
From the Division of Medical Imaging and Technology 
Department of Clinical Science, Intervention and Technology 

Karolinska Institutet, Stockholm, Sweden 
 
 
 

MULTIVARIATE DATA ANALYSIS  

APPLIED TO MRS AND MRI STUDIES  

OF AGING AND SPINAL CORD INJURY 

 
 
 
        Johanna Öberg 

 
 
 
 
 
 
 

 
 
 
 

Stockholm 2011 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

All previously published papers were reproduced with permission from the publisher. 
 
 
Published by Karolinska Institutet. Printed by Universitetsservice US-AB. 
 
 
© Johanna Öberg, 2011  
ISBN 978-91-7457-447-0 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my family 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract 
Magnetic resonance can be used for non-invasive studies of the body without the 

use of ionizing radiation. Magnetic resonance imaging and magnetic resonance 

spectroscopy have proven to be valuable utilities for research in life sciences.  

This thesis deals with magnetic resonance investigations of the central nervous 

system in vivo and is based on four studies. In studies I-III in vivo proton magnetic 

resonance spectroscopy data were acquired in three animal models. These models 

were designed to monitor Alzheimer’s disease, spinal cord injury and premature 

aging. We wanted to quantify and evaluate the differences in metabolite levels in 

diseased animals in comparison with controls. In study IV, resting-state functional 

magnetic resonance imaging was applied to investigate young and elderly human 

subjects. Three different pre-processing procedures were also evaluated. 

Furthermore, in this thesis we aimed to explore how data acquired with magnetic 

resonance spectroscopy and functional magnetic resonance imaging can be 

extracted and analyzed using model free and model driven multivariate data 

analyses. The linear multivariate data analysis methods principal components 

analysis and partial least squares projections to latent structures were applied to 

magnetic resonance spectroscopy data acquired in rodents. Independent 

component analysis was applied to the resting-state functional magnetic resonance 

imaging data acquired in human subjects.  

Group differences in brain metabolites between diseased and control animals were 

observed and reported in study I-III. By applying the method partial least squares 

projections to latent structures to all detected metabolites, we were able to develop 

models that could differentiate the diseased rodents from the normal controls and 

evaluate the sensitivity and specificity of the models.  

In study IV we investigated the effects of preprocessing prior to independent 

component analysis. We found that global signal removal can enhance anti-

correlation in resting-state functional connectivity networks. We also found that 

normal brain aging can lead to significant changes in functional connectivity. 
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1. Introduction

1.1 Magnetic resonance
Magnetic resonance (MR) can be used for non-invasive studies of the body
without the use of ionizing radiation. Magnetic resonance imaging (MRI) is
the most widely known application of MR. MRI provides information about
the three-dimensional structure of objects and is therefore useful to exam-
ine brain anatomy and pathology. In addition to obtaining structural informa-
tion, functional MRI (fMRI) can be used to investigate brain function. Mag-
netic resonance spectroscopy (MRS), on the other hand, provides informa-
tion about the chemical constitutes of objects, including information on tis-
sue metabolism and neurotransmitters. Common to the techniques mentioned
above is that the object under investigation is placed in a static magnetic field,
B0.

When placing a macroscopic sample in the magnetic field, the 1H nuclei
(protons) in the sample will be affected and cause a net magnetization aligned
with B0. By applying an excitation pulse, in the radio frequency (RF) range,
absorption and emission of electromagnetic radiation from the sample can be
observed. The pulse needs to have a bandwidth around a specific resonance
frequency, the Larmor frequency (ν0), to satisfy the Larmor equation

ν0 = γB0. (1.1)

After the excitation pulse has been applied, a small fraction of the proton
spins in the sample will be excited and eventually return to ground state by
emitting the absorbed energy, which is the detected MR signal. To create MR
images the signal needs to be spatially encoded, which is achieved using mag-
netic field gradients; weak magnetic fields that changes linearly with position
and are superimposed on B0. Gradients are also used to localize the volume
of interest (VOI) when performing MRS. To carry out the MR acquisition of
interest, RF pulses, gradient pulses and the timing of the data acquisition are
controlled by a program, the pulse sequence.

