
 
 

From THE DEPARTMENT OF ONCOLOGY-PATHOLOGY 
Karolinska Institutet, Stockholm, Sweden 

 

INTERACTIONS BETWEEN 
NEUROBLASTOMA AND THE 

IMMUNE SYSTEM –  

CELLULAR PATHWAYS AND MEDIATORS 

   

 

 

Lena-Maria Carlson 

 

 
Stockholm 2011 



Front cover: T-cell infiltration in a human neuroblastoma tumor. Photo taken by Dr Philos 
Baldur Sveinbjörnsson.  
 
All previously published papers were reproduced with permission from the publisher. 
 
Published by Karolinska Institutet. Printed by Larserics Digital Print AB, Sundbyberg. 
 
© Lena-Maria Carlson, 2011 
ISBN 978-91-7457-229-2 
  



 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

”Den vägen som jag åker på, den är krokig och dan, 
det händer att jag stannar till ibland, men jag tar mig 
ändå fram ” 
(Jumper, 1996) 



 

 

ABSTRACT 
Neuroblastoma (NB) is an embryonal tumor of early childhood arising in tissues of 
the sympathetic nervous system, such as the adrenal gland and paraspinal ganglia. It is 
the most common extra-cranial solid tumor of childhood, and 10-20 children are 
diagnosed with NB each year in Sweden. The overall survival rate is about 70%, but 
50% of the children in the high-risk group succumb in spite of intense multimodal 
therapy. This warrants the search for alternative treatment strategies. One upcoming 
treatment option is immunotherapy, which represents a specific treatment modality 
with the possibility of minimizing long-term side effects in survivors.  
 
Cellular therapies for NB have previously been discouraged due to the notion that NB 
is a tumor of low immunogenicity. This thesis demonstrates that differentiating agents 
alter the immune phenotype of primary NB tumors and cell lines such as to enhance 
the expression of classical HLA molecules and the adhesion molecule ICAM-1. This 
was paralleled by an increased ability of differentiated NB cells to bind granzyme B at 
the cell surface and translated into enhanced killing by natural killer (NK) cells and  
T-cells. These results argue in favor of differentiation and cellular immunotherapy as 
a combined auxiliary approach for NB patients (paper I). Furthermore, the work 
presented in this thesis demonstrates that tumor-non-specific activated cytotoxic T 
lymphocytes (CTLs) release effector molecules which facilitate immune-mediated 
recognition of NB. Effector molecules from CTLs upregulated HLA class I, ICAM-1 
and Fas at the cell surface and restored the expression and activity of caspase-8 in 
primary NB tumors and cell lines. This rendered NB cells more susceptible to death 
receptor-mediated killing (paper II). 
 
This thesis also demonstrates that primary human NB samples, representing all 
genetical subtypes, harbor tumor-infiltrating T-cells which proliferate in situ. Tumor-
infiltrating lymphocytes were preferentially CD8+, expressed high levels of the 
activation marker CD25 and exhibited a phenotype of memory cells. Autologous 
peripheral blood lymphocytes were exposed to tumor cells in vitro and their 
production of IFN-γ and TNF-α was increased, while an activated phenotype was 
obtained. This indicates that human NB cells do not prevent the generation of active 
T-cell responses (paper III). In the transgenic TH-MYCN mouse model of NB, tumor-
associated inflammation was investigated and NB tumor progression was shown to be 
paralleled by a gradual suppression of intratumoral T-cell responses in favor of 
immature cells of the innate immune system. Anti-inflammatory treatment with low-
dose aspirin displayed a promising efficacy in delaying tumor outgrowth with a 
concomitant abrogation of an inflammatory switch (paper IV). 
 
Taken together, the work presented in this thesis demonstrates that NB can serve as a 
proper target for cellular immunotherapy. It argues for an early implementation of 
immunotherapy in clinical protocols, where differentiating agents and/or the attraction 
of activated CTLs to the NB microenvironment could enhance immune-mediated 
tumor recognition. 
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1 NEUROBLASTOMA 
In 1864, the German pathologist Rudolf Virchow described nodular structures arising 
in the adrenal medulla that contained cells of the sympathetic nervous system [1]. This 
is believed to be the first description of neuroblastoma (NB), but the disease was first 
designated by its name in 1910 by Wright [2]. Ever since, NB has fascinated 
researchers around the world and still today remains a biological mystery in several 
aspects. 
 
Fifty percent of NBs arise in the adrenal medulla, and the remaining half originates in 
abdominal and/or thoracic paraspinal sympathetic ganglia [3] (Figure 1). In Sweden, 
10-20 children are diagnosed with NB every year [4-5]. The median age at diagnosis is 
18 months [4], and NB accounts for 6% of all childhood cancers but 9% of all pediatric 
cancer deaths in Sweden [5]. The 5-year overall survival rate for all children diagnosed 
with NB in Sweden during 2000-2008 was 74.1%, but as low as 54.5% for high-risk 
patients (staging of patients further discussed in section 1.3) [4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.1 THE BIOLOGY OF NEUROBLASTOMA 

NB is an embryonal tumor derived from immature precursor cells present in the neural 
crest. This is a transient structure present during development which harbors 
multipotent progenitor cells that will give rise to diverse mature cell populations such 
as melanocytes and cells of the peripheral nervous system. During the development of 
the nervous system, the balance between apoptosis and proliferation is tightly 
regulated, and a deregulation in this process could promote transformation towards the 
development of NB [6]. Yet no single causative agent has so far been identified for NB. 
It was recently demonstrated that familial NBs (1-2% of all cases) with autosomal 
dominant inheritance were dependent on activating mutations in the anaplastic 

Figure 1. Localisation of 
neuroblastoma. 
Neuroblastoma primary 
tumors derived from the 
neural crest arise in the 
sympathetic nervous system 
including the adrenal 
medulla, sympathetic ganglia 
and paraganglia. 
Neuroblastomas mainly 
metastasize to lymph nodes, 
bone and bone marrow, and 
in infants also spread to liver 
and subcutaneous tissue.  
 
Reprinted with kind 
permission from Springer 
Science and Business Media. 
Johnsen et al., Embryonal 
neural tumours and cell 
death. Apoptosis, 14:424-
438, 2009.  
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lymphoma kinase (ALK) oncogene [7]. Similarly, somatic mutations leading to ALK 
activation were detected in 5-15% of sporadic NBs [7-8]. Germline mutations in 
PHOX2B also predispose to NB, and may present in combination with central 
hypoventilation and Hirschsprung´s disease [9]. Loss of the tumor suppressor NF1 
occurs in the genetic syndrome neurofibromatosis, and this condition is also associated 
with an increased risk of developing NB [10-11]. Intriguingly, children with Down´s 
syndrome do not develop NB [11]. 
 
Divergent biological features of NB underlie the heterogeneous clinical course seen in 
NB patients. Symptoms are largely variable and depend on the location and the pattern 
of metastatic spread of the tumor [12], and approximately 40% of NB patients display 
metastatic disease at diagnosis [4]. The outcome of the disease covers all ranges, from 
spontaneous regression of tumors with certain favorable features, to treatment-resistant 
phenotypes with fatal outcome in spite of intense multimodal therapy. Approximately 
5-10% of detected NBs undergo regression completely without therapeutic 
intervention, which is the highest rate observed in all human cancers. The regression 
may lead to complete disappearance of disease or maturation of the tumor into a 
ganglioneuroma [3, 13-14]. Furthermore, NB in situ is a subclinical tumor-like 
condition in the adrenal medulla with unproven relation to clinical NB and detectable in 
1/250 newborns dying from non-neoplastic causes [15]. Screening for NB, by 
biochemical detection of catecholamine metabolites in the urine of healthy infants, was 
shown to increase the detection rate of early NB without decreasing the number of late 
aggressive tumors or the total number of deaths from NB [16-17].  
 
Underlying mechanisms for the spontaneous regression of NB are still not completely 
understood, but differentiation via nerve growth factor (NGF) /trkA signaling or 
immunological mechanisms have been proposed [18-19]. 
 
 
1.2 PROGNOSTIC FACTORS 

The age of the patient and the clinical stage of the disease have since long been known 
to correlate well to the outcome in NB patients [20]. In a consensus report by the 
International Neuroblastoma Risk Group (INRG) in 2009, age above 18 months was 
proposed as a cut-off for classifying certain patients into higher risk groups [21]. 
Apart from that, basic research has contributed to disclosing molecular, genetical and 
histological patterns that all aid in predicting the behavior of the tumor and the 
individual need for treatment in NB patients [3, 21]. 
 
Amplification of the MYCN oncogene remains one of the most important prognostic 
factors in NB. Overexpression of MYCN leads to deregulated growth and proliferation 
following transcription of target genes [3]. Amplification of MYCN in NB was first 
described by Schwab et al. in 1983 [22] and subsequent studies by Brodeur et al. and 
Seeger et al. revealed its correlation to advanced stage of disease as well as rapid 
disease progression [23-24]. In the Swedish cohort, 27% of investigated NB tumors 
were shown to be MYCN amplified [4]. 
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Other genetical aberrations with particular interest locate to chromosome 1, 11 and 17. 
Deletion of the short arm of chromosome 1 was early discovered to be associated with 
MYCN amplification and later on with worse overall disease outcome [25-26]. On the 
contrary, deletion of 11q was proven to be inversely correlated to MYCN amplification, 
but still linked to decreased event-free survival (EFS) [26-27]. Gain of genetic material 
on chromosome 17q is detected in 40-50% of NB tumors, and is associated with an 
aggressive phenotype of the tumor [3, 28]. The overall DNA content of the tumor is 
also prognostic in the case of infants with NB, with triploid tumors being linked to a 
less advanced stage of the disease [29]. Hence, genetic subsets of significance for 
clinical prognosis include i) tumors with numerical gains and losses but no structural 
aberrations as the most favorable subset; ii) MYCN-amplified and 11q-deleted tumors 
as two different high-risk subsets; and iii) remaining tumors with other segmental 
aberrations including 17q-gain as an intermediate prognostic NB subset [27]. 
 
Another factor of prognostic value is the histological phenotype of the tumor. NB is 
generally described to consist of small, round cells and sometimes displays partial traits 
of differentiation. A system for detailed analyses of histological parameters of 
importance to the outcome of NB was suggested by Shimada et al. in 1984 [30] and in 
1999, it served as the basis for the International Neuroblastoma Pathology 
Classification (INPC) [31] which is now used as the standard histological classification 
of NB tumors.  
 
The trk family of neurotrophin receptors is important for proper development of the 
central and peripheral nervous system. Of special importance for the development of 
sympathetic neurons is the signaling by NGF through trkA [32]. The expression of trkA 
in NB is correlated to favorable outcome and a lack of MYCN-amplification, and trkA 
signaling is suggested to enable differentiation as well as programmed cell death in the 
absence of NGF [33-34]. TrkB, on the contrary, is expressed in aggressive NBs and 
coincides with MYCN-amplification. The ligand for trkB, brain-derived neurotrophic 
factor (BDNF) can also be expressed by NB cells, providing an autocrine survival loop 
[35]. Similarly to trkA, trkC is also expressed in low-stage NBs without MYCN 
amplification and is the receptor for neurotrophin-3 (NT-3) [36]. 
 
 
1.3 STAGING AND TREATMENT STRATIFICATION 

Considering all prognostic variables that should be taken into account when deciding 
on the treatment for NB patients, several staging systems have been suggested through 
the years. In 1971, Evans et al. proposed the first staging system [37]. This system is 
solely based on the local and/or metastatic extent of the disease, and applies the roman 
numerals I-IV, where infants with metastases confined to the liver, skin or bone 
marrow are designated as stage IV-S. In 1988, the International Neuroblastoma Staging 
System (INSS) evolved as a consensus approach to stratify NB patients into risk groups 
[38]. This system classified patients into stages 1-4, with the 4s category still remaining 
for infants with favorable pattern of metastatic spread. The system was revised in 1993 
with more biological parameters taken into account [39]. However, the INSS relied 
upon post-surgical evaluation of the remaining tumor, and was hence dependent on the 
skills of the surgeon. In 2009, so called image defined risk factors (IDRFs), based on 
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the growth pattern of the tumor and of relevance for surgical intervention were 
described [40]. Together with other prognostic factors, including age, histology, MYCN 
status, 11q status and DNA ploidy, the IDRFs provide the basis of the INRG staging 
system (INRGSS) which evolved in 2009, and that allows for pre-surgical risk-
classification of all NB patients [21]. 
 
 
1.4 TREATMENT 

Prior to any treatment decision, NB patients are stratified into risk groups according to 
INRGSS. This will avoid over-treating patients with favorable prognosis and aid in 
identifying patients that need intense multimodal therapy. In general, low-risk patients 
are treated with surgery alone, whereas patients at intermediate risk receive 
chemotherapy prior to therapy if IDRFs exist [12, 41]. 
 
Children stratified into the high-risk group are treated intensively. Initial chemotherapy 
is administered as an induction phase [42-43], followed by harvesting of peripheral 
blood stem cells and surgery. Post surgery, the patients receive high-dose 
myeloablative chemotherapy and a subsequent reinfusion of peripheral blood stem 
cells, and radiotherapy is applied to the area of the primary tumor [44]. However, 
patients may still suffer from residual disease in the bone marrow (minimal residual 
disease). In the 1980´s, it was shown that retinoid compounds could induce 
differentiation of NB cells with concomitant reduction of growth and downregulation 
of MYCN [45-46]. Matthay et al. demonstrated that the addition of isotretinoin (13-cis-
retinoic acid) improved the outcome for high-risk patients, and isotretinoin is now 
incorporated as a maintenance therapy for all high-risk patients following radiotherapy 
[44].  
 
Considering the fact that 45-60% of all high-risk patients still succumb due to disease 
progression [4, 12], the search for alternative regimens is warranted. One such 
upcoming approach is immunotherapy based on monoclonal antibodies (mAbs) 
targeting disialoganglioside 2 (GD2). This will be separately discussed in section 6.4.2. 
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2 THE IMMUNE SYSTEM – AN OVERVIEW 
The work presented in this thesis touches upon some, but far from all, of the 
mechanisms, cells and mediators that constitute the immune system. The following 
section is meant to give a brief introduction to the immune system, in order to facilitate 
further reading. 
 
 
2.1 INNATE VERSUS ADAPTIVE IMMUNITY 

In vertebrates, innate and adaptive immunity co-operate to protect their host from what 
is recognized as foreign. The innate immune system entails dendritic cells (DCs), 
monocytes/macrophages, mast cells, granulocytes and natural killer (NK) cells. Of 
these, neutrophil granulocytes and macrophages provide the first line of defense upon 
bacterial infections. In contrast to the adaptive immune system, the innate immune 
system relies upon germline encoded pattern-recognition receptors (PRRs) that do not 
rearrange upon stimulation [47]. As a consequence, the response mounted is 
immediate, but less specific. The actual structures recognized by the innate immune 
system are molecular motifs that have been conserved through the evolution, such as 
lipopolysaccharide (LPS) from gram-negative bacteria through toll-like receptor (TLR) 
4 [48], or unmethylated CpG dinucleotides present in bacterial DNA through TLR 9 
[49]. Upon stimuli, macrophages can engulf invading bacteria and/or secrete 
biologically active cytokines or chemokines, which are proteins with an intrinsic ability 
to activate and attract other cells of the immune system. Likewise, these initial 
mechanisms, together with histamine release from mast cells, underlie the cardinal 
features of inflammation; calor, dolor, rubor and tumor (heat, pain, redness and 
swelling) [50]. 
 
However, not all bacteria carry structures enabling this pathogen-associated molecular 
recognition, and some may mask such motifs behind capsule-like structures. In 
addition, viruses are rarely eradicated exclusively by innate immunity [51]. Therefore, 
the sole presence of the innate immune system is not enough to eliminate all foreign 
threats, and its shortcomings appear. 
 
The major players in the adaptive immune system are the T- and B-lymphocytes, with 
abilities to recognize details of a molecular structure, such as peptides or proteins. 
These cells carry receptors which are encoded within somatic gene segments, and that 
undergo random rearrangements to produce a broad repertoire of divergent receptors. 
T-cells undergo a tightly regulated selection process in the thymus, whereas B-cells 
mature in the bone marrow, and each lymphocyte carries receptors of a single 
specificity. Upon encounter of a “non-self” structure, DCs initiate a cross-talk between 
the innate and the adaptive immunity, by engulfing the foreign structure and migrating 
to secondary lymphoid organs where an adaptive immune response is mounted. 
Thereupon, a clonal expansion of T- and B-cells occurs, leading to the establishment of 
specific immunological memory, which is solely attributed to the adaptive immune 
system. Hence, adaptive immunity initially generates a delayed response, but upon re-
encounter with the antigen, the response is rapid and effective [52-53].  
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2.2 THE MAJOR HISTOCOMPATIBILITY COMPLEX 

The major histocompatibility complex (MHC) is a genomic region encoding proteins of 
relevance for the adaptive immune system, such as the MHC class I and II genes. In 
humans, the MHC genes are termed Human Leukocyte Antigens (HLA), yet the term 
MHC is often used instead of HLA. The MHC molecules provide an interface for 
interactions between innate and adaptive immunity, and constitute the basis for antigen-
restricted T-cell recognition of target cells as well as T-cell mediated initiation of B-cell 
responses. 
 
Certain features are shared between MHC class I and MHC class II, but major 
differences exist. MHC class I is present on the cell surface of all nucleated cells, and 
preferentially binds peptides of 8-10 amino acids [54-55]. MHC class II, on the other 
hand, is expressed on professional antigen presenting cells (APCs) such as B-cells, DCs 
and macrophages, and bind longer peptides of variable length, usually of 13-17 amino 
acids [56-57]. The peptides presented in the context of MHC class I are derived from 
intracellular proteins present in the cytosol, and functional MHC class I molecules 
assemble with their corresponding peptides and the β2-microbglobulin (β2m) chain in 
the endoplasmic reticulum (ER). The peptide-MHC class I complex will be recognized 
by CD8+ T-cells, thus enabling a survey of the interior of the cell from the outside. In 
contrast, MHC class II molecules are transported out of ER towards endosomes where 
they assemble with peptides derived from proteins that have been endocytosed from the 
extracellular environment. Peptides present in the pocket of MHC class II molecules 
will be recognized by CD4+ T-helper cells, which are needed for the generation of 
proper B-cell and CD8+ T-cell responses [55, 57]. 
 
Of particular relevance for the generation of an anti-tumor immune response, proteins 
engulfed from the extracellular environment may also be presented in the context of 
MHC class I, through a process named cross-presentation. Hereby, proteins acquired 
from the tissue, for example from apoptotic tumor cells, are endocytosed by APCs and 
degraded into peptides that assemble with MHC class I molecules. This enables 
proteins derived from tumor cells to evoke CD8+ T-cell responses, which will be 
further discussed in section 4.4.1 [58]. 
 
