Intensity curves of a smaller analysis region (blue) 

emphasize the transport of internal aggregates.  

 

3.2.5 Imaging of intracellular [Ca
2+

]i concentration 

In our second study, it was crucial to quantitatively measure the free cytosolic Ca2+ 

concentration, [Ca2+]i, and compare it in response to different stimuli. We used the 

calcium sensitive Fura-2AM, which is highly selective calcium dual-excitation 

(ratiometrc) fluorophore, which shifts wave length upon binding to Ca2+. This makes it 

more suitable for long time measurements because this character makes it suitable for 

measuring changeable calcium levels without the known problems associated with 

bleaching and leakage of fluorophore. Moreover, this fluorescent dye was easily loaded 

into the intact primary hippocampus neurons by incubating them with a membrane-

permeant ester derivative.  Cytosolic esterases split off the ester groups and leave the 

membrane-impermeant dye trapped in the cytosol. Since fluorophores are artificial 
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substances, that they can disturb normal cellular function or even be toxic for the 

neurons. Several control experiments were undertaken to determine the appropriate 

concentration and loading conditions.  
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4 RESULTS AND DISCUSSION 

4.1 EXPRESSION AND REGULATION OF MHC-I AND CD3-ζζζζ 

(PAPER I) 

There is increasing evidence of the immune involvement in some neuropsychiatric 

disorders such as schizophrenia and autism, where the role of cytokines in the immune 

dysregulation in the brain has been speculated. In this paper we studied the expression 

pattern of MHC-I and CD3ζ in the rat hippocampus. Moreover we investigated the 

effect of TNF-α on the expression pattern of these two proteins. 

4.1.1 Developmental pattern of MHC-I and CD3ζζζζ in rat hippocampus 

We studied the developmental pattern of MHC-I and CD3ζ in the hippocampus of 

early postnatal (EPN), weanling and adolescent rats. The abundance of the proteins was 

measured using western blotting of total protein homogenates of the hippocampus. The 

relative level of CD3ζ protein abundance increased two fold from the EPN to the 

weanling period, while there was no significant difference between the weanling and 

the adolescent periods. The MHC-I immunoreactivity in the total protein homogenates 

yield two bands, corresponding to the soluble and the membrane-bound forms of the 

protein. The relative level of the membrane-bound MHC-I abundance was significantly 

lower in the hippocampus of the EPN rats, than in the weanling and adolescent rats. 

This increase in the MHC-I protein level was parallel to the robust increase found in the 

MHC-I mRNA, measured by real time PCR, in the hippocampus of rats between the 

EPN period and the end of the weanling period. No difference was seen in the mRNA 

levels or in the protein expression level of MHC-I between the weanling and the 

adolescent rats.  

In situ hybridization studies have previously indicated that the expression of MHC-I 

increases postnatally in the hippocampus (Corriveau et al., 1998). Emerging evidence 

suggests that MHC-I and CD3ζ play important roles, not only as defense molecules in 

the immune system but also as regulators of development and plasticity in the CNS. 

Studies performed on knockout mice have shown that MHC-I and CD3ζ are important 

for activity-driven structural remodeling and synaptic plasticity (Huh et al., 2000). 

Important developmental events take place in the hippocampus during the first three 

weeks of age (Rice and Barone 2000). In the early postnatal period, growth cones start 

to appear; dendrites grow and become covered with spines (Lang and Frotscher 1990). 
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Synapse formation and modification is a crucial step in the maturation of the 

hippocampus, as it is essential for proper circuit formation and function of the nervous 

system (Lavenex et al., 2007). 

4.1.2 Effect of TNF-αααα on CD3ζζζζ and MHC-I expression 

We studied the effect of intraperitoneal injections of TNF-α and IL-.1β on the protein 

expression of CD3ζ and the mRNA expression of MHC-I in the hippocampus of EPN, 

weanling and adolescent rats. TNF-α caused significant reduction in the protein 

expression of CD3ζ and in the mRNA expression of MHC-I in the EPN group of rats. 

In the weanling and adolescent groups, TNF-α had no significant effects neither on the 

protein expression of CD3ζ nor on the mRNA level of the MHC-I. IL-1β did not have a 

significant effect on the MHC-I mRNA or the CD3ζ protein levels in rat hippocampus 

of any age groups.      