1



1.1.1 Magnetic resonance spectroscopy
Chemical shift
All protons in a sample do not share the same resonance frequency. This is
due to that the resonance frequency of a proton in a magnetic field is not only
dependent on γ and B0 as in Eq. 1.1. Protons in different molecules, and within
the same molecule, absorb energy of different frequencies, which is referred
to as the chemical shift (δ ). Chemical shift is caused by shielding from the
electrons surrounding the proton. The effect is that the proton may experience
a magnetic field, B, different from B0

B = B0(1−σ), (1.2)

where σ is the magnetic shielding constant. As a consequence the proton may
also have a resonance frequency different from ν0. The chemical shift is ex-
pressed in parts per million (ppm) of the resonance frequency of a reference
molecule and is by convention defined as

δ =
(ν −νref)106

νref
, (1.3)

where ν is the resonance frequency of the magnetically equivalent protons,
and νre f is a reference frequency. Expressed in this form the B0 dependence
is removed. Hence, referring to the chemical shift of a molecule, or a part
of a molecule, is common to MRS experiments carried out with magnets of
different B0 fields.

The MRS signal
Figure 1.1 shows an example of a volume from which it might be interesting
to acquire an MR spectrum: a cubic VOI of eight mm3 in the dorsal hippocam-
pus of a mouse brain. The purpose of a volume selective spectroscopy pulse
sequence is to localize, and acquire signal from, the VOI.

Using the pulse sequence of point resolved spectroscopy (PRESS) [1], one
slice selective excitation pulse is followed by two slice selective refocusing
pulses. Gradients along the three orthogonal axes are applied in the presence
of each of the RF pulses to achieve three-dimensional localization of MR sig-
nals persisting to the double refocused echo.

The signal is acquired using a receiver coil and is typically a superposi-
tion of signals of different frequencies, amplitudes, phases and decays (Figure
1.2 (left)). The signal is sampled, digitized and stored in a computer for fur-
ther processing. Conversion of time domain-data to frequency-domain data
by Fourier transformation will reveal the resonances that are present in the
signal as peaks in a spectrum. Figure 1.2 (right) shows the signal to the left
in the same figure after Fourier transformation, with the relative frequencies
in ppm on the horizontal axis. Molecular groups generate specific resonance
patterns in the spectrum, either as single peaks, doublets or more complex
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Figure 1.1: Illustration of a VOI in the dorsal hippocampus of a mouse brain. The
VOI, an eight mm3 cube, is shown with a cut-out on a scull-stripped brain template.

spectra. The signal originating from water (centered at 4.7 ppm), if not sup-
pressed, is often more than 10 000 times the signal of the molecules of inter-
est. Water-suppression can provide a more reliable and consistent detection of
these molecules.
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Figure 1.2: Detected MRS signal presented in the time domain (left) and in the fre-
quency domain after Fourier transformation (right). The largest peak in the right panel
corresponds to water.

Figure 1.3 shows the small peaks to the right of the water peak in Figure 1.2
(right), ’zoomed in’. This part of the in vivo 1H MR spectrum was the focus
of the MRS studies in this thesis. The spectrum was acquired from a voxel
like the one shown in Figure 1.1, and the peaks in the spectrum correspond to
metabolites present in hippocampus of a mouse brain. Metabolites are prod-
ucts of metabolism that originate from chemical reactions in the body. The
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peaks in Figure 1.3 are marked with the metabolite abbreviations presented in
Table 1.1.

A high magnetic field homogeneity will enable close peaks in the spectrum
to be distinguished. Prior to applying the PRESS sequence the magnetic field
homogeneity is therefore optimized locally in the VOI. This procedure is re-
ferred to as localized shimming.

2.04.0 3.0 1.0 0.0

NAA

GluGln

NAA

Asp

tCr

tCho

Tau

Ins

Glx

tCr

Figure 1.3: An in vivo proton MR spectrum acquired from hippocampus in a mouse
brain with a 9.4 T scanner.
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Table 1.1: Examples of molecules that can be detected with in vivo 1H MRS.

Most commonly Metabolites used Abbreviation Study in which

encountered metabolites in basis set in used in metabolite was

with proton MRS [2] study I-III(a) thesis regarded as detected

Acetate

N-acetyl Aspartate X NAA I, II(c), III

N-acetyl Aspartyl Glutamate X NAAG I, II(c), III(c)

Adenosine Triphosphate

Alanine X Ala

γ-Aminobutyric Acid X GABA I, II, III

Ascorbic Acid

Aspartate X Asp I

Choline-containing Compounds X(b) tCho I, II, III

Creatine and Phosphocreatine X Cr and PCr(d) I, II, III

Glucose X

Glutamate X Glu I, II, III(c)

Glutamine X Gln I, II, III(c)

