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ABSTRACT

The tumor suppressor p53, guardian of the gen@megduced and activated by cellular
stress signals such as DNA damage, hypoxia andatioti of oncogenes. p53
upregulates downstream target genes, that arevewvah cell cycle arrest, senescence,
apoptosis, etc. Mutations in p53 occur frequerahpnd 50%) in many human tumors.
Tumors with p53 mutations often show increasedstasce to chemotherapy, since
many anti-cancer drugs induce p53-dependent apsptosugh DNA damage. Thus
restoration of wild type function to mutant p53 epps as an attractive approach for
novel cancer therapy.

The low molecular weight compounds PRIMA-1 and PRHA'ET were previously
identified in our laboratory. We have shown thathb®RIMA-1 and PRIMA-YET (as
denoted APR-246) are converted to methylene qudinohe (MQ), that binds
covalently to the DNA binding domain of mutant p5&stores its wild type function
and triggers massive apoptosis in cancer cells. weder the exact molecular
mechanism of the mutant p53-dependent apoptosicéadby these compounds was
not elucidated.

In paper I, we demonstrate that PRIMAEL/ APR-246 triggers the mitochondrial
apoptosis pathway in mutant p53 expressing call&e show that early activation of
caspase 2, along with induction of wild type p58j¢a genes PUMA and Bax are
crucial for triggering mitochondrial apoptosis pa#ty. In paper I, we show that
STMA-1, as a Michael acceptor, inhibits cell prefdtion and induces apoptosis in
mutant p53- expressing tumor cells, but not humigioid fibroblasts. The effect of

STIMA-1 is dependent on thiol modification.

p53 family members p63 and p73, particularly tiEWA binding domains share high
structure similarity to p53. That prompted us tsttevhether the mutant p53-
reactivating compound PRIMAYE"/ APR-246 could also rescue mutant forms of p63
and p73. In paper Il and paper IV we show thatNeRILME"/ APR-246 enhances
mutant p63 DNA binding and restores pro-apoptaeticcfions to mutant p§aand p78

in tumor cells. Mutations in p63 in humans causees®# hereditary developmental
syndromes with impaired limb development and skiferkntiation (such as the EEC
syndrome). We found that treatment with PRIMXEY APR-246 promotes
differentiation of mutant p63 expressing keratirtesyisolated from patients with EEC
syndrome.

In conclusion, PRIMA-YET/ APR-246 restores wild type function to mutant p53
family members presumably through interaction withmologous structures in their

DNA binding domain. Our studies shed further ligint the rescue mechanism of
mutant p53 family members and raise possibilitegreatment of mutant p63 carrying

development syndromes such as EEC in the future.



LIST OF PUBLICATIONS

Shen J, Vakifahmetoglu H., Stridh H., Zhivotovsky B., Wam K. G.
PRIMA-1"ET induces mitochondrial apoptosis through activatiboaspase-2.
Oncogene, 2008, 27(51): 6571-6580.

Zache, N., Lambert, J. M., Rokaeus, 8hen, J, Hainaut, P., Bergman, J.,
Wiman, K. G., Bykov, V.

Mutant p53 targeting by the low molecular weightmpound STIMA-1.
Molecular Oncology, 2008, 2(1): 70-80.

Rokaeus N.*Shen J*, Eckhardt I., Bykov V., Wiman K. G., Wilhelm M.
PRIMA-1"ET/APR-246 targets mutant forms of p53 family memip&3 and
p73. Oncogene, 2010, Epub ahead of print (* thei®es contributed equally).

Shen J.,Bykov V., van Bokhoven H., Wiman K.G., Zhou H.
PRIMA-1T targets endogenous mutant p63 and enhances kesaén
differentiation (Manuscript).



CONTENTS

INTRODUCTION ..ottt e e 1
(OF= 1o (o1 SRR UUPPPPPRRI 1
(OF g To T g 1 g T=T =T o) V2SR 2.
O3 e —————— et e et e e a e e e e e e e e aeaaeaeeeraans 2
p53 and its family members p63 and p73 ... eeeevveeiiinnnn. 2
SEUCTUrE Of P53 .. 4
Regulation of P53.......eeiiiiiii s 5
ACHIVatIoN Of P53 . 5
FUNCHION OF P53 ... e e e e e e e e e e e e e e eeeaaanneennna 5
Cell cycle arrest and DNA repair............ceeeeeeeieeeeeveennnnnnns 6
Y 010] 0] 01 IS 7P 6
SENESCENCE ...t e et ememmmmme et e e e eeran e e e eeeees 6
Differentiation and fertility ...............ovmeemeeeeeieeeeeeeeeeeeeeeeins 7
The function of p53 family members p63 @@ .................cceevveenenns 8
Structure of epPIderMiS ..........uvuieccceeiie e 9
Rescue of wild type p53 funciton in cant@&rapy ........ccccceeeeeeevevnnnnnn. 9
Activation of wild type p53.......coooiiiiiicee s 9
NUEHN. e e e e e e e e eeeeeeeaeees 9
RIT A et sttt e e e e e e e e e e e 9
TenoviN-LAENOVIN-6...........uciiiiiiiiie e 9
Activation of mutant p53.........cccceiiiiiiiiii 9
Short PEPLIdES.....cooeeiiiiiiiei e 10
Chemical chaperons ..........cccccce oo iiiiieee e, 10
Small molecular weight compounds ...........cccceeee.ee.... 10
CP-31398...cciiiiiiiiii 10
MIRA 10
PRIMA-1, PRIMA-1"5T/APR-246 ...........cccooovveinnen. 10
STIMA-L .o e e 11
AIMS OF THE THESIS ...t 12
RESULTS AND DISCUSSION......ccuiiiiiiiieiieieecceieeeeie e eeeeenen 13
02T 01T PP PPPPRPPPPR 1
PAPET 1 e e 15
PAPET Tl e 16
PAPET IV .. e 18
CONCLUSIONS ..ot 20
SUMMARY et 21
ACKNOWLEDGEMENTS ...ttt 24