Perinatal hypoxia is a major cause of neurologic and intellectual impairment in children 

(Belet et al., 2004, Vargha-Khadem et al., 2003), where the hippocampus is highly 

vulnerable to the consequences of brain hypoxia (Schmidt-Kastner and Freund, 1991). 

Furthermore, cytokines have been implicated in the cause of hypoxia-triggered brain 

damage (Aly et al, Oygur et al., 1998). The extent of post hypoxic brain lesions, as 

evaluated with magnetic resonance images, has been found to be paralleled by an 

increase in blood levels of several cytokines (Bartha et al., 2004), including TNF-α 

(Aly et al., 2006, Shohami et al., 1999, Foster-Barber et al., 2001).  The regulatory 

effect of TNF-α on CD3-ζ protein is similar to that found in T-cell hybridoma treated 

with TNF-α ( Isomaki et al., 2001). The effect of cytokines on the expression of CD3-ζ 

in the brain has not been studied to date. It is also reported that TNF-α can alter MHC-I 

cell surface expression on neurons (Neumann et al., 1997). Moreover there is evidence 

that TNF-α is a silencer of survival signals in neurons (Venters et al., 2000).We 

propose a specific role for TNF-α in down regulating MHC-I and CD3ζ expression 

during the period immediately following birth. The down-regulation of CD3-ζ and 

MHC-I in response to circulating TNF-α might have adverse effects on neuronal 

development and plasticity. Thus, hippocampus damage induced by perinatal hypoxia 

may lead to changes in synaptic plasticity via dysregulation of MHC-I expression.   

Recent genome-wide studies of large populations reported polygenic variations of 

human chromosome 6p22.1 at the MHC-I locus are implicated in schizophrenia and 
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BD (Shi et al., 2009, Stefansson et al., 2009). While many common gene variants in the 

MHC-I region are strongly associated with schizophrenia and BD, there was no 

association with several non-psychiatric disorders.  

It has also been reported that there is a link between schizophrenia and infection 

(Patterson, 2009), but the mechanism by which early infection or autoimmune 

disorders can change brain circuits and behavior is still questionable. Furthermore, it is 

strongly suggested l that neuronal MHC-I function at the synapses is the link where the 

immune system would have a variety of direct ways of altering activity dependent 

synaptic plasticity and neuronal circuits tuning communications (Shatz 2009).  

4.2 CALCIUM SIGNALING; A POTENTIAL TARGET FOR 

LITHIUM ACTION (PAPER II) 

It has been postulated for many years that disturbances in calcium signaling is one the 

mechanism by which lithium can employ its action in mood disorders and other 

neuropsychiatric diseases (Wasserman et al., 2004; Perova et al., 2007; Bauer et al., 

2003). Nevertheless, there are only a few number of studies that have examined the 

effect of lithium on the calcium signaling pathways in neurons. In this paper we 

investigated the effect of seven days treatment with lithium on the intracellular calcium 

signaling, induced by different pathways in the primary hippocampus pyramidal 

neurons. Furthermore, we studied whether changes in the glutamate receptors are 

expected to modulate intracellular calcium ions concentration.  

4.2.1 Lithium effect on glutamate mediated calcium signaling 

The effect of glutamate on [Ca2+]i was studied in primary cultures of rat hippocampal 

neurons in the presence and absence of 1mM lithium chloride (LiCl). When control 

untreated cells were exposed to glutamate (1 mM), a simultaneous increase in [Ca2+]i 

was observed in virtually all neurons. This increase was sustained as long as glutamate 

was present in the solution. Glutamate can increase [Ca2+]i via activation of ionotropic 

NMDA receptors and via activation of the group 1 metabotropic glutamate receptors. 

Specific agonists for each receptor were used to differentiate the different pathways by 

which glutamate increases [Ca2+]i. In cells exposed to NMDA (10 mM), a sustained 

increase of [Ca2+]i was observed, whereas a transient increase of [Ca2+]i was observed in 

cells exposed to Dihydroxyphenylglycine (DHPG) (100 mM), a selective group I 

mGluR agonist. Cells treated with glutamate in the presence of NMDA receptor 

inhibitor, MK-801 (50 mM), displayed a transient increase of [Ca2+]i, similar to the 
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DHPG response. Pretreatment of glutamate-exposed hippocampal neurons with LiCl (1 

mM) for seven days, resulted also in a sustained increase of [Ca2+]i, however, the 

maximum amplitude of this response was significantly lower than that observed in non-

treated cells. The response amplitude in cells treated with lithium to NMDA and DHPG 

was also significantly lower than that of non-treated cells. 