Glutathione

Glycerol

Glycine

Glycogen

Histamine

Histidine

Homcarnosine

β -Hydroxybutyrate

Myo-Inositol X Ins I, II, III

Scyllo-Inositol X Scyllo

Lactate X III

Macromolecules X I, II, III

Phenylalanine

Pyruvate

Serine

Succinate

Taurine X Tau I, II, III

Threonine

Tryptophan

Tyrosine

Valine

Intra- and Extramyocellular lipids

Deoxymyoglobin

Citric Acid

Carnosine

(a) Guanidinoacetate (Gua) was also included in the basis set, and regarded as detected in study I and II.
(b) Glycerophosphocholine (GPC) and Phosphocholine (PCh).
(c) As part of a sum together with another metabolite.
(d) The sum Cr + PCr is abbreviated as tCr.
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Spectral quantification
The total MRS signal obtained from a mixture of compounds can be seen
as a linear combination of the signals from the isolated compounds [2]. The
program LCModel [3] fits a linear combination of model spectra (the basis set)
to the in vivo spectrum of interest. Linear combination modeling algorithms
essentially adjust the amplitudes, frequencies, line widths and phases of the
metabolite basis set to match the in vivo spectrum as close as possible [2]. An
example of the output of an LCModel analysis is shown in Figure 1.4. The
spectrum is plotted as a thin curve and the thick red curve is the LCModel fit
to the data. Also plotted as a thin curve, below the spectrum, is the baseline.
At the top the residuals, i.e. the data minus the fit to the data, are shown. The
residuals are a sensitive diagnostic of the analysis and should appear randomly
scattered about zero.

For a given noise level the lowest possible quantification errors are given
by the Cramér-Rao lower bounds (CRLBs). CRLBs increase with increasing
spectral overlap. The table to the right in Figure 1.4 summarizes the quantified
metabolite concentrations together with the corresponding CRLBs. CRLBs
are an objective quality control that account for both resolution and noise
level, and can be used as a guide to the reliability of the estimates. A com-
monly used approach is to only consider quantified metabolites with corre-
sponding CRLBs < 20 % [4]. Others have used a CRLB limit of 50 % [5]. In
this work, limits of CRLB < 50 % (study I and III) and CRLB < 20 % (study
II) were used.

Chemical Shift (ppm)
  4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0     1.8     1.6     1.4     1.2     1.0     0.80    0.60    0.40          

0
  1

96
5

0
  2

12
03

   Conc.  %SD /Cr+PCr  Metabolite
   0.000 999%   0.000 Ala
8.68E+04  44%   0.214 Asp
1.36E+05  22%   0.335 Cr
2.70E+05  13%   0.665 PCr
1.25E+05  24%   0.307 GABA
7.65E+04  45%   0.189 Glc
2.30E+05  14%   0.568 Gln
5.65E+05   5%   1.392 Glu
   0.000 999%   0.000 GPC
6.02E+04   6%   0.148 PCh
2.89E+05   8%   0.712 Ins
 698.310 999% 1.7E-03 Lac
4.55E+05   4%   1.122 NAA
2.74E+04  64%   0.068 NAAG
5.98E+03  87%   0.015 Scyllo
3.33E+05   7%   0.821+Tau
5.12E+04  40%   0.126 -CrCH2
1.38E+05  13%   0.340 Gua
6.02E+04   6%   0.148 GPC+PCh
4.83E+05   4%   1.190 NAA+NAAG
4.06E+05   3%   1.000 Cr+PCr
7.95E+05   6%   1.960 Glu+Gln

2.37E+05  75%   0.585 Lip13a
   0.000 999%   0.000 Lip13b
6.40E+03 999%   0.016 Lip09
6.03E+05  16%   1.485 MM09
   0.000 999%   0.000 Lip20
9.86E+05  15%   2.429 MM20
2.47E+05  30%   0.609 MM12
7.07E+05  23%   1.743 MM14
3.26E+05  32%   0.804 MM17
2.37E+05  75%   0.585 Lip13a+Lip13b
1.19E+06  17%   2.937 MM14+Lip13a+L
6.09E+05  14%   1.501 MM09+Lip09
9.86E+05  15%   2.429 MM20+Lip20

DIAGNOSTICS
   1 info      MYBASI  2
  Doing Water-Scaling

MISCELLANEOUS OUTPUT
 FWHM = 0.034 ppm     S/N = 16
 Data shift = 0.005 ppm
 Ph:  37 deg       0.3 deg/ppm

Figure 1.4: Example of output of LCModel quantification with frequency-domain
data plotted as a thin curve. The red curve corresponds to the LCModel fit to the data.
At the top the residuals are shown. A concentration table to the right summarizes the
quantified metabolites together with corresponding CRLBs.
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1.1.2 Functional magnetic resonance imaging
fMRI data are acquired as a time series of images in which contrast changes
over time are investigated. fMRI based on the blood-oxygen-level depen-
dent (BOLD) contrast relies on the fact that oxygenated and deoxygenated
hemoglobin in the blood have different magnetic properties. