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ABSTRACT 

Behavioral characterization of various mouse strains created as models for human 

diseases such as Alzheimer disease requires robust phenotyping methods. Previous 

work on inbred mouse strains has shown that some of the widely used behavioral 

methods yield inconsistent results across laboratories, in spite of standardization efforts. 

One approach to minimize experimenter induced variability relies on development of 

automated methods.  

The aims of this thesis were to evaluate an automated device - the IntelliCage - which 

enables behavioral testing of group-housed mice. In a multi-center study, inter-

laboratory consistency of behavioral measurements in IntelliCage was evaluated [study 

I]. Three strains of mice: C57BL/6NCrl (B6), DBA/2NCrl (D2) and (C57BL/6 x 

DBA/2) F1/NCrl (C6D2F1) were tested simultaneously in four laboratories (n=78/lab). 

No statistically significant interaction effect of Laboratory x Strain was obtained, 

indicating that strains were consistently ranked across laboratories. Significant 

Laboratory effects were obtained for several Activity and Learning variables due to 

uncontrolled local factors. Phenotypically, the mouse strains were not discriminated 

during the initial exploratory phase. During the following adaptation phases the B6 

mice made more visits to IntelliCage corners than the D2 mice. For unconditioned 

phases, the visit number for F1 mice was between that of the inbred strains. For 

conditioned phases F1 mice performed the smallest number of visits. B6 mice 

discriminated best following place learning and D2 were best at re-learning the task. F1 

ranked last on both place learning and reversal measures of learning. 

Using the same multi-center study design and the same mouse strains, we evaluated the 

effect of additional components (add-ons) availability on IntelliCage measures [study 

II]. In the enriched condition (IntelliMaze) access to additional space was made through 

the “SocialBox” and “AnimalGate” add-on devices. The unconditioned activity during 

adaptation dark phases was reduced in the presence of add-ons. During the place 

conditioning paradigms, the overall number of trials needed to reach the learning 

criterion, was lower in the presence of add-ons. The strain ranks for activity measures 

were consistent with the results of study I. 

Dissociation in cognitive abilities of B6 and D2 mice has been proposed as a natural 

model to study hippocampal (dys)function. Behavioral predictive validity of animal 

models for Alzheimer disease is implied by impairments in hippocampal dependent 

tasks. 



 

 

In study III, a double transgenic Amyloid precursor protein model of Alzheiemer 

disease, (the tg-ArcSwe) was tested longitudinally in the IntelliCage. Lower body 

weight was found throughout the adult life-span of the tg-APPArcSwe mice. Lower 

activity counts were seen at 4 month of age, but not at 14 months. A deficit in 

extinguishing place preference for a previously rewarded corner at 4 month was shown. 

At 14 months the tg-APPArcSwe mice were impaired in a passive avoidance test in the 

IntelliCage. During the training phase of the passive avoidance test the behavior 

(preference for the punished corner) of tg-ArcSwe was found to moderately and 

inversely correlate with the level of CALB immunoreactivity in the polymorphic layer 

of the DG. 

Finally, the effects of IntelliCage exposure as well as relationships between variables 

obtained during IntelliCage testing and Elevated Plus Maze, Open field, Rotarod, 

Morris Water Maze and Fear conditioning were explored [study IV]. We found that 

only a limited amount of variance in the conventional tests could be accounted for by 

IntelliCage variables. 

 

In conclusion we have shown that mouse strains can be discriminated using the 

IntelliCage. Similarly, the behavior of tg-ArcSwe and non-tg mice was dissociated by 

this metholodogy. Although some degree of correlation was found between the results 

of conventional studies and IntelliCage variables, only a small part of the variance in 

conventional studies was explained by variables obtained in the IntelliCage.  

  



 

 

 
 
 
 
 
 
 
 
 
 
 

To my family 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Home is not the one tame place in a world of adventure; 

 it is the one wild place in a world of rules and set tasks.” 

G. K. Chesterton 
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1 INTRODUCTION 

 
Genetic, epigenetic and environmental factors shape the biology and functions of the 

Central Nervous System (CNS). Behavior is the distilled expression of CNS function 

while altered behavior accompanies neuropsychiatric and neurodegenerative diseases. 

In the attempt to understand the mechanisms which lead to human brain disease and 

find potential cures, research takes advantage of reductionist model systems. Currently, 

the mouse is the most widely used mammal serving as a complex model organism for 

human physiology and disease. Given both the obvious and the less well understood 

differences between these two species, translating paradigms between them is not a 

trivial task. Furthermore, specific methodological obstacles are encountered when 

behavior is the phenotype of interest. These theoretical aspects are introduced below. 

This thesis presents work performed to validate a novel approach for behavioral testing 

of mice, as part of a collaborative project, involving four European labs, as well as 

work to tests the applicability of that approach for phenotyping Alzheimer disease (AD) 

mouse models.  

 

1.1 THE MOUSE LIFE: A BACKGROUND 

According to current biological classifications, laboratory mice and their wild relatives 

belong to the order Rodentia (class Mammalia, subphylum Vertebrata, phylum 

Chordata, kingdom Animalia). The order comprises about 30 different families, in 

approximately 2000 species having in common a well developed gnawing apparatus. 

Rodents have rootless, continuously growing incisors (only one for each quadrant), a 

diastema (gap), followed by pre-molars or molars (in the mouse). The incisors are 

maintained at a physiological length by chewing. The skeleto-muscular apparatus 

supporting gnawing (e.g. Masseter muscle, skull bones) has characteristics which vary 

between rodent families. The order Rodentia clusters inter alia families of mice, voles, 

rats, hamsters, gerbils, beavers, lemmings, squirrels and gophers. Wild mice and rats 

belong to the Myomorpha suborder, Muridae family, currently the largest family – over 

25%- of all living mammals (Havenaar et al., 2001). Four different subgenera, are 

categorized in the genus Mus (Veyrunes et al., 2006), of the Murinae subfamily in the 

Muridae family: Coelomys (Indomalayan areal, shrew mice), Mus sensu stricto 

(Eurasian, North and South American, Australian and North African areal; field mice 

and house mice), Nannomys (African pigmy mice) and Pyromys (Indomalayan areal, 
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spiny mice). The common house mouse belongs to the Mus musculus species (for a 

detailed description of subspecies and areal see (Tucker, 2007). Phylogenetic studies 

have shown that laboratory mice have a mixed genetic contribution from different Mus 

musculus subspecies: M. m. castaneus, M. m. domesticus, M. m. musculus, and a 

hybrid M. m. molossinus (Mott, 2007, Yang et al., 2007). Unless otherwise specified, 

the information provided below refers to the Mus musculus laboratory mice - mus 

laboratorius, as they are sometimes colloquially called (Guenet and Bonhomme, 2003). 

 

In the wild, the longevity of a mouse depends on many factors, like availability of 

resources, predation, diseases, and accidents. In the protected laboratory environment 

the mouse life span reaches 1-2 (3) years (Havenaar et al., 2001). Under extreme 

genetic (e.g. Growth hormone receptor – knock-out mice (Bartke and Brown-Borg, 

2004)) and environmental conditions (mice on caloric restriction diet (Dhahbi et al., 

2004)), mice can survive up to 4 years. Adult female mice weigh between 25 to 40 g 

and males between 20 to 40 g (Havenaar et al., 2001). The estimated average food 

intake is 5-7 g/day (Ritskes-Hotinga and Chwalibog, 2003) and water intake 

15ml/100g/day, for the adult mouse (Havenaar et al., 2001).  

Mice are altricial animals and rely on maternal care until weaning, which occurs in the 

laboratory after approximately 3 weeks (21-28 days). Both in the wild and in the 

laboratory, nest sharing, cooperative breeding and communal nesting have been 

described (Sayler and Salmon, 1969, Branchi and Alleva, 2006, Singleton and Krebs, 

2007). During this period of neonatal development, the pups communicate with the 

dam by ultrasonic vocalizations (Branchi et al., 2004, Crawley, 2004, Scattoni et al., 

2009). Littermate interactions in the nest contribute to the development of behavior 

(Branchi et al., 2010), along with other types of social and individual experiences and 

the maturation of the CNS. Puberty is installed at approximately 5 weeks for female 

mice and can be accelerated by exposure to male urine (Vandenbergh effect). Sexual 

maturity (breeding age) occurs at approximately 8 weeks of age. The gestational period 

lasts on average 19 days (18-21 days). Females are polyestrous (several ovulations per 

breeding season), and become fertile post-partum (oestrus stage). Therefore pregnancy 

and lactation can be concomitant in mice. Social housing conditions influence the 

frequency and regularity of the oestrous cycle of female laboratory mice. Isolated 

females tend to have regular cycles, while females housed in unisex groups to become 

anoestrus (Lee-Boot effect). If a male mouse (or its urine) is introduced into a female 

colony, the oestrous cycle of females becomes synchronized within 72 hours (Whitten 
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effect). Chemical signals (pheromones) present in mouse urine, have an effect both on 

reproductive fitness and maturation as well as behavior. Fear and aggression can be 

directly influenced by pheromones, whereas indirect effects on behavior occur through 

altered hormone levels (Flanagan et al., 2011).  

Following field and laboratory studies, several models of social hierarchy have been 

proposed for mouse colonies (Singleton and Krebs, 2007). Evidence suggests a strong 

territorial structure is established in laboratory colonies, characterized by low to 

medium population densities. Inter con-specific aggression is a common event with 

some laboratory mice (see below) and may induce site-specific measures. Currently 

there is no consensus on how individual housing of males or females affects the validity 

of research results. Field studies support the theory that during the breeding season 

mice are not highly territorial, but attached to site, and social dominance is established 

based on body size. The social model can change according to environmental factors, a 

process known as social plasticity (Singleton and Krebs, 2007).  

Mice probably accompanied human communities since the Neolithic, when humans 

started to gather and store grain crops. The origins of their name suggest mice were not 

very popular but regarded as a pest (the Sanskrit word for mouse, m$%aka, is based on 

the root m$% which means to steal or rob; Greek mys; Latin mus). In ancient 

mythology, mice were a symbol of desire, frailty, and hidden intentions. Along 

common history, they were a subject for human philosophical thinking, presented in the 

arts and finally a topic and a means in the scientific endeavor. Mice were domesticated, 

bred and commercialized as pets for unusual esthetical characteristics (“fancy mice”), 

first on the Asian Continent and later adopted by the Western culture. One such colony, 

kept by Miss Abbie Lathrop, was geographically close to the laboratory of William 

Ernest Castle – the “Pioneer Mammalian Geneticist” at Harvard Bussey Institution for 

Applied Biology. 

Some of the characteristics that make mice interesting for biomedical research are their 

short inter-generational time, short gestational time and good breeding performance (6-

12 pups per litter). Furthermore, mice proved to be robust to genetic manipulations, 

which were more easily performed on mouse biological material than on material from 

other mammalian species (O’Sullivan et al., 2006, Smits and Gould, 2009). The mouse 

contributed to seminal discoveries in research fields such as cancer research, genetics, 

immunology and the neurosciences. 

The use of animals in research is subject to strict regulations. In the European Union 

(EU) the Directive for the Protection and Use of Vertebrate Animals used for 
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Experimental and other Scientific Purposes (86/60-9/EEC) set the standards for the use 

of mice in the laboratory (and other vertebrates). The Directive 86/609/EEC 

was replaced by the Directive 2010/63/EU on the protection of animals used for 

scientific purposes, which revised the species which fall under its incidence, 

developmental stages included, standards for animal welfare, record keeping and killing 

procedures, among other aspects. In Sweden, additional requirements are in place 

through the Animal Welfare Act (1988:534) and the Animal Welfare Ordinance 

(1988:539). Animal research is guided by the 3Rs principles - Replacement, Reduction, 

Refinement - formulated by Russell and Burch in 1959 (Russell, 1995, Burch, 2009). 

According to these principles, all effort should be made to: (1) promote the 

development of alternative models; (2) opt for alternatives if these are available; (3) 

ensure that animals are used towards defined legitimate goals; (4) by trained personnel; 

(5) who should reduce to an optimum the number of animals used in experiments; (6) 

pain and distress must be avoided. Furthermore, the facilities and procedures employed 

are subject to legitimate inspection and public accountability (de Greeve et al., 2001). 

The interaction between the research community and Animal rights organizations has 

pushed forward the development of alternative and improved methodology for animal 

experimentation. Relevant resources on this topic can be accessed online: 

• http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm  

(European Commission resources on Laboratory animals) 

• http://ecvam.jrc.ec.europa.eu/ (European Center for the Validation of 

Alternative Methods) 

• http://awic.nal.usda.gov/nal_display/index.php?info_center=3&tax_level=1&ta

x_subject=185 (Animal welfare information center; USA Department of  

Agriculture) 

• http://altweb.jhsph.edu/ (Johns Hopkinks Bloomberg School of Public Health) 

• http://www.isogenic.info/index.html (M. Festing website)   

 

1.2 GENETIC DIVERSITY OF LABORATORY MICE 

From a genetic standpoint, mice are “close to humans” (Ji et al., 2002). The 

International Mouse Genome Sequencing Consortium (IMGSC) published a draft 

sequence for more than 96% of the mouse genome in 2002, less than 1 year after the 

draft of the human genome sequence was assembled. High quality, finished sequences 

have since been published (Brown and Hancock, 2006). Access to detailed information 
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from IMGSC work and comparisons between the mouse and human genomes are freely 

available online (Karolchik, 2003, Birney, 2004, Wheeler, 2004). The mouse nuclear 

DNA is organized in 2n=40 chromosomes and the human 2n=46. The total number of 

pair bases is about 15% higher for the human genome, whereas the predicted number of 

protein-coding genes is similar between the two species (Morse, 2007). As of April 

2011, a total of 17,840 mouse genes were known to have orthologs in humans. 