NMDA receptors are localized at postsynaptic densities (PSDs) where they are 

structurally organized (Scannevin and Huganir, 2000). They are not simply tightly 

locked into PSDs, rather, are in rapid equilibrium movement between the neuronal 

membrane and the intracellular compartment (Carroll and Zukin, 2000, Nong et al., 

2004). The group I mGluR receptors, consisting of mGluR1 and mGluR5, are coupled 

to the Gq family heterotrimeric G-proteinand PLC (Masu et al., 1991). CA1 

hippocampal pyramidal cells strongly express mGluR5 that is densely concentrated at 

the perisynaptic region of the dendritic spines and faces the excitatory synaptic 

terminals (Luja´n et al., 1996; Luja´n et al., 1997). In contrast, mGluR1 is not found on 

CA1 dendrites (Shigemoto et al., 1997), indicating that mGluR5 is a major receptor at 

their excitatory synapses which activates the Gq-PLC cascade. 

To examine whether the attenuated calcium response to glutamate, NMDA and DHPG 

could be due to reduction in receptor availability, we next determined the cell surface 

expression of receptors in control and lithium-treated hippocampal neurons using 

chemical biotinylation technique. Seven days of lithium treatment significantly reduced 

the cell surface expression of mGluR5, the predominant group 1 mGluR receptor. 

There was no significant reduction in the non-biotinylated intracellular fraction of 

mGluR5. In contrast, seven days of treatment with lithium did not significantly 

influence the cell surface expression of the NMDA receptor. The non-biotinylated 

intracellular fraction of NR1 was not detectable in the lanes loaded with the 

intracellular cell lysate, which is in agreement with the fact that NMDA receptors are 

membrane receptors.  

Several lines of evidence indicate that both mood disorders and schizophrenia are 

associated with disturbances in the glutamate system. Our results show that lithium has 

a dual effect on glutamate calcium signaling. Since NMDA receptors are ligand-

activated calcium channels and mGluR1/5 R are G protein– coupled receptors (GPCRs) 

as well as activators of IP3, the mechanisms of action must be different. Our results are 

in accordance with the finding by Nonaka et al., where lithium attenuated the response 

of NMDA receptors activation (Nonaka et al., 1998). The attenuation in the NMDA 
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response was not found to be associated with changes in the receptor expression on the 

plasma membrane. It has been suggested that lithium may have an affinity to proteins 

similar to that reported for magnesium (Mota De Freitas et al., 2006). Through our 

data, we did not find any immediate effect of lithium on the NMDA calcium response 

(Bertolino and Vicini, 1988). This appears to exclude the possibility that lithium would, 

like magnesium, act by plugging the calcium channel of the NMDA receptor. 

We demonstrated that lithium attenuates the response from activated mGluR1/5 

receptors, which was not previously known. The decrease in the plasma membrane 

expression of mGluR5 we found in association with the attenuation of the calcium 

response of the mGluR1/5 may be due to disruption in the contact with anchoring 

protein. The mGluR1/5 receptors are known to be linked to several proteins including 

the Homer protein, and to the postsynaptic density. Although it cannot be proved from 

the present results, it is thus likely that the decrease of the calcium peak amplitude, 

following mGluR5 receptors activation, may be partially explained by reduced 

expression of functional receptors. 

It has been reported by (Pisani et al., 2001), that group I mGluRs have a facilitatory 

role on the response of NMDA receptors via mGluR5 activation. In that study, it was 

shown that DHPG enhancement of the NMDA receptor response was abolished in 

mGluR5 knockout mice. It has been also reported that null-mutant mice lacking 

mGluR5 have a partial impairment in NMDA receptor-dependent LTP (Lu et al., 

1997).Thus it is possible that the attenuated NMDA effect observed is secondary to the 

downregulation of mGluR5 membrane expression and the attenuated calcium response 

following mGluR1/5 receptor activation.  