REFERENCES...... oo 33



LIST OF ABBREVIATIONS

ARE
ARF
ATM
ATR
Bax

Bcl2
BH3
DBD
DNA
EEC

Gl

HuR
MDM2
iPS

kDa
Aym

MQ

LIF
MIRA-1
MiRNA
MRNA
NCI
PRIMA-1
PUMA
pRb
SiRNA
STIMA-1
uv
Wig-1
WRAP53

AU rich element

Alternative reading frame

Ataxia telangiectasia mutated

Ataxia telangiectasia and Rad3 related

Bcl2 associated X protein

B cell lymphoma 2

Bcl-2 homology domain 3

DNA binding domain

Deoxyribonucleic acid

Ectrodactyly, ectodermal dysplasia, and cleft Ekepe
Gapl

Human antigen R

Murine double minute 2

Induced pluripotent stem cells

kilo Dalton

Mitochondrial membrane potential

Methylene quinuclidinone

Leukemia inhibitory factor

Mutant p53-dependent induction of rapid apoptosis
MicroRNA

Messenger ribonucleic acid

National Cancer Institute

p53 reactivation and induction of massive apoptosis
p53 upregulated modulator of apoptosis
Retinoblastoma protein

Small interfering RNA

SH targeting compound that induces masap@ptosis
Ultra violet

Wild type p53 induced gene 1

WD40 encoding RNA antisense to p53






INTRODUCTION

Cancer

Cancer is one of the major causes of death workelwidmor cells arise from normal
cells and acquire proliferation advantages througitations, deletions, amplifications,
chromosomal fusions and epigenetic changes sudbN#s methylation and histone
modification, allowing escape from cell cycle cheaints and tumor suppressor genes
(pPRb, p53), and get unlimited replication potentiat later stages, tumors acquire
capacity of sustained angiogenesis, tissue invasioth metastasis (Hanahan and
Weinberg 2000).

Tumor development is a multi-step process with laiities to the Darwinian evolution
theory. The accumulation of several critical genelternations (three hits) gives cells
survival and growth advantage, which lead to clexgansion and tumor development.
Based on that model, all cells in the tumor areaéqutheir capacity to maintain the
neoplastic growth. Recently developed cancer stelinnwodel suggests that genetic
alternations may occur in stem cells. The canesn stells harboring critical mutations
in their genome are capable of both self renewal #Hrey are responsible for
maintaining of the population pool of growing tuniReyaet al., 2001).

Factors such as chemical carcinogens, ultra vidighe, hereditary mutations, viral

infection, inflammation and reactive oxygen spegmeduced during metabolism

contribute to malignant transformation. Major comgots of a solid tumor are stroma
cells, immmune cells and blood vessels, that coeldnanipulated by tumor cells and
create an interactive tumor microenvironment wisapplies the tumor with growth

factors, oxygen and nutrients.

The frequency of different cancer types varieslyakte to environmental factors, diet
and life style and genetic factors. Highest incadenf breast cancer occurs in Nordic
Europe, which is associated with many factors uhidlg diet, higher child-bearing age,
and small number of children per woman. Liver cangsenost common in Asia and
sub-Saharan Africa due to consumption of food cuirtated with aflatoxin produced
by molds growing in nuts and corn and due to clerdw@patitis B and C infections.
Melanoma is most frequently in Caucasians, caugédaldi of skin pigmentation which
renders skin poorly protected from solar radiatiRC, http://www-dep.iarc.fr/).

Cancer therapy

Surgery, chemo therapy, radiation therapy, comiginaif radiation and bone marrow
transplantation and hormone therapy are the mottkwewn and established cancer
treatment. Cancer cells in general proliferate efastthan normal cells.
Chemotherapeutic drugs mainly target proliferaieis. These drugs can be divided
into alkylating agents, anti-metabolites, mitotmigons, topoisomerase inhibitors, and
other anti-tumor agents. They target DNA repliagatimhibit synthesis of new DNA
strands, prevent microtubule assembling/disassaglar they are interfering with
DNA supercoiling. The disadvantage of chemo theraupy radiation therapy is lack of
specificity, thus causing severe side effects. iiffthave also been devoted to the



development of targeted cancer therapy, includmglismolecules or antibodies that
target cancer associated proteins, for instanoeasat kinases.

Examples of targeted drugs include: Erlotinib orcéaa (Roche), a tyrosine kinase
inhibitor, prevents EGF receptor autophosphoryhaticsubsequently inhibiting
downstream cell proliferation signaling cascadeplfaption in non-small lung cell
cancer) (Shepherg al., 2005). Gleevec or STI571 (Norvatis), a tyrosinmeake-Bcr-
Abl inhibitor, blocks it's ATP binding site and siézes it as an inactive conformation
(application in CML) (Weisberg and Griffin 2000)ekteptin, a monoclonal antibody,
binds and blocks a tyrosine kinase receptor, Hagpl(cation in advanced breast
cancer) (Goldenberg 1999).

p53 and its family members p63 and p73

In late 1979, p53 was identified as a cellular @rotvhich coimmunoprecipitates with
the SV40 large T-antigen and it was named as p&3dts molecular weight was
estimated to be around 53 kDa. The p53 gene istedcan the short arm of
chromosome 17p13 (Isolet al., 1986; Kernet al., 1991; Matlashewskat al., 1984).
Originally p53 was regarded as an oncogene, sineeas able to transform cells
together with Ras. Eventually it was realized #hatutant form of p53 was used in the
original experiments and that wild type p53 is eath tumor suppressor. Loss of p53
heterozygosity and mutation of p53 was often oleba many cancers (Baketral.,
1989; Olivieret al., 2002).

Almost 20 years later, p73 and p63 were discovepéd. is located on chromosome
1p36, which exhibits frequent loss of heterozygosithuman cancers (Versteetgl .,
1995). p63 is located in a region on chromosomé&3¢lthat is actually amplified, not
lost, in various cancers (Hilgt al., 2000; Yanget al., 1998). Evolution analysis
suggests that p63 is the ancestor of the p53 faaniithat p53 is the youngest family
member. In contrast to p53, mutations in p63 arkigy@ rare in tumors. Indeed, p63 or
p73 null mice showed defects in neurological, imitaatory or defect in hair follicles,
limb and skin development. (Belgi al., 2010; Yanget al., 2000; Yanget al., 2002).

Structure of p53

The genomic sequence of p53 is transcribed intmANA transcript composed of 11
exons with first two non-coding exons. mMRNA therirenslated to a 393 amino acid
nuclear protein. Studies have also shown p53 hasaasoforms due to its alternative
promoters in the N-terminus and splicing in thee@rinus (Marcel and Hainaut 2009).