In addition to the so-called classical MHC molecules mentioned above, non-classical 
MHC molecules exist which have important immunoregulatory functions. The non-
classical MHC molecules HLA-E and HLA-G present a limited repertoire of peptides, 
and display a restricted pattern of tissue distribution [59-60]. HLA-E and HLA-G, and 
their respective roles in tumor-induced immune dysfunction, will be separately 
discussed in section 5.2.3. 
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3 CANCER-RELATED INFLAMMATION 
 
3.1 THE CONCEPT OF CANCER-RELATED INFLAMMATION 

The linkage between inflammation and carcinogenesis was postulated by Rudolf 
Virchow as early as 1863, when the appearance of leukocytes in tumor samples made 
him hypothesize that chronic inflammation predisposes a tissue to neoplastic 
transformation [61]. More than a century later, in 1986, Harold Dvorak suggested that 
tumor development should be viewed upon as a wound that does not heal, yet 
constantly commences the healing process, including the deposition of extracellular 
matrix and the ensuing influx of inflammatory cells [62]. Although the concept of 
cancer-related inflammation dates long back, the underlying molecular events and 
interactions that connect inflammatory changes with tumor progression are only 
recently beginning to be unraveled. The cardinal features of cancer-related 
inflammation include the presence of inflammatory mediators, an infiltrating 
hematopoietic component, tissue remodeling, angiogenesis and tissue repair [63]. In 
fact, cancer-related inflammation, including these features, was recently suggested to 
be the seventh hallmark of cancer [64], in addition to the previous six hallmarks 
postulated by Hanahan and Weinberg in 2002 [65]. 
 
Conceptual proof for the role of inflammation in tumor development is found in a 
number of studies disclosing a reduced incidence of several cancer types, including 
colorectal, breast, prostate and lung cancer in populations reporting frequent use of 
non-steroidal anti-inflammatory drugs (NSAIDs) [66-71]. Furthermore, chronic 
inflammatory conditions, such as inflammatory bowel disease, hepatitis and 
Helicobacter pylori infection predispose the host to suffer from tumors originating in 
these inflamed tissues [63, 72-74]. 
 
As will be further discussed, cancer-related inflammation is governed by the presence 
of inflammatory molecules and inflammatory cells of the immune system. 
 
 
3.2 MEDIATORS IN CANCER-RELATED INFLAMMATION 

The search for molecules contributing to shaping an inflammatory, tumor-promoting 
microenvironment has intensified in parallel to the upcoming evidence for the role of 
inflammation in malignant transition. A number of subgroups of mediators are now 
recognized as messengers in this interplay; some of the most important reviewed 
below. 
 
3.2.1 Cytokines 

Pro-inflammatory cytokines are major players in tumor development and cancer-related 
inflammation; the most recognized being interleukin (IL) -1β, IL-6 and TNF-α. 
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3.2.1.1 IL-1β 

The involvement of IL-1β in cancer-related inflammation stems from its ability to 
activate host alarm signals, resulting in the induction of pro-inflammatory enzymes and 
other mediators such as cyclooxygenase (COX) -2, inducible nitric oxide synthase 
(iNOS) and IL-6 [75]. Recently, IL-1 β has also been demonstrated to facilitate the 
accumulation of inflammatory myeloid derived suppressor cells (MDSCs) in the tumor-
bearing host [76]. Evidence for the role of IL-1β in tumor progression is further 
strengthened by reports demonstrating a reduced number of metastases in IL-1β 
knockout mice [77] and an augmented metastatic spread upon intravenous IL-1β 
injection [78]. However, IL-1β seems to have a dual role in shaping the inflammatory 
microenvironment; low levels can indeed contribute to the acquisition of a localized, 
favorable inflammatory setting with the initiation of a specific anti-tumor response 
[75].  
 
3.2.1.2 IL-6 

IL-6 not only holds the properties of a growth-signal blocking apoptosis, but also 
possesses pro-inflammatory abilities and is capable of promoting tissue damage and 
enhanced cell proliferation [79-81]. The implication of IL-6 in tumor growth has been 
demonstrated in several cancer types, including multiple myeloma [82], colorectal 
cancer [83], Kaposis sarcoma [84], hepatocellular carcinoma [79], breast cancer [85] 
and recently, NB [86-87]. 
 
3.2.1.3 TNF-α 

Tumor necrosis factor α (TNF-α) was given its name due to the finding that it could 
induce necrosis of transplantable sarcomas in the 1970´s [88]. However, subsequent 
studies revealed that TNF-α was a prominent inducer of shock-related symptoms and 
possessed pro-inflammatory abilities. The effects exerted by TNF-α are conveyed via 
two different receptors, TNF-R1 and TNF-R2, of which TNF-R1 is ubiquitously 
expressed and mediates most pro-tumorigenic properties of TNF-α. The biological 
activity of TNF-R2, on the other hand, is not completely understood, but TNF-R2 is not 
associated with intracellular death domains (DDs) [89]. The pro-inflammatory 
properties of TNF-α are vast and, in the context of cancer, entail induction of 
angiogenesis [90], subversion of infiltrating macrophages to a tumor-promoting 
phenotype [91], induction of suppressive regulatory T-cells (Tregs) [92], contribution 
to remodeling of extracellular matrix and promotion of expression of other 
inflammatory mediators [89]. Furthermore, direct effects of TNF-α are also exerted on 
malignant cells, such as induction of further DNA damage [93], promotion of tumor 
growth [94] and induction of immune evasion and resistance to chemotherapy [89]. 
However, as discussed in section 4.4.1.4, TNF-α also possesses pro-apoptotic 
properties. 
 
3.2.2 Chemokines 

The name chemokine derives from the combination of “chemotactic cytokine” into 
chemokine, and these secreted, cytokine-like molecules are key mediators in the 
migratory patterns of leukocytes but also of tumor cells [95-96]. As ensues, chemokines 
regulate cancer-related inflammation, invasion and metastasis and the cellular source 
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may be tumor cells as well as stromal components. The “CC” and “CXC” chemokines 
constitute the majority of chemokines, and are so termed due to the adjacent or 
separated positioning of their first two cysteine residues, respectively, and the receptors 
are equally termed CCRx/CXCRx. In terms of cancer-related inflammation, the most 
well defined chemokines and their respective inflammatory outcomes are CCL2/5; 
infiltration of tumor-associated macrophages (TAMs) [97], CCL22; infiltration of 
Tregs [98] and indirect stimulation of angiogenesis [99], CXCL9/10; infiltration of 
lymphocytes [100] and CXCL8; infiltration of neutrophils [101]. In the case of NB, 
tumor cells have been suggested to utilize the CCL12/CXCR4 pathway in their 
invasive behavior and dissemination to the bone marrow [102-103]. 
 

3.2.3 Prostaglandin E2 in cancer-related inflammation 

Prostaglandin (PG) E2, a lipid mediator derived from arachidonic acid, is a member of 
the eicosanoid supergroup which is in turn further classically divided into leukotrienes 
and prostanoids, the latter including prostaglandins [104]. The synthesis of PGE2 

requires the presence of either COX-1 or COX-2 to direct the conversion of arachidonic 
acid into prostaglandins. The importance of these pathways in tumor progression has 
been verified in several studies unveiling high expression of both COX-1 [105-106] 
and COX-2 [107-113] in a number of cancer types, including NB, mesothelioma, 
colorectal, breast, ovarian, and bladder cancer.  
 
Bearing the correlation between the COX/PGE2 pathway and tumor development in 
mind, it is intriguing to face the pro-inflammatory properties of this molecule. PGE2 

contributes to creating an inflammatory tumor microenvironment by inducing the 
production of growth factors, angiogenic mediators and other pro-inflammatory factors 
[104]. The PGE2- mediated recruitment of blood vessels nurturing the tumor occurs via 
stimulation of vascular endothelial growth factor (VEGF) production by stromal cells 
[114], immune cells [115] and tumor cells [116] as well as via CXCL1 production by 
tumor cells [117] and via enhanced motility in endothelial cells [118]. Likewise, the 
presence of PGE2 leads to the extravasation of hematopoietic cells from the circulation 
and, as they face the pro-inflammatory milieu within the expanding tumor tissue, they 
acquire a dysfunctional state, further establishing a chronic inflammatory setting [104]. 
In fact, PGE2 has been suggested to contribute to all of the hallmarks of cancer [119]. 
 
The specific immunosuppressive effects of PGE2 will be further discussed in section 

5.3.3. 
 
 
3.3  CELLS INVOLVED IN CANCER-RELATED INFLAMMATION 

The immune system possesses a dual role in cancer development, with an intrinsic 
ability to eradicate established tumors, yet often failing this task and instead being 
undermined by the tumor to promote its progression and expansion by creating a 
chronic inflammatory setting in which the tumor can prosper [63]. In general, anti-
tumor responses by immune cells are generated in the acute inflammatory phase early 
on in tumor establishment, whereas the later stages of carcinogenesis are associated 
with subverted, tumor-promoting immune cells [120]. Within the concept of cancer-
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related inflammation, the innate immune system, normally serving as a rapid, first-line 
barrier against foreign pathogenic agents, holds a prominent position as a promoter of 
tumor development. The ability of the immune system to control cancer is discussed in 
section 4, and the tumor-promoting capabilities of infiltrating inflammatory cells are 
discussed below. 
 
3.3.1 Tumor-associated macrophages 

Circulating monocytes may enter the tumor tissue by extravasating in response to, 
among others, tumor- and stroma-derived CCL2 [121-124], VEGF [125] and 
granulocyte-macrophage colony-stimulating factor (GM-CSF) [126-127]. Following 
infiltration into the tumor territory, monocytes are entrapped in an environment 
inflicting phenotypical and functional changes upon the settling cells, resulting in the 
generation of TAMs [124]. Accumulating evidence underscores the pivotal role of 
TAMs in tumor progression, and uncovers an association between the infiltration of 
TAMs and poor prognosis in follicular lymphoma [128], breast [129], prostate [130], 
and thyroid cancer [131].  
 
Analogous to the classical TH1/TH2 classification of T-helper cells [132], macrophages 
exist as M1 or M2 subsets (Figure 2). M1 macrophages are activated by microbial 
alarm signals, or in response to interferon (IFN)-γ, and constitute a potent first-line 
defense against intracellular pathogens. These macrophages exhibit properties of potent 
APCs, promote TH1 responses, generate high amounts of toxic compounds such as 
nitric oxide (NO) and reactive oxygen intermediates, and even possess tumoricidal 
capacities [133-134]. M1 macrophages are defined by their high expression of MHC 
class II, iNOS, TNF-α, IL-12 and IL-23, as well as a low expression of IL-10 [124, 
133-136]. The presence of M1 macrophages within a tumor tissue is a rare event, 
virtually only to be expected at early phases of tumor development [133]. 
 

 
 
 
 
 
 
 

Figure 2. The M1 and M2 phenotypes of tumor-associated macrophages. M1 macrophages 
promote NK-cell activity via secretion of IL-12, and TH1 responses by producing CXCL9 and/or 
CXCL10. M1 macrophages also express co-stimulatory molecules and MHC class II, thus 
functioning as APCs. They also produce toxic compounds such as NO and ROI. M2 macrophages 
contribute to tissue remodeling via MMP expression and to angiogenesis by secreting VEGF. TH2 
responses and Treg recruitment are promoted by M2 TAMs via secretion of CCL17 and/or CCL22. 
SR=scavenger receptor, ROI=reactive oxygen intermediate.  
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In the course of tumor growth, TAMs subvert from an M1 to an M2 phenotype, due to 
an inhibited NF-κB signaling [137] and external influences in the presence of IL-4 
[133], IL-10 [133, 137-138], IL-13 [133], transforming growth factor β (TGF-β) [127, 
137] and PGE2 [124, 133, 137]. M2 macrophages are defined by their low expression 
of IL-12, IL-23 and MHC class II as well as a high expression of IL-10, TGF-β, 
macrophage mannose receptor (MMR), arginase-1 (Arg-1) and scavenger receptors 
[136, 139-140]. The pathways exploited by TAMs to promote tumor growth are 
several, and include i) tissue remodeling via secretion of matrix metalloproteinases 
(MMPs) and other tissue degrading enzymes [124, 133, 141]; ii) production of 
angiogenic and growth promoting substances such as VEGF, platelet-derived growth 
factor, epidermal growth factor (EGF) and thymidine phosphorylase [142-145]; iii) 
promotion of enhanced migration and ability to metastasize [134, 146-150]; and iv) 
inhibition of adaptive anti-tumor responses via induction [151] and recruitment [98] of 
Tregs, inhibition of TH1 effector cells by the expression of indoleamine 2,3-
dioxygenase (IDO), TNF-α and nitric oxide (NO) [152-153] and inhibition of DC 
maturation [124]. The importance of the M1 and the M2 phenotypes of macrophages in 
tumor development was elegantly demonstrated by a complete eradication of 
established tumors upon restoration of the M1 phenotype in TAMs [154]. 
 
3.3.2 Myeloid derived suppressor cells 

The presence of  hematopoietic cells with immunosuppressive activity as a parallel 
phenomenon to tumor progression has been recognized since the 1980´s [155], yet the 
experiments enabling to pinpoint these cells as immature myeloid cells were pursued in 
the 1990´s [156-157]. Today, these cells are recognized as MDSCs, a heterogeneous 
population of immature myeloid progenitor cells, containing precursors of DCs, 
macrophages and granulocytes [158]. A number of markers have been exploited to 
identify MDSCs and still today, different molecular characterizations indeed exist. In 
mice, the co-existence of Gr1 and CD11b is preferentially used to define these cells, 
although subsets of monocytic or granulocytic MDSCs with diverse suppressive 
mechanisms occur within this definition [158-160]. In humans, the definition of 
MDSCs has been somewhat more complicated, since there is no homologous marker to 
Gr1 [158, 161], and today the most common, but not exclusive, definition is based 
upon the expression pattern lineage-(Lin-)HLA-DR-CD33+ [158, 162]. 
 
In a chronic inflammatory condition, such as cancer, the differentiation of MDSCs into 
functional immune cells is prevented, and instead, these cells are activated in their 
immature state [158]. The expansion and recruitment of MDSCs into tumor tissue have 
been reported to occur mainly due to tumor-derived factors, such as PGE2 [163], IL-6 
[164], GM-CSF [165], VEGF [166], TLR ligands [167] and IL-1β [76]. The activity of 
MDSCs, on the contrary, is promoted mainly by stroma- and T-cell-derived factors, 
such as IL-4 [168-169], IL-13 [168-169] and IFN-γ [170]. 
 
MDSCs master a number of immunosuppressive modalities hampering adaptive and 
innate immune responses, including i) depletion of L-arginine via Arg-1 and iNOS, 
resulting in downregulation of the T-cell receptor (TCR) [171]; ii) production of 
reactive oxygen species [172]; iii) induction of Tregs [173]; iv) perturbation of cysteine 
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uptake by T-cells [174]; v) production of suppressive cytokines [175]; and vi) curtailing 
the expression of L-selectin on T-cells and thereby blocking their trafficking to lymph 
nodes and sites of inflammation [176]. Non-immunological mechanisms utilized by 
MDSCs favoring tumor development include the promotion of angiogenesis [177]. 
There are now several reports demonstrating elevated levels of circulating MDSCs in 
patients with various cancer diagnoses [166, 178-180], and the frequency of MDSCs 
has been shown to correlate to clinical tumor stage and metastatic tumor burden [162]. 
 
3.3.3 Dendritic cells 

DCs normally serve as professional APCs in their mature state, regulating adaptive 
immunity by providing antigen presentation, cytokine stimulation and costimulation to 
T-cells. Hence, DCs are certainly players with the potential to contribute to anti-tumor 
immunity [181]. 
 
Yet, DCs, in their immature state, have proven to possess tumor promoting abilities 
supporting cancer-related inflammation and progression of established tumors [182]. In 
cancer patients, circulating immature DCs (iDCs) are found at increased levels [183-
184], and tumor tissues contain preferentially iDCs [185]. The impaired differentiation 
of DCs has been attributed mainly to the presence of tumor derived VEGF [186], IL-6 
[187], macrophage colony-stimulating factor (M-CSF) [187], IL-10 [188] and 
gangliosides [189]. Immature DCs are multi-faceted actors in the course of events 
leading to enhanced cancer-related inflammation and tumor growth [182]. 
Immunologically, iDCs are poor inducers of adaptive immune responses, due to their 
low levels of MHC class II, CD40, CD80 and CD86 [182], and DCs isolated from 
cancer patients or tumor bearing mice have indeed demonstrated a reduced capacity of 
inducing T-cell responses, instead generating anergic T-cells [184, 190-192]. 
Attenuation of T-cell responses by iDCs is also achieved via their ability to induce 
Tregs [193] and via the expression of IDO, which depletes the environment from 
tryptophan and hampers T-cell responses [194]. Infiltrating DCs have also been shown 
to promote tumor growth by instructing CD4+ T-cells to secrete IL-13, which in turn 
drives tumor growth [195]. Additionally, recent reports have disclosed the ability of 
iDCs present within tumors to stimulate angiogenesis [196-197].  
 
 
3.4 TARGETING CANCER-RELATED INFLAMMATION 

Apparently, the inflammatory pathways being exploited during tumor initiation and 
progression are by several means potent confederates assisting the tumor by subverting 
anti-tumor responses and by directly stimulating tumor growth. Hence, the ability to 
target cancer-related inflammation as an epiphenomenon in cancer patients would 
potentially bring about beneficial clinical effects, and upcoming evidence indeed 
validates this hypothesis. 
 
3.4.1 Targeting cytokine and chemokine pathways 

Various attempts have been pursued to target cytokines, chemokines and/or their 
receptors, which promote cancer-related inflammation. Potentially, one could anticipate 
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a resolution of the immunosuppressive pressure within the microenvironment, 
rendering it more permissive for immunotherapeutic intervention. 
The strong evidence for TNF-α as a tumor promoter prompted a number of clinical 
trials using anti-TNF-α treatment, showing clinical benefits for patients with metastatic 
breast cancer [198], ovarian cancer [199] and renal cell carcinoma [200-201]. Another 
cytokine which has successfully been targeted is IL-6, with clinical benefits for 
multiple myeloma and renal cell carcinoma patients [202-203]. 
 
Turning to chemokines, the major efforts to target these pathways have been by 
interrupting the interactions between CXCR4/CCL12, CCR2/CCL2, CXCL8/CXCR1/2 
and CCL22/CCR4. Antagonists to CXCR4 have induced anti-tumoral and anti-
metastatic responses in mouse models of melanoma, osteosarcoma, breast and prostate 
cancer [204-206], whereas targeting of CCL2 reduced metastatic as well as overall 
tumor burden in models of prostate cancer [99, 207]. A monoclonal antibody directed 
against CCR4 not only reduced lymphoma tumor growth, but also reduced infiltrating 
Tregs and enhanced infiltrating NK-cells [208] and similarly, anti-CXCL8 therapy 
reduced tumor growth in a model of bladder cancer [209]. 
 