4.2.2 Lithium effect on Gq-coupled receptors 

Group 1 mGluRs are Gq-protein-coupled receptors which are coupled to the activation 

of PLC, generation of IP3 and calcium release from the intracellular stores. Here we 

have tested if the effect of seven days of lithium treatment is specific for the mGluRs-

mediated Ca2+ response or whether this effect can also be observed for other receptors 

coupled to the PLC-IP3 signaling pathway. Carbachol is an agonist of the Gq-coupled 

muscarinic cholinergic receptors. We found that the carbachol-mediated Ca2+ response 

was significantly attenuated in hippocampal neurons treated seven days with lithium. 

Taken together, our results showed that the long-term exposure to lithium attenuated 

the response of two Gq-coupled receptors; the mGluR1/5 receptors and the 
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acetylcholine receptor. Several lines of evidence suggest that long term exposure to 

lithium affects the association between GPCRs and other proteins (Hahn et al., 2005). 

Lithium has been shown to attenuate cyclic adenosine monophosphate (cAMP) 

generation triggered by Gs-coupled receptors (Carli et al.1994) and has also been 

reported to interrupt the signaling pathway of the Gi-coupled serotonin receptors (Wang 

and Friedman, 1999). A recent study from Caron’s group (Beaulieu et al., 2008) has 

shown that lithium interrupts the downstream signaling of beta-arrestin 2, a GPCR 

scaffolding protein.  

4.2.3 Lithium effect on Ca
2+

 levels 

To record the absolute values for [Ca2+]i in control and lithium-treated cells, we 

performed calibration experiments of [Ca2+]i. The basal level of [Ca2+]i was 116 +10 nM 

in control cells, and 87 + 11 nM in lithium-treated cells. The difference between the 

two groups was significant. It is possible that the decreased influx of calcium via the 

NMDA calcium channel as well as other, above-mentioned, receptor-operated Ca2_ 

entries, has contributed to the reduction in [Ca2+]i level. 

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump, which is responsible 

of the active uptake of calcium to the ER, can be specifically inhibited by CPA (Goeger 

et al., 1988). Following inhibition of the SERCA pump, Ca2+  will leak out of the ER, 

resulting in a transient increase of [Ca2+]i (Hernández-Fonseca and Massieu, 2005). The 

magnitude of this increase may be used as an index of how much calcium has been 

stored in the ER. We found that seven days of lithium treatment leads to reduction of 

the CPA-mediated cytosolic Ca2+ increase. This indicates that the ER calcium stores are 

reduced in cells exposed to seven days of lithium treatment. Both mGluR5 and 

muscarinic receptors are coupled to G-protein PLC–IP3 Ca2+ signaling pathway. 

Therefore the observed reduction in ER calcium level may have an important role in the 

attenuation of these receptor-activated Ca2+ responses. Store-operated Ca2+ channels are 

activated in response to depletion of the ER store and allow Ca2+ to enter the cell and 

refuel the ER (Putney, 1999). The lithium-induced reduction in ER calcium stores may, 

due to effect on the store-operated calcium entry, also contribute to the observed 

alteration in [Ca2+]i levels.  

This study has shown that lithium affects many aspects of [Ca2+]i levels and turnover. 

Since Ca2+ is considered to be the most common versatile signaling molecule in 

neurons, the observed effects can be expected to influence the communication within 

and between neurons in a variety of ways. Thus it is not surprising that lithium has been 
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shown to have a variety of functional, pharmacological and developmental effects. 

However, further studies are required to address questions around the actual effect of 

lithium on intracellular calcium. 

4.3 5-HT1BR; A NOVEL THERAPEUTIC TARGET FOR 

TREATING DEPRESSION (PAPER III) 

Postsynaptic and dedritic receptors’ expression, organization and trafficking have 

become an important target for novel neuropharmacological therapy research. The 

5-HT1BR is implicated in mood disorders such as depression. In this study we 

investigated the localization, organization and trafficking of 5-HT1B receptor. 

4.3.1 5-HT1BRs are abundant in intracellular stores 

To investigate the expression of native 5-HT1BR in hippocampal neurons dendrites, we 

performed immunolabeling of primary cells in culture, after membrane permeation. 