Updated, high quality, high resolution data regarding gene homology between mouse 

and man can be accessed on the internet at:  

• http://www.informatics.jax.org/reports/homologymap/ mouse_human.shtml 

• http://www.ensembl.org/Multi/martview  

• http:// www.ncbi.nlm.nih.gov/HomoloGene. 

Commercial breeding farms provide many of the mice in biomedical research, due to 

space requirements and high maintenance costs. Depending on the breeding system 

mouse populations are: “outbred stocks”, “random bred” and “inbred strains”.  

 

1.2.1 Outbred stocks and random bred colonies 

Outbred stocks provided an estimated 30% of the mice used in published research in 

2005 (Chia et al., 2005). They are bred so that the genetic relatedness between the 

individuals is kept to a low level, a standard which requires a high number of breeding 

pairs for each breeding step (Morse, 2007). Although limited by the initial number of 

breeding animals, the level of genetic variability between individuals in a stock remains 

higher than in the case of inbred strains (see below). Some researchers consider this 

genetic variability a better way to mimic variability in human populations. Others argue 

that a higher number of outbred animals are necessary to detect the same effect, which 

is against the 3Rs principles. Alternative experimental designs were proposed for 

experiments where outbred mice are traditionally preferred (Festing, 2010). Outbred 

mice weigh more, and might offer an advantage when good breeding performance is 

required.  

The “random breeding” system uses a random assignment of the animals to the 

breeding pairs. With this system, mating between siblings can also occur, which 

increases the relatedness within a colony more rapidly than in the outbred stocks. 

 

1.2.2 Inbred mouse strains: not all mice are equal  

By definition, inbred strains are kept by brother and sister mating (bxs) for more than 

20 generations; in some cases breeding between off-spring and the youngest parent is 
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used. For the 21st generation of bxs progenies, the percentage of initially heterozygous 

loci fixed in a homozygous state reaches 98.4 % (van Zutphen et al., 2001), and the 

mice are considered genetically uniform (isogenic). Substrains are created if breeding 

pairs from an existing inbred strain are maintained for 8-19 generations of bxs mating, 

and further maintained without intercrosses for a minimum of 12 more generations. 

Both evidence of genetic differences and transfer to another investigator are considered 

sufficient for the creation of a new substrain. 

 

Genetic and phenotypic differences between inbred mouse strains in for example 

development (Wahlsten, 1975), anatomy (Fredens, 1981), physiology (Nguyen et al., 

2000), susceptibility to infections (Lloyd et al., 2009a, Lloyd et al., 2009b), pathology 

(Higuchi et al., 1991) and behavior (Crawley et al., 1997) are notorious. Taking 

advantage of this knowledge increases the chance to detect phenotypic changes using a 

lower number of animals (3Rs: reduction) and recognize genetic modifiers (Holmes 

and Hariri, 2003, Yoshiki and Moriwaki, 2006, Doetschman, 2009) in genetically 

modified models. The Mouse Phenome Database (http://phenome.jax.org/) offers 

information about strain characteristics. 

 

Following the Guidelines for Nomenclature of Mouse and Rat Strains, inbred mouse 

strains are named with short names (capitals) or roman numbers; and substrains by 

providing the name of the strain they originated from, followed by a slash and the 

abbreviated name for the laboratory or the researcher who maintains the substrain 

(http://www.informatics.jax.org/greenbook/chapters/chapter6.shtml). 

 

1.2.2.1 C57BL/6 and DBA/2 inbred strains 

Two of the oldest inbred families of strains used in research are the C57BL/6 (“the 

black mice” - B6) and DBA/2 (“the gray mice” – henceforward D2). Their ancestry can 

be traced back to the work of Miss Abbie Lathrop. 

The B6/J strain was transferred at The Jackson Laboratory (JAX®) where it reached 

generation F226pF227 (02-JAN-10). Generally, B6/J mice are good breeders and have 

a relatively long life span. They are the most popular strain in research and B6/J DNA 

served as material for the Mouse Genome Project. The strain is suitable for genetic, 

cardiovascular and metabolic research being susceptible to diet-induced obesity, Type 2 

diabetes, and atherosclerosis. B6/J manifests age-related hearing loss (onset at 10 

months), has a high susceptibility to noise induced hearing loss and microphthalmia. 
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B6/J mice are preferred in neuroscience research due to “good cognitive abilities” 

(Crawley et al., 1997), explaining why backcrossing onto a B6/J background is almost 

common practice. B6/Js are resistant to audiogenic seizures and develop addiction to 

alcohol and morphine. Due to over-grooming they can experience hair loss. Breeding 

pairs from the B6/J colony were transferred to National Institutes of Health (NIH; 

B6/N) and further to Charles River Laboratories (Crl; B6/NCrl). Genetic (Bothe et al., 

2004, Mekada et al., 2009, Zurita et al., 2010) and behavioral (Bryant et al., 2008, 

Matsuo et al., 2010) differences between mice acquired from these separate colonies 

(substrains) have also been described (Kiselycznyk and Holmes, 2011).  

 

The DBA/2J (Dilute Brown Non-Agouti - D2/J) strain is maintained at JAX® where it 

reached generation F219pF223 (02-JAN-10). Phenotypically they exhibit many 

opposing characteristics to the B6/J mice: poor breeders, low-susceptibility to diet-

induced atherosclerosis; high frequency hearing loss (onset at weaning); age related 

ocular degeneration (glaucoma); susceptibility to audiogenic seizures (young mice); 

intolerance to alcohol and morphine; low preference for sweet tasting substances. 

Breeding pairs were transferred to Mider, from Mider to NIH, from NIH to Charles 

River Laboratories (D2/NCrl).  

 
1.2.3 Hybrid strains 

F1 hybrids result from a cross between individuals of two different inbred strains. 

Genetically, they are identical (isogenic) and heterozygous at all loci where the parental 

strains differ. Phenotypically, they exhibit hybrid vigor (robust health, good breeding 

performance). The Nomenclature of Mouse and Rat Strains requires that the initials for 

the maternal strain is mentioned first followed by the name of the paternal strain and F1 

particle.  

As an alternative to outbred stocks, when genetic variability is desired, mosaic 

populations can be obtained by systematic F1 crosses between individuals from several 

different strains.  

 

1.3 EXPERIMENTAL MOUSE MODELS FOR HUMAN DISEASES 

Several principles guide academic and drug development research relying on animal 

models (Chadman et al., 2009, van der Staay et al., 2009, Nestler and Hyman, 2010): 

a) Construct validity - refers to similarities between the cause of human disease 

and the cause of phenotype in the model;  
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b) Face validity - refers to resemblance between human symptoms and murine 

counterparts;  

c) Predictive validity - implies that a drug effective in the animal model is likely 

to work in human patients. 

Under this theoretical framework, based on translation of human characteristics to 

animal models, a good predictive validity is sought. Hypotheses formulated from 

findings of epidemiological and genetic studies in humans can be validated or rejected 

through this type of studies. However, the approach places species specific and typical 

characteristics as well as behaviors out of focus. If behavior is the phenotype of 

interest, a significant part of the behavioral repertoire of laboratory animals might fall 

outside research interest. From the forward genetics approach, where mice are first 

screened for peculiar phenotypes and then cellular, molecular and genetic correlates are 

sought, valuable complementary information is obtained (Feusner et al., 2009, Kurien 

et al., 2005). From an ethological perspective, species specific and typical behaviors are 

relevant due to their adaptive significance (Branchi and Ricceri, 2004, Deacon and 

Rawlins, 2005, Deacon, 2006a, Deacon, 2006b, Deacon, 2006c, Crawley, 2007, 

Deacon, 2009, Bailey and Crawley, 2009, Line et al., 2011). It has been proposed that 

an integrative approach would contribute to “…experimental protocol 

(standardization), … improve the quality of data and the welfare of the experimental 

animal” (Branchi and Ricceri, 2004).  

 
1.3.1 Genetically engineered mice (GEM) 

An ever growing methodological tool box enables ingenious manipulations of the 

mouse genome. Genetic models of relevance for the work presented in the thesis are 

introduced below. 

 

1.3.1.1 Transgenic models 

Transgenic animals (mice) bear foreign genetic material (DNA) integrated into their 

genome, in every cell. In order to ensure germ line transmission of foreign DNA (eggs 

or sperm) the insertion of genetic material is performed during early stages of 

embryonic development. 

In the pronuclear microinjection method (Ittner and Gotz, 2007), after isolation of 

fertilized eggs, the foreign DNA is injected into the male pronucleus. The DNA 

integration site is random, and sometimes occurs after several cell division cycles. 

Often, the foreign fragment integrates as multiple tandem copies. Once germ line 
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transmission becomes established, following further crosses, transgenic mice are 

obtained. 

Due to their unique property of pluripotency (give rise to all types of tissues), mouse 

embryonic stem cells (mESC) are also used to produce transgenic models. The foreign 

material can integrate randomly as above or, through homologous recombination it can 

be guided to integrate at a specific site, in a single copy. After successful integration of 

the construct (e.g. evaluated by resistance to neomycin), selected mES are transferred 

into a host embryo. In the resulting organism - a chimera – cells from both embryonic 

origins will be mixed (often the host embryo is chosen from a strain which has a 

different fur color than the donor mESC, so that chimeras can be easily spotted). If the 

engineered mESC contribute to the germ line, some offspring of the following cross 

will carry the DNA fragment of interest in all of their cells. Through homologous 

recombination knock-out models are also created (Wolfer et al., 2002). In these mice, 

the gene of interest is silenced through homologous recombination. 

 

The foreign DNA fragment introduced (construct) can be engineered so that temporal 

and spatial control of the expression can be achieved. Tissue-specific promoters (e.g. 

calcium/calmodulin-dependent kinase II drives the expression of the transgene to the 

forebrain) or the Cre - recombinase model (Utomo et al., 1999) are used to control the 

cell population where the transgene is expressed. More recently, systems which enable 

inducible expression of the gene of interest have been devised (e.g. in the Tet-On/Tet-

Off systems doxicycline is used to control the expression of the transgene (Urlinger et 

al., 2000). The combination and developments of these powerful techniques now allow 

a better tuned control of transgene expression. 

 
1.3.1.2 Co-isogenic and congenic strains  

A congenic inbred strain carries a piece of DNA from another strain or stock. The 

purpose is to transfer the DNA fragment of interest (donor) onto a homogenous genetic 

environment (host). Congenic strains carry flanking donor sequences (congenic 

interval). The initial donor x host cross (N1) is followed by successive backcrosses (Ni) 

of heterozygous off-springs with individuals from the host strain. After N10; more than 

99% of the offspring genome is expected to be similar to that of the recipient strain, 

with the exception of the transferred region of interest (gene). After N5 the percentage 

of host genome becomes higher than 96% (incipient congenic). After the 10th backcross 

(N10), the gene of interest can be fixed to homozygousity by intercrossing the 



 

10 

heterozygous mice. If this heterozygous x heterozygous breeding takes place sooner, 

the flanking sequence will also become fixed (Morse, 2007).  

 

1.3.2 Animal models of AD 

Homologous models of AD should present relevant pathological characteristics as well 

as behavioral ones. 

1.3.2.1 AD: a brief introduction  

Sixty to eighty percent of dementia cases are caused by AD (Fratiglioni and Qiu, 2009), 

Globally, an estimated 35.6 million people were suffering from Alzheimer disease in 

2010 (World Alzheimer Report 2010, Alzheimer’s disease International). The number 

of persons affected will increase in the future, doubling every 20 years, thus turning 

Alzheimer into a major public health issue (Wimo et al., 2010a, Wimo et al., 2010b). 

According to clinical criteria, individuals with AD present memory impairment 

accompanied by a second cognitive deficit (aphasia, agnosia, apraxia or executive 

function impairment), which affect the activities of daily living (Diagnostic and 

Statistical Manual-IV Text Revision, 2000).  

A definitive diagnosis requires post-mortem neuropathological examination of brain 

tissue. Extracellular accumulations of #-amyloid (A# plaques), intraneuronal 

neurofibrillary tangles (NFT), synaptic and neuronal loss are the hallmarks of the 

disease. The main constituent of A# plaques is the #-amyloid peptide (Zhan et al., 

1995, Perl, 2010), whereas twisted strands of hyperphosphorylated protein tau form the 

NFT (Goedert et al., 1988). Both amyloid plaques and NFT can be seen in cognitively 

normal elderly people (Price et al., 1991, Arriagada et al., 1992b). 

As with other neurodegenerative diseases, the etiology of AD is not fully understood. 

Both genetic and environmental factors are thought to contribute to disease 

pathogenesis. Sporadic, late-onset AD (> 65 years old) accounts for the majority of AD 

cases (Fratiglioni et al., 1999). Widely accepted factors associated with a high risk to 

develop sporadic AD are increased age (the risk doubles every 5 years after 65) and the 

carrier status for the Apolipoprotein E (APOE) &4 allele. In the general population the 

most common variant at the APOE locus is &3. The product of the APOE gene is a 

protein involved in cholesterol transport. Apart from major risk factors many other 

conditions such as brain injury, stroke, mid-life hypertension and obesity increase the 

risk to develop AD (Kivipelto et al., 2008). Epidemiological studies evidenced 

protective factors, amongst which a strong association with a reduced risk to develop 
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AD was found for physical activity and cognitive training 

(http://www.ahrq.gov/clinic/tp/alzcogtp.htm). 