3.4.2 Cyclooxygenase inhibitors 

Using NSAIDs to target the inflammatory COX/PGE2 pathway, by selective COX-2 
inhibitors (such as celecoxib), or dual COX-1/COX-2 inhibitors (such as aspirin) [210] 
has, as already mentioned, proven to reduce cancer incidence [66, 68-71, 211-212] and 
affect tumor outgrowth in several animal models of cancer [111, 213-215]. The 
complete mechanisms underlying this correlation are still not fully unraveled, but are 
putatively attributed to direct pro-apoptotic effects on tumor cells [216-217], or reduced 
levels of PGE2, and an ensuing abrogation of PGE2-induced immunosuppression [218-
219], tumor proliferation [220-221] and angiogenesis [222].  
 
In clinical practice, however, the regular administration of NSAIDs is limited by their 
tendency to generate peptic ulcers among frequent users [223], and interfere with 
hemostasis, an effect brought upon by inhibition of tromboxane A2 formation in 
platelets, which leads to a defect in platelet aggregation [210, 224]. Intriguingly, these 
anti-platelet effects mediated by NSAIDs or other anti-coagulants have been proposed 
to reduce the number of metastatic tumors [225]. To minimize the risk of 
gastrointestinal side-effects, the selective COX-2 inhibitors were designed, but instead 
conferred an increased risk for cardiovascular events due to their inhibition of PGI2 

synthesis which has restricted their clinical impact in certain risk groups [226]. 
However, quite recently, emerging evidence validates the daily usage of low doses 
(approximately 75mg) of aspirin, minimizing the risk for cardiovascular events and still 
retaining the cancer-protective effects [227-229]. Lower doses of aspirin are known to 
acetylate COX-2, and redirect the conversion of arachidonic acid towards the synthesis 
of anti-inflammatory lipoxins and resolvins [230-232], and herein resides a potential of 
exploiting this pathway to diminish cancer-related inflammation [233] with minimized 
side-effects. 
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3.4.3 Targeting inflammatory cells 

In light of the devastating outcome of TAMs and MDSCs present in the tumor 
microenvironment, or systemically, the search for strategies to eliminate these 
subpopulations is warranted, and ongoing [234-235]. Targeting of MDSCs has been 
pursued using four major strategies [234]; i) forcing MDSCs to differentiate into 
mature cells using all-trans-retinoic-acid [236] or vitamin D3 [237]; ii) inhibiting the 
maturation of MDSCs from precursor cells by targeting of the signal transducer and 
activator of transcription (STAT) 3 [238]; iii) reducing the accumulation of MDSCs by 
interrupting CXCR2 or CXCR4 signaling [239]; and iv) disrupting the inhibiting 
functions of MDSCs, such as attenuating Arg-1 and iNOS activity using nitroaspirin 
[240] or COX-2 inhibitors [241]. The COX-2 inhibitor celecoxib was shown to reduce 
the total number of MDSCs when combined with the cytostatic drug gemcitabine in 
tumor bearing animals [241-242]. 
 
The diversity of TAMs offers several therapeutic targets [235]. The most straight-
forward attempts to interfere with TAM-related pathways include the administration of 
clodronate-encapsulated liposomes or bisphosphonates such as zoledronic acid, which 
completely depletes macrophages and have proven to inhibit tumor growth in vivo 
using animal models [142, 243]. An alternative approach aims at intervening in the M1 
to M2 transition of TAMs, which has been achieved using zoledronic acid and the 
combined administration of an anti-IL-10 receptor antibody with CpG. Both settings 
clearly reduced tumor growth in vivo using mouse models [154, 244]. A recent 
publication also demonstrated that an M2 to M1 transition can be achieved using a 
glycoprotein, histidine-rich glycoprotein (HRG), with subsequent inhibition of tumor 
growth [245]. 
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4 IMMUNOSURVEILLANCE 
The idea that the immune system can scan its host for and eliminate arising neoplastic 
cells is collectively termed “immunosurveillance” [246]. Below, the history of this 
concept as well as the evidence for its existence and executing functions are reviewed. 
 
 
4.1 IMMUNOSURVEILLANCE: A WALK THROUGH THE 20TH CENTURY 

The very initial suggestion that the immune system would be searching for and 
eliminate continuously arising cancers was postulated by the immunologist Paul 
Ehrlich as early as in 1909 [247]. By then, the level of understanding of the immune 
system was however not sufficient to grasp the theory behind this statement. Hence, it 
was not until the middle of the 20th century when the experimental possibility arose to 
immunize mice against a subsequent tumor challenge [248], that the theory of the 
immune system as a gatekeeper in cancer development was revived. Although the 
underlying mechanisms of tumor rejection in early experiments were most likely due to 
allograft reactions, subsequent studies in the 1960´s using inbred mouse strains 
supported the existence of tumor-associated antigens (TAAs) and a specific 
immunological mechanism responsible for tumor rejection [249-250]. The following 
statement postulated by Sir Macfarlane Burnet in 1957 launched the new era of the 
cancer immunosurveillance theory [251]. 
 
“It is by no means inconceivable that small accumulations of tumor cells may develop 
and because of their possession of new antigenic potentialities provoke an effective 
immunological reaction with regression of the tumor and no clinical hint of its 
existence.”  
 
This statement, together with studies performed at this time, and similar conclusions 
drawn by Lewis Thomas, increased the belief in immunosurveillance during this epoch 
[251-254]. Yet, in the 1970´s, the theory was disputed. In experimental models, 
athymic mice did not display any increased incidence of spontaneous cancers [255-
256], and likewise no increased susceptibility to chemically induced tumors. Since at 
this time, these mice were believed to be more or less totally immunocompromised 
[257], the theory of immunosurveillance was as a consequence virtually abandoned. 
 
The reply, however, was to come. In the late 1970´s the field was revived upon the 
discovery of the NK-cells [258], and that these cells could possibly mediate 
immunosurveillance. At the same time, it became clear that the athymic mice used in 
above mentioned experiments indeed harbored some functional T-cells, NK-cells and 
γδ T-cells, which could still exert immunosurveillance [259]. The next step towards the 
understanding of immunosurveillance came in the 1990´s and in the early 21st century, 
when studies revealed an increased incidence of spontaneous as well as induced tumors 
in IFN-γ-/-, IFN-γ-R1-/- [260-262], perforin-/- [262-264] and recombination activating 
gene (RAG) 1/2-/- [265] mice, which all have immunological defects of varying degree.  
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4.2 EVIDENCE FOR IMMUNOSURVEILLANCE IN HUMANS 

Even though it is still being questioned by some, the theory of cancer 
immunosurveillance is in line with several epidemiological as well as experimental 
observations correlating the immunological status of an individual to the risk of 
developing cancer. First, it has been shown that transplanted patients who are subjected 
to immunosuppressive agents have a greater risk of developing cancer, including virally 
as well as non-virally induced tumors such as melanoma, lung and head and neck 
cancer [266-268]. Second, a prospective study showed that a high level of cytotoxic 
capacity of lymphocytes in the peripheral blood correlates to a decreased risk of 
developing cancer, whereas a low cytotoxic capacity puts the individual at greater risk 
[269]. Third, genetic deficiencies disarming the immune system, such as perforin 
deficiency, are proposed to impair immunosurveillance, leading to an increased 
incidence of lymphoma [270]. Fourth, the presence of tumor-infiltrating lymphocytes 
(TILs) in tumor samples has proven to predict patient survival in several cancer types, 
including melanoma [271], glioblastoma [272], colon [273-274], ovarian [275-276], 
breast [277] and stage T3/T4 bladder cancer [278]. Fifth, there are more than thirteen 
case-reports describing the re-appearance of donor-derived melanoma in organ 
transplanted patients, originating in a long-time “cured” donor (a disease-free interval 
of the donor of up to 32 years has been described), which is suggested to occur due to a 
lack of immunosurveillance in the immunosuppressed transplant recipient [279-280]. 
 
 
4.3 TUMOR-ASSOCIATED ANTIGENS 

The ultimate event taking place as a result of immunosurveillance is the elimination of 
a cancer cell by an effector cell of the immune system [246]. For this to occur, the 
effector cells need to perceive the neoplastic cell as foreign. As the concept of 
immunosurveillance settled, researchers started to understand the events enabling 
tumors to induce immune responses. In the 1980´s, it became clear how peptide 
fragments derived from viral proteins were presented to the immune system via HLA 
class I molecules on the cell surface [281], and ensuing reports followed in the early 
1990´s which described the first HLA class I-restricted epitopes from melanoma 
antigens which could evoke anti-tumor responses [282-285]. Similarly, HLA class II-
restricted epitopes derived from TAAs were identified during that decade [286-287]. 
Ever since, a great number of antigens present on tumor cells and capable of eliciting 
immune responses have been identified in various cancers [288].  
 
In general, TAAs must differ from antigens present in non-transformed tissues in order 
not to induce tolerance. Either TAAs may be modified (through mutations and/or post-
translational modifications) and will appear as an altered, non-self peptide on the cell 
surface, or they may be expressed at higher levels than in normal tissues 
(overexpression) [289]. In melanoma patients, immune responses are elicited against 
the cancer/testis antigens MAGE-1 and NY-ESO-1, normally only expressed in the 
immune-privileged testis, and against the differentiation antigens MART-1 and gp100, 
which are normally restricted to melanocytes in certain stages of differentiation. 
Similarly, HER2/neu is often overexpressed above the threshold needed to generate 
anti-tumor responses in breast and ovarian cancer [290]. As an example of post-
translational modifications, aberrantly glycosylated MUC-1 is a TAA present in 
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pancreatic, breast and ovarian cancer [291]. Taken together, the presence of these 
antigen-specific anti-tumor responses demonstrates the ability of the host to apprehend 
a growing cancer as a danger signal.  
 
 
4.4 EFFECTOR CELLS MEDIATING IMMUNOSURVEILLANCE 

The major delegates of the immune system mediating immunosurveillance are T-cells 
and NK-cells, and these cells are described below.  
 
4.4.1 Cytotoxic T lymphocytes 

The importance of having CD8+ cytotoxic T lymphocytes (CTLs) present within the 
tumor to control its growth has already been touched upon, and below, the underlying 
mechanisms for CTL-mediated immunosurveillance are reviewed. 
 
4.4.1.1 The generation of an anti-tumor CTL response 

Circulating naïve CD8+ T-cells in the blood require assistance to develop into armed 
CTLs. The most efficient cell at delivering the necessary signals to activate naïve CD8s 
is the DC, since it is outstanding at engulfing external antigens, such as antigens 
derived from apoptotic tumor cells, and providing the proper signals for activation 
[292-293]. Upon encountering a mature DC in the T-cell areas of a peripheral lymphoid 
organ, or as was recently shown, within the tumor milieu itself [294], the CTL might 
receive all the signals needed to commence the maturation into an armed effector cell. 
The CTL will need three signals to get activated [51]. First, it must recognize the 
peptide for which it is specific for in the context of HLA class I at the cell surface of the 
DC. Second, the CTL needs to receive proper costimulation, or else it is at risk of 
becoming anergic, or even apoptotic [293, 295]. Costimulation is achieved by the 
interaction between CD28 on the CTL and the B7 molecules CD80 or CD86 on the 
DC. Depending on the maturation status of the DC, assistance might be needed from a 
CD4+ T-helper cell to upregulate the expression of CD80/CD86 on the cell surface of 
the DC via interaction between the CD40 ligand (CD40L) and CD40 [296-299]. By 
receiving costimulation, the threshold for the actual number of TCR-MHC interactions 
needed is lowered [300]. Then, third, upon ligation of CD28 and CD80/CD86, the 
synthesis of IL-2 is initiated by the CTL [301], which favors the generation of a 
complete effector response [302]. 
 
Upon receiving appropriate signals, naïve CD8+ T-cells turn into effector cells, and 
undergo a number of changes preparing them for their mission. The generated effector 
cells are re-distributed within the body [303-304] and their extravasation is facilitated 
by an altered expression pattern of adhesion molecules, such as an increased expression 
of, among others, lymphocyte function-associated antigen-1 (LFA-1) and very late 
antigen-4 (VLA-4), as well as a decrease in CD62L (L-selectin) [305-306]. Following 
the initial expansion, 90-95% of CD8+ T-cells will be eliminated in a contraction phase, 
with the remaining cells forming the T-cell memory pool. These memory cells are then 
sustained in the body, and categorized into central memory (TCM), effector memory 
(TEM) and TEMRA cells, based on their expression pattern of, among others, CD45RA 
and CCR7 [307]. The memory cells provide the basis for the ability of the immune 
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system to rapidly re-generate effector responses against previously encountered 
antigens; TEM cells home to sites of inflammation, carry high contents of perforin, 
display rapid effector functions and confer immediate protection, whereas the TCM cells 
prevail in lymphoid tissues and are able to clonally expand and re-direct into TEM cells 
upon antigen encounter, hence providing the long-term protection. TEMRA cells, which 
constitute a part of the TEM pool, are not as well characterized, but known to carry the 
highest content of perforin [307]. 
 
Below, the major pathways utilized by activated CTLs to eliminate a target cell will be 
discussed. 
 
4.4.1.2 CTL cytotoxicity: The granule exocytosis pathway 

The importance of the granule exocytosis pathway (the granule-mediated / the 
perforin/granzyme pathway) in mediating CTL cytotoxicity has been demonstrated in 
several studies [308-311]. The model, which was first proposed in 1985 [312], suggests 
that cytolytic granules are released by activated CTLs into the immunological synapse 
between the CTL and the target cell expressing the correct peptide-MHC class I 
complex, and hereupon the content induces cell damage within the target cell [310]. 
This ensures a rapid destruction only of target cells presenting the peptide for which the 
CTL is specific for.  
 
The model supports the significance of two major components within the granules; the 
pore forming protein perforin, and the serine protease granzyme B (GrB). It was early 
demonstrated that perforin alone could not induce the complete death-cascade [313], 
and that assistance by GrB was required to induce target cell apoptosis [314-315]. 
Today, although GrB and perforin are acknowledged as important mediators of the 
granule exocytosis pathway, their exact mode of action is still a matter of debate [316]. 
 
One topic which has been extensively debated is the role of perforin in mediating 
cytotoxicity. The fact that perforin, upon release into the immunological synapse, could 
polymerize and create a pore in the target cell membrane [310, 317] generated the 
hypothesis that perforin would be responsible for the subsequent entry of GrB through 
this pore. However, the pores generated by perforin were soon described as too narrow 
for this to occur [318], and the primary importance of perforin was instead attributed to 
its assistance in releasing GrB from the endosomes after uptake in the target cell [319-
321].  
 
In addition, the underlying mechanisms for GrB entry into the target cell have been 
debated. Eventually, evidence argued that GrB enters the target via route(s) 
circumventing the need of perforin-generated pores, and several other plausible 
mechanisms have been discussed [316]. Following the release of GrB in complex with 
serglycin into the immunological synapse [322], the subsequent uptake into the target 
cell has been suggested to involve receptor-mediated endocytosis, through the 
mannose-6-phosphate receptor [323-324]. However, later it was shown that entry still 
occurred via micropinocytosis in the absence of this receptor [325-326]. Other 
proposed mechanisms for the entry of GrB into the target cell include binding to heat 
shock protein 70 (Hsp 70) [327], and ion-exchange of serglycin to heparin sulfate 
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glycosaminoglycans on the target cell membrane [328]. Furthermore, others claimed 
that GrB was internalized during reparative endocytosis as a consequence of membrane 
pores generated by perforin [329-330]. 
 
Reaching the interior of the target cell, GrB can initiate the apoptotic machinery 
directly by activating pro-caspase-3, or indirectly via activation of caspase-8 [331-332]. 
Additionally, GrB can induce caspase-independent cell death through an alternative 
pathway involving direct mitochondrial damage and cytochrome c release [333]. 
Furthermore, caspase-independent DNA fragmentation can occur by inactivation of 
ICAD, the inhibitor of caspase-activated DNAse (CAD), which in its free form initiates 
a DNA fragmenting cascade [334] (Figure 3). 
 
In addition to GrB, cytotoxic granules also contain other granzymes such as GrA, GrM 
and granulysin, with somewhat modified modes of action (reviewed in [310] and 
[321]), but these are beyond the scope of this thesis. Finally, it deserves to be stressed 
that an activated CTL, as compared to a naïve CD8, is indeed a carrier of increased 
amounts of the cytolytic components described above [335-337].  
 

 
 
 
 
 
 
 
 
 
4.4.1.3 CTL cytotoxicity: The death receptor pathway 

Targeting a tumor cell in an HLA-restricted fashion requires an intact HLA class I 
expression, which in the light of HLA downregulation as a tumor escape mechanism 
(discussed in section 5.2) may render CTL-mediated responses insufficient. However, 
this HLA-dependent pathway can be circumvented by employing the death receptor 
(DR)-mediated pathway, taking advantage of DRs on the target cell membrane and the 
expression of their respective ligands on activated CTLs.  
 

Figure 3. Mechanisms of CTL-mediated killing of target cells. CTLs utilize GrB and perforin in the 
granule-mediated pathway to induce target cell death via activation of caspases, mitochondrial damage 
and ICAD cleavage, the latter leading to DNA fragmentation by CAD. In the DR pathway, interactions 
between Fas/FasL and/or TRAIL/TRAIL-R1/2 induce the FADD complex, which leads to caspase 
activation. Secreted cytokines such as IFN-γ and TNF-α can both enhance MHC class I expression and 
induce target cell death on their own. 
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The most well characterized DR ligands include Fas ligand (FasL, CD95L), TNF-α and 
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, Apo-2L). The 
corresponding receptors involved in target cell death are Fas/CD95, TNF-R1 and 
TRAIL-R1 (DR4) and -R2 (DR5), respectively [338]. These DRs belong to the TNF 
receptor superfamily and bear resemblance to one another by their intracellular DDs, 
capable of transmitting death-inducing signals into the target cell [339]. Bearing in 
mind that signaling through DRs does not always lead to cell death, as exemplified by 
Fas-induced proliferation of fibroblasts [340], the DR ligands are here discussed in the 
context of their pro-apoptotic abilities conveying T-cell and/or NK-cell cytotoxicity. 
 
As a prototype for death inducing ligands, FasL was first cloned in the early 1990´s 
[341], and is now well recognized as a DR ligand present on CTLs, NK-cells and  
T-helper cells. The Fas/FasL system has been shown to regulate the peripheral T-cell 
repertoire via activation-induced cell death (AICD) [342], and defective Fas/FasL 
interactions have been shown to result in lymphoproliferative disorders [343-344]. Both 
in vitro and in vivo studies suggest a role for Fas/FasL in tumor immunosurveillance, as 
it was shown that mAbs directed towards Fas could induce cell death in tumor cell lines 
and that a deficient Fas/FasL pathway conferred metastatic capabilities to osteosarcoma 
and melanoma cells [345-347]. The intracellular signaling through the Fas/FasL system 
initiates the death-inducing signaling complex (DISC) through the Fas-associated DD 
(FADD) protein. Through a series of events, this leads to the activation of caspase-8 
and caspase-10, with ensuing apoptosis in the target cell [348-350] (Figure 3). 
 