The majority of the native receptor immunoreactivity in dendrites was highly clustered. 

Image magnification of a dendrite branch clearly showed a strong contrast between 

clustered and diffuse membrane immunoreactivity. Contrarily, immunolabeling without 

cell permeation resulted in diffuse labeling with no clusters, indicating that the majority 

of endogenous 5-HT1BRs in the dendrites are intracellular. It seemed likely that the 

intracellular clusters represents vesicle containing multiple 5-HT1BRs. Performing 

subcellular fractionation of adult hippocampal tissue, provided further evidence of a 

predominant vesicular expression of 5-HT1BR.  

To study the appearance of 5-HT1BR in living cells, hippocampus neurons in primary 

cultures were transfected with fluorescently labeled receptors. As seen with 

endogenous receptors, the labeled 5-HT1BRs were localized prominently in 

intracellular aggregates in the dendrites. Live-cell immunolabeling of 5-HT1BRs with a 

small, extracellular hemagglutinin tag resulted in negligible reactivity clustering in 

dendrites. Fixation and membrane permeation before immunolabeling resulted in 

aggregate reactivity in the dendrites, further suggesting that 5-HT1BR aggregates are 

not found in the plasma membrane and instead are intracellular aggregates.  

To compare the expression of 5-HT1BR with other receptos, a number of other 

neurotransmitter GPCRs, including 5-HT1AR, 5-HT4R, D1R, D2R, D5R, and 

mGluR5, were also fluorescently labeled and expressed in living cells.  None of these 

GPCRs were expressed extensively in intracellular aggregates. Magnified confocal 

images of dendrite fragments show a striking contrast between expression of 
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5-HT1BRs and all other examined GPCRs. Unlike the 5-HT1BR, the 5-HT1AR, 

5-HT4R, D1R, D2R and D5R were highly expressed in the dendritic membrane and 

showed no discernable intracellular aggregates.  

These results indicate that, contrary to other GPCRs, 5-HT1BRs has a unique 

appearance of aggregates in the dendrites of hippocampal neurons. Subcellular 

fractionation results strengthen the idea that these aggregates are vesicles. Even though 

vesicles are a prominent component of presynaptic machinery, they are rarely observed 

post-synaptically. A recent ultrastructural study by (Peddie et al., 2008) provided 

strong evidence of the existence of large postsynaptic vesicles carrying the 5-HT1BR in 

hippocampus neurons.  

4.3.2 5-HT1BRs are mobile in the dendritic membrane and transported in 

vesicles 

Receptor mobility is crucial for regulating receptor distribution in the cell. To analyze 

the transport of different receptors in the dendrites, we used Fluorescence Recovery 

After Photobleaching (FRAP) technique.  Kymographs of 5-HT1BR FRAP recordings 

indicate that there are two distinct modes of 5-HT1BR transport: intracellular aggregate 

trafficking and lateral membrane diffusion. To investigate how unique this internal 

trafficking of the 5-HT1BR is among GPCRs, we compared dendrite FRAP recordings 

of the 5-HT1AR, 5-HT4R, D1R, D2R, D5R, and mGluR5.  No aggregate movement 

was detectable in any of these GPCR recordings, rather lateral diffusion movement was 

seen as fluorescence increase in the bleached fragments. The increase in the 

fluorescence was consistently slow and diffuse, indicating gradual population recovery 

in the bleached regions. Moreover, intensity curves of smaller analysis region showed 

striking intensity changes of 5-HT1BR, which was not observed for other GPCRs, 

emphasizing the transport of internal aggregates of 5-HT1BRs. A full description of the 

FRAP technique and the different analysis and interpretations of the kymograph is 

described in the experimental procedures section.    

To visualize the different expression levels in transport vesicles and the plasma 

membrane, we also used total internal reflection fluorescence microscopy (TIR-FM).  

TIR-FM limits fluorescence excitation to within 100nm of the culture cover slip 

surface, thereby isolating attached membrane and intracellular components in 

proximity to the membrane. From TIR-FM one can detect active transport of 

5-HT1BRs in the dendrites that is close to the dendritic membranes. It also 
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demonstrates the strong contrast between receptor density in transport vesicles and in 

the plasma membrane.   