The p53 protein contains a transactivation domairproline-rich domain, a DNA
binding domain and an oligomerization (tetramermgt domain (figure 1). The
transactivatin domain (amino acids 20 to 60) is posed of two subdomains and
responsible for p53 transactivation activity. Thexelso a nuclear localization signal
situated between the DBD and oligomerization domainnuclear export and C-
terminal regulatory domains are located at the @&n@ terminus (Levine and Oren
2009).



Cancer hotspot mutations

contact mutations 248 273
structural mutations 175 245 249 282
p53 TA | TA PRD| DBD . Oligo . REG|
1 40 60 95 100 300 325 356 393
g.
o]
(3]
g ¥ &
3 71
§ 0
S 61 ":
w
3 51
s 4] e |
g 3 S 34
S 21
IS
e 19
0+l

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Codon number

Figure 1. p53 protein structure Adapted and revised from Hainaaial, 2010, Cold
Spring Harbor Perspectives in Biology.

The prolin-rich domain consists of five repeats X is shown to be implicated in

the p53 dependent apoptosis (Sakamaral., 1997). The oligomerization domain
(amino acids 320 to 360) is required for formatidrdimers and tetramers. Formation
of tetramer allows higher affinity between p53 dDNA (Chene 2001). The basic
domain (last 30 amino acids) contains two nucleatallzation signals. Post

translational modifications of this region increabe stability and transactivation
activity of p53 (Appella and Anderson 2001). Seleesidues in the C-terminus are
known to be phosphorylated (Ser315 and 392), atetyl(Lys320, 373 and 382), or
SUMOylated (Lys386) in response to DNA damage. NHerminus is more prone to

be phosphorylated (Serl5 and Ser23). Post tramséitimodifications of p53 may

affect stability, protein-protein interactions anahscription activity.

DNA binding domain of p53 is located from aminodscilO0 to 300. It recognizes a
DNA binding motif of two PuPuPuC (A/C)(A/C) GPyPyPy palindromes separated
by a 0 to 21 base pair spacer, where Pu is a pandePy is a pyrimidine (Hoét al.,
2002). p53 can transactivate specific genes byt p53 response elements in their
promoter regions. The DNA binding domain is composé three loops (Chet al.,
1994). The whole structure is maintained by a &ng that binds to the core cysteine
residues Cys176, 238, 242, and histidine His 178erfirst loop. There are in total 10
cysteine residues in the DNA binding domain. Stgky, p53 mutations frequently
occur in human tumors within the DNA binding domahnot spots mutations. These
mutations are structural or DNA contact mutant uffegg 1). In most cases, these
mutations disrupt p53 transcription. This indicasesessential role of p53-dependent
transcription for p53 as a tumor suppressor.

p63 and p73 share high structural homology with, @specially in their DNA-binding
domains (>60% amino acid identity) (Kaghaial., 1997; Osadat al., 1998; Schmale



and Bamberger 1997; Yang et al. 1998). All threatgdns are expressed as several
isoforms due to alternative promoter usage in tierhhinal region and splicing in the
C-terminal region (figure 2). The isoforms of p63 and p73 contain a stedilenotif
(SAM) in their C-termini, that exerts an autoinidoy effect on p63/p73
transactivation and a transcription inhibitory damdoth of which are not present in
p53 (Belyiet al., ; Takadeet al., 1999).
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Figure 2. Structure of p53 family membersAdapted fromStieweet al, 2007, Nature
review.

Regulation of p53

The p53 protein has very short half life, due ®negative feedback loop regulator
MDM2, which is an E3 ligase and is upregulated bg.p MDM2 gene contains two
p53 binding elements (Barak and Oren 1992; Gheah, 1993; Momandt al., 1992).

It could mono- or poly-ubiquitinate the N-terminokp53 and transport p53 from the
nucleus to the cytosol. The ubiquitinated p53 dlrecognized by the proteasome and
get degraded. MDM2 also binds to the p53 transatobr domain, thus inhibiting its
function (Hauptet al., 1997; Kubbutatet al., 1997; Wuet al., 1993). Deletion of
MDM2 in mice is lethal during early embryogenesissdo massive apoptosis. This
phenotype is rescued by double MDM2 and p53 nutienflonest al., 1995; Montes
de Oca Lunat al., 1995). This highlights the critical regulation @53 by MDM2.
MDM2 family member MDMX also negatively regulateS3ptranscription. It forms
heterodimers with MDM2, thus stabilizing MDM2 (Kawet al., 2007). MDMX null
mice are also lethal and can be rescued by p53ivation (Migliorini et al., 2002;
Parantt al., 2001).

pl4ARF, an alternative reading frame protein enddae INK4A locus, prevents the
ubiquination of p53 through binding to MDM2 and shstabilizes p53. p14ARF also
sequesters MDM2 in nucleoli and prevents the iotema of MDM2 with p53 in
nucleoplasm (Chiet al., 1998; Gallagheet al., 2006).

In addition to the regulation of p53 protein owtlihabove, p53 MRNA can be regulated
by several factors. The p53 target Wig-1 and thedmuantigen R (HuR) bind to AU-
rich elements (ARE) in the 3’'UTR and stabilize g mRNA (Vilborget al., 2009;
Zou et al., 2006). Wrap53 (WD40-encoding RNA antisense to pS3Jocated on



chromosome 17 and overlaps the first exon of p58pPARNA can stabilize p53
MRNA by interacting with the 5 UTR (Mahmoueial., 2009).

Another aspect is the regulation of p53 mRNA lev®)smicroRNAs and siRNAs.
MicroRNAs are endogenous RNAs. They are transcrasegrecursor microRNAs that
go through several cleavages to become mature@Riks. They are incorporated in
to the RISC complex, containing an Ago protein guamle the RISC complex to target
MRNAs, whose 3'UTRs are partially complementarthi miRNA. siRNAs (about 22
nt), which are complementary to the target mRNAeawe and degrade them directly.
The 3'UTR of p53 is regulated by several microRN#&s;h as miR-125a, -125b, -504,
-30, and -1285 (Het al., ; Leet al., 2009; Liet al., ; Tianet al., ; Zhanget al., 2009).

Activation of p53

Stress signals such as DNA damage, hypoxia, métabioess, unstable ribosomal
biogenesis, or activation of oncogenes cause aipnn of the p53 protein (Vousden
and Prives 2009; Vousden and Ryan 2009; Zhang arkDQ9).