The function and pathways of TRAIL resemble those of FasL in many aspects. TRAIL 
also participates in regulating the peripheral T-cell compartment by AICD [351], and 
has been shown to suppress metastatic spread in vivo [352-353]. In a similar manner to 
FasL, TRAIL induces the DISC when interacting with TRAIL-R1 or -R2, which in turn 
leads to caspase-8 and/or caspase-10 induction [338, 349, 354]. In addition to TRAIL-
R1 and -R2, TRAIL can bind to osteoprotegerin, TRAIL-R3 and -R4, which are decoy 
receptors lacking or exhibiting a truncated intracellular domain [354-356]. Initially, it 
was suggested that the decoy receptors inhibited TRAIL-mediated apoptosis, but 
subsequent studies have shown no correlation between TRAIL-R3 and -R4 expression 
and sensitivity to TRAIL-mediated lysis [357]. However, TRAIL-R4 has been shown 
to sequester TRAIL-R2 and form an unresponsive complex, hence abrogating TRAIL-
R2 signaling [358]. Uncertainty regarding the possible in vivo regulation of TRAIL 
activity by decoy receptors still remains [354]. When administering recombinant 
TRAIL in vivo, tumor cells were more sensitive to TRAIL than non-malignant cells 
[359], a finding that has encouraged a number of ongoing studies and argues in favor of 
employing TRAIL in cancer therapy [354]. 
 
4.4.1.4 CTL cytotoxicity: Pro-inflammatory cytokines 

Although granule exocytosis and the death receptor pathway are undisputed as the most 
prominent mechanisms whereby CTLs induce target cell death, the release of pro-
inflammatory cytokines, including IFN-γ and TNF-α, is also of importance. Indirectly, 
IFN-γ and TNF-α can promote CTL cytotoxicity by enhancing the immunogenicity of 
the target cell. TNF-α as well as IFN-γ have been shown to increase the expression of 
HLA molecules on the cell surface [360-361], and IFN-γ can efficiently enhance 
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antigen presentation by inducing the immunoproteasome, which will result in an altered 
set of antigenic peptides [362-363]. 
 
The presence of TNF-R1 on a target cell also enables TNF-α to directly induce cell 
death, since TNF-R1, under the premise that NF-κB is inactive, mediates apoptosis 
[364]. Using adoptive transfer of perforin/IFN-γ-deficient CTLs into mice, tumor 
rejection has been reported and was attributed to the secretion of TNF-α [365]. 
Likewise, IFN-γ can also abrogate tumor growth in vivo via indirect mechanisms [366], 
and tumor cells expressing truncated IFN-γ receptors may be resistant to immune-
mediated rejection and display an enhanced growth rate in mice [260]. 
 
4.4.2 CD4+ T-helper cells: Foes in disguise? 

The current view of CD4+ T-helper cells in tumor immunity is paradoxical, and 
contentious evidence supports a protective role as well as a role in tumor-promotion 
[367]. The classical TH1/TH2 paradigm of CD4+ T-cells was first proposed in 1986 
[132], following the recognition that the generation of both B-cell responses [368] and 
CTL responses [369] were dependent on the assistance by T-helper cells. The direction 
of CD4+ T-cells into the TH1 lineage is highly dependent on the presence of IL-12 and 
results in the ensuing production of IFN-γ, IL-2, IL-12 and TNF-α, whereas a TH2 
response is mounted after exposure to IL-4 and tips the balance towards a production of 
IL-4, IL-5, IL-6 and IL-13. The TH1 lineage fosters cell mediated immunity while TH2 
cells promote B-cells and humoral immunity [370]. Below, the current view, which 
underpins the anti-tumor properties of TH1 cells and at the same time positions TH2 
cells in liaison with the tumor, will be discussed. 
 
4.4.2.1 Immunosurveillance by T-helper cells 

T-cell based immunosurveillance of tumors was for a long time mainly attributed to 
HLA class I-restricted CTL responses. Yet, during the last years, the existence of HLA 
class II-restricted peptides from TAAs has been acknowledged, and there are now a 
number of known class II peptides from common tumor antigens, such as MART-1 
[371], NY-ESO-1 [372] and MUC-1 [373], which possess the capability to elicit tumor-
specific CD4+ T-cell responses. Clear-cut proof for a protective role of T-helper cells in 
the tumor microenvironment resides in the correlation between tumor-infiltrating CD4s 
and a favorable outcome in head and neck, cervical and non-small cell lung cancer 
[374-376]. Furthermore, several in vivo models have continuously demonstrated the 
absolute dependence on the presence of CD4+ T-cells for immunological tumor 
rejection [377-379].  
 
However, most tumors do not express HLA class II, and hence fail to directly provoke 
a TCR response in CD4+ T-cells. Alternative pathways are hence likely to be more 
pertinent to the anti-tumor effects exerted by T-helper cells [367]. One proposed 
mechanism involves the activation of tumoricidal M1 macrophages by CD4-derived 
IFN-γ [380], and TH1 CD4s have also been shown to co-operate with NK-cells and to 
render tumors more susceptible to NK-cell-mediated killing by modulating the 
expression of ligands recognized by NK-cell receptors, such as NKG2D [381-382]. The 
anti-tumor effects exerted by IFN-γ have also been attributed to modulation of non-
hematopoietic cells within the stroma, resulting in inhibition of angiogenesis [383]. As 
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a major lineage-specific effect, TH1 cells promote CTL responses by assuring the 
efficient generation of secondary memory responses and by providing costimulation 
and IL-2 [384-385]. Of particular relevance for tumor immunity, T-helper cells have 
been shown to positively regulate CD8 infiltration into the tumor milieu [386-387], to 
promote CTL expansion on site [388] and to enhance the expression of GrB and the 
cytolytic activity of CTLs within the tumor [386, 389]. Indirect effects are thus likely to 
be the most important whereby CD4s suppress tumor growth, yet direct targeting of 
tumor cells utilizing DRs and IFN-γ might also be of importance in some models [366, 
390]. 
 
4.4.2.2 Tumor promotion by T-helper cells 

The TH2 lineage of CD4+ T-cells opposes the anti-tumor ability of TH1 cells. The 
encounter between a CTL and a TH2 CD4+ cell can induce CTL anergy in response to 
cytokines released by the TH2 cell, and thereby abrogate the expected proliferation 
[370, 391]. Furthermore, the cytokine milieu orchestrated by TH2 CD4+ cells can 
directly stimulate tumor growth, as has been shown for IL-13 in breast cancer [195] and 
IL-6 in NB [86-87]. 
 
TH2 cytokines also promote the innate immune system to enhance cancer-related 
inflammation. For example, the activity of MDSCs is highly promoted by T-cell 
derived IL-4 and IL-13 [392] and their accumulation is enhanced by IL-6 [164].  
In a recent publication by De Nardo et al. CD4+ T-cells were shown to promote 
pulmonary metastasis of breast cancer, and the effects were attributed to a CD4-
dependent M1 to M2 transition of macrophages, which was significantly inhibited by 
blocking of IL-4 [393]. But, as true and perplexing as it is for many mediators and cells 
within the field of tumor immunology, there is no law without exceptions. Anti-tumor 
activity by TH2 cells has indeed been demonstrated, and was mainly attributed to the 
induction of cytolytic eosinophils [394-395]. 
 
In line with this, a third lineage of T-helper cells, TH17, defined by its TGF-β 
dependent development and ability to produce IL-17, has been ascribed a dual role in 
immunosurveillance [396]. TH17 cells have shown remarkable anti-tumor potential by 
completely eradicating established melanoma tumors in experimental animal models 
[397], yet their presence correlates to poor prognosis in various cancers and contributes 
to the onset of inflammation-induced colonic tumors [381, 398-399].  
 
Of note, it has been shown that an impaired response to mitogenic stimuli of 
lymphocytes in NB patients with disseminated disease correlates to favorable 
prognosis, suggesting that circulating lymphocytes, including CD4+ cells, may promote 
tumor growth at this stage of disease [400]. 
 
4.4.3 Natural Killer Cells 

Turning to the innate immune system, a cell type with potent anti-tumor activities is 
found in the NK-cell [401]. The existence of NK-cells was demonstrated in 1975 by 
Kiessling et al. and Herberman et al. [258, 402-403]. The original observations 
described the NK-cell as a cell able to lyse tumor cell lines without the need of prior 
stimulation, and this finding reinforced the theory of immunosurveillance at that time. 
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The molecular pathways governing NK-cell activation versus inhibition have ever since 
been intensively studied, and today, it is well established that NK-cell killing depends 
on the net effects of signaling through inhibitory as well as activating receptors [404] 
(Figure 4). 
 
The negative regulation of NK-cell activity was first to be discovered, with the initial 
proposal of the “missing-self” hypothesis by Kärre et al., and subsequent observations 
that MHC expression interfered with in vivo NK-mediated immunosurveillance of a 
murine lymphoma [405-406]. The evidence for a negative effect of MHC expression on 
NK-cell-mediated killing was substantiated when studies revealed that NK-cells 
expressed receptors which, upon recognition of HLA molecules, delivered inhibitory 
signals into the NK-cell [407-409]. These killer-cell immunoglobulin (Ig)-like receptors 
(KIRs), together with the receptor CD94/NKG2A, are considered the major negative 
regulators of NK-cell activity [404], and bind to HLA-A,-B, -C and -G molecules, or 
HLA-E, respectively. The ability to sense a lack of MHC expression as a danger signal 
enables the NK-cell to target virally infected cells, or tumor cells, since these often 
downregulate MHC expression to avoid CTL recognition [410-411].  
 

 
 
 
 
 
 
The expression of MHC on the cell surface is hence a potent disruptor of NK-cell 
cytotoxicity. But still, killing of tumor cells with detectable MHC levels by NK-cells 
can still occur [412], arguing for other mechanisms overriding the inhibitory signals. 
Indeed, NK-cell activity is not only regulated by inhibiting receptors, but also through 
activating receptors [404]. These include the natural cytotoxicity receptors (NCRs) 
NKp30, NKp46 and NKp44, with so far two identified ligands, the human leukocyte 
antigen-B-associated transcript 3 (BAT3) and B7-H6 [413-414]. Another well-studied 
activating receptor is NKG2D, the ligands of which are known to be the stress-
inducible MHC class I-related chain (MIC) A and -B as well as the UL-16 binding 
proteins (ULBPs) [415-416]. NKG2D has been attributed a prominent role in NK-cell-

Figure 4. Regulation of NK-cell activity. NK-cell activity is negatively regulated by inhibiting 
receptors (left side) as well as positively by activating receptors (right side). The corresponding known 
ligands on target cells are also displayed in the figure. NKp30 is shown as an example of NCRs. 
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mediated immunosurveillance, since its ligands are expressed by, and can induce NK-
cell-mediated in vitro killing of cell lines of various origins [417]. Not to be left out is 
DNAX accessory molecule-1 (DNAM-1), an activating receptor with CD155 (the 
poliovirus receptor (PVR)) and CD112 (PVR- related 2) as identified ligands [418]. 
DNAM-1 has been attributed a pivotal role in mediating anti-tumor immunity of NB in 
vitro [419] and of fibrosarcoma in vivo [420]. Of a different type is the activating signal 
rendered upon binding of the Fc region of IgG to CD16 (Fc-receptor (FcR) γIII) 
expressed on NK-cells. This interaction induces antibody-dependent cellular 
cytotoxicity (ADCC) [421-422] and might be of importance when targeting tumors 
with antibodies, as has been suggested for the responses seen in NB to anti-GD2 
therapy [423-424]. 
 
For an NK-cell to eliminate its target it needs to efficiently form an immunological 
synapse with the other cell. This initial interaction has been demonstrated to be highly 
dependent on the interactions between LFA-I on the NK-cell and intercellular adhesion 
molecule-1 (ICAM-1) on the target cell, which not only facilitate physical contact but 
also polarize the distribution of intracellular granules in the NK-cell towards the 
synapse [425]. This interaction has been suggested to modify NB sensitivity to NK-cell 
mediated killing [426].  
 
Once the activating signals have surmounted the threshold needed to initiate NK-cell 
effector functions, the NK-cell has the option to utilize the three major effector 
mechanisms that are also utilized by CTLs; i) NK-cells carry preformed granules 
containing perforin and GrB, which are utilized in the granule exocytosis pathway to 
rapidly kill a target cell [335]; ii) DRs including FasL and TRAIL can be expressed and 
employed by an activated NK-cell [352, 427-428]; and iii) NK-cells produce high 
amounts of cytokines participating in tumor immunity, such as IFN-γ and TNF-α [429]. 
 
 
4.5 IMMUNOSURVEILLANCE IN NEUROBLASTOMA? 

The question regarding whether or not immunosurveillance actually exists in NB 
patients was raised already in the 1960´s and 1970´s when it was suggested that the 
spontaneous regression seen in stage 4s NB patients could be due to anti-tumor 
immunity [19, 430]. Furthermore, observations showed that lymphocytes preferentially 
infiltrated more differentiated NB tumors and correlated to good prognosis [431]. 
Already in 1968, it was discovered that autologous lymphocytes suppressed NB colony 
formation, and similar effects were seen with plasma obtained from NB patients, also 
suggesting the existence of humoral anti-tumor immunity [432]. 
 
The idea that the immune system would play a role in the spontaneous regression of 
NB is strengthened by observations that the expression of MHC class I is more 
prominent in stage 4s tumors [433]. Furthermore, there is one case report describing a 
transient increase in serum levels of granulysin, an effector molecule released through 
the granule exocytosis pathway by CTLs [434], during the spontaneous regression of 
NB [435]. 
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Subsequent studies have revealed that NB indeed expresses several putative TAAs 
[436], such as survivin [437], MAGE-1 [438], NY-ESO-1 [439], MYCN [440] and 
tyrosine hydroxylase (TH) [441]. Indeed, a recent study by Coughlin et al. showed that 
8 of 9 HLA-A2 positive high-risk NB patients harbored circulating survivin specific 
CTLs, and that the majority of these could mount functional IFN-γ responses towards 
survivin in vitro [442]. Furthermore, it has been shown that NB patients display both 
humoral and cellular immune responses towards NY-ESO-1 [443]. Although Coughlin 
et al. noted that intratumoral T-cells were “strikingly rare”, another study demonstrated 
intratumoral expansion of T-cell clones not seen in peripheral blood of NB patients, 
possibly indicative of an on-site immune response [444]. Functional clones have been 
established from TILs residing in NB tumors, further stressing that immunosurveillance 
within the tumor might actually occur [445]. Moreover, NB cells were able to establish 
tumors in T-cell deficient mice, but not in T-cell competent mice, which argues in favor 
of T-cell mediated immunosurveillance of NB [446]. 
 
In NB patients presenting with localized or regional disease, a striking correlation 
between low lymphocyte counts at the time of diagnosis and poor prognosis was seen, 
which indicates that the absence of circulating lymphocytes predisposes the patient to a 
more aggressive disease [400]. Although NB is often described as a tumor lacking the 
necessities for an efficient CTL response, (as discussed in section 5.5), the above 
mentioned studies foretell that immunosurveillance in NB patients indeed exists. 
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5 IMMUNE ESCAPE 
Despite the given evidence for the existence of immunosurveillance, immunocompetent 
individuals still develop cancer, which uncovers an incapability of the immune system 
to completely control the outgrowth of tumors. Today, tumor immunologists claim that 
the escape from immunosurveillance should be incorporated into the hallmarks of 
cancer [65, 246, 447], since the ability to avoid recognition by the immune system is a 
necessity for any tumor to sprout in its host. 
 
 
5.1 CANCER IMMUNOEDITING – THE CONCEPT 

Arising as a complementary theory, or a refinement of cancer immunosurveillance, 
cancer immunoediting is nowadays recognized as a concept incorporating the whole 
aspect of the interactions between the immune system and tumors [246, 448]. The 
theory encompasses the three E´s of cancer immunoediting; the elimination phase, the 
equilibrium phase and the escape phase [449] (Figure 5). During the elimination phase, 
tumor growth is suppressed due to successful immunosurveillance, whereas the 
equilibrium phase symbolizes a state of balance in which the tumor can be 
immunologically sculpted by the pressure exerted by present immune cells. The 
equilibrium phase most often occurs prior to the clinical detection of tumors and will in 
the end lead to survival of the fittest in accordance with Darwinian selection- the tumor 
cell which can avoid immunological recognition will survive. Such a cell will carry a 
phenotype conditioned by immunological pressure, and has been edited to be of low 
immunogenicity. In the escape phase, the selected clones evade and eventually outwit 
the invading effector cells [450]. 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. The three E´s of cancer immunoediting. The theory of cancer immunoediting encompasses 
three phases. In the elimination phase, immunosurveillance prevails and tumor cells are eradicated. In 
the equilibrium phase, the tumor is sculpted by immunological pressure and immune escape variants are 
selected. In the escape phase, these selected clones expand and escape from immune recognition. 
Reprinted with permission from Macmillan Publishers, Nature Publishing Group. Dunn et al., Cancer 
immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 2002.  
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Indirect evidence for the existence of immunological sculpting originates in studies 
revealing that tumors growing in immunodeficient hosts are more immunogenic and 
rejectable when transplanted into immunocompetent hosts, suggesting that the lack of 
immunoediting rendered the tumors more susceptible to immune-mediated clearance 
[265, 451-452]. Furthermore, transplantable tumors that are passed through 
immunocompetent hosts exhibit a subsequent lack of immunological recognition when 
transplanted into another host, arguing for immunoselection of clones with low 
immunogenicity [453]. Below, certain phenomena occurring in parallel and/or due to 
cancer immunoediting, and their importance for the failure of immunosurveillance, will 
be discussed. 
 
 
5.2 ALTERED ANTIGEN PRESENTATION AND RECOGNITION 

The recognition of a tumor cell as foreign by the immune system confers an 
evolutionary drawback to the tumor, since it prevents its sustenance and further 
generation of off-spring. Manipulation of the pathways leading to immune recognition 
is one of several frequent phenomena contributing to tumor escape [450]. 
 
5.2.1 Downregulation of antigen presentation 

Downregulation of MHC class I antigens is a well-known mechanism by which tumors 
escape from immune recognition [454]. In 1976, the first report demonstrated 
downregulation of an H-2K antigen in a murine lymphoma [455], and today, 
substantial evidence reveals a similar pattern of defective HLA expression in various 
human cancers, including among others lung, breast, cervical and colon cancer [456-
459]. An attenuated HLA class I expression has also been shown to correlate to disease 
progression [460-461], and metastatic lesions have a propensity to further downregulate 
HLA expression in comparison to primary tumors [462-464]. In patients receiving 
immunotherapy, an altered HLA expression pattern has been observed for partial 
responders or upon tumor recurrence. For instance, melanoma patients with partial 
responses to T-cell-based immunotherapy frequently display a subsequent loss of β2m 
and/or downregulation of HLA expression [462, 465]. This argues for an in vivo 
immune selection process, sculpting the tumor towards a silent immune phenotype. 
 