To further understand the mode of transport of distinct intracellular 5-HT1BRs 

aggregates, we examined sensitivity to agents that disrupt polymerization of transport 

filaments.  One mode of active transport is via microtubule tracks and is driven by ATP 

consumption (Gilbert et al., 1985).  Disruption of microtubule polymerization with 

nocodazole fragmented the trafficking of discrete 5-HT1BR aggregates. Actin 

disruption with latrunculin-A had little effect on 5-HT1BR trafficking. We found also 

that aggregate transport in dendrites is highly dependent on temperature.  

For further characterization of 5-TH1BR aggregates, we searched for parallel 

expression with a known vesicular protein.  When we co-transfected 5-HT1BRs with 

calcyon, a vesicular protein in the brain (Lidow et al., 2001, Kruusmägiet al., 2007), we 

identified an overlap of expression in cultured neurons.  Many of the prominent 

vesicles containing calcyon also contained 5-HT1BRs.   Time-lapse imaging of the two 

proteins in neuroblastoma cells also revealed movement of vesicles containing both 

5-HT1BRs and calcyon. All the results presented above are consistent with vesicular 

expression and transport of 5-HT1BRs in dendrites.  

4.3.3 5-HT1BR recruitment occurs at the dendritic membrane 

Our findings showed that most of the 5-HT1BRs appear to be maintained in 

intracellular vesicles and that only a small fraction diffuses to the plasma membrane. 

Functional synapses are the present on dendritic membrane, explaining the dependence 

of postsynaptic 5-HT1BRs function on the mode by which the receptors stored in the 

vesicles are delivered to the plasma membrane. To study the process by which the 

receptor storage vesicles interacts with the plasma membrane and how the vesicular 

5-HT1BRs are delivered to the plasma membrane, we expressed 5-HT1BRs labeled 

with an extracellular pH-sensitive fluorescent protein, superecliptic pHluorin (SpH). 

Expression of SpH in the vesicle lumen resulted in dimming of the fluorochrome, due 

to the highly acidic environment. Exocytosis changed the SpH environment from the 

acidic vesicle lumen to a neutral extracellular environment, thereby enabling 

fluorescence (Burrone et al., 2006) and providing a vesicle fusion event marker. This 

approach has previously been used to assess the exocytosis of recycled receptors by 

measuring fluorescence accumulation over long periods of time (Makino and Malino, 

2009, Petrini et al., 2009).  SpH-labeling has also been used to resolve single vesicle 
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exocytotic events with line scan analysis to suggest diffusion from the docking site 

(Yudowski et al., 2006). 

To monitor 5-HT1BRs delivery from vesicle stores to the plasma membrane, we 

performed time-lapse recordings on dendrites of neurons expressing 5-HT1BR-SpH.  

Exocytosis of vesicles containing 5-HT1BR-SpH was detected as a dramatic increase 

of confined fluorescence and subsequent loss of intensity. The time course of 5-HT1BR 

exocytosis was recorded as fluorescence decay after fusion with the plasma membrane. 

The mean fluorescence profile shows an abrupt increase in fluorescence intensity 

followed by a rapid decay. Fluorescence loss indicates receptors leaving the fusion site, 

which can occur either by lateral diffusion or immediate internalization.  Surface plots 

of single exocytotic events show the initially confined fluorescence at the docking site. 

In later recording frames, the confined receptors appear to spread homogeneously into 

the surrounding membrane, suggesting lateral diffusion.     

To measure the receptors diffusion from the docking site to the surrounding membrane, 

we demonstrated a two-dimensional lateral spread of receptors from the exocytotic site 

to the surrounding membrane after delivery of single vesicles. We mapped each 

5-HT1BR-SpH exocytotic event with two regions, one defining the initial event area 

and a surrounding region with twice the inner area.  The total integrated intensity 

profile of the inner region from one exocytotic event demonstrated an abrupt increase 

in fluorescence. This indicate vesicle docking, immediately followed by an 

exponential-like decay which then settles at a level slightly above the initial intensity. 

The intensity profile of the surrounding area also increased during the fusion event, but 

there is a time difference between intensity peaks of the two regions, due to passive 

diffusion of 5-HT1BRs from the site of exocytosis. This observation supports the idea 

that each vesicle carries many copies of 5-HT1BR.   