When DNA damage occurs, protein complexes accumalad get activated at the site
of damage, which leads to activation of kinase3-Kitlase family members ATM and
ATR are activated following DNA double or singleastd breaks, phosphorylate Chk2
and Chk1 and subsequently phosphorylate p53, wirtevents the interaction between
p53 and MDM2 , thus preventing degradation of @&rek and Lukas 2003). DNA-
PK, another member of the PI3-kinase family, cao dle activated following DNA
strand breaks induced by ionizing radiation andiktas p53 by phosphorylating the
MDM2 binding site on p53 (Lees-Millext al., 1992; Morozowet al., 1994; Shietet al.,
1997).

As a gate keeper, an important role for p53 iaétssation by oncogene expression and
abnormal cell proliferation. E2F is a cell proldéé@on-promoting transcription factor.
The activation of E2F induces genes involved inifgmation. p14ARF is transcribed
by E2F and stabilizes p53 protein through its axtgon with MDM2 (Batest al.,
1998; Gallagher et al. 2006). Moreover oncogené/an can probably lead to
aberrant DNA replication and thus activate p53th&DNA damage response pathway
that involves ATM/ATR and Chk2/Chk1 (Bartkoegal., 2005; Gorgouligt al., 2005).

Function of p53

Cell cycle arrest and DNA repair

Stress signals, such as DNA damage induces céd ayest which allows DNA repair.
Classical p53 target genes which trigger cell cactest are p21 and 14-8-8l-Deiry

et al., 1993; Hermeking et al., 1997). p21 bindsatd inhibits function of cyclin
dependent kinase 2 (CDK2), which forms a completh wyclin E and phosphorylates
pRb. Once phosphorylated, pRb releases E2F, thiatranscribe genes involved in
DNA replication. Thus, cells can transit from Giiape to S (DNA synthesis) phase
(Abbas and Dutta 2009). 14-3-3nhibits CDK1(Cdc2) and thus prevents G2/M cell
cycle transition (Taylor and Stark 2001).



In addition, p53 also plays a role in several type®NA repair upon strand breaks and
DNA adduct formation, including nucleotide excisim@pair (NER) and base excision
repair (BER) (Ford and Hanawalt 1997; Zteval., 2001).

Apoptosis

p53 induces several target genes involved in esitrifdeath receptor) and intrinsic
(mitochondrial) apoptosis pathways. Fas receptarp83 target gene. Upregulation of
Fas (the death receptor) by p53 binds with Fasdigéurther activates caspase-8 and
eventually activates caspase-3, an effector caspgzagpase-3 together with other
effector caspases cleave cytoskeleton and ceputéeins and DNA, resulting in DNA
fragmentation and formation of apoptotic bodies l{®tuet al., 1998). p53 induced
genes, that activate intrinsic apoptosis pathwiagijde BH3 family apoptotic proteins,
such as Bax, PUMA and Noxa (Miyashita and Reed ;18@&ano and Vousden 2001;
Odaset al., 2000). Noxa and PUMA help Bax translocate to tiréase of mitochondria
from the cytosol and prevent binding of BCL2/ BCLX& Bax. Bax oligomerizes or
forms complex with Bak on the surface of mitochaadit permeabilizes the outer
mitochondrial membrane, which leads to release rofapoptotic proteins such as
cytochrome ¢ and AIF from mitochondria,. Eventualjgochorome ¢ forms complex
with procaspase-9 and Apaf-1, that activates caspashich caspase-3 (Fulda and
Debatin 2006). p53 also induces PIDD, whose C-tmintleavage product PIDD cc
forms PIDDsome complex with RAIDD and pro-caspag@&i@el and Tschopp 2004).
The PIDDsome complex activates caspase-2 thatisil target mitochondria (Lassus
et al., 2002; Robertsost al., 2002).

In addition, p53 can trigger apoptosis indepenaértanscription. This involves p53
translocation to mitochondria by the help of MDIsk&d direct targeting mitochondrial
membrane(Miharat al., 2003; Speidel 2010).

Senescence

p53 also is involved in senescence, an irreversibll cycle arrest that can be caused
by a loss of replicative ability due to shortenetbrineres, or premature senescence
signals, such as DNA damage, oxidative stress,jentdr starvation and oncogene
activation. Cells are still metabolically activeytibdo not proliferate. Cells become
enlarged and flattened (Dimri 2005; Goldstein aridg& 1974). Shortening of
telomeres activates ATM and ATR that will activgat83. Several other p53 target
genes, including p21 are involved in triggeringeserence (Beausejoet al., 2003;
Evan and d'Adda di Fagagna 2009; Helton and Che#; Zuckermaret al., 2009).

Differentiation and fertility

p53 can also prevent stem cell self renewal andcedtem cell differentiation, thus
eliminating defect stem cells that can contribotéhe development of tumor (Zhao and
Xu 2010). It also has been shown that the actimaifqp53 is one of the bottlenecks for
reprogramming somatic cells to induced pluripostam cells (iPS) (Kawamuet al .,
2009).

Recently p53 has implicated in fertility. LIF, tlgene encoding leukemia inhibitory
factor, a cytokine critical for embryonic implantat, was recently identified as a p53
transcription target gene. Knocking down p53 desgedoth the level and function of



LIF in the uterus and decreases embryonic implamapregnancy rate and litter size
in female mice (Hwt al., 2007).

p53 is also involved in such process as metaboéisith preventing pathological
angiogenesis (Folkman 2006).
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Figure 3. p53 signaling pathways

The function of p53 family members p63 and p73

The full-length TAp63 and TAp73 proteins functios teanscription factors similar to
p53 and induce some p53 downstream targets, syz2lad/DM2, GADD45 and Bax
(Kaghad et al. 1997; Lee and La Thangue 1999; &hal., 1998). However, this
conclusion is drawn only based on exogenous ovegegjon studies. The activation of
endogenous TAp63 so far is only observed in ooaypes DNA damage stress (Seth
al., 2006).

The AN isoforms of p63 and p73 that lack the N-terminahsactivation (TA) domain,
can block the TA activity of the full-length pratsi by forming complexes or by
competing for DNA-binding sites (Gradt al., 2001; Stiewe and Putzer 2002). Recent
studies have also shown thlflp63 andANp73 can activate transcription through an
additional N-terminal domain and transcribe unig68 and p73 targets genes: Rad51,
BRCA2, mrell and Rad50 involved in DNA repair (Ghiet al., 2002; Heltoret al.,
2006; Linet al., 2009; Wolffet al., 2009).