The antigen processing machinery (APM), which is responsible for the complete 
assembly of HLA class I molecules with their peptides, is frequently defective in cancer 
cells, which per se leads to a diminished antigen presentation [454]. “Soft” as well as 
“hard” lesions exist, of which the soft lesions (e.g. transcriptional downregulation) can 
be corrected by cytokine therapy, whereas hard lesions (e.g. gene deletion) are 
irreversible and render the tumor refractory to HLA-restricted T-cell-based therapies 
[466]. As an example, the immunoproteasomal subunits low molecular weight protein 
(LMP) -2 and -7 are often subjected to mutations, leading to a deficiency of the 
immunoproteasome and a decreased antigen presentation [467-468]. Likewise, peptide 
transportation into the ER can be prevented due to a decrease in the transporter 
associated with antigen processing (TAP)- 1 or -2 [467, 469-471]. These defects are 
however in some cases restored upon IFN-γ treatment, arguing for a regulatory “soft” 
defect [361, 472]. In ovarian carcinoma, defects in the APM are independent prognostic 
markers for poor survival [473]. 
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Cancer cells that downregulate their surface HLA expression should turn into suitable 
targets for NK-cells, and this has indeed been demonstrated following β2m 
downregulation during T-cell therapy [474]. Yet, evasion from NK-cell killing can still 
occur, putatively due to a lack of activating signals or due to the local 
immunosuppressive microenvironment [450, 475]. 
 
5.2.2 Loss of tumor-associated antigens 

An alternative route to alter the surface immunogenicity is to selectively downregulate 
TAAs dispensable to the tumor but recognized by the immune system [448]. In 
melanoma, representing the most well-defined and illustrative model for the occurrence 
of TAA loss, gp100 and MART-1 expression decrease during tumor development, and 
metastatic melanomas downregulate MART-1 in comparison to localized stage I 
tumors [462, 476-477]. 
 
Another illustrative proof of antigen loss due to in vivo immune selection is the loss of 
targeted antigens during immunotherapy. In melanoma patients receiving antigen-
specific adoptive T-cell therapy, recurrent tumors exhibited downregulation of all three 
targeted antigens (gp100, MART-1 and tyrosinase) post therapy [478]. Similarly, 
melanoma patients with partial responses to peptide-based vaccines had recurrent 
disease with diminished antigen expression [479-481].  
 
5.2.3 Expression of non-classical HLA molecules 

The expression of non-classical HLA molecules, such as HLA-G and -E, provides the 
tumor with the ability to modulate host immune responses [59-60]. Particularly well 
studied is the expression of HLA-G in malignant cells. HLA-G expression has been 
detected and shown to be upregulated in several tumors, including melanoma, lung, 
renal and colon cancer [482-485]. The membrane-bound form of HLA-G interacts with 
the inhibitory receptors KIR2DL4, ILT2 and ILT4, of which KIR2D4 is restricted to 
NK-cells and some T-cells, and the most well recognized outcome of signaling via 
membrane bound HLA-G is the inhibition of NK-cell activity [486-488]. In addition, 
HLA-G may be shed by tumor cells, and in its soluble form it may induce apoptosis of 
activated CTLs [489], further inhibit NK-cell activity [490] and suppress the 
proliferative response within the CD4 and the CD8 compartment [491-492]. 
Intriguingly, high levels of HLA-G have been detected on immature myeloid cells 
infiltrating lung cancer [493], and transfer of HLA-G from APCs to T-cells confers a 
regulatory phenotype to the T-cells [494]. HLA-G may also indirectly contribute to 
immunosuppression by stabilizing HLA-E at the cell surface [495].  
 
HLA-E, in turn, is yet another non-classical HLA molecule with prominent 
immunosuppressive abilities [59]. In normal tissue, HLA-E often fails to reach the cell 
surface [496], but if so, it preferentially binds HLA class I leader sequences including 
that of HLA-G [497]. However, in various malignancies, cell surface expression of 
HLA-E is frequently reported and upregulated as compared to the normal tissue 
counterpart [498-501]. The dominant pathway by which HLA-E inhibits immune 
responses is via interactions with the CD94/NKG2A inhibitory receptor on NK-cells 
and T-cells, leading to a disruption of effector cell function [500, 502-504]. Indeed, a 
relative increase in expression of HLA-E following downregulation of classical HLA 
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molecules is a putative mechanism whereby tumor cells escape from NK-cell mediated 
killing in this scenario [498, 501]. 
 
 
5.3 INHIBITION OF ANTI-TUMOR IMMUNITY 

Suppressive cells within the immune system, as well as immunosuppressive molecules 
derived from tumors and/or immune cells with regulatory abilities, may also contribute 
to immune escape. Below, such immune escape phenomena pertinent to the studies 
included in this thesis will be addressed.  
 
5.3.1 Regulatory T-cells 

The putative presence of a suppressive subpopulation within the lymphocyte 
compartment was postulated in the 1970´s [505], but skepticism prevailed for several 
years, and the field of Tregs experienced its renaissance in the 1990´s, when the first 
evidence delineated a role for regulatory CD4+ T-cells in controlling autoimmunity 
[506-507]. In 2003, it was discovered that the development of Tregs was under control 
of the transcription factor forkhead box P3 (Foxp3) [508]. Ample evidence for the 
crucial role of Tregs in maintaining immunological homeostasis originates in animal 
studies, where a lack of Tregs leads to the onset of various autoimmune disorders, 
mainly due to the unleashing of self-reactive effector T-cells [509-510]. Likewise, in 
humans, Foxp3 deficiency is linked to severe multi-organ autoimmunity [511]. 
 
Circulating Tregs either originate from the thymus as “natural Tregs” or are generated 
in the periphery as “adaptive Tregs”, a derivative from naïve CD4+ T-cells under 
certain circumstances, such as antigen stimulation in the presence of TGF-β [512]. A 
number of markers have been attributed to distinguish Tregs from other CD4+ T-cell 
subsets, such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) [513], CD39 [514], CD25 
(the IL-2R α-chain) [515], GITR [516] and CD127low [517]. Yet the single most 
validated marker to define Tregs remains in Foxp3, which is frequently used in 
combination with CD25 [518]. Tregs hence express the high-affinity receptor for IL-2 
and are likewise highly dependent on IL-2 for their maintenance [519]. Tregs also need 
an initial antigen stimulation and TCR activation, but in their activated state exert 
immunosuppression in an antigen-independent manner [518]. 
 
Accumulating evidence derived from both in vivo and in vitro studies demonstrates a 
role for Tregs in cancer development and progression [515]. High numbers of 
circulating Tregs in the blood, as well as within the tumor itself, are reported in several 
human cancers, including lung [520], breast [520-521] ovarian [98, 275], pancreatic 
[521-522] and gastric cancer [523]. Strikingly, in ovarian cancer, a high ratio between 
tumor-infiltrating CD8+ T-cells and Tregs is associated with favorable clinical outcome 
[275], and in breast cancer, the presence of intratumoral Foxp3-expressing Tregs can 
predict patients at risk of relapse after five years [524]. 
 
Several explanations are provided as to why Tregs selectively accumulate in the tumor 
microenvironment. One notion is that the chemokine CCL22, expressed by tumor cells 
and/or M2 macrophages, promotes the trafficking of CCR4-expressing Tregs into the 
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tumor [98, 525]. Alternatively, Tregs can be induced on-site in response to TGF-β 
derived from the tumor itself or from iDCs [193, 526-527]. 
 
Animal studies have demonstrated the relevance of Tregs for tumor immunity in vivo. 
Solely by depleting Tregs in tumor-bearing hosts, tumor regression has been observed 
[528-529], and on the contrary, the adoptive transfer of CD4+CD25+ Tregs enhances 
the growth of chemically induced tumors [530]. Furthermore, both human and animal 
studies demonstrate that Treg depletion enhances vaccine-mediated antigen specific  
T-cell responses [531-532], and that Treg depletion unmasks the existence NY-ESO-1 
specific T-cells in the blood of both healthy individuals and cancer patients [533-534]. 
 

 
 
 
 
 
 
 
 
Tregs are indeed versatile in their abilities to suppress immune responses (Figure 6).  
Suppression may be exerted on the level of the adaptive as well as the innate immune 
system, employing both contact-dependent and contact-independent mechanisms.  

Figure 6. Immunosuppressive mechanisms exerted by Tregs. Tregs suppress T-cells and NK-cells 
by inhibiting their effector functions and by eliminating these effector cells. TAMs are subverted from 
an M1 to an M2 phenotype and downregulate MHC class II in response to IL-10 secreted by Tregs. 
Likewise, DCs downregulate MHC class II and the co-stimulatory B7 molecules and increase their 
expression of IDO in the presence of Tregs. Furthermore, IL-2 is also depleted from the 
microenvironment, which in turn abrogates T-cell proliferation. 
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As such, the suppression of T-cell responses can occur both through contact-dependent 
inhibition of IL-2 production and proliferation [535-536], as well as by conversion of 
ATP to adenosine which is delivered to the T-cells via the A2A receptor, and renders 
the T-cell anergic [514, 537]. Indirectly, Tregs may hamper CTL responses by 
depriving the microenvironment of IL-2 [538], and furthermore negatively regulate the 
granule exocytosis pathway in CTLs [539]. The production of PGE2 by Tregs also 
suppresses effector T-cells via signaling through the EP2 receptor [540]. Tregs may 
also induce the expression of IDO in DCs [541], which in turn inhibits T-cells by 
blocking their proliferation [542]. A number of studies demonstrate that Tregs utilize 
immunosuppressive cytokines, such as TGF-β and IL-10, to suppress innate as well as 
adaptive immunity, but whether or not Tregs depend on these cytokines to exert their 
suppressive effects remains controversial [518]. Nevertheless, Treg inhibition of NK-
cell activity in vivo was in fact shown to be dependent on membrane-bound TGF-β, 
which downregulated NKG2D expression on NK-cells [543]. Furthermore, Tregs can 
suppress innate immunity, and subvert M1 macrophages towards an M2 phenotype in 
vitro, mainly via IL-10 dependent mechanisms [544-545]. Tregs also interact with DCs, 
and perturb their functions by downregulating co-stimulatory molecules [546-547]. 
Ultimately, Tregs utilize the Fas/FasL pathway, as well as granzymes and perforin, to 
exert direct cytotoxicity and kill off other activated effector cells, including CTLs, 
CD4+ T-cells, DCs and macrophages [548-550]. 
 
Indeed, the given evidence demonstrates a wide array of tumor promoting abilities 
harbored within the Treg population. Still, it deserves to be mentioned that this view is 
currently being challenged [551]. In head and neck cancer, tumor-infiltrating Tregs 
correlate to good prognosis [374], and a similar correlation was recently reported in 
colorectal cancer [552]. Potentially, Tregs could have a beneficial effect in some 
tumors, by dampening locoregional inflammation, and furthermore, adoptively 
transferred Tregs have been shown to induce apoptosis in intestinal tumors, 
concomitant to downregulation of COX-2 expression in tumor cells [553].   
 
5.3.2 Cytokines in immune escape 

As has already been touched upon, certain cytokines present during tumor development 
may promote immune escape and favor tumor progression. In particular, TGF-β and 
IL-10 are both pleiotropic contributors to tumor escape [554-555]. 
 
5.3.2.1 TGF-β 

TGF-β may contribute to immune escape mechanisms by downregulating MHC class I 
molecules on the cell surface of tumor cells [556-557]. On the level of effector cells, 
TGF-β displays a wide array of suppressive behaviors. Tumor-specific CTL 
cytotoxicity has been shown to be curtailed in vivo  in the presence of TGF-β [558], and 
similarly, TGF-β may directly control genes involved in the cytolytic cascade, 
including those of GrB, IFN-γ, FasL and perforin [559-560]. Furthermore, membrane-
bound TGF-β on Tregs represses the proliferation of CD4+CD25- T-cells [561]. NK-
cells represent another target for TGF-β, which downregulates the expression of 
NKG2D on the cell surface of NK-cells [562-564], and perturbs their release of IFN-γ 
[565]. 
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5.3.2.2 IL-10 

Similarly to TGF-β, IL-10 attenuates the expression of classical MHC molecules on the 
cell surface by downregulating genes associated with antigen presentation, such as 
TAP1, TAP2 and LMP-2 [566-567]. Furthermore, IL-10 has proven to increase  
HLA-G at the cell surface, which may contribute to escape from NK-cell-mediated 
killing [568]. IL-10 exerts divergent effects on DCs. Although some reports indicate 
that IL-10 can promote antigen uptake by DCs [569], most studies point out a negative 
regulation of DC activity by IL-10, via reduced levels of MHC class II and a hampered 
IL-12 production [569-570]. In turn, this translates into the induction of anergic T-cells 
with regulatory capacities [570-572]. IL-10 has also been shown to protect tumor cells 
from lysis by TILs [573], and blocking of IL-10 can enhance cellular anti-tumor 
immunity [574]. As has been mentioned, IL-10 is one of the major effector molecules 
utilized by Tregs to suppress immune responses, and it is also suggested to participate 
in Treg generation in the periphery [518, 575].  
 
Intriguingly, IL-10 derived from Tregs was shown to restrain locoregional 
inflammation and reduce tumor growth in colonic as well as extra-intestinal tumors 
[576-577]. Indeed, tumor suppressive abilities of IL-10 are being proposed [555], and 
in some models an increased NK-cell activity was detected in the presence of IL-10 and 
translated into a reduced tumor growth [578-580]. Possibly, IL-10-mediated 
downregulation of the COX-2/PGE2 axis could also alleviate PGE2-mediated 
immunosuppression [581]. 
 
5.3.3 PGE2 in immune escape 

PGE2 not only contributes to enhanced cancer-related inflammation, but also 
participates in mediating immune escape. As such, PGE2 prevents the innate immune 
system from promoting and exerting efficient anti-tumor responses, by inhibiting the 
maturation of DCs [104, 582-584], perturbing macrophage cytolytic activity and IL-12 
production [585-587], inhibiting NK-cells [588-589] and by recruiting MDSCs [163]. 
PGE2 also contributes to the deviation of adaptive immune responses towards a pro-
tumorigenic state, by subverting CD4+ T-helper cells from a TH1 to a TH2 phenotype 
[104, 590-591], inducing regulatory T-cells [540, 592-593] and by attenuating effector 
T-cell responses [540, 594-596]. Furthermore, COX-2 inhibitors have proven to restore 
IL-12 production, enhance anti-tumor immunity and potentiate responses seen to tumor 
vaccines [219, 597]. 
 
 
5.4 ESCAPE FROM T-CELL RESPONSES 

Cancer patients often harbor circulating tumor-specific T-cells in the blood [598-599], 
yet the tumor often progresses, suggesting that T-cell responses fail to control tumor 
growth. The functional status of tumor-specific T-cells in the blood and tumor tissue of 
cancer patients is a matter of debate [599], but several reports claim that peripheral 
blood lymphocytes (PBLs) as well as TILs display poor proliferative response rates to 
mitogenic stimuli and often undergo spontaneous apoptosis [600-602]. 
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In situ, TILs often demonstrate dysfunctional characteristics indicative of deregulated 
effector mechanisms. Commonly, the zeta-chain is downregulated in TILs, which 
abrogates antitumor responses [602-603]. Furthermore, tumors are suggested to utilize 
a number of mechanisms to induce apoptosis in the intruding lymphocytes. One such 
mechanism is the “tumor counter-attack” phenomenon, in which tumor cells outwit 
TILs by expressing DR ligands such as FasL and TRAIL, which in turn eliminate 
effector cells expressing the corresponding DRs [604-606]. However, the relevance of, 
and the methodological accuracy in the early publications in this field, have been 
disputed [607-608]. 
 
Yet another mechanism proposed to contribute to tumor-induced dysfunction of TILs is 
the expression of IDO by the tumor, which can abrogate T-cell proliferation and induce 
cell-cycle arrest, by depleting tryptophan in situ [153, 542]. Furthermore, cancer cells 
have been shown to express B7-H1 (programmed death-1 ligand, PD-1L), which may 
induce apoptosis in activated T-cells expressing the receptor PD-1 [609]. Of particular 
relevance to NB is the ability of tumor cells to shed gangliosides, which are also 
reported to contribute to apoptosis of TILs [610]. 
 
Presumable non-apoptotic TILs may still fail to clear the tumor. It has been shown that 
TILs are functionally impaired with a reduced ability to mobilize the lytic machinery 
[611]. If they succeed, tumor cells can however evade granule-mediated killing by 
expressing the proteinase inhibitor-9 (PI-9), an inhibitor of the GrB pathway [612]. 
Furthermore, tumors may circumvent DR-mediated killing by expressing decoy 
receptors or dysfunctional DRs, as well as by harboring defects in the downstream 
intracellular signaling cascades, such as silencing of caspase-8 [613-615]. 
 
 
5.5 IMMUNE ESCAPE BY NEUROBLASTOMA 

Neuroblastoma is not an exception, and displays a battery of immune escape 
mechanisms which modulate the immunogenicity of NB and impede anti-tumor 
responses (Figure 7) [616]. On the level of tumor immunogenicity, NB cell lines as 
well as primary tumors are often described as devoid of surface HLA expression [617-
619]. This was first suggested to be regulated by MYCN expression [620], but the 
interrelationship was however recently questioned [621]. Underlying defects in several 
components of the APM have however been observed in primary NB samples [619, 
622]. The lack of HLA expression could render NB cells a suitable target for NK-cell-
mediated killing. Yet, NB cells may secure escape from NK-cells by downregulating 
activating ligands for NK-cells, such as MICA [417, 623]. Furthermore, in a murine 
model of NB, it was shown that NB cells upregulated MHC molecules upon recurrence 
following an initial NK-cell dependent anti-tumor response [624]. This in fact 
demonstrates that NB can undergo immunological sculpting in vivo. 
 
NB tumors can also be protected from DR-mediated killing by downregulating DRs 
and via defects in the intracellular signaling cascade conveying apoptotic signals. 
Decoy receptors for TRAIL were stated to be hypermethylated in NB [625], and some 
reports demonstrate expression primarily of TRAIL-R2 in NB cell lines [626-627], but 
others report an absence of TRAIL-R1 and -R2 in primary NB tumors and some cell 
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lines [628]. Furthermore, resistance to TRAIL has been linked to a loss of caspase-8 
expression in NB [626-627, 629]. The inactivation of caspase-8 disrupts the apoptotic 
pathway in NB, and was initially suggested to occur in MYCN-amplified high-risk 
tumors and to correlate to the stage of the disease [626, 630-631], but this has however 
been questioned [632]. Expression of the other major death receptor, Fas, has been 
associated with low stage and a mature phenotype of NB cells [633]. Importantly,  
IFN-γ acts to restore the defects detected in the APM, as well as caspase-8 expression, 
and may hence override NB immune escape mechanisms [619, 622, 628, 634]. 
 
Besides alterations in immune recognition, potent immunosuppressive functions 
exerted by NB impose on tumor immunosurveillance. NB may interfere with NK- and 
T-cell-mediated killing of target cells, either directly or indirectly. Indirectly, NB cells 
may instruct monocytes to secrete soluble HLA-G molecules, which then obstruct 
CTL- and NK-cell-mediated lysis [635]. Directly, NB cells proved to secrete soluble 
MICA (sMICA), which in turn inhibited NK-cell-mediated killing of MICA expressing 
NB cells [623]. NK-cells were also shown to be negatively regulated by the expression 
of B7-H3 on NB-cells [636], a molecule for which the corresponding receptor on NK-
cells is still unknown [637]. 
 