Autosomal dominant (familial, inherited) forms of AD account for less than 1-5% of 

the total cases. Almost two decades ago mutations in the Amyloid precursor protein 

(APP), Presenilin 1 and 2 (PSEN 1 and PSEN 2) genes were isolated from AD affected 

families (Rogaev et al., 1995, Sherrington et al., 1995). The products of these genes are 

involved in processes linked with the production of # amyloid , the peptide found at the 

core of amyloid plaques. Thus, inadequate A# production or clearance was postulated 

as the central event in AD pathogenesis according to the amyloid cascade hypothesis 

(Hardy, 2006). Preventing A# accumulation is currently a major target for drug 

development (Grill and Cummings, 2010). 

Recently, advances made by studies on cerebrospinal fluid and imaging biomarkers 

(Hampel et al., 2008, Aisen et al., 2010) have been incorporated into a comprehensive 

set of criteria aiming to diagnose early stages of the disease (MCI) which will provide a 

likely target for an effective treatment (Dubois et al., 2007) 

To date, no effective cure or preventive treatment is available for AD. The symptomatic 

treatment available (cholinesterase inhibitors: donepezil, rivastigmine and galantamine; 

and memantine, an NMDA receptor antagonist) has a time-limited effect on cognition 

(Geldmacher, 2007). The results of phase III clinical trials of vaccination against A# 

could well provide a definite proof regarding the amyloid cascade hypothesis 

(Mangialasche et al., 2010). 

 
1.3.2.2 Clinical presentation of AD 

AD unfolds as a gradual cognitive decline which in time determines impairments in 

activities of daily living, social dysfunction and finally leads to the deconstruction of 

self. During the early stage of the disease (mild cognitive impairment - MCI), isolated 

episodic memory deficits can be ascertained by neuropsychological assessment (Terry 

et al., 2008, Terry et al., 2011). While age-related cognitive decline is known to occur 

(Caserta et al., 2009), the magnitude of the impairment is higher for people affected by 

AD. 

The AD clinical presentation is not homogenous (Castellani et al., 2010). Early clinical 

manifestation of AD can be revealed by neuropsychological test batteries, where test of 

episodic memory and global cognitive function were found to have good predictive 

validity (Backman et al., 2005). In advanced stages of AD, psychiatric (e.g. 

hallucinations, delusions), affective (e.g. depression, anxiety) and behavioral symptoms 
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(e.g. disinhibition, aberrant locomotor activity) further aggravate the clinical 

presentation (Ballard et al., 2009). 

NFT spread in the brain according to a pattern which follows a recognized anatomic 

circuitry (Braak and Braak, 1991) and correlates with symptoms of AD (Arriagada et 

al., 1992a, Jicha and Carr, 2010). Severe neuropathologic changes in the entorhinal 

cortex, hippocampus, the association cortices and subcortical structures (the nucleus 

basalis of Meynert) are believed to contribute to the cognitive impairment seen in AD 

(Gotz et al., 2009).  

 
1.3.2.3 Natural animal models for AD 

To date, there is no accepted complete, spontaneous animal model for AD. 

Nonetheless, amyloid plaques, not accompanied by NFT, were described in guinea 

pigs, rabbits, cats, dogs, goats, sheep, cows, pigs, polar bears and monkeys (Lemere et 

al., 2004, Maloney et al., 2004). Comparative studies have revealed high homology for 

APP across species but indicated different regulatory mechanisms for its expression 

(Maloney et al., 2004).  

Recently published reports draw attention to similarities between brain pathology of old 

degus (Octodon degus) and human AD pathology (Inestrosa et al., 2005, van Groen et 

al., 2009). Degus are diurnal, highly social and communicative rodents (Wilson, 1982, 

Fuchs et al., 2010) with an average life-span of 5-7 years, from Chile. They are also one 

of the 9% bi-parental mammalian species (Helmeke et al., 2009). White matter 

changes, amyloid (first vascular and then pareanchymal) and tau pathology have been 

described in brain material from of old wild degus (>3 years). Similar pathology is also 

found in laboratory bred degus but the onset is delayed (van Groen et al. 2009). Limited 

information about behavioral age-related changes is available (Popovic et al., 2009). 

Elderly dogs experience age related cognitive decline, a syndrome known as the Canine 

Cognitive Dysfunction Syndrome (CCDS). Behavioral impairments recognized in old 

dogs (Colle et al., 2000) can be classified as maintenance behaviors and environment-

dependent behaviors (such as learned specific behavior, self-control, learned social 

behavior, and adaptive capabilities). CCDS was documented both for laboratory beagle 

dogs (Vasilevko and Head, 2009) as well as for elderly pet dogs (Rofina et al., 2006). 

Amyloid angiopathy was found to correlate with a number of dog maintenance 

behavioral measures (Colle et al., 2000, Sarasa and Pesini, 2009). 
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With increasing age, amyloid pathology accumulates in the brains of various non-

human primate species: lemurs, squirrel monkeys, marmosets, tamarins, cynomolgus 

monkeys, vervets, rhesus monkeys, orangutans and chimpanzees (Rosen et al., 2011). 

In view of the close similarity between the human and the primate immune response, 

vervets are used for safety tests required for AD clinical trials (Lemere et al., 2004, 

Lemere et al., 2006).  

 
1.3.2.4 Genetically engineered mouse models for AD 

A plethora of genetic rodent models (both mice and rats) are currently used for AD 

research (reviewed in (Gotz and Ittner, 2008, Gotz et al., 2010, Philipson et al., 2010)). 

Updated resources on AD models can also be accessed online 

(http://www.alzforum.org/res/com/tra/default.asp and http://research.jax.org/repository/ 

alzheimers.html).  

The “first generation” of successful genetic AD mouse models expresses human 

mutated genes, found in familial AD cases (Games et al., 1995, Hsiao et al., 1995, 

Hsiao, 1998, Moechars et al., 1998). Following advances in understanding molecular 

events of AD pathogenesis, new models have since been created. Besides the single 

transgenic strains (APP, PSEN, Tau, APOE), the list now includes multiple 

combinatorial models (2-5xAPP mice (Rockenstein et al., 2001, Lord et al., 2006) ; 

APP-PS (Minkeviciene et al., 2004, Savonenko et al., 2005, Carro et al., 2006)), APP- 

Tau (Ribe et al., 2005, Perez et al., 2005), 3xTg expressing all three mutant genes 

(Oddo et al., 2003), reviewed in (Codita et al., 2006). APP knock-out mice offer the 

opportunity to address questions about the physiological role of APP and related 

proteins (Ring et al., 2007, Bergmans et al., 2010). Currently the field is moving 

towards humanized immune response (Colton et al., 2006, Zota et al., 2009), 

humanized APP and tau (Reaume et al., 1996, Andorfer et al., 2003), inducible, 

targeted expression of mutant APP and tau (Ando et al., 2010, Harris et al., 2010, 

Sydow and Mandelkow, 2010); with/without alterations of murine APOE (Fagan et al., 

2002, Pendse et al., 2009). 

Single or combinatorial APP transgenic mouse models are commonly used in drug 

development studies. Stable strains are now widely available and findings have been 

replicated by different laboratories.  
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1.4 MEASURING BEHAVIOR IN MOUSE MODELS 

Elegant experimental paradigms for behavioral research on mice have been developed 

for many years (Crawley J.N., What’s wrong with my mouse, Wiley-Lis, 1999). Some 

were initially introduced by experimental psychologists who tested rats in behavioral 

studies (Sahgal, 1993). While dry maze protocols developed for rats can be directly 

applied for mice, several water maze paradigms are not directly translatable, and 

require various adaptations (Whishaw and Tomie, 1996, Frick et al., 2000). The test 

repertoire is greatly enriched by input from the ethological perspective on behavioral 

studies, which addresses species specific and typical behaviors. 

Generally, the paradigms used in behavioral research on mice seek to address targeted 

behavioral domains and imply transitory exposure to a novel environment or stimulus. 

Behavioral experiments also imply an interaction between the experimenter and the 

mice. This is a critical aspect known to impact the results of behavioral studies due to 

its stress inducing potential (Deacon, 2006d).  

 
1.4.1 Behavioral tests: brief overview  

1.4.1.1 General health and development 

A good “general health” status of the mice is mandatory for obtaining valid results from 

(behavioral) experiments. Common signs of illness include: abdominal distension, 

abnormal behavior (”repetitive, unvarying, with no obvious goal or function”-

stereotypic behaviors and lethargy) abnormal postures, dehydration, limb 

abnormalities, malocclusion, ocular, nasal genital discharge, poorly groomed hair coat 

and uterine/ penile or rectal prolapse. If these signs are present, the animals should be 

eliminated from further experimental procedures.  

The measurement of body weight over time offers a rough means to monitor the 

wellbeing of the mice. It has been shown that chronic stress and infections determine a 

reduction of body weight or decreased rate of growth (Havenaar et al., 2001).  

Similarly to humans, mouse development is characterized by the achievement of 

developmental milestones (Heyser, 2004). Developmental traits, such as emotionality 

at weaning can be a harbinger for certain adulthood behaviors (Marques et al., 2008). 

 
1.4.1.2 Emotionality 

Emotions might be defined as “states that evoke a pattern of cognitive, physiological 

and behavioral reactions to events” which are triggered by an internal or external 
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stimulus (Passer et al., 2009). Their expression requires appraisal, can be accompanied 

by physiological responses (e.g. change in heart rate, vasodilatation/vasoconstriction) 

and includes “behavior tendencies” (Passer et al., 2009). Genetically, emotionality is a 

complex trait, probably accounted for by multiple small effect genetic factors, gene-

gene interactions and gene-environment interactions (Willis-Owen and Flint, 2007). 

 

Comparative biology teaches that emotions promote the “fulfilment of basic needs: 

mating, affiliation, defense and the avoidance of predator” (Panksepp 1998, cited by 

(de Sousa). Research on emotion embraced two views. The discrete emotional state 

approach recognizes a number of basic emotional systems, anchored in the subcortical 

anatomy of the mammalian brain (limbic system): “maternal CARE, FEAR, LUST, 

separation distress PANIC/GRIEF, physical PLAY, RAGE and SEEKING” (Panksepp, 

2010). On the other hand, the multidimensional approach seeks to integrate core 

affective characteristics of emotions, namely their valence (positive vs negative) and 

arousal value (Mendl et al., 2010). Subjective human emotions occupy different 

positions in this space, for example fear is characterized by high arousal and negative 

valence. In animals, the biological need to enhance fitness, expressed as reward seeking 

behavior (e.g. food, water, sex), and to reduce the occurrence/frequency of fitness-

threatening events expressed as punishment avoidance behavior (e.g. predator 

encounter avoidance) are thought to determine emotional valence (Mendl et al., 2010). 

Recently, an integrative approach of these conflicting views has been proposed (Mendl 

et al., 2010). The new model accepts the valence/arousal characteristics of basic 

emotions as a “common currency” which enables behavior prioritization. 

Emotionality is associated with the activity of the hypothalamo-pituitary-adrenal 

(stress) axis. Frequently, the interpretation of behavioral response is supported by 

determinations of stress hormones (Cirulli et al., 1994, Richter et al., 2008, Cirulli et al., 

2010). Subcortico-cortical loops between the thalamus, amygdala and the prefrontal 

cortex  are critically involved in emotional responses (LeDoux, 2000). 

Tests of emotionality for laboratory mice generally imply that under a given 

circumstance a specific emotional state is triggered. Due to their increased prevalence 

and their societal impact anxiety, depression and fear are negative emotional 

states/moods/disorders for which many behavioral test paradigms were developed in 

the laboratory.  

Anxiety is a natural state of tension or apprehension in response to a threat. In 

pathological anxiety disorders this state is prolonged and interferes with normal 
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activities (Passer M. et al, op cit. pp787). Artificial situations where a conflict between 

the natural tendency to explore (in order to acquire information about the environment 

and access to resources) competes with a tendency to remain protected in a “safe” area 

are employed when anxiety is modeled in mice. Behavioral tests commonly used in 

anxiety research include: the elevated plus maze (EPM), elevated O-maze, light/dark 

box and social interaction test (Pellow et al., 1985, Belzung and Le Pape, 1994, 

Rodgers et al., 2002, Walf and Frye, 2007). The EPM test builds on natural tendencies 

to avoid exposed, lit spaces as well as thigmotactic behavior of rodents. During 5 

minutes, the mouse is left to explore a cross shaped maze, placed at a certain height 

above the floor. Validation with anxiolytic compounds and ethological measures has 

been performed (Walf and Frye, 2007). 

Manifestations of depression in humans can vary. The list of symptoms includes 

appetite changes (loss or increase), anhedonia (loss of interest in pleasurable activities), 

difficulties to focus attention, to make decisions and to remember; fatigue; feelings of 

persistent hopelessness, inappropriate guilt, sadness, worthlessness; insomnia; 

irritability; psychosomatic pain (e.g. headaches, abdominal cramps which do not 

respond well to symptomatic treatment), suicidal thoughts and tendencies. Animal 

paradigms aimed at inducing comparatively similar biological and behavioral changes 

include restraint stress, uncontrollable electric shocks, forced swimming, forced 

running, and unpredictable exposure to different kinds of stressors (Willner et al., 1992, 

Willner, 2005, Castagne et al., 2011). Animal behavioral tests based on inescapable 

situations have good predictive validity in depression drug development research 

(Castagne et al., 2011). Another approach looks at hedonic valuation of stimuli 

(Schweizer et al., 2009, Branchi et al., 2010). Finally, social stress is modeled by 

isolation, over-crowding (Modigh, 1974), social instability (Branchi et al., 2010) and 

social defeat situations (Kudryavtseva et al., 1991). 