Although p63 and p73 are rarely mutated in humanots (Stranoet al., 2001),
inactivation of p63 or p73 contribute to tumor depeent in mice, and p63 and p73
can cooperate with p53 in tumor suppression (Fleres., 2005; Guoet al., 2009).
TAp63 knockout mice show enhanced genomic instglahd premature aging as well
as defects in maintaining skin proliferation anfledentiation (Suet al., 2009). Mice



with an isoform specific deletion of TAp73 show @ incidence of spontaneous
tumors and increased sensitivity to carcinogensn@3niet al., 2008). Methylation-
induced silencing of the TAp73 promoter has beemdoin lymphoblastic leukemias
and Burkitt lymphomas (Coret al., 1999; Kawanoet al., 1999). TheANp73 and
TAp73 isoforms are co-upregulated in primary rhabgosarcomas and tumor-derived
cell lines, as compared with normal muscle (Garal., 2006). ANp73 isoforms are
expressed at high levels in many different tumpesyand are related to poor prognosis
(Buhlmannet al., 2008). Thus, accumulating evidence clearly inésahat both p63
and p73 may have a role in tumor development.

Mice null for p73 develop neurological and immurgi@l defects (Nemajerowat al .,
2009; Wilhelmet al., 2010). p63 null mice show craniofacial abnormediti limb
truncations, lack of prostate and a complete atlesehan epidermis. The mice die soon
after birth due to dehydration (Cardial., 2006; Millset al., 1999; Signorettet al.,
2000; Yanget al., 1999). Since both mice models die of young ages difficult to
judge the role of p63 and p73 in tumor developm&he ANp63x protein is highly
expressed in basal layers of epidermis and TAp&3only induced in differentiating
cells, indicating the role iMNp63x in stem cell maintenan@nd role of TAG& in
differentiation. However, Studies of TAp63 null mialso show that TAp63 is crucial
for maintenance of the dermal and epidermal stdhpael as it was shown for wound
healing and hair growth (Su et al. 2009). The ekaattions of p63 isoforms require
further investigation.

Heterozygous mutations in p63 are associated wiveral autosomal-dominant
developmental disorders in humans, including theC E&/ndrome (ectrodactyly,
ectodermal dysplasia, and cleft lip/palate) (Bruneteal., 2002; Celliet al., 1999).
Interestingly, the amino acid substitutions in mtig63 in EEC (204, 227, 279, 280,
and 304) correspond to the hotspot mutations in p53

Structure of Epidermis

A fertilized egg undergoes mitotic division, diféatiation and eventually forms an
embryo. During gastrulation and early embryo dgwalent, cells form three different
germ layers: endoderm, mesoderm and ectordermefpisl stratified upper layer of
skin, develops from a single layer of multipotentoderm cells through asymmetric
cell divisions (Wilson and Hemmati-Brivanlou 1998)is composed of basal, spinous,
granular, transition and terminal differentiategela(figure 4). Cells in the basal layer
show the stem cell-like properties and prolifetatenaintain a sufficient epidermal cell
population. Cells from higher layers are more défgiated. The terminal differentiated
upper layer is developed from cross-linked dead eelelopes. Thus epidermis
functions as a physical barrier between the bodlythe environment for prevention of
dehydration and infection (Ecketttal., 2005; Schoenwolf G.C. 2001).
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Figure 4. keratinocyte differentiation. Adapted and revised from Segre J.A., 2006,
Journal of Clinical Investigation.

Rescue of wild type p53 function in cancer therapy

Activation of wild type p53

MDM2 gene is amplified in some tumors which resukexcessive degradation of wild
type p53, mitigating its role as tumor suppressal stress sensor. Several compounds
were shown to stabilize p53 through disruptingititeraction of p53 and MDM2.

Nutlin, a low molecular weight compound, was idiéeti based on detailed structural
analysis of the p53-binding pocket in MDM2. It masithree amino acid residues in
p53 that fit in the pocket. Thus it prevents ubiigation of p53 by MDM2 and
impedes p53 degradation in the proteasome. Themget p53 protein half life results
in upregulation of p53 target genes and triggeliscgele arrest and apoptosis in wild
type p53- expressing tumor cells (Vassilev 20045s¢avet al., 2004).

RITA was identified by screening an NCI library feompounds inhibiting the

proliferation of HCT116 cells expressing wild typ&3. It binds to p53 N-terminus and
inhibits its interaction with MDM2 and p300, thuslsilizing p53, which subsequently
induces apoptosis in wild type p53 expressing céllg does not affect p53 null or
HDF cellsin vitro andin vivo (Issaevat al., 2004); (Grinkeviclet al., 2009).

Tenovin-1 was identified in a screening of chemidatary for compounds which
engage transcription transactivation of wild tyf pn tumor cellsTenovin-1 and its
more water-soluble analog tenovin-6 keep p53 aatgl by inhibiting deacetyleses
and thus activate p53 transcription. Interestinggpovins inhibit p53 null tumor cell
proliferation by inhibiting the protein deacetytajiactivity of SirT1 and SirT2Lain et
al., 2008).

Reactivation of mutant p53

Since p53 is essential for maintaining genome Igtalaind is frequently mutated and
accumulated in cancer cells, restoring wild typecfion to mutant p53 is a promising
strategy to target cancer cells.



The p53 antibody PAB421 that recognizes a C-terimampatope and peptide 46,
corresponding to p53 residue 361-382, were shovatirtulate p53 DNA binding and
restore its pro-apoptotic function (Huppal., 1995; Niewoliket al., 1995; Selivanova
et al., 1997). CDB3, derived from the p53 binding prot&idPP, binds the p53 DNA
binding domain, stabilizes it, and enhances p53sti@ption activity (Friedleet al.,
2002). However, the exact molecular mechanism iregbls still not clear.

Some chemical chaperones, such as polyols (glycand methylamines, are found to
stabilize wild type p53 conformation in mutant pbBvitro (Brown et al., 1997,
Ohnishiet al., 1999; Ohnishiet al., 2002; Welch and Brown 1996). Thus applying
chemical chaperones is also a possible approagteven, this process requires high
concentrations, which limits the application of cteal chaperons in the clinic.

Much effort has also been put on screening for lsmalecular weight compounds that
can restore wild type conformation to mutant p53.