4.3.4 Preferential sites of dendritic 5-HT1BR recruitment 

As spatial organization of proteins in the dendrites is a major determinant of cellular 

function, we explored the idea of preferential exocytosis sites. Recurrent exocytosis is 

expected at presynaptic terminals (Gaffield et al., 2009), but very little is known about 

sites of preferential exocytosis in the dendritic membrane. Time-lapse recordings of 5-

HT1BR-SpH describe the extent of spatial proximity of 5-HT1BR-SpH exocytosis 

events. We estimated that 78+ 8% of recorded exocytotic events (334 total events in 8 

cells) in each neuron correspond to regions of repeated exocytosis. From that one can 

conclude that there are preferential regions of the dendritic plasma membrane that 
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exhibit repetitive exocytosis of 5-HT1BRs. Since the lipid composition of the plasma 

membrane is considered to play a role in the efficiency of the exocytotic process (Lang 

et al., 2001, Chamberlain et al., 2001), it is possible that membrane patches of altered 

lipid composition, such as lipid rafts, provide inherent sites of increased 

incorporation. We have observed in ongoing studies that polyunsaturated fatty acid 

treatment results in increased 5-HT1BR expression in the membrane, possibly as a 

result of increasing preferential membrane recruitment sites.  

4.3.5 Gephyrin interaction with the 5-HT1BR  

To identify a potential cofactor that determines the preferential sites of exocytotic 

activity, we investigated the interaction between 5-HT1BRs and synaptic scaffold 

proteins. Through co-immunoprecipitation experiments using tissue homogenate from 

adult rat hippocampus, we detected a strong interaction between 5-HT1BRs and 

gephyrin, the principle scaffold molecule at inhibitory synapses. We found however no 

interaction between 5-HT1BRs and PSD-95 or Homer, which are recognized as 

principle neuronal excitatory scaffold proteins.  

 If 5-HT1BRs are recruited at inhibitory synapses, it is probable that the exocytotic 

event would occur at or near gephyrin clusters. To determine if gephyrin present a 

preferential site for 5-HT1BR exocytosis, we expressed fluorescent gephyrin together 

with 5HT1bR-SpH. We found that 44 + 6% of 5-HT1BR -SpH preferential recruitment 

sites overlap with gephyrin clusters, suggesting a possible role for these clusters in 

recruitment of 5-HT1BRs to the dendritic membrane. On the other hand, gephyrin 

clusters have been reported to be mobile (Hanus et al., 2006) and localized at both 

synaptic and non-synaptic clusters (Danglot et al., 2003, Calamai et al., 2009), 

therefore the co-localization of preferential exocytosis sites with gephyrin clusters or 

inhibitory synapses is only an estimate.        

The association of dendritic 5-HT1BRs with inhibitory synapses is consistent with the 

concept that presynaptic 5-HT1BRs play an inhibitory role in axons. However, the 

insertion of 5-HT1BRs into the plasma membrane does not preferentially take place at 

the site of inhibitory synapses. Conversly, results reported on the AMPAR revealed the 

exocytosis of the receptor at or in proximity to excitatory synapses (Makino and 

Malino, 2009, Petrini et al., 2009). This feature points to an interesting difference 

between exocytosis of the locally recycled AMPARs and that of 5-HT1BRs, 

highlighting the concept of delivering multiple copies of the receptors to the plasma 

membrane in an activity-dependent manner. 
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4.3.6 Dendritic 5-HT1BR recruitment is associated with cellular activity  

To further examine the effect of cellular activity on receptor transport, we studied the 

consequence of neural activity elevation on receptor recruitment. We abruptly 

increased the extracellular concentration K+ to elevate the neuronal activity in the 

cultured neurons, thereby depolarizing the neuronal membrane. K+ stimulation 

generated a temporal increase in cell firing rate, which was associated with significant 

increase in 5-HT1BR-SpH recruitment to the plasma membrane. The receptor 

recruitment in response to neuronal activity together with the previous findings of 5-

HT1BRs association with inhibitory synapses may entail that such recruitment can 

serve to dampen excessive neuronal activity.  