  

1.4.1.3 Learning and memory 

Information is acquired (learned), stored, retrieved and influences behavior (memory). 

During the past century, human and animal learning and memory processes have been 

amply characterized and a taxonomy emerged (Squire, 1992, Tulving and 

Markowitsch, 1998, Baddeley, 2010).  

Learning and memory types considered relevant for the work presented in the thesis 

will be briefly introduced, following an existing classification (Reznikova, 2007).  
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Although its mechanisms are not fully elucidated, habituation is considered the simplest 

form of learning. It may be defined as a reduction in response following repeated 

presentation of a stimulus. Sensitization is “a paired” process defined by an increase in 

response if a stimulus is presented after another, salient stimulus. If stimuli are 

perceived as different, dishabituation occurs, expressed by a response of similar 

magnitude with the original response to the first stimulus. 

A common approach for the study of habituation in the laboratory is the Open Field 

(OF) test. During this test, the animal (mouse) is exposed to a novel arena and the 

response (walking in the arena) is monitored over a period of time. The expected 

response is a decrease in movement over time. Taking into account the spatial aspects 

of movement in a novel OF arena (central vs periphery), indices of anxiety-like 

behavior can be extracted (Denenberg, 1969, Lamberty and Gower, 1993). 

 

Associative learning theories see learning as a consequence of paired occurrence of 

events: stimulus - stimulus and stimulus - consequences (Wasserman and Miller, 1997). 

Classical conditioning (Pavlovian conditioning) maintains that the emergence of new 

behaviors occurs through associations between stimuli. The unconditional stimulus 

(US) triggers an automatic, reflex response (unconditional response - UCR), “wired” in 

the CNS. The observation of the same response, following the presentation of a 

substitute stimulus (conditioned stimulus - CS), which had been consistently presented 

paired with the unconditional stimulus, is indicative of learning. US stimuli can be 

positive (e.g. food) or negative (e.g. pain) and the CS is initially neutral (NS). The main 

factors influencing learning in classical conditioning paradigms are the intensity of US, 

the order and timing of US - CS stimuli.  

Fear conditioning paradigms currently used in the laboratory for mouse testing offer the 

possibility to dissociate between fear for the CS (“hippocampal - independent”) and 

fear for the spatial context (“hippocampal - dependent”) where training had occurred 

(Fanselow, 2000, Fanselow, 2010).  

 

Operant conditioning applies to situations where the response is not “innate”. 

Developed by B.F. Skinner the paradigm postulates that a behavior’s (response) chance 

to occur depends on its consequences (reinforcement). Behavioral tests for mice use the 

lever-press and nose-poke as a response which is manipulated by diverse reinforcement 

schedules (Haluk and Wickman, 2010).  
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Processes of learning and memory are closely related. Acquired information is thought 

to shape behavior through the workings of memory. Short - term memory (STM) holds 

a limited amount of minimally processed bits of information available for a short while 

(minutes). At a biological level STM is supported by transient changes at the synapse.  

Working memory allows successful management of information during a particular 

task, “online memory”. In humans working memory is regarded as a system where 

“central executive” functions manage information maintained by the “articulatory loop” 

and visuospatial “sketchpad” (Baddeley, 2010). 

To assess working memory in mice, several test apparatuses are employed, such as the 

radial arm maze, T-maze and Y maze (Gresack and Frick, 2003). While some protocols 

require food deprivation, others, like spontaneous alternation in the Y and T-maze, are 

based on species typical behaviors (Deacon and Rawlins, 2006).  

Long - term memory (LTM) stores for a long period of time (days-months-years) 

processed information. Transfer of a memory from STM to LTM (consolidation) 

requires protein synthesis. During the consolidation process, the information can be 

altered by subsequent experience. 

 

Human memory can be further classified on the information processed. Declarative 

memory holds information accessible through recollection and verbal retrieval. 

Episodic declarative memories have an autobiographic content (egocentric episodes), 

whereas semantic declarative memories refer to factual knowledge. Implicit memory 

uses strategies which do not require conscious recollection. In this category procedural 

learning refers to the acquisition of skills. In the laboratory, acquisition of motor skills 

is often tested using the Rotarod test. Whereas during the first exposure balance is 

assessed, over time, as mice become better at running on a rotating rod, a learning 

curve emerges (Pallier et al., 2009). 

 

Numerous studies have shown that human episodic memory relies on the function of 

medial temporal lobe structures (Milner, 2005). Direct translation of human episodic 

memory to animal models is hindered by the definition of episodic memory which links 

it to the concept of self (Griffiths et al., 1999). However, the memory for what, when 

and where is important for many species (Clayton and Dickinson, 1998). For mice, the 

Object recognition test is used to assess the ability to recognize what, when and where 

features of stimuli (DeVito and Eichenbaum, 2010). Generally the test is performed in 

two phases. Higher exploration of the novel object is interpreted as a sign of memory in 
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this test, as mice prefer to explore novel objects (Bevins and Besheer, 2006). 

Hippocampal lesions were shown to impair recognition of all these 3 aspects, in line 

with the hypothesis that the hippocampus integrates the what, where and when 

features of experiences (DeVito and Eichenbaum, 2010).  

Space navigation refers to the ability to form and access representations of the outer 

space. The hippocampus is critically involved in forming the cognitive map (Burgess et 

al., 2002). In the laboratory spatial navigation abilities of the mice are tested in the 

Morris water maze task. According to the testing protocol, a mouse can use either 

spatial cues (allocentric) or nonspatial strategies (egocentric) to orient search to find a 

platform hidden under the water level (Vorhees and Williams, 2006).  

 

1.4.2 Behavioral phenotyping 

Characterization covering a wide array of behavioral domains is referred to as 

behavioral phenotyping. An initial test battery was described by Irwin in the 1960’s. 

Later on, a comprehensive test battery, for the assessment of motor, sensory and 

cognitive functions – SHIRPA - was validated in adult mice (Rogers et al., 1997). 

Major development of means to alter genetic material in mice and the establishment of 

large mutagenesis programs using N-ethyl-N-nitrosourea (ENU – an alkylating agent 

which determines the apparition of point mutations) created the need for effective, 

high-throughput phenotyping screens (Nolan et al., 2000, Brown et al., 2009).  

For CNS research, the screening pipelines are partially devoted to characterization of 

behavior. Due to cost and space limitations, these screens generally incorporate 

standardized tests enabling rapid behavioral characterization. The behavioral tests 

selected by different initiatives seek to cover as much as possible of the behavioral 

repertoire and focus on aspects considered to be highly relevant. For example, the 

European Mouse Phenotyping Resource of Standardised Screens (EMPRESS) included 

in EUMODIC pipeline 2 (9-11 weeks old mice), the OF test, modified SHIRPA 

protocol (Rogers et al., 1997), grip strength, Rotarod, Acoustic startle (PPI- a model for 

schizophrenia) and hotplate test (a model for pain) (Brown et al., 2005, Mandillo et al., 

2008, Gates et al., 2011). The same standardized tests have been selected for the 

EMPReSSslim primary screen. At the Japan Mouse Clinic “fundamental” aspects of 

behavior are captured in the “Fundamental” and “In depth” screen (Pipeline1) by 

testing the mice in the OF and Rotarod test. The second pipeline (8-17 weeks old mice) 

is entirely devoted to behavioral testing (includes: light/dark transition test, open field, 

Rotarod, Passive avoidance, Tail Suspension, Hot plate, Tail flick). Following an 
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intitial “hit”, subsequent tests might be performed (Japan clinic includes Prepulse 

Inhibition, Object recognition and Fear conditioning test) to provide a fine grained 

analysis of the deficits. In a seminal study Crabbe et al. 1999 showed that in spite of 

standardization efforts, different inbred mouse strains were ranked inconsistently 

between laboratories. Since then efforts for better standardization of protocols, 

automatization, systematic environmental variation and implementation of ethological 

approaches were undertaken.  

 
1.4.3 Automated behavioral testing 

Valid hypotheses, detailed ethograms, trained observers and systematic observation are 

the gold standard for behavioral experiments. Apparatuses which automatically record 

an important number of behavioral measures during classical behavioral tests are 

commonly employed. In addition, recently developed technologies make possible long 

term behavioral data collection (de Visser et al., 2005). Technically, home cage 

behavior can be detected by non-visual sensors (Ganea et al., 2007), video tracking 

techniques (de Visser et al., 2006) and computer-vision systems for behavior 

recognition (Jhuang et al., 2010). These approaches permit monitoring of singly housed 

mice. 

The IntelliCage system is the only behavioral device for long term testing of group 

housed mice. The animals can be discriminated by Radio-frequency identification 

technology, if they enter one of the four conditioning chambers placed in the corners of 

the IntelliCage. Thus, individual conditioning protocols can be assigned. To date, 

protocols for aversive (Voikar et al., 2010), appetitive learning (Krackow et al., 2010), 

and behavioral flexibility (Mechan et al., 2009) have been validated (Table 1).  

 
1.4.4 Behavioral phenotype of B6 and D2 inbred mice 

In the OF, B6 are generally “more active” than D2 mice, whereas D2 tend to be more 

“anxious” (reviewed by Crawley and Paylor, 1997, Brown 1 dataset Mouse Phenome). 

Home cage “activity” (horizontal photo-beam interruptions) in B6 was also found to be 

higher than the activity of D2 mice (Tang et al 2002). 

D2 mice outperform the B6 mice when the test situation has an important procedural 

learning component (reviewed by Ammassari-Teule and Castellano, 2004). In 

hippocampal dependent learning tests, (MWM and contextual FC), the B6 mice use 

hippocampal strategies whereas D2 mice do not (Logue et al., 1997, Ammassari-Teule 

et al., 2000). Behavioral dissociation in tests of learning and memory between the B6 
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and D2 mice, has been proposed as a natural model for hippocampal dysfunction 

(Logue et al., 1997).  

 
Behavioral findings in B6 and D2 mice are supported by anatomical differences in the 

brain. Morphologically the number of pyramidal cells in the dorsal hippocampus and 

the infrapyramidal mossy fiber projection system are smaller in the D2 mice (Logue 

et al., 1997). Hippocampal protein kainase C (PKC) was shown to be reduced in the 

poor learners D2 mice (Wehner et al., 1990). Hippocampal expression of long term 

potentiation (LTP) was also shown to differ between the strains (Menard et al., 2004).  

 

1.4.5 The phenotype of APP mouse models of AD 

Increased mortality has been reported for different APP strains and epileptic seizures 

are cited as a cause of death in these strains (Ziyatdinova et al., 2011). Decreased body 

weight and disruption in sleep - wakefulness patterns are known to occur (Huitron-

Resendiz et al., 2002). Hyperactivity and high frequency of stereotypic behaviors (e.g. 

circling) as well as aggressive behavior have been documented in many APP-tg mice 

(Pugh et al., 2007, Ambree et al., 2006). Impairments in species typical behaviors (e.g. 

burrowing and nesting) were found to have a different age of onset (Deacon et al., 

2008). In anxiety tests, depending on the background, APP mice can be distinguished 

from non-transgenic littermates (Lalonde et al., 2003, Lalonde et al., 2004, Lalonde et 

al., 2005). In learning and memory tests, deficits have been described in habituation 

(Deacon et al., 2009), in working memory as assessed in the radial arm maze (Morgan 

et al., 2000), T or Y maze tests (Holcomb et al., 1999, Deacon et al., 2009, Cotel et al., 

2010). Spatial memory impairments in the MWM, are commonly described (Mohajeri 

and Wolfer, 2009). In some strains the Barnes Maze is used to address the same 

memory system (Ronnback et al., 2011, Reiserer et al., 2007). Robust impairments 

were shown in contextual fear conditioning tests (Kilgore et al., 2010) and the Object 

recognition test (Hillen et al., 2010). 

Many of the APP strains are backcrossed to inbred strains with retinal degeneration; 

hence the sensory function likely interferes with the results of behavioral tests (Rustay 

et al., 2010). 

 

Ideally, changes in pathology, above a threshold level, should be mirrored by 

worsening of the behavioral impairment (Arendash et al., 2001).  
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1.4.5.1 Biological correlates of behavior in APP mouse models of AD 

Characteristic features of the human disease such as the progressive accumulation of 

amyloid, cerebral amyloid angiopathy, tau hyperphosphorylation, synaptic dysfunction, 

microgliosis, astrocytosis and neurotransmitter alterations have been recapitulated in 

APP models. Similar to the human condition, it was observed that behavioral 

impairments in APP mice can be detected prior to A# plaque deposition (Dineley et al., 

2002). Hence, soluble A# species (e.g. dimers, monomers, protofibrils) became the 

likely candidates to cause behavioral changes. Soluble extracellular A# assemblies 

(Lesne et al., 2006, Selkoe, 2008) and intraneuronal A# accumulations have been 

related to cognitive dysfunction in mice (Billings et al., 2005, Gimenez-Llort et al., 

2007). However, others have found different A# assembly forms throughout the 

lifespan of an APP mouse model, thus questioning the idea of a single synaptotoxic A# 

species (Shankar et al., 2009). 

It has been argued that other proteins are more reliable surrogate markers of induced 

neuronal dysfunction. Several biomarkers with modified expression in the APP mice 

have been described: aberrant expression of neuropeptide Y, reductions in the Fos-

/Arc positive granule cells and depletion of calcium dependent protein calbindin 

(Palop et al., 2011). CALB is a protein with specialized calcium binding domains (EF 

hands), similar to parvalbumin and calretinin. In the rat hippocampus, CALB was 

immunohistologicaly localized to the dentate granule cells, some pyramidal neurons in 

CA1 and CA2, interneurons in the molecular and granule cell layers, basket cells and in 

the hilus (Sloviter, 1989). In AD mice decreased CALB levels in the granular layer 

were shown to correlate with behavior (Palop et al., 2003). 