CP-31398 was identified by Fosteral. in a chemical library screening, aiming at
stabilizing the active conformation of the p53 DNwkading domain. CP-31398 can
stabilize wild type p53 conformation in both wilghe and mutant p53 ceils vitro and

in vivo, induce p53 target genes e.g. PUMA, Bax and triggpase-3 activation and
apoptosis (Fosteat al., 1999; Luuet al., 2002; Tanget al., 2007). However, some p53
independent cell death was also observed duringréament (Rippiret al., 2002;
Wischhuseret al., 2003).

The maleimide molecule, MIRA-1, was identified lyeening an NCI library of low
molecular weight compounds. It suppresses celifpration and triggers apoptosis in a
mutant p53-dependent manner. Due to the presents siructure of a maleimide
group, MIRA-1 reacts rapidly with free thiol and iam groups. However, this
compound is toxic to mice and therefore not sugtalibr further preclinical
development (Bykoet al., 2005).

PRIMA-1 was identified by screening the same chamlibrary. It inhibits cell
proliferation preferentially in mutant p53-expregsicells (Bykowet al., 2002a; Bykov
et al., 2002b). Later on, we discovered that PRIMA andnitsre potent analog
PRIMA-1ET/APR-246 are converted to methylene quinuclidingée)), a reactive
electrophil with Michael acceptor activity. We hasteown that it binds covalently to
thiol groups in the mutant p53 DNA binding domaur results suggest that such
modification is responsible for a change in p53faonation towards wild-type and for
the restoration of wild type p53 function and intlon of massive apoptosis in mutant
p53-expressing cells (Lambeital., ; Lambertet al., 2009; Shert al., 2008; Zachet
al., 2008b).

STIMA-1, which has some structural similarities@®-31398, was identified from a
small library of molecules in a screening for maiga®3-dependent growth suppression
in osteosarcoma cells. STIMA-1 has a structuratasttaristics of a Michael acceptor
and thus participates in reactions of nucleopraliitition. As a potent electrophil,
STIMA-1 is prone to react with several potentiaig&ts in cells, such as free thiol
groups. Similar activity was also described for E1B398, MIRA-1, as well as MQ, the
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conversion product of PRIMA-1 and PRIMAM'/APR-246. However,in vivo
treatment with STIMA-1 is limited due to its pasmlubility (Zacheet al., 2008a).

0 0] 0
@%‘m %‘HHB @
N OH N OH N~ BCH,

PRIMA-1 PRIMA-1MET MQ
| APR-246 PN _CH,
0 NH |
0 0
CH NH SN s
| O o 3 = iy
NM > N
0
OMe
MIRA-1 STIMA-1 CP-31398

Figure 5. Chemical structure of mutant p53 reactivéing compounds.
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AIMS OF THE THESIS

The general aim of this thesis is to investigate thechanisms responsible for
reactivation of mutant p53 by PRIMAE'/APR-246 and STIMA-1, and examine the
effect of PRIMA-1"¥T/APR-246 on mutant forms of the p53 family memhe68 and
p73. The study may open new therapeutic applicafionPRIMA-1"T/APR-246.

Specific aims

Paper |
To elucidate apoptotic signaling pathways activatedhutant p53-expressing tumor
cells after PRIMA-YET treatment.

Paper Il
To characterize STIMA-1, a novel mutant p53 targetompound

Paper Il
To investigate whether PRIMAYE"/APR-246 can rescue isoforms of mutant p53
family members p6&nd p73, that share high structural homology Wi8. p

Paper IV

To investigate whether PRIMAYE"/APR-246 can restore wild type function to
endogenous mutant p@&xpressed in EEC syndrome patients.

12



RESULTS AND DISCUSSION
Paper |

PRIMA-1"" induces mitochondrial apoptosis via activation of
caspase-2.

We previously showed that the low-molecular-weigbtmpound PRIMA-TET/APR-
246 reactivates mutant p53, induces apoptosisnmahuumor cells and inhibits tumor
xenograft growthn vivo.

In this paper, we investigated the role of resauethnt p53 by PRIMAMET/APR-246

in the activation of apoptotic signaling pathwayge first observed that PRIMA-
1MET/APR-246 induced mutant p53-dependent loss of méodrial membrane
potential Aym), accumulation of sub-G1 cell population and vatton of pan-
caspases in a dose- and time-dependent mannerrage ttell lines expressing
endogenous mutant p53 (H1299-His 175, Saos-2-HsaBd SKOV-His 175 ). These
results indicate induction of apoptostsym and cell survival were not much affected
in H1299, Saos-2 and SKOV —TA, p53 null cells afleRIMA-1YET/APR-246
treatment.

To further study the involvement of mitochondriaRRIMA-1"ET/APR-246 induced
apoptosis, we examined the status of cytochrorire PRIMA-1VET/APR-246-treated
H1299 and H1299-His175 cells using immunofluoreseestaining. We found that
treatment with PRIMA-Y5T/APR-246 triggered release of cytochrome from
mitochondria to the cytoplasm in mutant p53 expngssells. At later time points,
these cells displayed formation of pyknotic nuabéicative of apoptosis. Furthermore,
treatment with PRIMA-YET/APR-246 in mutant p53 expressing cells induced
expression of wild type p53 target genes Bax antRthat are know to collaborate
and target mitochondrial membrane, leading to dfafpym.

In order to determine the specific capases invoilmaditochondria-mediated apoptosis
induced by PRIMA-YET/APR-246, we assessed activation of caspase-29 #hd -8
by using the fluorogenic caspase substrates. Wedfdbat PRIMA-ET/APR-246
treatment triggered early activation of caspas®ifywed by activation of caspase-9
and eventually activation of caspase-3. The inloibibr silencing of caspase-2 can
block activation of caspase-9 and caspase-3, daduates cell death within certain
time points and concentrations of PRIMXEL/APR-246. Interestingly, loss dfym
induced by treatment with PRIMAYE"/APR-246 couldn’t be rescued by inhibition or
silencing of caspase-2, indicating an existencaltefnative upstream signals involved
in targeting mitochondria. We also observed an atidn of full-length PIDD protein
and its cleavage fragment PIDD-CC in PRIMAEVAPR-246-treated H1299-His175
cells. PIDD is a known p53 target gene and PIDDi€@wvolved in a formation of
PIDDosome complex, which activates caspase-2.