T-cells can be suppressed and enter the apoptotic pathway due to the expression of 
FasL on NB cells [633, 638]. In a murine model of NB, the expression of macrophage 
migration inhibitory factor (MIF) suppressed T-cell proliferation and MIF knockdown 
NB cells were superiorly rejected in a T-cell-dependent manner in vivo [639]. In 
addition, NB tumors secrete GD2, which further suppresses T-cell responses [640-641] 
and, as was recently demonstrated, promotes the induction of Tregs [642]. NB-derived 
gangliosides may also impair immune responses by inhibiting the maturation and 
function of DCs [189, 643]. Finally, the tumor microenvironment surrounding NB 
tumor cells holds the potential to suppress immune responses; primary NB tumor 
samples contain IL-10 as well as TGF-β [445, 644], and NB expresses COX-2, 
enabling the production of PGE2 [111]. 

 
Figure 7. Immune escape by neuroblastoma. NB tumors may hamper NK-cell functions by 
shedding soluble MICA, by instructing monocytes to shed soluble HLA-G and by expressing the 
inhibitory B7-H3 molecule. T-cell responses may be abrogated by a lack of HLA class I expression, by 
a deficient caspase-8 expression or by the production of inhibitory molecules such as GD2, MIF and 
PGE2. T-cells may furthermore be eliminated by NB tumors expressing FasL. NB-derived GD2 may 
also inhibit DCs and induce Tregs, the latter which may also be induced by NB-derived PGE2.  
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6 CANCER IMMUNOTHERAPY 
In the 1890´s, Dr William Coley observed that sarcomas could be cured by evoking 
immunological responses following administration of streptococci extract [645], and 
hereby, the first attempt to cure cancer by using the immune system had been pursued. 
Modern immunotherapy, however, evolved in the late 1980´s, and is currently 
experiencing an era of revival with several major break-troughs during the last decade, 
as will be reviewed below.  
 
The following sections will give a brief overview on the current status of 
immunotherapy, with a focus on mechanisms and regimens of pertinence to the studies 
included in this thesis and to NB. Of note, it deserves to be stressed that most clinical 
trials involving immunotherapy have been pursued in patients with a fulminate, 
refractory disease not responding to conventional therapies, and given response rates 
should be viewed in light of these poor prerequisites. 
 
 
6.1 PASSIVE IMMUNOTHERAPY 

Passive immunotherapy implies the administration of preformed immunological 
mediators, including adoptive cell transfer (ACT) of effector cells such as T-cells and 
NK-cells, as well as mAb therapy.  
 
6.1.1 T-cell-based therapies 

In 1987, a landmark publication initiated the field of adoptive T-cell therapy, when 
TILs from a melanoma patient proved to possess the capacity to lyse autologous tumor 
cells in vitro after IL-2-based expansion [646]. Shortly thereafter, the first treatment of 
metastatic melanoma using in vitro expanded TILs was performed [647]. Ensuing 
studies using adoptive transfer of TILs in melanoma patients in the early 1990´s 
demonstrated objective response rates of around 30% [648], with one of the major 
obstacles to overcome being the low persistence of the transferred T-cells in vivo [649]. 
During the last 10 years, however, an improved understanding of T-cell biology has 
revolutionized this field, and current rates of persistence are now improved, with one 
study detecting that 75% of circulating CD8+ T-cells 6 months after infusion were 
tumor-specific, originating from the transferred clone [650].  
 
One of the milestones within the field was the introduction of lymphodepletion prior to 
ACT therapy (reviewed in [651]). Lymphodepletion renders the host in a state of non-
myeloablative immunosuppression, either via cytostatic drugs such as 
cyclophosphamide and fludarabine, or via total body irradiation [649, 651], and several 
mechanisms underlying its additive effect on ACT therapy are suggested. 
Lymphodepletion eliminates circulating suppressive cells such as Tregs [652] as well 
as “cytokine sinks”, i.e. other cell types competing for the cytokines needed for T-cell 
proliferation [653], and furthermore enhances the function of APCs [654]. Following 
the first published study by Dudley et al. in 2002, with a response rate of 46% [650], 
subsequent studies employing improved protocols of lymphodepletion have 
demonstrated objective response rates corresponding to 50-70% [655-657]. 
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Additional improvements of ACT therapy stem from gained insight into the importance 
of transferring CD4+ T-cells together with CTLs, or as sole effector cells [652, 658]. It 
deserves to be mentioned that other sources than TILs can be used to isolate and 
expand tumor reactive T-cells, such as the tumor draining lymphnode, i.e. the sentinel 
node, where present T-cells may be of better quality [659]. 
 
Another upcoming strategy to potentiate T-cell-based immunotherapy is the generation 
and administration of genetically engineered T-cells [660]. In 2006, a first publication 
by Morgan et al. reported a successful attempt to treat melanoma patients with T-cells 
which had been transduced with TCRs specific for MART-1 [661]. Chimeric antigen 
receptors (CARs) represent yet a different way to modify T-cells for ACT. By 
engineering T-cells with antibodies linked to the intracellular signaling domains of the 
CD3 complex, the T-cells may bypass MHC class I restriction and target alternative 
surface structures such as glycolipids [662]. This paves the way for T-cell-based 
therapies for MHC class Ilow/- tumors, such as NB (section 6.4.1) [663]. Unfortunately, 
ACT therapy based on TCR specificity has resulted in immune escape variants of 
tumor cells with downregulated expression of the targeted TAA [664]. 
 
A different approach to enhance or initiate T-cell responses is based on the 
administration of mAbs targeting CTLA-4, which represents an immune checkpoint 
molecule halting the activation of T-cells [665]. Anti-CTLA-4 (ipilimumab) treatment 
has proven to augment lymphocyte infiltration into the tumor, increase CTL function 
and abrogate Treg function [666-669]. A study by Hodi et al. in 2010 demonstrated that 
although severe toxicities were seen, treatment with ipilimumab alone or in 
combination with the peptide gp100 improved the overall survival in metastatic 
melanoma patients in a phase III study [670].  
 
6.1.2 Monoclonal antibodies 

The administration of mAbs is an upcoming immunotherapeutic approach with 
particular relevance for NB. Several mAbs, including trastuzumab (Herceptin, anti-Her-
2/neu) for breast cancer [671], rituximab (Rituxan, anti-CD20) for lymphoma [672] and 
cetuximab (Erbitux, anti-human EGF receptor (EGFR)) for colorectal cancer [673] 
have shown major clinical benefits with response rates of 8-10% as single agents and 
20-30% when combined with radiation or chemotherapy [674]. 
 
Various mechanisms are proposed to underlie the effects exerted by mAbs [424]. One 
potential mechanism is the abrogation of downstream signaling pathways involved in 
proliferation and survival, as with the EGFR inhibitors cetuximab and trastuzumab 
[675]. Complement-dependent cytotoxicity (CDC) is suggested as an alternative 
mechanism of action and leads to the formation of cell membrane pores on the targeted 
cell [674]. Although suggested as an in vivo mechanism during rituximab treatment 
[676], CDC is a rapid process, and its relevance in vivo is questioned considering the 
time-window for mAb responses often being above one week [424].  
 
The most well-studied mechanism of action of mAbs is the induction of ADCC. This 
occurs when the Fc domain of an antibody is recognized by FcRs (FcγRs in the case of 
IgG) present on NK-cells, neutrophils, monocytes and macrophages. Hereupon, these 
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effector cells are activated to induce target cell death [674, 677]. Indirect evidence for 
the crucial role of ADCC in mediating mAb responses stems from the fact that 
polymorphism in the FcγR region correlates to clinical responses to, among others, 
rituximab and trastuzumab [678-680]. 
 
As mentioned, mAb therapy in the clinic leads to tumor destruction over days, and not 
hours [424], which suggests that other mechanisms may underlie the effects behind 
mAb therapy than those described above. Accumulating evidence demonstrates that 
antibody therapy induces CD4+ as well as CD8+ T-cell responses to the target antigen, 
which would fit with the given time-window for clinical responses. The administered 
mAbs increase cross-presentation of target antigens to T-cells by APCs [681-682], and 
ensuing T-cell responses have indeed been detected following anti-CD20 and 
trastuzumab treatment in animal models as well as in humans [683-685]. 
 
 
6.2 ACTIVE IMMUNOTHERAPY 

Active immunotherapy implies an attempt to vaccinate against cancer, and includes 
vaccines based on DNA, peptides, proteins, inactivated tumor cells and DCs [289]. 
Except for when the tumors are of infectious origin, such as human papillomavirus-
induced cervical cancer, where vaccines efficiently target non-self antigens [686], the 
vaccines are often limited by the target being a self-antigen. In 2004, Rosenberg and 
colleagues reported the discouraging overall response rate of 2.6% to cancer vaccines 
[687]. However, an improved understanding of cancer immunology pushes the field 
forward. As an example, Sipuleucel-T, a DC-based vaccine for prostate cancer, became 
the first antigen-specific immunotherapy for humans to be approved by the US Food 
and Drug Administration (FDA) in 2010. Sipuleucel-T is believed to induce CD4+ as 
well as CD8+ T-cell responses against prostatic acid phosphatase [688-690].  
 
DNA-based cancer vaccines are designed to elicit immunological responses in vivo to 
an encoded target protein/epitope. Following antigen synthesis and presentation, DNA 
vaccines can potentially induce a broad repertoire of CTLs and T-helper cells, as well 
as B-cell responses [691]. Clinical trials in melanoma and breast cancer patients have 
shown that DNA vaccines can elicit immunological responses in late-stage patients, yet 
clinical response rates in these settings are low [692-693]. In animal models, however, 
DNA vaccines have been potentiated by linkage to gene-encoded adjuvants, such as 
CD40L [694]. DNA vaccines may also target other structures than TAAs, such as 
molecules expressed on blood vessels, hence abrogating angiogenesis [695]. 
Considering the status of enrolled patients, results with peptide- and protein-based 
vaccines are encouraging. In metastatic melanoma patients, HLA-A2- restricted gp100 
peptides have elicited both immunological and clinical responses [696-697]. In breast 
and ovarian cancer patients, immunization with Her-2/neu peptides or proteins has also 
proven to elicit T-cell responses and to decrease the risk of recurrent disease [698-699]. 
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6.3 CHILDREN VERSUS ADULTS 

Considering that most of the above mentioned trials are performed in adults, the 
question arises whether pediatric patients are suitable for immunotherapeutic 
approaches. A number of immunological observations and experimental proofs have 
demonstrated a deterioration of the immune system upon aging, altogether referred to 
as “immunosenescence” [700]. In an elderly population, the T-cell repertoire loses its 
diversity within both the CD4 and the CD8 compartment [701-702]. Moreover, CD4+ 
as well as CD8+ T-cells in the elderly downregulate their expression of CD28, hence 
becoming refractory to proper costimulation [703-704]. APCs in older mice also 
exhibit a decreased ability to present antigens to T-cells, and induce CD8+ T-cells with 
lower cytotoxic ability [705]. Aging is also associated with a skewing of the cytokine 
pattern from a TH1 towards a TH2 pattern, which will further diminish the generation of 
CD8+ responses [706]. Whereas contradictive reports exist describing altered as well as 
retained macrophage function [707], most reports demonstrate that NK-cells show 
impaired responses to IL-2 and functional alterations in older populations [708].  
 
Low response rates to cancer vaccines in adult patients have been attributed to the 
above mentioned decline in immunological parameters [709]. Further strengthening 
this hypothesis, younger mice are superior in mounting anti-tumor responses to 
vaccines in experimental cancer models [710-711]. In humans, children furthermore 
display enhanced capacities to reconstitute their immunological competence following 
chemotherapy [712], which is a major advantage for subsequent immune-based 
therapies. 
 
Taken together, the pediatric population has been suggested to be a highly suitable 
population for immunotherapy. Children possess a vigorous immune system with 
greater potential to co-operate during immunotherapy. Furthermore, tumors arising in 
pediatric patients have usually had a shorter time to subvert and push the immune 
system into the equilibrium phase [713]. 
 
 
6.4 IMMUNOTHERAPY OF NEUROBLASTOMA 

Immunotherapy is gaining momentum as an auxiliary approach in NB treatment, and 
various passive as well as active strategies are being exploited with promising efficacy 
in NB models [714]. 
 
6.4.1 Adoptive cell therapy for NB 

T-cell-based therapies for NB patients have been discouraged by the notion that NB is 
devoid of HLA class I expression. However, NB cells upregulate HLA class I in 
response to retinoids, and many tumors indeed display enhanced levels of HLA 
molecules upon conventional therapies such as radiation and chemotherapy [714-716]. 
Autologous CTLs have successfully been expanded from NB patients in various 
settings. Sarkar et al. demonstrated that CTLs could be generated from NB patients by 
restimulation either with irradiated autologous tumor [717] or with an HLA-A1-
restricted MYCN-derived peptide [718], and the CTLs were able to kill autologous 
tumor and/or NB cell lines in an HLA-restricted fashion. Similar studies proved that 
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autologous DCs transfected with mRNA from NB cell lines could be used to 
restimulate CTLs from NB patients [719]. In 2008, an HLA-A2-restricted peptide 
derived from MYCN was identified and proved capable of inducing MYCN-specific 
CTLs from NB patients which could lyse autologous tumor [440]. Furthermore, 
previous work from our group demonstrated that NB cells can be killed in an MHC-
non-restricted fashion by CTLs [720]. CD8+ responses also mediate the anti-tumor 
effects of NB vaccines in animal models [721-723], which further argues for a role of 
CTLs in NB immunosurveillance. 
 
NB tumors have recently been targeted by CTLs modified to express CARs targeting 
the L1 cell adhesion molecule CD171 [663, 724]. However, the in vivo persistence of 
administered CTLs was short. In 2008, Pule et al. published a beautiful example on 
how NB tumors can be targeted by CARs with longer in vivo persistence. By 
engineering Epstein-Barr virus (EBV)-specific CTLs from NB patients with a chimeric 
GD2 receptor, transferred CTLs could be sustained in vivo by receiving native TCR 
stimulation, and simultaneously target GD2 expressing NB cells. Tumor regression was 
seen in 50% of the patients [725]. 
 
A low expression of HLA class I molecules should render NB a favorable target for 
adoptive transfer of NK-cells. In mice bearing metastatic NB tumors, infusion of IL-2 
activated NK-cells prolonged the survival time [726], and within an ongoing phase I/II 
trial it was shown that NK-cells infused into NB patients retained cytotoxic capacity in 
spite of the presence of sMICA [727]. Furthermore, a recent study evaluated the safety 
and feasibility to administer subcutaneous IL-2 to NB patients in an outpatient setting, 
and an increase in NK-cell activity was detected with tolerable side-effects [728]. This 
encourages further studies in NB based on ACT using NK-cells.  
 
6.4.2 Monoclonal antibodies in NB therapy 

The current cornerstone of immunotherapy for NB patients is based on passive 
immunotherapy with mAbs targeting GD2, which is expressed by virtually all NB 
tumors [729]. GD2 serves as an excellent target for immunotherapy since it is seldom 
lost following mAb therapy [730]. Pioneering clinical trials in the 1980´s and early 
1990´s were based on the murine antibodies 3F8 and 14.G2a [731-732], and the 
chimeric human/mouse mAb ch14.18 was launched in clinical trials in 1995 [733]. 
Subsequent trials using 3F8 and 14.G2a were then modified by the separate addition of 
the adjuvant cytokines IL-2 or GM-CSF [734-736]. In 2010, Yu et al. could 
demonstrate a significantly improved outcome in high-risk NB patients receiving 
ch14.18 in combination with GM-CSF and IL-2 as an addition to standard therapy with 
isotretinoin. The EFS at two years was 66% in patients receiving immunotherapy 
compared to 46% upon standard therapy [737]. The mechanisms underlying the effects 
of ch14.18 were proposed to involve ADCC as well as CDC, with in vivo experiments 
arguing in favor of an NK-cell dependent ADCC mechanism [738-739]. 
 
GD2-specific antibodies have also been exploited as messengers in the delivery of 
targeted cytokines to the NB microenvironment. In experimental models of NB, a 
fusion protein of IL-2 and ch14.18 has demonstrated therapeutic benefits as well as 
prophylactic ability to evoke NK- and T-cell responses and to confer subsequent 
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protection against tumor challenge [740-742]. The administration of a humanized 
analogous fusion protein, hu14.18-IL-2, has recently demonstrated complete response 
rates of 22% in high-risk NB-patients in a phase II study [743]. Subsequent analyses 
indicated that NK-cells were mediating the clinical effect [423, 744]. 
 
6.4.3 Active immunotherapy for NB 

Active immunotherapy for NB has been pursued using vaccines based on DCs, DNA 
and autologous tumor cells. Pilot clinical trials using DCs derived from peripheral 
blood monocytes of NB patients and pulsed with tumor lysates or RNA showed the 
ability to induce T-cell as well humoral responses, but limited clinical responses [745-
746]. Vaccines based on modified tumor cells have however been more successful 
clinically. Autologous tumor cells engineered to express IL-2 showed clinical response 
in 5 of 10 high-risk NB patients [747], and allogeneic NB cells engineered to secrete 
lymphotactin and IL-2 mounted similar response rates [748]. Clinical trials using the 
autologous setting are underway and intermediate results report on initial 
immunological as well as clinical responses [749]. 
 
The administration of DNA vaccines represents another promising strategy and several 
TAAs expressed by NB have successfully been targeted in animal models. As such, a 
DNA vaccine encoding TH has efficiently been delivered using an attenuated strain of 
Salmonella typhimurium [750-751], and was furthermore potentiated by 
posttranscriptional modifications to enhance TH expression [722, 752-753]. In addition, 
GD2, although a glycolipid, was effectively targeted using DNA vaccines as well as 
peptides encoding decapeptides mimicking GD2, which induced cellular and humoral 
responses and reduced tumor growth in NB models [754-755]. Finally, a DNA vaccine 
encoding survivin-derived peptides was shown to be efficient in a prophylactic as well 
as a therapeutic setting in a mouse model of NB [721]. Taken together, active 
immunotherapy for NB shows promising efficacy and deserves further attention. 
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AIMS OF THE THESIS 
 
The overall aim of this thesis was to elucidate the prerequisites for immune-mediated 
recognition of neuroblastoma. 
 
The specific aims of this thesis were; 
 
 To evaluate the sensitivity of NB to effector mechanisms of the immune system 

in the course of differentiation 
 
 To evaluate how effector molecules released by CTLs affect the immune 

phenotype and sensitivity of NB to DR-mediated killing 
 
 To gain further insight into the status of T-cell responses in human NB tumors 

 
 To evaluate tumor-infiltrating cells during tumor progression in the transgenic 

TH-MYCN model, and to assess how anti-inflammatory treatment with low-
dose aspirin affects tumor development and inflammatory parameters 
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RESULTS AND DISCUSSION 
 
NEUROBLASTOMA AS A TARGET FOR EFFECTOR CELLS (PAPER I 
AND II) 

In paper I and II, the sensitivity of NB to effector mechanisms of the immune system 
was investigated. Specifically, paper I aimed at investigating the effects exerted by 
differentiating agents on the recognition of NB by NK-cells as well as T-cells. Paper II 
aimed at investigating how effector molecules released by activated CTLs affect the 
immunogenicity of NB, including the sensitivity to DR-mediated killing. 
 