 
1.5 EXPERIENCE, BRAIN AND BEHAVIOR 

Following the observation that rats raised as pets were better than laboratory rats at 

solving mazes, Donald Hebb formulated the hypothesis that early stimulating 

experiences lead to long-term brain changes which support increased problem solving 

abilities (Diamond, 1988). 

Environmental enrichment is defined as a combination of complex inanimate and social 

conditions promoting enhanced sensory, cognitive and motor stimulation (Rosenzweig 

and Bennett, 1996, Olsson and Dahlborn, 2002, Mohammed et al., 2002). Several types 

of experiences, like exposure to novel stimuli (e.g. toys), cognitive stimulation, social 

interactions and physical activity have repeatedly been shown to promote brain plastic 

changes (e.g. increased cortical thickness, hippocampal dendritic branching and spine 
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density, number of synapses, capillary diameter, neurotrophin levels) and improve 

learning abilities of rodents at different ages (Diamond et al., 1976, Pham et al., 1999, 

Ickes et al., 2000, Diamond, 2001, Mohammed et al., 2002, Darmopil et al., 2009, Zhu 

et al., 2009).  

At a molecular level, the mechanisms which support plasticity have only recently 

started to be elucidated (van Praag et al., 2000, McOmish and Hannan, 2007, Hu et al., 

2010, Kempermann et al., 2010). These mechanisms include activation of immediate 

early genes as well as CREB phosphorylation, which thus link enrichment to the 

molecular mechanisms of learning (Williams et al., 2001, Toscano et al., 2006, Green 

et al., 2010). 

In AD mouse models, conflicting results have been reported following EE (Richter et 

al., 2008). Increased A# plaque formation (Jankowsky et al., 2005, Jankowsky et al., 

2003), reduction of A# levels (Lazarov et al., 2005), or no effect on A# load (Cotel et 

al., 2010) following different EE protocols have all been reported. Cognitive function 

was improved (Costa et al., 2007) or showed no changes (Cotel et al., 2010) and was 

differently affected by cognitive activity and wheel running (Wolf et al., 2006, 

Cracchiolo et al., 2007). Both long term and short enrichment exposures have the 

ability to determine lasting changes of the brain (Ferchmin and Eterovic, 1986). Short 

term events such as short term enrichment (Paylor et al., 1992) or behavioral testing are 

also known to affect subsequent behavioral measures (McIlwain et al., 2001, Voikar et 

al., 2004). 
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2 AIMS 
The overall aim of this thesis was to validate the use of - and develop applications for - 

a behavioral phenotyping method for group housed laboratory mice, the IntelliCage. 

 

The specific aims of the studies were:  

1. Test inter - laboratory replicability of behavioral data obtained in different 

laboratories using the IntelliCage technology [study I, II]. 

 

2. Examine the influence of additional devices (add-ons: SocialBox and 

AnimalGate) on behavior in the IntelliCage [study II]. 

 

3. Behaviorally characterize three mouse strains: B6/NCrl and D2/NCrl (inbred) 

and B6D2F1/NCrl (hybrid) behavior (adaptation, place preference learning and 

reversal learning) using standardized protocols in the IntelliCage/IntelliMaze 

[study I, II]. 

 
4. Apply the IntelliCage methodology for behavioral phenotyping of the APP-

ArcSwe, a mouse model of AD [study III]. 

 

5. Analyze the effects of prior exposure to the IntelliCage on behavior in 

subsequent classical tests: Open field, Elevated Plus Maze, Rotarod, Morris 

water maze, Fear Conditioning [study IV]. 

 
6. Explore the relationships between behavioral measures in IntelliCage and 

measures obtained in a battery of classical behavioral tests [study IV]. 
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3 MATERIALS AND METHODS 
Experimental procedures for Studies I and II were performed simultaneously in 4 

laboratories: Evotec (Evotec Neurosciences, Hamburg, Germany); ISS (Section of 

Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Instituto 

Superiore di Sanita Rome, Italy) NKAR (Karolinska Institutet, Alzheimer Disease 

Research Center, Stockholm, Sweden); UZH (Institute of Anatomy, University of 

Zurich, Switzerland).  

 

3.1 ANIMALS 

[study I, II] For each study, each of four participating laboratories (Evotec, ISS, NKAR 

and UZH) received 78 female mice from a commercial breeding farm (Charles River, 

Germany). Thus, in each lab, 26 female mice from each of three strains: B6/NCrl and 

D2/NCrl (inbred) and B6D2F1/NCrl (hybrid) were used. The mice were approximately 

8 weeks old at arrival. They were initially kept in same-strain, group housing 

conditions (4 mice/group) until the start of behavioral experiments. 

 

[study III] The experimental groups consisted of 13 tg-ArcSwe and 11 non-transgenic 

littermates (non-tg) from the APP-ArcSwe colony maintained at Uppsala University 

facilities. Transgenic founder mice were obtained as described previously (Lord et al., 

2006) and the colony was maintained by backcrosses to B6/JSca mice (Scanbur, BK 

Sollentuna, Sweden). The mice tested during the study were offspring from matings 

following at least six backcrosses (incipient congenics > N6). We used female mice that 

were 4 months old at the beginning of behavioral studies.  

The tg-ArcSwe mice express human APP with both the Swedish (KM670/671NL) and 

Arctic (E693G) mutations, driven by the murine Thy-1 promoter. The total amount of 

APP (human and murine) expressed in the brain is three times higher than the level of 

endogenous APP. 

The mice were tested twice: at 4 and at 14 months. 

 

[study IV] Thirty two (32) young adult (3 months old) female mice were used during 

the study. The first group (n=16) consisted of non transgenic off-springs from the strain 

B6D2F1.B6D2F1-APP
751tmSD/JSW (henceforward hAPPSL) mice. The colony was 

maintained at JSW research facility (Graz) on a mixed B6D2F1 background (N10-

N12). The second group (n=16) consisted of transgenic offspring from the B6D2F1; 
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B6D2F1-p75
NTR/JSW line. These transgenic mice over-express the human p75 

neurotrophin receptor (henceforward the p75 mice, (Schwach G. et al., 2006)). The p75 

mice were maintained at JSW research facility (Vienna) on a mixed B6D2F1/OlaHsd 

background (N2-N3).  

 

For each study, prior to the start of behavioral experiments, the mice were group 

housed according to local standard conditions. For studies performed at Karolinska 

Institutet facilities [study I, II], the standard conditions were group housing and 

provision of a Mouse House, Tecniplast™, Italy; for the study performed at Uppsala 

University facilities [study III] in the standard condition the animals were provided 

with a cardboard shelter and nesting material; and for study IV (performed at JSW 

facilities Graz) the standard condition was barren housing. 

 

The dark phase of the light/dark cycle was of 12 h for all the studies. Only for study I 

the dark cycle was homogenously reversed across laboratories. Humidity varied 

between 40–70% and temperatures between 20–24 ºC. Food (standard diet) and water 

were available ad libitum in the standard condition. Access to water during IntelliCage 

behavioral testing was obtained according to the experimental protocol. The body 

weight of experimental animals was monitored during all studies.  

 

All experimental procedures received ethical approval from local authorities and were 

performed according to EU and national legislation for animal welfare. 

 
3.2 BEHAVIORAL TESTING IN INTELLICAGE AND INTELLIMAZE 

3.2.1 Apparatus and procedures 

3.2.1.1 IntelliCage 

The IntelliCages consists of a polycarbonate, rectangular cage (20.5 cm high × 58 × 

40 cm at top, 55 × 37.5 cm at bottom) containing a conditioning chamber in each 

corner. The mouse presence in the conditioning chambers is detected by a heat sensor 

in conjunction with antenna identification of RFID transponders. Following mouse 

identification, the event is recorded: a - visit. On each side of the corner, bottles of 

water can be accessed through a round hole, gated by a movable door. Pokes at these 

door openings are registered by a light-beam sensor. Each light beam interruption is 

recorded as a – nosepoke event. Finally, a third event – lick, is detected when a change 
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in voltage of a condenser attached in conjunction to the water bottle support reaches a 

threshold value. 

 
3.2.1.2 IntelliMaze: Social Box and Animal Gate 

An IntelliCage connected to an external device is referred to as IntelliMaze. In our 

studies, the IntelliCage was either connected to an AnimalGate or to a SocialBox. 

The AnimalGate is a tubular passage (30, 3 cm length), equipped with three sliding 

doors, controlled by the IntelliCage Plus software (NewBehavior AG, Zürich, 

Switzerland, version 2.6). In the compartment facing the IntelliCage, an antenna 

enables individual identification of the mice. By sequential door opening, the 

AnimalGate allows for selective passage of individual mice. During our experiments 

[study II] the AnimalGates were connected to the short side of the IntelliCage and 

conjoined with a standard MII cage. 

A SocialBox consists of a polycarbonate type II (MII) cage (26.7 x 20.7 x 14.0 cm) 

connected via a polycarbonate tube (38.5 cm in length, 4 cm diameter), to the short side 

of an IntelliCage. On the connecting tube, two antennae register in- and outward 

passages of individuals. In the respective experiments [study II], two SocialBoxes were 

connected to the short opposite sides of the same IntelliCage. 

 

3.2.1.3 Procedures  

Prior to the start of behavioral testing, the mice were briefly anaesthetized (we 

systematically used Isoflurane [studies I-IV]) and a transponder (DataMars, 1 mm 

diameter and 11 mm length) was injected subcutaneously, into the interscapular region. 

Transponder retention was checked with a transponder reader before placing the mice 

into the cages. 

In order to ensure proper functionality of all sensors and mechanic components, a 

calibration procedure was performed according to the IntelliCage manual, before the 

start of each experiment.  

During the studies, the water intake of the mice was monitored daily.  

 

3.2.2 IntelliCage and AnimalGate Protocols 

3.2.2.1 Intellicage protocols 

The following protocols were validated either during the multi-center studies (study I & 

study II) or independently, using inbred mice or lesioned mice (Voikar et al., 2010): 
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• Free Adaptation (studies I-IV): all doors in the IntelliCage are open 

- data analyses from various IntelliCage experiments revealed that mice are 

highly active immediately following introduction to the cages. Hence we 

distinguished an initial exploratory phase (study I - 30 min); Free 

exploration (studies III-IV – 1 day). 

• Nosepoke Adaptation (study I-IV): nosepoke needed for access to water.  

• Drinking Session Adaptation (study I, study III): nosepoke is needed for 

access to water which is restricted to 2 h / night. For study III, an initial 

drinking adaptation step was performed when the doors were continuously 

open during the drinking session.  

• Place Learning (studies I-IV): Water available in one corner per animal, one 

nosepoke needed for access. 

• Reversal (Place) Learning (study I-III): Water access shifted to another corner 

(the diagonal opposite) in the cage. A nosepoke is required for access to 

water.  

• Passive avoidance learning and probe trial memory test [study III]: 

- the baseline preference to IntelliCage corners was first established by 

monitoring corner preferences of mice for 24 h. 

- day 1 – Training: for 24 h one randomly assigned corner delivered an air-

puff (1.5 bars) when the mouse performed a nosepoke, and until the mouse 

left the corner. 

- day 2 – Delay: the mice were group housed maintaining the experimental 

groups, in standard cages (24 h). 

- day 3 – Probe trial: the mice were placed back in the IntelliCage. A nosepoke 

was required for access to any corner. 

• Right side learning: only nosepokes to the right side of a corner caused door 

opening for access to water. After three nosepokes at the left side, LEDs (green, 

red, blue) were turned on in the respective side of the corner. The LEDs were 

switched off at the end of the visit. 

•  Side learning reversal: rewarded corner was switched from right to left. 

 

The following protocols have not been validated by repetitions or multi-center studies 

[study III]:  
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• Extinction of place preference: a nosepoke was needed to open an IntelliCage 

door. It is employed after the reversal place learning (note: a protocol including 

extinction of place preference has since been published). 

• Novel object preference (preference for corners was analyzed for 2.5 h): 

- day 1, 2: water access was restricted to one drinking session interval, and the 

two corners on one of the long sides of the IntelliCage. 

- day 3: two different objects (paper baking cup, half of a rubber ball, 

aluminum candle support), were balanced between the cages and placed 

under the grid of the corners for 2.5 h. The mice did not have direct access to 

the objects. No prior preference existed for the objects used during the test.  

- day 4: retention interval. 

- day 5: one of the objects was replaced in each cage with a novel object. 

• Novel smell (neophobia): in three of the cage corners, in the right bottles 

scented water (cloves, mint, almond) was presented. The bottles were kept in 

place for 5 h, from 24:00 to 05:00. The doors to all corners could be opened 

once per visit upon nosepoke. 

• Air-puff in preferred corner: one corner for each mouse delivered a 3.5 bars air-

puff when the animal performed visits with nosepokes to it. 

 

3.2.2.2 AnimalGate protocols 

•  Free access: all the mice could freely access the external MII cage, as all 3 

doors of the AnimalGate were open. 

•  Active AnimalGate: all the mice could pass through the AnimalGate, but 

access was not possible as long as another mouse was present outside (in the 

MII, add-on cage). 

•  Conditioned access: half of the mice in the IntelliCage (random assignment, 

balanced between strains) could pass through the AnimalGate. 
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Fig. 1 Work chart flow for studies I and II. Following transponder implantation 

procedure, biological and behavioral data for each animal was recorded in a common 

database. The Intellicage Designer and Controller were used during the experimental 

phase of the studies. An independent collaborator processed the data acquired from the 

4 participating labs. 