We also tested the combination of both PUMA siRN#Ad acaspase-2 inhibitor in

PRIMA-1ET/APR-246-treated H1299-His175 cells. That did nesuit in any
additional protection from cell death.
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In summary, we have investigated the mechanismRKR-1"E/APR-246-induced
apoptosis with focus on the mitochondrial and deeteptor pathways. We showed
that PRIMA-"6T/APR-246 induces mutant p53-dependent mitochondediated
apoptosis through early activation of caspaseibvied by Aym loss, cytochrome ¢
release, further activation of downstream caspamed33, and apoptosis.

Mutant p53-dependent induction of PUMA and Bax RINRA-1"ET/APR-246 forms

a parallel signaling pathway converging on mitoaran Inhibiting activation of
caspase-2 or knocking down PUMA simultaneouslyndilenhance inhibition afym
loss and apoptosis, as compared to knocking downasre of them, suggesting that
they function in the same pathway and other myté&Btdependent pathways may be
activated by PRIMA-TET/APR-246.
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Paper Il

Mutant p53 targeting by the low molecular weightnpound
STIMA-1

It has been demonstrated that compounds with stalatesemblance to CP-31398
possess activity against tumor cells. Therefore syathesized a number of 2-
styrylquinazolin-4-(3H)-one-related molecules amdf@rmed a cell-based screening to
check the effect on mutant p53-dependent growthpresggion. STIMA-1 was
identified as the most potent molecule. It has Methacceptor activity and can
potentially react with thiol groups in cellular pems. Here we aimed at a detailed
characterization of STIMA-1 with regard to its dyito target mutant p53.

We asked whether STIMA-1 can form adducts with eypsts. We first incubated
STIMA-1 with the cysteine analog N-acetylcysteibNAC) and detected formation of
adducts. The cell growth suppression induced byM&F1 could be blocked by

preincubation with NAC. Compared to STIMA-1, the@gth suppression effect by the
structurally related compound CP-31398 was onlyigdbrblocked by NAC.

We observed a reduced number of free thiol grompedombinant mutant p53 protein
after incubation with STIMA-1 using a maleimide dhimg assay. The number free thiol
groups also reduced in STIMA-1 treated mutant pg3essing cells.

We also found that STIMA-1 upregulates p53 targetes, suppresses cell growth, and
triggers caspase activation and cell death in aamup53-dependent manner, in
contrast to cisplatin and CP-31398. Tumor cellsresging mutant p53 are more
sensitive to STIMA-1 than wt p53-expressing tumels; p53 null tumor cells, or
human diploid fibroblasts. Switching off mutant pBRpression in tumor cells by
doxycyclin made the cells more resistant to STIMAdatment, confirming that the
effect of STIMA-1 is mutant p53-dependent. Finallg showed that mutant p53 DNA
binding is stimulated after incubation with STIMA-1

In conclusion, we have identified STIMA-1, a low lecular weight compound and
Michael acceptor that targets mutant p53 expressunmgor cells and restores
suppression of cell growth and apoptosis activitesmutant p53. This rases the
possibility that thiol group modification plays ale in mutant p53 reactivation and
might give us a lead to develop mutant p53 targedimti-cancer drugs.
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Paper Il

PRIMA-1"ET/APR-246 targets mutant forms of p53 family
members p63 and p73.

In this paper, we investigated whether PRIMMEYAPR-246 can restore wild type
function to mutant p63 and p73 and trigger apoptostumor cells. We first tested the
effect of PRIMA-1"5T/APR-246 on different isoforms of temperature siresip63 and
p73 in H1299 cells. We found upregulation of p633 parget genes p21 and PUMA at
both mRNA and protein level in p@3and p7B-expressing cells. In contrast, pr3
expressing cells were not very sensitive to PRIMATIAPR-246 treatment. We also
found that the treatment leads to supression ofpeceliferation, activation of caspases
and increased cell death in mutant p88d p78-expressing cells, but has less effect on
TAp73u.

We next generated Saos-2 cells stably expressitgndiecible TAp63-R204W or
TAp63y-R304W. We observed that PRIMA™M/APR-246 treatment triggered cell
growth supression in cells expressing TAp&204W or TAp6$-R304W. Moreover,
treatment with PRIMA-YFT/APR-246 induced apoptosis (induction of subG1l
population and active caspases) in TApB304W expressing cells. This effect was
more pronounced in the presence than in the absd#ndexycycline for the TAp63
R304W cells. For the TAp§3R204W-expressing cells, we observed a significaht
cell cycle arrest and a decreased S-phase fragtidicating that this mutant promotes
cell cycle arrest in response to PRIMKEL/APR-246 treatment.

We previously found that PRIMAYET/APR-246 treatment causes a nucleolar
accumulation of mutant p53 along with PML. Here al& examined whether PRIMA-
1MET/APR-246 affects the subcellular localization of tami p63. Treatment with
PRIMA-1YET/APR-246 induced a redistribution of both p63 mtggpartially to PML-
NBs and nucleoli.

To examine the DNA binding of mutant p63, we indedanuclear lysate of PRIMA-
1MET/APR-246 treated TAp63R204W and TAp63R304W cells with p53 consensus
binding oligo nucleotides. We observed an incredseding of p63 to DNA in PRIMA-
1MET/APR-246-treated cells. In addition, we also fotimat p63 downstream targets p21,
Noxa and keratin 14 were induced in PRIMAEVAPR-246 treated TAp63R204W
and TAp63-R304W cells. The induction of keratin 14 protexpeession after treatment
with PRIMA-1YET/APR-246 was only observed at PRIMXS/APR-246
concentrations that did not induce apoptosis.

We conclude that PRIMAMET/APR-246 can restore the wild type function to muta
p63 and p73, that share high sequence homologyN#-bBinding domains with p53.
Treatment with PRIMA-TET/APR-246 triggered cell growth suppression and &gsi®
in mutant p73 or p63 expressing cells. Thus, owlyasrs demonstrates significant
differences among mutant p63 and p73 isoforms regpect to their ability to confer an
apoptotic response to PRIMA''/APR-246.
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Paper IV

PRIMA-1"" targets endogenous mutant p63 and enhances
keratinocyte differentiation

We have shown in paper Ill that PRIMA™/APR-246 can restore pro-apoptotic
activity to mutant isoforms of TAp§3n human tumor cells. However, we wished to
test the effect of PRIMAMET/APR-246 on mutant p63 in a more physiologicalisgtt
ANp630, which shares same DBD as TAp68 found dominately expressed in the
basal layer of epidermis and it plays an importate in stem cell maintanance and
differentiation. The mutations in p@3 are associated with a number of human
developmental defect syndromekere we address the question whether PRIMA-
1MET/APR-246 could reactivate endogenous mutantap88 human keratinocytes
derived from patients with the EEC syndrome andtidrat can stimulate keratinocyte
differentiation.