It is generally accepted that presynaptic vesicles transport is energy-demanding. The 

fact that post synaptic 5-HT1BR vesicle transport was highly temperature dependent 

and their arrest after microtubules disruption, both indicate that they are also driven by 

energy demanding process. The lateral diffusion movement of membrane proteins is an 

energy-efficient process following the laws of Brownian movement and is the principle 

means of receptor transport. The emergence of energy-demanding intracellular 

transport of 5-HT1BRs suggests that uncontrolled postsynaptic membrane expression 

of this receptor could be harmful to neuronal function. Therefore the maintenance of 5-

HT1BRs stored in intracellular vesicles may be a necessary mechanism to prevent not 

unnecessary receptors from diffusing freely into the synapses.     
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5 CONCLUSIONS AND FUTURE PERSPECTIVES  

5.1 MHC-I, POSSIBLE INVOLVEMENT IN THE 

PATHOGENESIS OF MOOD DISORDERS 

The differential levels of brain development at various ages may be responsible for the 

differences observed in the clinical manifestations and the response to therapy between 

children and adults. This study highlights the fact that the expression of MHC-I and 

CD3ζ in the hippocampus is vulnerable during selective periods of development. 

Speculations of a link between neuropsychiatric disorders and environmental effects 

such as brain insults occurring early in life, has been previously made. Our study 

emphasized the role of TNF-α as a factor that could alter the MHC-I/CD3ζ signaling 

system. Taking into account the dual role of MHC-I and CD3ζ molecules as regulators 

of development and plasticity in the CNS, alterations in their expression levels may be 

involved in the pathogenesis of neuropsychiatric disorders. Further research techniques, 

knockout mice, behavioral studies and antibodies that can recognize individual MHC-I 

proteins are required to get a deeper insight on the possible role of this signaling system 

in the pathogenesis of neuropsychiatric disorders. 

5.2 CALCIUM SIGNALING, POTENTIAL TARGET FOR 

BIPOLAR DISORDER TREATMENT 

Understanding the mechanism of drug action can aid in understanding disease 

pathology and help develop more target-specific medications. In our study we highlight 

the down-regulation of calcium as a potential target for lithium action. Together with 

previous reports on the hyperactivity of intracellular calcium ion mobilization in the 

peripheral cells of bipolar patients, one can speculate that calcium hyperactivity may 

play a role in the pathogenesis of bipolar disorder. Further research is required to study 

calcium homeostasis in the brain of bipolar patients, and to develop more targeted 

medications with fewer side effects. 

Calcium homeostasis is crucial for normal-functioning neuronal circuits and for the 

synaptic plasticity of the brain. Furthermore, this is fundamental for brain function in 

adulthood, more specifically during development. This indicates that the use of 

lithium during childhood and adolescence is suitable, where neuronal circuits and 

synapses are in the phase of maturation. Moreover, the long term effect of lithium on 

less mature brain should be considered. Although rat animal studies shows that 
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chronic lithium treatment magnifies learning in rats, more clinical research is required 

to follow the learning and cognition abilities of children and adolescents treated with 

lithium.    

5.3 5-HT1BRS, POTENTIAL TARGET FOR ANTI-DEPRESSIVE 

THERAPY 

Most research nowadays on the effects of neuropharmacological therapy is directed 

towards studying dendritic receptor expression and organization as main target in 

pathology and treatment of neuropsychiatric disorders. 5-HT system dysfunction is 

implicated in mood disorders especially depression, where SSRIs are widely used as 

anti-depressive therapy. Although SSRIs are highly efficient therapies, their use 

among children and adolescents is still controversial due to their severe side effects. 

A probable cause of such side-effects is the indiscriminate activation of all 5-HT 

receptors at the synapse. Targeting therapy towards the regulation of post synaptic 

receptor subtypes may enable more controlled and directed modulation of 5-HT 

signaling; thereby increasing the treatment specificity. 5-HT1B, 5-HT1B and 5-HT4 

are among the 5-HT receptors implicated in mood disorders. The unique distribution 

and vesicle trafficking we described in our study, sets 5-HT1BRs apart from the 

majority of postsynaptic receptors and opens a new channel for a receptor-specific 

approach to 5-HT signal regulation. Further in vivo and in vitro studies on the effect 

of polyunsaturated fatty acids on the expression and function of 5-HT1BRs could 

provide a new line of therapy for depressive disorders.  
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