 

3.3 CONVENTIONAL BEHAVIORAL TESTING  

3.3.1 Elevated plus maze  

 The apparatus (Fig. 2) was made of grey PVC, raised 

50 cm from the floor surface. The maze consisted of two 

open and two enclosed arms, equal in length (30 cm), 

and width (5 cm) arranged in the form of a cross. The 

closed arms were protected by 15 cm high, opaque side 

walls. The mice were placed in the central area of the 
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apparatus facing one of the open arms. The mice freely explored the maze for 5 

minutes, while their behavior was videotaped. The records were processed off-line, 

using commercial software (TSE Systems®). The maze was cleaned with 70% Ethanol 

before the trials.  

 
3.3.2 Open field  

A square arena (48 x 48 cm2), enclosed by transparent 

plexiglas walls (32 cm high), was used for OF testing 

(Fig.3). The testing system consisted of 4 testing boxes 

(TSE-System®). Each OF was equipped with infrared photo 

beams and detectors, placed on two rows. On the lower row, 

the photocells were placed at a distance of 1.4 cm and 

detected the horizontal movements of the mice. Activity in 

the vertical axis (e.g. rearing, grooming and jumping) was detected by a second row of 

photo beams and detectors, placed 4 cm above the first one. The “central area” was 

defined as the central 24 x 24 cm2 square of the arena, and the remaining surface was 

considered the “periphery”. The mice were acclimatized to the experimental room for 

approximately 1h prior to behavioral testing. Then they were individually placed into 

the arena, facing one of the corners and allowed to explore for 30 minutes. The arena 

was cleaned with 70% Ethanol between the trials. 

 

3.3.3 Rotarod 

The apparatus was a five-lane Rotarod (TSE-Systems®), with a central plastic rod of 3 

cm diameter. The mice were tested, one per lane, over two consecutive days, with three 

trials per day. For each trial, the mice were placed on the accelerating Rotarod. The 

speed of rotation increased from 4 to 40 rpm over a period of 5 minutes. The inter-trial 

interval was 60 minutes. The apparatus was cleaned with 70% Ethanol between the 

animals. 

 

3.3.4 T-maze test 

A white, T-shaped plexiglass arena was used (arm 

width 10 cm; arm length 30 cm; wall height 23 cm; 

Fig. 4). The method was adapted from (Deacon and 

Rawlins, 2006). In brief, the mice were placed at the 

end of the stem arm of the T maze and allowed to 
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freely explore the maze. Once the mouse selected one of the left or right arms, after the 

intra-trial interval of 30 sec, a choice trial was administered. An alternation score of 1 

implies that the animal selected, during the choice trial, the arm opposite to the arm 

visited during the sample phase. A score of 0 means the animal chose the same arm 

visited during the sample phase. The mice were tested two times per day for 3 

consecutive days. A cut-off period of 5 min was used to stop a trial if the mouse did not 

make a choice. The maze was cleaned with 70% Ethanol between the animals. 

 

3.3.5 Object recognition task 

Two different protocols were used for the object recognition task, as follows: 

 

[Study III]  

The test was performed as previously described (Bevins and Besheer, 2006). In short, 

on day 1, the mice were allowed to freely explore in a medium size cage (21.5×37×18 

cm), for 10 min, a pair of identical objects (Fig. 5). After a 24 h retention interval, one 

object was replaced with a novel one and each mouse was allowed to interact with the 

objects for 5min. Two distinct pairs of objects (A: brown porcelain coffee cups 6×6×6 

cm and B: regular glass lab brown bottles 12×4×4 cm) were used to control for natural 

preferences for any of the objects. Therefore half of the mice were tested for preference 

of B over A, and the other half for preference of A 

over B. The number of approaches and time spent 

interacting with the respective objects was recorded 

(rearing on followed by sniffing above the objects 

was not counted as an approach). A discrimination 

ratio was calculated as follows: time spent for novel 

object interaction/total time interacting with both 

objects. A discrimination ratio above 0.5 was 

considered indicative of object recognition. 

 

[study IV] 

A square shaped (45 x 45 cm2); grey PVC arena, enclosed by 43 cm high walls, was 

used (Fig. 6). The mice were habituated to the arena on 3 consecutive days. On day 1: 

all mice in one cage were placed together in the arena and allowed to freely explore it 

for 15 min. On day 2, the mice from the same cage were allowed to explore the arena, 

in group, for 10 min. On day 3, each mouse explored the arena individually for 5 min.  
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On day 4, during the object exploration session (sample phase), each mouse was placed 

individually into the arena where two different wooden objects were placed in diagonal, 

at equal distance from each other and from the 

corners of the arena. The mice were allowed to 

explore for 5 min. The objects and arena were 

cleaned with 70% Ethanol before they were 

used and in between animals.  

One hour after the object exploration session, 

the object recognition session was performed. 

During the 3 min recognition session, a novel object (third object) was placed into the 

arena together with one of the previously presented objects (choice phase). The objects 

used were a cube: 3 cm side; a cone: radius 4 cm and height 4 cm; a pawn: base radius 

3 cm and height 5.5 cm. Object exploration was evaluated automatically using the 

Videomot2 program from TSE-Systems(TM). 

 

3.3.6 Fear conditioning  

The test was carried out using an automated, commercially available operant 

conditioning system (TSE-Systems®). The training chamber (23 x 23 x 35 cm3), had 

transparent walls. The floor of the chamber consisted of equally spaced (9mm), bars 

(4mm diameter). The training chamber was positioned inside a sound attenuated box 

(52 x 52 x 65 cm3), where light intensity was set to 220 lux and background noise level 

at 40dB. The chamber was cleaned with 70% Ethanol before each animal was tested. 

The mice were tested on 2 consecutive days.  

On Day 1, each mouse was placed inside 

the testing chamber and allowed to 

explore for 2 min (baseline). The 

conditioned stimulus (CS), an auditory 

cue of 2 kHz, 75dB, was presented for 15 sec at the end of the 2 min exposure time. 

During the last 2 sec of the auditory stimulus, a foot shock of 1.5 mA, the 

unconditioned stimulus (US), was administered. This procedure was repeated and the 

mice were removed from the chamber 30 sec after the end of the second US delivery 

(Fig. 7). On Day 2, (24 h after training), the mice were returned to the same chambers 

in which training occurred (“context test”), and freezing behavior was recorded 

automatically during a 5 min period. At the end of the 5 min context test, the mice were 

returned to their home cages. Approximately 1h later, freezing was recorded for 6 min 
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in a modified chamber (black walls, cleaned with diluted detergent -D405). The initial 

3 min period of the exposure to the modified chamber (“pre-CS”), were followed by 3 

min of auditory cue presentation (“CS”). 

Freezing is defined as lack of movement except that required for respiration. 
 

3.3.7 Morris water maze (MWM) 

The MWM test was conducted in a black circular pool, 1 m in diameter (Fig. 8). Tap 

water (t = 22±1ºC) filled the pool to a depth of 20 cm. A transparent escape platform (8 

cm diameter) was located in the southwest quadrant of the pool for all the trials, with 

the exception of the visual test. Posters with black, bold geometric symbols (e.g. a 

circle and a square) were fixed on the walls around the pool.  

Hidden platform training: On each of four consecutive 

days, each mouse was subjected to three training trials. The 

sequence of start positions used was N-S-E for all the 

mice. A trial ended when the mouse found the platform or 

the cut-off period of 60 sec elapsed. The mice were 

allowed to rest for 10-15 sec on the platform. If the animal 

did not find the platform during one minute, the 

investigator gently guided the mouse to the platform. 

Probe trial: On day 4, one hour after the last acquisition trial, a 30 sec probe trial. 

During this 30 sec trial, the platform was not available for escape. 

The visible platform test: The mice were tested for their visual abilities at the end of the 

hidden platform navigation task. During two trials, the mice were released in the 

swimming pool where the escape platform was placed 0.5 cm above the water level, in 

the center of the pool, and flagged using a familiar object. The trial period was of 60 

sec. Animals which did not find the platform within 1 min, were excluded from the 

study. A commercial tracking system (Kaminski; CS, Biomedical Research Systems) 

was used to record and analyze off-line the behavior of the mice during the MWM test. 

 
3.4 GENE EXPRESSION AND TISSUE PREPARATION  

Genotyping was performed as described before (Lord et al., 2006) with primers 

framing the basal promoter and the APP coding sequence (2577–2596 in M12379.1 

and 541-522 in Y00264). 

After the completion of behavioral experiments, the mice were anesthetized with 0.3 

ml Avertin (25 mg/ml) and intracardially perfused with 0.9% saline solution. The 

brain was removed and sagitally divided in two halves. One hemisphere was frozen 
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on dry ice for biochemical analyses, and stored at – 80 until further use. The other 

hemisphere was immersed in 4% paraformaldehyde for 24 h and cryoprotected by 

sequential immersion in sucrose solutions (24 h in each of the following solutions 

10%, 20% to 30% w/v).  

 
3.5 ELISA AND IMMUNOHISTOCHEMISTRY 

One brain hemisphere was homogenized in TBS (20 mMTris, 137 mM NaCl, pH 7.6) 

supplemented with Complete® protease inhibitor cocktail (Roche Diagnostics GmbH, 

Germany) with a tissue grinder (2×10 strokes on ice); tissue weight to extraction 

volume ratio was1:10.  

The homogenates were centrifuged at 100000 × g, for 1 h, at +4°C in TBS. Soluble 

(extracellular and cytosolic) fractions were collected. Supernatants were stored in 

aliquots at −80°C and biochemical analyses were performed using the supernatants. 

 
mAb158 protofibril ELISA  

The mAb158  detects large A# oligomers (>100 kDa) and has been described in detail 

elsewhere (Englund et al., 2007). In brief, 96-well plates were coated with 200 ng/well 

of mAb158 in PBS over night at +4ºC and blocked with 1% BSA. The samples were 

centrifuged at 17900 rpm for 5 min prior to incubation. Samples were added to plates in 

duplicates and incubated for 2 h at room temperature (RT). Biotinylated mAb158 

(0.5'g/ml) was added and incubated for 1 h at RT, followed by incubation with 

Streptavidin–horseradish peroxidase complex (SA-HRP, MabTech AB, Sweden), for 1 

h at RT. K-blue aqueous (ANL-produkter AB, Sweden) HRP-substrate was used and 

the reaction was stopped with 1M H2SO4. All plates were washed three times between 

steps after blocking. All samples and antibodies were diluted in ELISA incubation 

buffer (PBS with 0.1%BSAand 0.02% Tween-20). The standard was generated by 

incubating wild type A#1–42 (American Peptide, Sunnyvale, CA) in 50 'M PBS for 30 

min at +37 °C, followed by centrifugation at 16000×g for 5min. The supernatant was 

loaded on a Superdex 75 10/300 GL column resulting in a single high-molecular weight 

peak which was collected. 

 
Total soluble A! ELISA 

96-well plates were coated with 200 ng/well of 82E1antibody (human Amyloid N-

terminal specific) in PBS, over night at +4°C and then blocked with 1% BSA. To 

measure total soluble A# the samples were supplemented with SDS (Sigma–Aldrich) to 

a final concentration of 0.2% and boiled at 95ºC for 5min. The samples were diluted in 
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ELISA incubation buffer, to a final SDS concentration of 0.02%, added to the plates as 

duplicates and incubated 2 h at RT. An incubation step followed consisting of 1 h at RT 

with 1 'g/ml biotinylated mAb27 (selective for Arctic A#, previously characterized 

(Lord et al., 2009b). Subsequent steps were performed in the same manner as for the 

mAb158 protofibril ELISA. 

 

Immunohistochemistry  

Coronal brain sections, 25 'm thick, were cut with a sledge microtome and stored at 

+4°C in PBS with 10mM NaN3. Individual sections were mounted on glass slides and 

antigen retrieval steps were performed by incubating the sections in pre-warmed citrate 

buffer (25mM, pH 7.3) at +85ºC followed by immersion in 70% formic acid. 

Endogenous peroxidase activity was quenched by incubation with 0.3% H2O2 in 

DAKO block/PBS.  

A# deposits and amyloid cores were visualized using an A#40-specific antibody 

(Jensen et al., 2000) and Congo Red (Sigma–Aldrich) respectively. A secondary 

biotinylated goat anti-rabbit antibody (Vector Laboratories), Streptavidin–horseradish 

peroxidase complex (SA-HRP, MabTech AB, Sweden) and NOVATM (Vector 

Laboratories) reagents were used for visualization of immunosignals. Semi-quantitative 

image analysis was performed on three to five coronal sections from each animal 

(Bregma −1.22mm to−2.80mm) and A# plaque load in the cerebral cortex and 

hippocampus was measured in two image fields per section at 2 × magnification. A# 

and Congo red staining images were segmented with an auto threshold command 

(Image Pro-Plus, Cybernetics, USA). User-made macros in Image Pro Plus were 

designed as to measure area fraction (=stained area/total area) in the anatomic structure 

of interest. Tissue sections were incubated with a rabbit-anti CALB antibody (Swant – 

Switzerland, CB38, diluted at 1:15000, over night, at +4ºC) and with biotinylated 

secondary goat anti-rabbit antibody (Vector Laboratories). Heat retrieval and 

immersion in formic acid was omitted when sections were stained for CALB. Image 

Pro Plus custom macros were used to measure the optical density (OD) in the dentate 

gyrus (DG) for CALB. Images of histological staining were captured with a DXM 

1200F Nikon microscope (Nikon Instruments Inc., USA) equipped with a digital 

camera and converted to greyscale. 
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3.6 STATISTICS  

The data from each laboratory [studies I, II] was uploaded to a common databank, and 

analyzed using SAS software 9.13 (SAS Institute, Inc. 2006) by one of the partners in 

the study who did not perform experimental work.  