Sensitivity of NB to effector cells in the course of differentiation 

Spontaneous regression of NB has been suggested to involve immunological 
mechanisms [19], yet no study has addressed the ability of NB to be targeted by 
effector cells during physiological differentiation. Previous work in our group 
demonstrated that retinoic acid, known to induce differentiation in NB cells, sensitized 
NB cells to CTL-mediated killing [715]. Retinoids, however, exert their effects through 
nuclear receptors with several downstream target genes [756], and effects seen could 
potentially be mediated by various biological pathways other than differentiation.  
 
Hence, in paper I, we performed a systematic analysis of the immune phenotype in NB 
cell lines as well as primary tumors upon treatment with NGF, the phorbol ester 12-O-
tetradecanoylphorbol-13-acetate (TPA) or a combination of EGF and basic fibroblast 
growth factor (FGF). NGF and TPA are well known for their ability to induce 
differentiation of NB cells [757], and an FGF/EGF combination has been used to 
potentiate TPA induced differentiation [758], as well as to propagate neural stem cells 
[759].  
 
During differentiation using these agents, the immune phenotype of NB cell lines as 
well as primary tumors was altered. We could detect an increase of the surface 
expression and the total pool of HLA molecules. Of note, the non-classical HLA 
molecules HLA-E and HLA-G were not induced, but rather downsized upon EGF/FGF 
treatment. Instead, differentiation triggered the expression of the classical alleles HLA-
A2 and HLA-A11. In parallel, we monitored an increase in the levels of surface  
ICAM-1, which is known to facilitate the initial interaction between lymphocytes and 
their target cell [425, 760]. In order to investigate whether these changes would 
translate into an increased killing of NB by effector cells, we examined the ability of 
NB cells to form immune conjugates and their sensitivity to be lysed by NK-cells and 
T-cells. Indeed, differentiated NBs more readily formed conjugates with CTLs, and 
using a standard 4 hour 51Chromium-release assay, we could demonstrate an increased 
lysis of differentiated NBs by HLA-A2-specific allogeneic T-cells as well as by 2 out 
of 3 NK-cell lines used. The increase in lysis was reflected by an enhanced propensity 
of NB cells to bind GrB at the cell surface. 
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Interestingly, although a prominent induction of HLA molecules at the cell surface was 
seen, NK-cells still lysed differentiated NB cells more efficiently than non-
differentiated counterparts. Potentially, the increase in ICAM-1 could override the 
inhibitory effects of HLA class I expression and translate into a facilitated interaction 
between NB and NK-cells. It was previously shown that ICAM-1 is of importance in 
determining the sensitivity of NB to NK-cell-mediated killing [426]. Other activating 
ligands, such as MICA and CD155 (PVR), could also potentially be differently 
expressed upon differentiation. Of note, the cell line FL-2 displayed detectable basal 
levels of MICA (Paper II). 
 
In general, allorecognition by CTLs may occur as a direct peptide-independent 
recognition of intact HLA molecules present on foreign cells. Alternatively, it may be 
dependent on the presence of peptides derived from allogeneic MHC molecules in the 
context of surface MHC molecules which succeed to provoke a TCR response in the 
allogeneic T-cells [761]. The increase in lysis of differentiated NBs by CTLs was 
observed both using allogeneic CTLs derived from an HLA-A2 negative donor and 
specific for HLA-A2, as well as by using HLA-A2-restricted CTLs specific for the 
EBV-derived peptide GLC (data not shown). In the first setting, an increased killing 
might reflect an altered peptide repertoire as well as enhanced surface levels of HLA 
molecules. Using GLC-specific CTLs, the killing reflected a peptide-specific 
interaction with pre-pulsed target cells. 
 
The primary tumors used in paper I were a stage 2 and a stage 1 tumor (according to 
INSS staging [39]) and genetically classified as tumors with 17q gain and other 
structural aberrations, respectively [27, 762] (sample 4 and 6, see Table 1). Ultimately, 
all genetical subtypes should have been included, but due to the limited amount of 
material, this was not feasible. Our data, however, indicate that ex vivo differentiation is 
possible using all employed differentiating agents in the study, with observed changes 
in the immune phenotype that paralleled those seen in NB cell lines. Importantly, the 
one tumor expressing detectable levels of trkA was able to differentiate using NGF. 
 
The fact that NGF treatment had a prominent effect on the immune recognition of NB 
cells sheds further light on the hypothesis of an immunological mechanism underlying 
the spontaneous regression of some NB tumors [19]. As noted, the expression of HLA 
has been observed to be higher in stage 4s tumors [433], and trkA signaling is 
suggested to participate in the regulation of spontaneous regression [18]. Taking our 
findings into account, it is tempting to argue in favor of immunological mechanisms as 
mediators in the spontaneous regression of NB.   
 
Our observation in paper II that soluble factors released by activated CTLs increase the 
expression of trkA on NB cells invites a speculation on a loop where the immune 
system boosts the ability of NB to undergo differentiation. Indeed, it has been shown 
that IFN-γ can induce NB differentiation [763], and together with retinoic acid 
downregulate MYCN target genes [764]. Furthermore, it was shown that IFN-γ works 
synergistically with both NGF [765-766] and TPA [767] in the induction of NB 
differentiation. The fact that effector molecules released by CTLs may induce 
differentiation could then potentially reflect a circuit whereby CTLs facilitate 
recognition of their own target. Altogether, this supports a regimen combining 
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differentiation therapy and attraction of activated CTLs into the tumor 
microenvironment. 
 
Bypassing HLA class I 

Whether or not NB is a suitable target for T-cell-based therapies has been questioned, 
mainly owing to the reported low/absent expression of HLA class I [617-618, 620] and 
the lack of caspase-8 expression [626-627, 768]. During the last years however, several 
successful attempts to target NB using CTLs have been pursued [440, 725], and NB 
patients were shown to harbor circulating tumor reactive CTLs which could lyse 
autologous tumor cells in an HLA class I-dependent manner [442]. Previous work from 
our group also demonstrated that CTLs could target NB in an MHC-non-restricted 
fashion [720]. 
 
In paper II, we analysed the immunological profile of NB cell lines and primary tumors 
ex vivo. The immunological profile was defined by us as the expression of ICAM-1, 
HLA class I, Heavy chain, HLA-G, MICA, HLA class II, Fas, TNFR1/R2 and TRAIL-
R1/R2/R3/R4. Furthermore, we monitored how effector molecules released by 
activated CTLs (activated supernatant, AS) modulated the immunological profile and 
affected the sensitivity of NB to DR-mediated killing. In this setting, we used CTLs 
specific for, and activated by, the EBV-derived peptide IVT. 
 
All NB cell lines analysed by us expressed detectable amounts of HLA class I at the 
cell surface. However, this could potentially reflect an in vitro selection of certain 
subclones. Yet, strongly arguing in favor of CTL-based immunotherapy, we could 
detect expression of HLA class I in 5 of 8 primary NB tumors, and likewise, all tumors 
expressed at least one DR (Table 1).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pre-
Sample Agea Stageb Geneticsc treatmentd Sexe Survivalf HLA Ig Fash TRAIL R1/R2i CD4/CD8j

1 13.5 1 Oth str M 54+ + - ++ 0.4
2 35 4 11q- x M 6 - + - ND
3 41.5 1 Num only M 52+ ++ - + 0.3
4 14 2 17q+ x M 10 ++ - + 1.2
5 4 1 Num only M 50+ - - + 1.1
6 4.5 1 Oth str F 49+ + - + 0.7
7 18 3 MNA x F 44+ - + + 0.4
8 66 3 Oth str x F 42+ + - + 1.7

Table 1. Characteristics of NB patient samples in paper I-III. 
aAge in months at surgery  
bStage according to INSS 
cGenetical subtype; Oth str = Other structural abnormalities, 11q- = Loss of chromosome 11q, Num 
only= Only numerical aberrations, 17q+ = Gain of chromosome 17q, MNA= MYCN amplification  
dPre-treatment prior to surgery  
eSex; M=male, F=female  
fMonths after diagnosis, + = still alive  
gHLA class I positivity of tumor as defined in paper II 
hFas positivity of tumor as defined in paper II 
iTRAIL-R1 and/or -R2 positivity of tumor as defined in paper II. 
jCD4/CD8 ratio of tumor-infiltrating CD3+ T-cells 
ND= not done  
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Further analysis of the immunological profile revealed that most primary tumors as 
well as NB cell lines expressed either TRAIL-R1 and/or TRAIL-R2. This is in contrast 
with a previous report stating that NB tumor tissue and cell lines were devoid of these 
receptors, which in turn conferred resistance to TRAIL-induced target cell death [628]. 
Since TRAIL-R1 and -R2 are the functional TRAIL receptors conveying signals 
through the DISC complex, our results indicate that NB could indeed be targeted by the 
TRAIL pathway, as is being pursued for other cancers [354]. We could also detect a 
discrepancy in the expression of TNF-R1 in low-stage versus high-stage primary 
tumors (stage 1/2 versus 3/4, according to INSS [39]), with a reduced expression in 
stage 3/4 tumors. Considering that TNF-R1 may mediate death-inducing signals 
exerted by TNF-α [364], the downregulation of this receptor could potentially provide a 
mechanism of immune escape in high-stage NBs. 
 
In the case of an HLA class Ilow/- tumor, CTLs in the tumor vicinity might exert other 
effects than HLA-restricted killing of the tumor. When exposing NB cells to soluble 
factors released by activated CTLs, we could detect a skewing of the surface immune 
phenotype. NB tumors exposed to AS displayed enhanced levels of surface HLA class I 
as well as ICAM-1. Again, this could indicate a route by which CTLs, not necessarily 
with specificity for the target, modulate the tumor to become more sensitive to lysis by 
other CTLs. AS also induced the expression of Fas and TNF-R2 in cell lines as well as 
in a primary NB sample. By performing blocking experiments, we could identify IFN-γ 
and TNF-α as the major responsible molecules for the observed changes in the immune 
phenotype. Indeed, an enhanced expression of Fas as well as TNF-receptors has 
previously been reported to occur in NB upon IFN-γ treatment [769-770]. As will be 
discussed below, we have demonstrated that autologous PBLs from NB patients secrete 
increased amounts of IFN-γ as well as TNF-α when encountering NB tumors (Paper 
III). 
 
The lack of caspase-8 in NB [626-627] represents a challenge for the application of  
T-cell based therapies. We could monitor an increase in the expression and activity of 
caspase-8 in NB cells exposed to AS. This observation indicates that CTLs present in 
the vicinity of NB tumors may restore the apoptotic machinery as well as the sensitivity 
of NB to DR-mediated killing. Furthermore, in an in vivo model of NB, loss of caspase-
8 correlated to the metastatic potential of NB cells, whereas its restoration suppressed 
cell dissemination [771]. The attraction of activated CTLs into NB tumors may hence 
limit metastatic spread of NB via indirect mechanisms on the level of the apoptotic 
machinery. 
 
Of particular relevance to our studies, it was recently shown that caspase-8 signaling 
induces terminal differentiation of NB cells [772]. Hence, another connection appears, 
linking differentiation with the immunological responses in NB. IFN-γ, by inducing 
trkA and caspase-8 expression, may promote a transition of NB cells towards a mature 
phenotype, which renders NB a more suitable target for CTLs as well as NK-cells.  
 
To determine whether the changes seen in NB immune phenotype would have 
functional consequences, we exposed NB cells that had been primed with AS to 
recombinant TRAIL and TNF-α, as well as to the Fas agonistic antibody CH-11. This 
could potentially mimic an in vivo setting where bystander CTLs prime an encountered 
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target by the release of effector molecules, whereupon a subsequent interaction between 
the tumor and a death-ligand expressing lymphocyte takes place. NB cell lines were 
more efficiently lysed by recombinant TRAIL after expose to AS, although TRAIL-
R1/R2 were not upregulated. This argues that the restoration of caspase-8 expression is 
the major determinant of TRAIL-induced killing of NB cells. Similarly, an increase in 
FasL-mediated killing was observed, which could potentially be ascribed to the 
observed increase of surface Fas as well as to the restoration of caspase-8. Although 
TNF-α did not induce NB cell death even after exposure to AS, TNF-α released by 
CTLs could still promote cell death by sensitizing cells to Fas-mediated death [773].  
 
Using EBV-specific T-cells for immunotherapeutic strategies is tempting, considering 
the high frequency of EBV-positive individuals (over 90% of the adult population) and 
the ability to restimulate EBV-specific T-cells in vitro using highly immunogenic 
peptides [774]. In the study by Pule et al., EBV-specific CTLs were obtained from NB 
patients and were engineered to express GD2 coupled to the CD3 zeta chain [725]. 
While receiving native stimulation in vivo by their TCR specific for EBV, the CAR-
CTLs are redirected to the tumor via their dual specificity for GD2. 
 
Our results highlight other potential mechanisms whereby the attraction of these CTLs 
could have an anti-tumor effect. First, these activated CTLs could release effector 
molecules that upregulate HLA class I molecules and hence facilitate HLA-restricted 
killing of the tumor by TILs. Second, DR-mediated killing by death-ligand expressing 
TILs would be facilitated as a consequence of the presence of these effector molecules. 
Third, NK-cell-mediated killing could still be enhanced since the upregulation of HLA 
molecules does not always impair NK-cell responses (Paper I), and since ICAM-1 
might be induced by the effector molecules. Fourth, the release of effector molecules 
by the CAR-CTLs could be an alternative pathway for the induction of target cell 
death, since these effector molecules are sufficient to induce NB cell death at varying 
degree (Paper II, [720]). 
 
Based on our findings, the administration of CAR-CTLs to NB patients could 
potentially be even more beneficial if combined with NGF and/or TRAIL. Co-
administration of IL-2 could be a strategy to support activation of TILs and a co-
operative anti-tumor response by TILs and transferred CAR-CTLs. 
 
Our results also demarcate IFN-γ as a versatile molecule, with the ability to modulate 
NB immunogenicity, induce differentiation and restore the apoptotic machinery. A 
recent study by Reid et al. also demonstrated that IFN-γ regulates T-cell infiltration into 
NB tumors in a model where immunodeficient mice received ACT with survivin-
specific T-cells derived from NB patients [775]. Thus, the delivery of IFN-γ to the NB 
microenvironment appears as a promising approach to enhance intratumoral T-cell 
responses. Furthermore, as shown in paper III, only 2 of 8 human NB tumors produced 
IFN-γ ex vivo, arguing that an additional source of IFN-γ would be needed. Since 
systemic administration of cytokines can evoke toxicities, an alternative route for 
administration would be preferred. Possibly, IFN-γ could be linked to hu14.18, as has 
been performed with IL-2 [743]. This could be beneficial as a single treatment, or 
combined with ACT therapy and/or differentiating agents such as NGF. 
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TUMOR-INFILTRATING CELLS IN NEUROBLASTOMA (PAPER III AND IV) 

In paper III and IV, the interactions between NB and tumor-infiltrating cells of the 
immune system have been investigated. Specifically, paper III aimed at monitoring the 
status of T-cell responses in the peripheral blood and within the tumors of NB patients. 
Paper IV aimed at investigating inflammatory patterns, including infiltrating cells of the 
adaptive as well as the innate immune system, and the effect of anti-inflammatory 
treatment on NB using the TH-MYCN mouse model. 
 
T-cell responses in the tumor microenvironment of NB 

Studies on T-cell responses in NB patients have been performed with varying 
outcomes. Coughlin et al. reported that tumor-infiltrating T-cells were rare or absent in 
26 of 26 high-risk NB samples investigated by immunohistochemistry. In peripheral 
blood however, survivin-specific T-cells were detected, and T-cells were also present in 
the perivascular areas of tumor samples [442]. Reid et al. furthermore showed that  
T-cells can infiltrate NB tumors in an IFN-γ-dependent manner [775] and another study 
demonstrated that clonal expansion of T-cells took place in NB tumors [444]. In 
addition, CD4+ T-cell clones isolated from NB tumors retained their ability to secrete 
TH1 cytokines in vitro [445]. Hence, it appears that T-cell responses towards NB 
tumors may actually exist, but the functional status of these T-cells remains to be fully 
elucidated.  
 
The tumor compartment may represent an immunosuppressive environment 
unfavorable for the generation of anti-tumor T-cell responses. In a melanoma vaccine 
trial, the absence of a clinical response was attributed to functional dissociation 
between systemic and local immune responses [480]. However, an in vivo model for 
melanoma demonstrated that naïve T-cells can be activated by APCs within the tumor 
and hence acquire an effector cell phenotype upon entering the tumor area [294]. 
 
To elucidate whether or not the tumor microenvironment of NB is suppressing T-cell 
responses, a systematic comparison with other compartments may lead to further 
insight. Hence, we evaluated T-cells in the peripheral blood as well as within the 
tumors of NB patients, with respect to their CD4/CD8 distribution, activation status and 
memory phenotype. In contrast to previous published reports, we could detect 
intratumoral T-cells in all screened primary NB samples. Furthermore, immunostaining 
revealed that T-cells were proliferating in situ and aggregated their TCRs towards the 
contact sites with NB tumor cells. When evaluating the prevalence of CD4+ versus 
CD8+ T-cells in the CD3+ compartment, we could detect a redistribution in favor of 
CD8+ cells in tumor-associated lymphocytes (TALs) in 5 of 7 evaluated tumors. In all 
but one tumor, a stage 3 MYCN-amplified NB, the proportion of CD8+ T-cells was 
higher in the tumor than in peripheral blood. Further evaluation revealed a higher 
expression of the activation marker CD25, the IL-2 receptor α-chain, on T-cells within 
the tumor compartment in 5 of 7 patients.  
 
T-cells can also be classified according to their memory phenotype. In general, TEM and 
TEMRA cells are considered to be the most differentiated subtypes in terms of effector 
function. Besides carrying high amounts of perforin and GrB, they also mount robust 
TH1 cytokine responses upon simulation [307, 776]. Concomitant to the increase in 
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CD25 expression, TALs displayed a phenotype of memory cells to a higher extent, as 
compared to PBLs, where a naïve phenotype predominated. The most prominent 
difference was observed within the CD3+CD8- compartment, where an increase in TEM 
cells was detected in 6 of 6 tumors. CD3+CD8+ cells were mainly of the TEMRA 
phenotype, which is known to carry the highest amounts of perforin [307]. 
Interestingly, Pages et al. demonstrated that the presence of memory T-cells correlated 
to an increased survival in colon cancer patients [274]. Although we have not been able 
to determine the specificity of the T-cells present within NB tumors, our findings in 
paper II support the notion that activated T-cells within NB tumors might exert anti-
tumor effects even if they would not be specific for TAAs. 
 