We first discovered that PRIMAYE'/APR-246 promoted differentiation in both
p63 R204W and R304W expressing keratinocytes. Celimdd tighter cell-cell
contacts, changed to flattened or elongated cetphudogy and a three-dimensional
organization with stratified cell layers in a manm@milar to differentiated wt p63
expressing cells. The untreated mutant p63 exmgd®ratinocytes only form mono
layer in differentiation culture. After treatmetite differentiation morphology in p63
R204W expressing cells is not as pronounced as}3e3dW expressing keratinocytes.
It is plausible that p63 R304W mutant is easiebéorescued by PRIMAYET/APR-
246 than p63 R204W mutant. However, we can notuekclthat inter-individual
variation in the response to PRIMAT/APR-246 and a limited number of patients
have affected our results.

We then observed that K1, K10, Involucrin and T@8ich are involved in classical

epidermal differentiation are upregulated in mufaé®-expressing cells upon PRIMA-
1MET/APR-246 treatment. All these observations suggestbration of keratinocytes

differentiation. Claudin-1, aANp630 target gene is also induced by PRIMA-
1MET/APR-246. This suggests that the transcriptions@ativation activity oANp63

is restored by PRIMAMFT/APR-246.

Our preliminary data showed that PRIMAf/APR-246 also promoted cell
proliferation. Flores’ papers showed that TAp63essential for maintenance of
epidermal and dermal precursors. The hair follageeciated dermal and epidermal
cells from TAp63 null mice undergo senescence. dibee it is also plausible that
PRIMA-1YET/APR-246 treatment may rescue ability of mutant 3po maintain cell
proliferation. Thus the increased cell density walso promote differentiation
machinery (Figure 6).

Thus we demonstrate that PRIMAEI/APR-246 is not only targeting exogenous
mutant p63 in a tumor cell background and promatkant p63-dependent cell death
by apoptosis, but it also rescuing endogenous mid3 in a physiological context
where functional p63 is essential for normal défgration. Our study raises the
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possibility for improved treatment of EEC syndropsaients by mutant p63 rescue in
the future.

&

e @

mutant p63  wild type p63

Figure 6. Model for enhanced differentiation in muaint p63 expressing
keratinocytes by PRIMA-15T/APR-246.
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CONCLUSIONS

Paper |
PRIMA-1"5" induces mitochondrial apoptosis via activation
of caspase-2

PRIMA-1YET/APR-246 triggers apoptosis in a mutant p53 deperndanner.

PRIMA-1"ET/APR-246 induces caspase 2 activation and loasyof in several
tumor cell lines expressing different hot spot mufzb3.

PRIMA-1VET/APR-246 treatment rescues wild type function tdantip53 and
induces p53 target genes: PIDD, Bax and PUMA.

BH3 family members (Bax and PUMA), along with aeticaspase 2 are
essential upstream signaling for triggering mitoetr@al apoptosis pathway.

Release of cytochrome c¢ from mitochondria leadadivation of caspase-9,
followed by activation of caspase-3 and finallyl delath.

Inhibition or silencing caspase-2 rescues cell d@atmutant p53 expressing
cells treated with PRIMAMET/APR-246.

Paper Il
Mutant p53 targeting by the low molecular weight conpound
STIMA-1

STIMA-1 induces mutant p53-dependent growth sugomasand apoptosis in
Saos-2-His273 and H1299-His175 cells.

Mutant p53 expressing cells are more sensitiveliMB-1 than wild type p53
expressing or p53 null cells.

STIMA-1 binds to thiol groups in both recombinanitant p53 and mutant p53
expressing cells.

Pre-incubation with N-acetylcysteine blocks cethwth inhibition effect of
STIMA-1, but not CP-31398.

STIMA-1 improves DNA binding ability of mutant p%8d induces p53 target
genes PUMA, p21 and Bax.
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Paper Il
PRIMA-1 V5T /APR-246 targets mutant forms of p53 family
members p63 and p73

PRIMA-1VET/APR-246 treatment inhibits cells growth and induapoptosis in
H1299 cells expressing tsppand tsp7f, but not H1299 cells expressing
tsp73x.

PRIMA-1VET/APR-246 treatment induces p53/ p63 target geneip241299
cells expressing tspgand tsp7p.

PRIMA-1YET/APR-246 inhibits cell proliferation in Saos-2 sekexpressing
TAp63y R304W or TAp6$ R204W.

The induction of TAp6@ R304W or TAp68 R204W sensitizes cells for
apoptosis or G1 cell cycle arrest after PRIMAZTAPR-246 treatment.

PRIMA-1YET/APR-246 improves DNA binding capacity of TApSR304W
and TAp6Y R204W.

The mRNA and protein level of Noxa and p21 are @edliin mutant p63
expressing cells after PRIMAYE/APR-246 treatment.

Epidermis basal layer marker Keratin 14 is induce®RIMA-1VT/APR-246
treated TAp68 R204W cells.

Paper IV
PRIMA-1 " targets endogenous mutant p63 and enhances
keratinocyte differentiation

PRIMA-1YET/APR-246 improves cells stratification in endogemomutant
p630 expressing keratinocytes.

PRIMA-1VET/APR-246 treatment induces expression of diffeatioth markers
(K1, K10, CYS_ME, involucrin and Transglutaminasé)MRNA and protein
level in mutant p63 expressing cells.

p63 target gene Claudin-1 is upregulated in muté&3t expressing cells after
PRIMA-1"ET/APR-246 treatment.
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SUMMARY

We showed that the low molecular weight compoundIMPR1MET/APR-246
reactivate mutant p53 family members (p53, p63 @), that share high homology
especially in the DNA binding domain. PRIMAY™'/APR-246 stimulated DNA
binding of mutant p53 and p63, restored the prgtyi activities to mutant p53
family members and triggered apoptosis in cultduedor cells. Furthermore, PRIMA-
1MET/APR-246 reactivated mutant p®Promotes differentiation of human
keratinocytes derived from patients carrying endoge mutant p63. These results
indicate that PRIMA-YET/APR-246interacts with the homologous structures in mutant

p53 family proteins and thus restores common fonetidefects.
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