[study I] Data were collected on 288 mice (six cages in four labs with four females per 

three strains). Normal distribution was evaluated and if both the Shapiro–Wilk and 

Kruskal–Wallis tests exhibited p > 0.05, the data was taken to be normally distributed. 

Several variables had to be transformed, and in a few cases extreme values had to be 

excluded, to induce residual variation to conform to the normality assumption. 

Untransformed data analyses did not give significant results for effects not significant 

with the transformed data. Place and Reversal Error rates could not be normalized as 

dispersion was too high. Therefore significance levels of inferences on cognitive 

differences are most probably conservative (under) estimates.  

 

[study II] The activity data were square-rooted to approach normality; residuals 

remained nonnormally distributed (Kolmogoroff-Smirnov test, p<0.05). That implies 

significances levels for the activity to be too conservative. Sequential probability-ratio 

test (SPRT) statistics were computed to evaluate whether and when an individual 

exhibited significant preference for the rewarded corner in the IntelliCage. 

The effects of protocol (Place learning or Pleace learning reversal), treatment, and 

strain on learning performance were evaluated in a non-parametric ANOVA model 

with the number of trials to criterion as dependent variable. 

 

[study III, IV] Statistical analysis was performed using STATISTICA v8.0 software 

package (Stat Soft Inc, USA). The variables were considered normally distributed if the 

Kolmogoroff–Smirnov did not indicate a significant deviation from the normal (p < 

0.05). For [study IV], several variables from conventional tests had a bimodal 

distribution and could not be normalized. Non-parametric statistics were used 

throughout. 

 

Table 1 Overview of statistical models/tests used in the thesis 

Study Statistical model/tests 
Study I GLM, split-plot design 

yijk = INT+Labi+Strainj+Lab×Strainij+ IC(Lab)k (i )+Strain× IC(Lab)jk (i )+ejk (i ) 
 

Study II GLM, split-plot for Activity 
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yijk=INT+Trti+Strainj+Trt*Strainij+IC(Trt)k(i)+Strainij*IC(Trt)jk(i)+ejk(i) 

Sequential probability ratio test for  Learning followed by 
non-parametric ANOVA model (Brunner & Munzel, 2002 ) 
 

Study III t-test, Mann Whitney U for variables measured at one time point   

ANOVA for data followed over time (post-hoc N HSD and Tukey HSD)  

and Sign test  

Linear correlation analysis:  

- Parametric (Pearson correlation coefficient r)  

- Non-parametric test (Spearman rank, R) 

Study IV Linear correlation analysis 

- Non-parametric test (Spearman rank, R) 

Mann-Whitney U test 

Kruskal Wallis, and Friedman ANOVA 

Cluster analysis: Single linkage amalgamation rule and City-block 

(Manhattan) distances  

Projection to Latent Structures (PLS)  
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4 RESULTS AND DISCUSSION 

4.1 INTELLICAGE AND INTELLIMAZE MULTI-CENTER STUDIES 

Laboratory effects on IntelliCage behaviors 

The Lab x Strain interaction effect did not cross the boundary of p < 0.05 significance 

level. As expected from the literature review, we found significant Laboratory effects 

[study I] both for unconditioned and conditioned Activity measures and measures of 

Learning. For the number of visits during the first 30 minutes (F (3, 20) = 8.39, p< 

0.0001), the time necessary to visit all IntelliCage corners (F (3, 20) = 5.97, p< 0.005), 

2 variables from the Nosepoking phase, (PokeProportion (F (3, 20) = 9.81, p < 0.001) 

as well as Poke duration (F (3, 20) = 12.56, p < 0. 0001), a strong Laboratory effect 

size was detected. Close to significant interaction effects for the variables highly 

affected by the Laboratory identity were seen.  

In our study inter-laboratory consistency of behavioral data was attained using the 

IntelliCages. However, it should be noted that some variables are more sensitive to 

laboratory identity than others. The variability during initial phases of exposure to the 

cages could be explained by a high level of arousal triggered by new social partners as 

well as the novelty of the chamber itself. Mixed housing of experimental groups prior 

to the start of IntelliCage experiments as well as a standard procedure for releasing the 

mice to the cage could potentially reduce the variability during the initial stages.  

[study II] The analysis of data from Control trials (IntelliCage only) confirmed that 

strain effects did not depend on laboratory identity, and the laboratory effect did not 

reach significance, either. 

 
4.2 B6, D2 AND B6D2F1 BEHAVIOR IN THE INTELLICAGE 

Activity measures: unconditioned access to water bottles 

[study I] Following 5 days of adaptation (Adaptation phase last 2 days) to the cages, 

IntelliCage corner Visit Frequency was significantly different between strains, both 

during the dark phase (F (2, 36) = 41.71, p<0.0001) and the light phase (122.09, p < 

0.0001). Visit Duration also differed between the strains (F (2, 36) = 66.25, p < 

0.0001). D2 mice visited less frequently, but spent a longer time than the B6 mice 

inside the IntelliCage corners. For both variables the behavior of F1 mice was in 

between that of the parent strains. The difference between dark activity and light 

activity (Day pattern = (visits dark – visits day) / (visits dark + visits day)) was more 
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pronounced for the D2 mice which reduced the activity during the light phase more 

than the B6 mice (F (2, 36) = 107.45, p < 0.0001). 

 

[study II] We replicated the finding of significant strain differences for both phases of 

the light-dark cycle. The effect size of the difference was higher for the light phase (F 

(2, 38) = 145.85, p < 0.0001) than for the dark phase of the adaptation (F (2, 38) = 

28.13, p < 0.0001). The effects were explained by low activity of D2 mice, which were 

consistently followed by F1 mice and B6.  

 

Activity measures: conditioned access to water bottles 

[study I] During Nosepoke Adaptation (3 days), on measures for Activity (Visits per 

hour), significant differences between strains were obtained (F (2, 40) = 20.25, p < 

0.0001). The activity was higher for the B6 than the D2 mice, while F1 ranked lowest. 

Nosepoke duration did not differ significantly between strains (F (2, 40) = 0.30, p < 

0.74). D2 mice exhibited a higher proportion of visits with nosepokes than the other 

two strains. D2, but not F1, mice countered lower visiting rate by exhibiting an 

increased incidence and frequency of nosepokes per visit.  

 

[study II] During light phases of Nosepoke Adaptation the frequency of visits to the 

IntelliCage corners was significantly different (F (2, 40) = 8.41, p<0.001) and strains 

ranked as during the Free adaptation phase. For the dark phases, the effect of strain was 

highly significant (F (2, 40) = 52.98, p<0.0001).  

 

Learning measures 

[study I] At the end of the Place learning phase (last 42 visits with nosepokes, after 3 

days of learning), the error rate was significantly different between the strains (F (2, 40) 

= 34.23, p < 0.0001). B6 mice exhibited a lower rate of place learning errors. Following 

the switch to Reversal learning (first 42 visits with nosepokes) the strains were again 

discriminated by the number of reversal errors (F (2, 40) = 12.12, p<0.0001). B6 mice 

had the highest error rate. Both during the Place learning and reversal, the F1 had a 

higher error rate than the D2 mice.  

[study II] The strain identity had also a significant effect i.e., D2 mice required fewer 

visits to acquire the preference as well as to reverse their preference for the rewarded 

corner. F1 mice behaved similarly to B6 during the place learning whereas in the 

reversal phase they behaved more similar to D2. 
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We further analyzed the number of visits during the Place reversal phase necessary for 

the mice to visit previously rewarded corners at approximately chance levels, as a 

measure of preference extinction. Thus, the B6 mice needed the highest number of 

corner visits to extinguish the acquired preference. The survival analysis confirmed the 

significant effect of strain (Wilcoxon Chi-square: 12.36, p<0.001). 

 

The results from our studies were similar regarding the strain ranking for activity 

measures. For learning, the variables analyzed looked at different time points. While in 

the first study already learned preferences were analyzed, in the second study the 

number of visits necessary to reach a preference was analyzed. B6 mice discriminated 

more, whereas D2 acquired faster the preference in our study. 

Classical studies on learning behavior of inbred strains have shown that D2 mice 

outperform the B6 mice when the test situation has an important procedural learning 

component (reviewed by Ammassari-Teule and Castellano, 2004). In what concerns 

spatial and contextual information processing, the B6 mice discriminate more 

efficiently than the D2 mice (Ammassari-Teule and Castellano, 2004). Building on 

this knowledge we can speculate that the IntelliCage place learning paradigm has a 

spatial component mirrored by variables addressing discrimination capacity in mice 

(Krackow et al. 2010), whereas the procedural component is better captured by 

variables addressing the speed of (re)learning (i.e. trials to criterion in this study, or 

re-learn score in our previous study). 

 
4.3 INTELLICAGE APPLICATIONS FOR A TG-APP AD MODEL 

The mice were tested twice, at young adult age (4 months old) and 10 months later. A 

total of 4 mice (2 tg-ArcSwe and 2 non-tg) did not contribute data points to the second 

behavioral experiment, as 3 mice (14 month old) did not drink inside the IntelliCages 

and 1 non-tg mouse died prior to the start of the second experiment.  

The body weight of APP-ArcSwe mice was lower than the body weight of non-tg 

throughout the study. 

 

Activity measures at 4 and 14 months 

The frequency of corner visits during the initial 24 h of exposure to IntelliCage at 4 

months, was higher for non-tg mice (t (21) = 2.88).  
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At 4 months there was a significant decrease over days in the number of visits the 

mice performed (F (5, 110) = 8.3, p < 0.001). Using the contrast estimate method, this 

difference was revealed to be due to the habituation between the first and the 

following days. No effects of genotype or genotype and time interaction were seen for 

the number of visits. Similarly, at 14 months a habituation effect for visits was 

detected for both groups (F (5, 90) = 32.8, p < 0.001). A significant time and 

genotype interaction effect for visits to IntelliCage corners was also revealed by 

repeated measures ANOVA (F (5, 90) = 2.65, p < 0.05). Separate analyses for the 

non-tg animals, showed a significant decrease in corner visits from the first to the 

second dark phase of exposure to the cages (Tukey HSD, p < 0.05). For the tg-

ArcSwe group this difference was not significant. Using nonparametric Spearman R 

test, significant overall correlations were found for the number of visits during the 

first dark phase (R = 0.44, p < 0.05) and average number of visits during the active 

phases (R = 0.45, p < 0.05) between the two experiments. 

 

At 4 months the amount of time spent drinking (lick duration) increased significantly 

from the first to the subsequent dark phases, both for tg-ArcSwe and non-tg mice (F 

(5,110) = 6.05, p < 0.001). Lick duration for the tg-ArcSwe mice was significantly 

lower than for the non-tg littermates, as shown by a main genotype effect in repeated 

measures ANOVA (F (1, 22) = 5.65, p < 0.05). Consistent with previous studies on 

diurnal activity of laboratory mice, our data show that close to 90% of visits to 

IntelliCage corners occur during the dark phase. Similarly, at 14 months the time 

spent drinking increased significantly over time for both groups, ANOVA (F (5, 90) = 

15.6, p < 0.001). However, no difference in the duration of drinking between 

genotypes was detected at this age. No significant correlation for lick duration at 4 

and 14 month was found.  

 

Learning measures at 4 and 14 months 

Place learning, place learning reversal and extinction of place preference 

Training was done in 2 learning sessions per dark phase for 4 days. An error was 

defined as a visit to any of the corners where water was not available (unrewarded 

corner, yellow in Fig. 9). Because we observed low levels of activity during the 

second learning session (i.e. 04:00-05:00 AM), the change over time of “%Error” for 

the evening learning sessions (i.e. sessions between 23:00 and 24:00), was analyzed. 

The same analyses were applied for reversal learning phase. 
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At 4 months, the percentage of 

“incorrect visits/errors” 

significantly decreased from 

approximately 68%, to 52%, 

repeated measures ANOVA (F 

(3, 57) = 8.26, p < 0.001). 

Both genotype groups had a 

similar percentage of visits to 

the corners rewarded during the Place learning (PL) and the Reversal learning. 

During the Extinction phase (12 h/first dark phase) when all corners of the cages 

became accessible again for drinking, the non-tg mice lost the preference for corners 

rewarded during the Reversal module. Tg-ArcSwe mice continued to significantly 

prefer them over the other three corners in the cage (t (12) = 6.09, p < 0.001). The 

percentage of visits to the last corner rewarded was significantly different between the 

two groups (t (22) = 3.19, p < 0.01), indicating response perseverance in the tg-

ArcSwe mice. Both genotypes preferred to visit the rewarded corners (non-tg 

58.0±8.4%; and tg-ArcSwe: 61.4±6.1%) to the other two corners in the cage (t (23) = 

6.59, p < 0.001). 

 

At 14 months, the percentage of errors (%Error) made during the evening learning 

sessions significantly decreased over days as shown by repeated measures ANOVA, 

(F (3, 51) = 7.58, p < 0.001). %Error decreased from an average 50% to 34% during 

4 days. No significant overall difference due to genotype or, time by genotype 

interaction was detected for 14 months old animals. Nor was there a significant 

overall genotype difference during the reversal place learning sessions on %Error. 