Considering the increase in CD25 expression, we also set out to monitor the presence 
of Tregs in human NB samples, by detecting Foxp3 expression in combination with 
CD4 and CD25. Intracellular stainings of whole tumors represent a challenge, since 
these often necessitate more cells due to extended handling and since the additional 
steps can affect the quality of the staining. In the two samples where enough cells were 
available, the expression of Foxp3, as detected directly ex vivo, was surprisingly lower 
in intratumoral CD4+CD25+ cells than in the corresponding population in autologous 
PBLs. Hence, in these samples, Tregs did not appear to accumulate within the tumors, 
which supports the picture of a prevailing anti-tumor T-cell response in NB tumors. 
 
Differences in T-cell subsets detected in the tumor compartment and peripheral blood 
may reflect a preferential homing or a preferential on-site expansion of certain subsets 
of cells. To monitor this in vivo in NB patients would be logistically, practically and 
ethically hard to perform. We used an in vitro system where autologous PBLs from NB 
patients were subjected to an encounter with tumor cells in culture, which enabled us to 
monitor tumor-inflicted changes on the phenotype of PBLs. The overall changes seen 
upon this co-culture system skewed the phenotype of PBLs towards that seen in the 
intratumoral compartment on the day of tumor excision. In the majority of cases, the 
CD4/CD8 ratio was skewed towards CD8, and CD25 expression either increased or 
remained at similar levels. Similarly, the frequency of T-cells with a memory 
phenotype was increased, mainly TEM in the CD3+CD8+ population, indicating an 
acquisition of effector functions. In other studies it was shown that soluble factors 
released by tumor cells could induce a regulatory phenotype in T-cells [526], or even 
trigger cell death in autologous PBLs [777]. 
 
Altogether, it appears likely that lymphocytes infiltrating NB tumors are not prevented 
from being activated on-site and obtain the functional characteristics of armed CD8+ 
effector cells. 
 
In paper IV, we evaluated intratumoral T-cells present in the transgenic TH-MYCN 
tumors of various stages of disease. Previously, this model was suggested to lack 
lymphocytic infiltration due to a “non-immunogenic” phenotype [778]. In our hands, 
TILs were detected in all screened samples using immunohistochemistry as well as 
flow cytometry. However, in contrast to the observed pattern in human NB samples, we 
could detect a preferential presence of CD4+ T-cells compared to CD8+ T-cells, with a 
gradual increase in the CD4/CD8 ratio in parallel to tumor progression. Surface 
expression of activation markers (FasL and CD25) was low, but the capability to 
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produce IFN-γ upon mitogenic stimulation ex vivo was retained. The IFN-γ levels were 
low within the tumors, as detected by quantitative real-time RT-PCR (qRT-PCR), but 
the intrinsic ability of the T-cells to mount TH1 responses upon proper stimulation 
appears to be intact. It has been shown that CD8+ responses gradually decline during 
tumor progression, with a reduced ability to induce target cell death at later stages of 
disease [779].  
 
A note on the TH-MYCN model 

The TH-MYCN model was first described by Weiss et al. in 1997. By inserting human 
MYCN cDNA under control of the rat tyrosine hydroxylase promoter, the expression of 
MYCN was successfully directed to migrating cells of the neural crest [780]. The mice 
presented with thoracic and/or abdominal tumors, and a subsequent study confirmed 
the origin of the tumors to be paravertebral ganglia [781]. Histologically, the TH-
MYCN tumors resemble human NB. The tumors are highly vascularized and contain 
small, round blue cells. Varying degree of neuronal differentiation is detectable. 
Macroscopic metastases have been detected in the liver, lungs and ovaries, and 
microscopic metastases are found in several organs [780, 782].  
 
The progression of heterozygous TH-MYCN tumors has been suggested to resemble 
that of human NB, with early, intermediate and late tumors corresponding to stage I-III 
NB, respectively [782]. Furthermore, the genetical aberrations detected in the TH-
MYCN tumors also reflect those in human NB, exemplified by chromosome gains 
corresponding to 17q gain in human NB [783]. Previous studies have denoted 100% of 
homozygous mice as tumor bearing at the age of 6.5 or 7 weeks [781, 784]. 
Heterozygous mice have shown varying degree of disease penetrance, with two studies 
reporting 27% or 65% of heterozygous mice as tumor bearing at the age of 95 days 
[782, 784], and another study denoting 33% as tumor bearing at the age of 13 weeks 
[781]. 
 
Whereas the level of CD4+Foxp3+ Tregs as a function of infiltrating CD4+ cells 
remained steady, the TH-MYCN tumors still appear as more suppressive to T-cell 
responses than human NB. Several explanations could be true for this difference. The 
TH-MYCN model is an extremely aggressive model for NB, with homozygous mice 
rapidly developing large intra-abdominal tumors. A systemic immunosuppression 
during such a process is likely to be of importance and dampen the quality of T-cell 
responses systemically as well as locally. In a tumor expanding as aggressively as the 
TH-MYCN tumor, rapid turnover of large amounts of cells will unequivocally trigger 
inflammatory pathways with an ensuing influx of cells with suppressive abilities, as 
will be discussed below.  
 
Another factor defining the prerequisites for a successful intratumoral T-cell response is 
the prevailing balance between TH1 and TH2 cytokines. In our cohort of primary human 
NB samples, we monitored the levels of secreted IL-1β, IL-12, IFN-γ, TNF-α, IL-4, IL-
5, IL-6, IL-8, IL-10, IL-13, TGF-β and GM-CSF in vitro (paper III). The dominant 
cytokine produced at high levels by all NB tumors, and possible remaining TALs, was 
IL-8. Previously, the mRNA for IL-8 has been detected in NB samples [445], and IL-8 
is known for its pro-angiogenic properties [785]. The immunosuppressive cytokines IL-
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10 and TGF-β were produced by 1 and 4 of 7 tumors, respectively. Of note, the highest 
amounts of TGF-β were detected in a MYCN amplified stage 3 NB, followed by a non-
survivor with a stage 2 NB. The immune-stimulating cytokines IFN-γ and TNF-α were 
detectable in 2 and 3 of 7 tumors, respectively. Interestingly, when exposing autologous 
PBLs to tumors, their corresponding cytokine pattern was altered such as to 
downregulate TGF-β in 5 of 7 patients and increase the TH1 cytokines TNF-α and IFN-
γ in 4 and 5 of 7 patients, respectively. This finding further strengthens the notion that 
T-cells encountering NB tumors may be activated in the vicinity of the tumors. In the 
TH-MYCN model, we monitored the mRNA levels of TH1 (IFN-γ and IL-2) versus 
TH2 (IL-10, IL-6 and TGF-β) cytokines in homo- as well as heterozygous tumors of 
various sizes. We could detect a predominance of IL-10 and TGF-β above other 
cytokines, a pattern which persisted throughout tumor progression. This indeed mirrors 
the attenuated CD8+ responses, but also raises the question how Tregs are sustained, 
considering their need for IL-2. One possible explanation would be a continuous influx 
of Tregs from peripheral blood, where IL-2 was detectable at low but increasing levels 
during tumor progression. Alternatively, Tregs might be short-lived but constantly 
replenished on-site by alternative activation pathways under the influence of TGF-β 
[512]. 
 
A note on flow cytometry on tumor samples 

One common technique applied in paper III and IV is multi-color flow cytometry on 
whole tumor samples. This is a method which represents a technical challenge per se. 
A tumor harbors a cell population of extreme heterogeneity, not only with cells of 
divergent origin, but also of varying viability and propensity to bind antibodies non-
specifically. 
 
Factors of major importance that will affect this type of staining are i) the type of 
compensation applied, ii) the usage of isotype controls versus fluorescence minus one 
(FMO) controls and iii) Fc-blocking reagents as well as dead cell markers. In paper III, 
we have used isotype controls to define positivity. During the last years, isotype 
controls have been questioned and the alternative FMO has arisen as another way to 
validate the positivity of a staining [786]. An FMO control is represented by a tube 
where the fluorochrome-conjugated antibody of interest is omitted, but the remaining 
setup is intact. Since a tumor represents a tissue where one can expect extensive 
binding to and uptake of antibodies by dead cells, as well as differential 
autofluorescence and FcR binding of antibodies, an FMO might be a preferred control 
for certain stainings. With experience, one can learn how to interpret background noise 
and distinguish a true staining from false antibody uptake by apoptotic cells. This 
however requires a trained eye and variations between samples may cause technical 
problems. To circumvent or minimize these problems, one can use Fc-blocking 
reagents as well as dead cell markers to reduce background. Manual compensation 
during acquisition is also difficult to achieve with a satisfactory outcome. Instead, 
compensation using mathematical matrices applied by the software is preferred, either 
while running the samples or during the analysis (for example using the FACSDiva or 
Flow Jo software). 
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Tumor-associated inflammation versus immunosurveillance 

Inflammation was recently suggested to be incorporated into the hallmarks of cancer 
[64], and anti-inflammatory treatment with aspirin has proven to reduce the risk of 
cancer in the adult population [227-229]. Suppressive populations such as Tregs have 
also been ascribed protective roles in some cancers, possibly by dampening loco-
regional inflammation [374, 552]. Nevertheless, the immune system can control tumor 
growth, given the right circumstances and a proper target cell.  
 
In paper III, human NB tumors are shown to be permissive for anti-tumor T-cell 
responses. In paper IV, we define how tumor-infiltrating cells in the TH-MYCN mouse 
model for NB are being subverted towards a tumor-promoting phenotype during tumor 
growth. In light of these results, the question arises how anti- and pro-tumorigenic 
properties of the immune system regulate NB tumor growth and direct the responses 
seen upon immunotherapy.   
 
Figure 8 summarizes the tumoricidal and the tumor-promoting arms of the immune 
system in the tumor microenvironment and of relevance for this thesis.  
 

 
 
 
 
 
 
 
 
Although the TH-MYCN tumors behave disparate to primary NB samples in respect of 
T-cell responses, it is still to be considered a preferential model above syngeneic or 
xenogenic models for studying interactions with the tumor microenvironment. Using 
the latter, an acute onset of inflammatory reactions upon introduction of foreign cells is 
inevitable. Any immune response seen upon tumor cell inoculation is less likely to 
mimic native interactions occurring without external stimuli. The targeted expression of 

Figure 8. Immune responses in the microenvironment highlighting some of the pro-and anti-
tumorigenic properties of the immune system. On the left side, tumor-promoting abilities of the 
immune system are shown, defined by a TH2 response and an induction of M2 macrophages, Tregs, 
MDSCs and iDCs. On the right side, anti-tumor immunity prevails with a skewing towards a TH1 
response and an induction of CD8+ T-cells, NK-cells, M1 macrophages and mature DCs. M1= TAM 
(M1 phenotype), M2= TAM (M2 phenotype)  
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MYCN in the TH-MYCN model might of course be considered an artificial system per 
se, yet the stroma of the tumor consists solely of host-derived components and the 
tumors are assembled in the actual location for human NB. 
 
Employing the TH-MYCN model, we could demonstrate a diminishment of 
intratumoral CD3+ T-cell responses in favor of immature cells of the innate immune 
system in the course of tumor growth. A detailed analysis was performed on the 
phenotypical characteristics of TAMs in TH-MYCN tumors. In parallel to an increase 
in the total number of TAMs, the M1 phenotype detectable at early stages of tumor 
development was subverted towards a tumor-promoting M2 phenotype as the tumor 
progressed. In a study by Song et al., it was shown that natural killer T (NKT) cells 
mediated NB anti-tumor immunity by killing CD1d expressing TAMs [86]. NKT cells 
have been linked to favorable prognosis in NB and their infiltration is abrogated upon 
MYCN expression [787]. Interestingly, in paper III, we demonstrate an increase in 
CD3+CD4-CD8- cells in TALs in 4 of 7 samples investigated, possibly representing 
infiltrating NKT cells. In an immunotherapeutic model for NB, macrophages were 
however shown to mediate the protective effects, again stressing the dual role for 
intratumoral macrophages [788]. Furthermore, observed clinical responses to the 3F8 
anti-GD2 mAb were shown to correlate to an FcγRIIA polymorphism, and 
macrophages were proposed to mediate the ADCC [789]. 
 
In addition to TAMs, DCs and MDSCs also outnumbered infiltrating T-cells during 
TH-MYCN tumor progression. The infiltrating DCs exhibited low levels of co-
stimulatory CD86 and a gradual decline in their MHC class II expression, consistent 
with an immature phenotype unable to initiate T-cell responses and with the potential to 
promote tumor growth [197]. MDSCs, well known for divergent mechanisms to 
suppress T-cell responses [158], constituted a small proportion (median 1%) of 
infiltrating cells in early tumors, but increased in advanced tumors (median 10%).  
 
It appears that at some stage of tumor development, the on-site immune system is 
subverted and the recruitment of immune cells is skewed to favor tumor growth. 
Initially, in the early events of transformation, an acute inflammatory reaction may 
evolve and be successful in controlling tumor growth. However, many tumors will 
eventually turn into a tissue where chronic inflammation prevails and repeated 
activation of immune cells occurs in a suboptimal setting. In such a scenario, a 
polarization of the immunological profile will inevitably occur [63, 120]. In our model, 
the negative impact of a prolonged state of disease is clearly demonstrated by the 
higher expression of IL-10 and TGF-β in tumors from heterozygous mice, which have a 
slower onset of disease and longer time as tumor bearing animals compared to 
homozygous mice. 
 
Our results indicate that tumor-associated inflammation contributes to shaping NB 
tumor growth in the TH-MYCN model. Furthermore, NB has previously been shown to 
express COX-2, and targeting of the COX-2 pathway reduced tumor growth in a 
murine model of NB [111]. In the TH-MYCN model, we could detect a prominent 
expression of COX-1 and a weak expression of COX-2 in tumors of early stages, which 
indicated the presence of functional inflammatory pathways. Consequently, we further 
evaluated how anti-inflammatory treatment with low-dose aspirin would affect the 
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tumor microenvironment and/or tumor outgrowth. Homozygous mice were randomized 
to receive 10 mg/kg of aspirin daily by oral gavage, for 10 consecutive days. At the day 
of sacrifice, treated animals presented with a tendency towards a lower tumor burden, 
and concomitantly, the pattern of infiltrating cells remained comparable to that of early 
tumor lesions. Whether or not the altered pattern of infiltration is brought upon by 
aspirin, or is a bystander phenomenon to a reduction in tumor growth, can at this time 
only be speculated upon.  
 
Recent studies correlate a daily intake of low-dose aspirin to a reduced incidence of and 
mortality due to several adult cancers, but offered no mechanistic explanations [227-
228]. Considering that PGE2 has the potential to contribute to all of the hallmarks of 
cancer [119] and given its prominent role in immunosuppression [104], several 
mechanisms could explain this reduced incidence of cancer. Sparse information is 
however available regarding the role of inflammation as a contributor to tumor growth 
in pediatric cancers. Our results highlight inflammatory pathways as a potential 
therapeutic target in NB. 
 
Considering that the local immunological balance within a tumor will affect or even 
determine the outcome of immunotherapy, it would be favorable to implement 
immunotherapy prior to reaching the state of chronic inflammation. In fact, prostate 
cancer vaccines, including the DC-based Sipuleucel-T and DNA-based vaccines were 
shown to be more effective in patients with less advanced stages of disease [689, 790]. 
Interestingly, in NB, the fusion protein hu14.18-IL-2 was effective only in patients with 
non-bulky disease, whereas patients with bulky disease did not respond [743]. In 
combination with our results outlined in paper IV, this argues for an early 
implementation of immunotherapy in clinical protocols for NB. 
 
Alternatively, if the prevailing microenvironment is suppressive, it could be primed 
prior to the application of immunotherapy. The purpose of such a regimen would be to 
shift the local balance from chronic inflammation to immunosurveillance. A recent 
review by T. Whiteside highlights the potential of targeting cancer-induced 
immunosuppression [791]. Several possible ways to restore immunosurveillance exist, 
including mAbs directed at inhibitory molecules such as CTLA-4 and PD-1, or directed 
at suppressive cytokines such as TGF-β or IL-10. The tyrosine kinase inhibitor 
sunitinib is also promising, since it has proven to reduce the levels of Tregs and 
MDSCs and promote a shift towards TH1 responses [792]. COX-inhibitors also 
constitute a possible auxiliary approach to be combined with immunotherapy. Reduced 
levels of PGE2 would be beneficial for a subsequent introduction of immunotherapy, 
considering its immunosuppressive effects. Talmadge et al. could demonstrate reduced 
numbers of MDSCs upon COX-inhibition, which provides a potential link between 
COX-inhibitors and immunotherapy [241]. Recent publications have also demonstrated 
the ability to reverse the phenotype of TAMs from M2 to M1, with in vivo effects on 
tumor burden [244-245].  
 
Taken together, the tumor might provide a non-favorable site for immune responses, 
but an improved understanding of the balance between chronic inflammation and 
immunosurveillance offers new potential strategies to improve the outcomes of 
immunotherapy. 
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GENERAL CONCLUSIONS 
The work presented in this thesis addresses the fundamental prerequisites for the 
implication of immunotherapy in NB, by investigating how NB interacts with cells of 
the immune system. 
 
Our results demonstrate that NB may be a suitable target for cellular immunotherapy, 
although the prevailing notion is that NB is a tumor of low immunogenicity. We show 
that the induction of differentiation in NB is accompanied by an enhanced ability of T-
cells as well as NK-cells to eradicate NB tumor cells. This argues strongly in favor of a 
combined approach where adoptive transfer of tumor-reactive lymphocytes is 
performed concomitant to the administration of differentiating agents. Furthermore, we 
show that activated tumor-non-specific CTLs release effector molecules that modulate 
the immunogenicity of NB, such as to enhance the sensitivity to DR-mediated killing 
and to restore the apoptotic machinery. This pathway offers the ability to circumvent 
the need for HLA-restricted killing and emphasizes the importance of attracting 
activated CTLs into NB tumors. 
 
This thesis also provides evidence that primary human NB samples harbor tumor-
infiltrating T-cells which proliferate in situ and are of a memory phenotype. Again, this 
argues in favor of implementing T-cell based cell therapies for NB patients.  
 
In addition, using the transgenic TH-MYCN model for NB we demonstrate how tumor 
progression is accompanied by a shift in the composition and phenotype of tumor-
infiltrating cells, in favor of immature cells with tumor-promoting abilities. 
Concomitantly, early anti-inflammatory treatment of homozygous mice with low-dose 
aspirin showed a promising efficacy in delaying tumor outgrowth and the inflammatory 
switch. This uncovers tumor-associated inflammation as a possible contributor to, and 
target in, NB growth. 
 
In conclusion, the work presented in this thesis demonstrates how NB interacts with the 
immune system, and depicts possible interventions on how to enhance the recognition 
of NB by the immune system. It argues in favor of an early implementation of cellular 
immunotherapy, which could preferentially be potentiated by the attraction of activated 
tumor-non-specific CTLs to the tumor, or by differentiating agents. 
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