Further analyses for the evening sessions on days 2 and 3 of reversal confirmed a 

significant difference for %Error between the genotypes on both days, (t (17) = 2.43, 

p < 0.05) and (t (17) = 2.29, p < 0.05). For the same sessions, tg-ArcSwe mice 

showed (a) on day 2, a trend for visiting more frequently the corners rewarded during 

place learning (t (17) = 1.69, p < 0.12) and (b) on day 3, a significantly higher 

preference for this corner (t (17) = 2.92, p < 0.01) as compared to the non-tg mice. 

During the first dark phase of the Place preference extinction module the summed 

preference for the rewarded corners was maintained by tg-ArcSwe mice (t (10) = 

4.55, p < 0.01), but not by non-tg animals. 
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14 months: Passive avoidance in the IntelliCage and probe trial memory test 

At 4 month this test was not 

performed.  

Prior to the start of the passive 

avoidance test, the mice did 

not show significant avoidance 

behavior towards the 

IntelliCage corners.  

As compared to the baseline 

preference, both during training and probe trial, non-tg mice avoided significantly 

(Sign test, p < 0.05) the corners where air-puffs where delivered (red in Fig. 10). The 

change in preference from baseline was not significant for the tg-ArcSwe mice. A 

significant genotype effect on the percentage of visits to corners where air-puffs were 

delivered was detected during the training phase (Mann Whitney U test, p < 0.05). 

 

4.4 INTELLICAGE BEHAVIOR AND CALB IMMUNOREACTIVITY  

Significantly higher CALB immunoreactivity (Mann Whitney U, p < 0.01), in the 

granular layer of the dentate gyrus) for the tg-ArcSwe mice was found. The average 

values for tg-ArcSwe mice (0.26±0.05 OD; mean±stdev) were higher than in non-tg 

mice, (0.19±0.03 OD). In contrast, a lower level of CALB immunoreactivity in the 

polymorphic layer of the tested tg-ArcSwe mice compared to the non-tg (t (16) = 

2.13, p < 0.05), was seen. In the overall group, the correlation between CALB and the 

Preference for the punished corner during training was significant at the p < 0.05, 

(Spearman R =−0.49). 

In the cerebral cortex of 17 month old tg-ArcSwe, 4.7 ± 0.1% of the surface was 

occupied by plaques and in the hippocampus 4.00±2%. Protofibril levels were 9.3 ± 2.7 

pg/mg tissue in tg-ArcSwe mice and total soluble from one hemisphere amounted to 

700±200 pg/mg. No statistically significant correlation between the number of A# 

plaques in the cerebral cortex (r =− 0.38, p = 0.27) or hippocampus (r = 0.39, p = 0.26), 

soluble A# (r =−0.03, p = 0.92) or A# protofibril levels (r =−0.09, p = 0.79) and 

learning behavior (visit preference for the punished corner during the training phase, 24 

h) in the passive avoidance and probe trial memory test was found. 

 

We thus described behavioral perseverance at 4 month and a deficit in passive 

avoidance learning at 14 month in IntelliCage for tg-ArcSwe mice. Impairments in 
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hippocampal dependent tests such as the MWM, Barnes Maze and Y-maze, as well as 

two - way active avoidance and O-maze exploration (Knobloch et al., 2007, 

Ronnback et al., 2011, Cheng et al., 2007) have been described for other APP 

transgenic lines harboring the Arctic mutation. Our findings add to the known 

impairment in spatial learning as assessed in the MWM (Lord et al., 2009a) in this 

strain. Hence, using the IntelliCage in the APP-tgArcSwe mice, complementary 

behavioral phenotypes were described. Interestingly, behavior of the tested mice 

could be related to a neuronal marker - CALB. Our study is limited by the semi 

quantitative approach and lack of non-tested control material. However, this is the 

first study to show elevated CALB in the granular layer of an AD mouse model. 

Previous work, using other APP mice (i.e. the APPSweInd or APPSwe/PS1) mice, 

reported a decrease of CALB expression at the same level (Palop et al., 2003). The 

differences between ours and previous studies include the transgene used, background 

strain, sex of the animals, housing conditions and the length/type of behavioral 

testing. At this stage, we can only speculate that under our experimental conditions, in 

the tg-ArcSwe model, an increase in CALB expression might compensate for 

deleterious effects of mutant human APP overexpression. Altered protein expression 

at the hippocampal level could be induced directly by APP activated pathological 

cascades or as part of the compensatory mechanisms (Palop et al., 2011). It has been 

proposed that the latter is a more likely explanation in light of the network imbalance 

induced by the presence of A#! 

 

Fig. 11 Cognitive / behavioral trajectories in mice. Cognitive decline with aging is 

expected (solid line). Transgenic models should ideally develop cognitive decline 

(dashed line) which parallels pathology (dotted line). Early phenotypic differences 
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between the tg and non-tg AD mice (dashed line) have been commonly reported. 

These differences mirror several processes in the tg mouse brain: effects of transgene 

expression, accumulation of pathology as well as compensatory mechanisms. 

Furthermore, detection of cognitive and behavioral impairments critically relies upon 

test sensitivity, which differs between paradigms.  

 

4.5 THE INTELLIMAZE/INTELLICAGE - AN ENRICHMENT DEVICE 

[study II] Effects of add-on availability on: 

Activity measures Only visit frequency during the dark phases of the Free adaptation (3 

days) were significantly lower in the presence of add-ons (F (1, 19) = 16.95, p < 0.001). 

The other measures (activity during the light phases of the Free adaptation and both 

phases of Nosepoke adaptation) were not affected in the presence of add-ons. The 

difference between add-ons did not reach statistical significance (F (1, 19) = 2.61, 

p>0.12).  

 

Learning measures During the place conditioning paradigms, the overall number of 

trials (visits with nosepokes) needed to reach the learning criterion, (30% visits to the 

rewarded corner), was lower in the presence of add-ons. The number of visits during 

the Place reversal phase necessary for the mice to visit previously rewarded corners at 

approx. chance levels was analyzed as a measure of preference extinction. The 

availability of add-ons did not have an effect on this variable.  

 

Body weight For all groups of mice, under all experimental conditions, we observed an 

increase in average body weight over the 16 days of experimental trial period. The 

increase of body weight did not significantly depend on treatment in any of the cohorts. 

 

[study IV] For the analyses the mice were grouped according to the housing condition 

in IntelliCage (Experiment 1). Following IntelliCage exposure, both systematic and 

discordant effects on subsequent behavioral tests were obtained. Thus, activity 

measures, as assessed in the OF and FC were lower for the IntelliCage tested mice 

Discordant results between the 2 groups of tested mice were obtained for CA visits in 

EPM, a variable considered to reflect locomotor activity, and in the Rotarod test (Day2 

Trial A, Latency to fall). For both tests the ranking was the same (group1-IC > group2-

IC). Both during Day 1 of Rotarod and the MWM tests, a significant learning effect for 

IC-tested mice was seen, even for small groups of mice (n=7). During the Rotarod test, 
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the dynamic of learning the task was different between tested and not-tested mice. In 

the MWM, the main difference came from behavior during the first exposure to the test 

situation when IC-tested mice swam longer distances than the not-tested ones. In 

previous work, mice that had been exposed to a battery test performed better in the 

Rotarod test (Voikar et al., 2004). Learning was also facilitated following exposure to 

enriched environments in tests with an important motor component (Madronal et al., 

2010).  

 

4.6 INTELLICAGE PHENOTYPES AND CONVENTIONAL TESTING 

PHENOTYPES 

In order to test whether IntelliCage behaviors would predict behavior in conventional 

tests, we applied multivariate regression models (PLS). Variables from conventional 

tests, selected after Cluster analyses were considered “responses” in PLS analyses 

while “factors” were variables extracted from IntelliCage data.  

In the first PLS model, IntelliCage variables for Free exploration and Habituation 

(Table 2) and variables reflecting locomotion, exploratory activity and anxiety-like 

behavior from conventional behavioral tests were used (Table 3).  

PLS analysis identified one significant component (Q2= 0.015), explaining 14.32 % of 

the sum of squares of the response variables. Variable importance > 2/Number of 

variables in the model are considered relevant for the model. 

For the second PLS model, variables for Place learning and Place learning reversal 

modules the Percentage of errors for bins of 12 visits were extracted. In addition, for 

Place learning reversal the Percentage preference for the previously rewarded corner 

was also calculated (using 12 visit bins). These variables were ‘factors’ in the model. 

‘Responses” were variables form MWM (Mean daily path lengths and Probe trial 

variables), as well as Freezing % during all phases of the FC test. PLS identified one 

significant component (Q2 = - 0.107), explaining 9.45% of the sum of squares of the 

response variables. Since Q2 was < 0, this model was not discussed.  

 

Several approaches can be used to clarify relationships between variables measured 

during different behavioral tests. Simple correlation analyses increase the probability of 

Type I errors and increase the risk of spurious results. Relationships between variables 

recorded during classical behavioral tests have been generally explored using Factor 

analysis (Whimbey and Denenberg, 1967, Lamberty and Gower, 1993, Rodgers and 

Johnson, 1995, Arendash and King, 2002). The variable space is thus reduced to 
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several underlying factors. However our data set has characteristics which make it less 

suitable for Factor analysis: a small sample size and bi - modal distribution for several 

variables (e.g. OA arm visits and OA distance). Therefore Cluster analysis was 

considered appropriate to explore the relationships between variables as it is less strict 

regarding the assumptions. Following Cluster analysis, a smaller number of variables 

for each test was retained for use in PLS analysis. 

Only a relatively small part of the sum of squares in the PLS “responses”, i.e. behavior 

in conventional tests, could be explained by IC behavioral “factors” in model 1. 

However, due to the exploratory nature of our study only several of the possible models 

were investigated, and further analyses are required to disentangle latent mechanisms. 

 

Table 2 Input variables for PLS model 1 
Variable name Description (IC behavior) 
Latency to first visitStartTimecode (s) Time until the first visit is recorded 
Latency to first lickStartTimecode Time until the first lick is recorded 
DARKFirst12VisitNumber First 12h (dark phase) visit number 
DARKFirst12VisitDuration First 12h (dark phase) visit duration 
DARKFirst12NosepokeNumber First 12h (dark phase) nosepoke number 
DARKFirst12NosepokeDuration First 12h (dark phase) nosepoke duration 
DARKFirst12LickNumber First 12h (dark phase) lick number 
DARKFirst12LickDuration First 12h (dark phase) lick duration 
habituation visits number Overall habituation visit number 
habit visits duration Overall habituation visit duration 
habit nosepoke number Overall habituation nosepoke number 
habituation nosepoke duration Overall habituation nosepoke duration 
habituation lick number Overall habituation lick number 
habituation lick duration Overall habituation lick duration 



 
 

Fig.12 Variable importan
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= total-OA-CA) EPM Distance in center 

d (m) 5 min distance in OF 

s) 30 min distance in OF 

Fecal boli deposited during O

30 min vertical activity time

) 5 min horizontal activity 

 

e open arms 

 

OF test 

e in OF 
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5 CONCLUSIONS 
1. Behavioral measures of activity and learning obtained using the IntelliCage 

methodology are consistent between laboratories. 

2. In the presence of additional devices (IntelliMaze) both activity and learning 

measures in the IntelliCage are modified. Thus, visit frequency to IntelliCage 

corners is reduced and discrimination in a place learning task enhanced. 

3. The behavior of B6, D2 and F1 hybrid mice could be distinguished by the 

IntelliCage methodology. Our findings of higher visit frequency for the B6 

mice and better place discrimination are in line with earlier work using 

conventional behavioral tests. Unpredicted behavioral differences between 

strains also emerged from the studies.  

4. Differences in activity and learning between tg- and non-tg APP-ArcSwe mice, 

a model for AD can be detected using the IntelliCage.  

5. Exposure to IntelliCage can influence behavior in subsequent tests. 

6. For a comprehensive behavioral assessment, there is a need to further develop 

and validate IntelliCage protocols. 
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6 GENERAL REMARKS AND FUTURE 

PERSPECTIVES 
In order to provide a valuable tool for behavioral research, the parameters measured in 

IntelliCage should be valid and replicable. Through multi-center studies, the 

replicability of measurements was confirmed, as we obtained results which are not 

interfered by laboratory identity. However, the limitation of our study arises from the 

limited number of strains we have employed. The validity of behavioral parameters 

obtained in the IntelliCage is currently evaluated. Several approaches have been 

undertaken, such as characterizing brain lesioned mice or inbred mice with known 

phenotypic traits. Administration of drugs with well characterized behavioral effects 

can also provide useful information. However, using the IntelliCage, new, replicable 

behavioral endpoints can emerge, as shown in our studies.  

Behavioral testing using automated methods, such as the IntelliCage, is still in its 

infancy. Detailed behavioral analyses in automated long lasting tests, as well as valid 

inter-laboratory results bring one step closer the possibility of acquiring relevant 

biological data in a reliable way on a large scale. 

For AD mouse models though, further applications taking advantage of the short, 

already validated protocols (e.g. Passive avoidance test) seem a reasonable approach. 

However, care must be exercised to consider potential genotype-by-environment 

interactions. Development of future applications in the IntelliCage (such as drug 

testing) requires fast protocols with good discriminative value. To this end, modeling 

approaches using data from bigger experimental groups will provide a clearer answer 

regarding which behavioral domains are better predicted by IntelliCage results. To 

enable collaborative work on common data bases, harmonious development of 

protocols and nomenclature are required.  

The amount of data available for analyses (although containing only 3 types of events) 

is suitable for data mining approaches. Relevant behavioral shifts and time points could 

be detected. Furthermore, the dynamics of social interactions in the IntelliCage have yet 

to be described.  
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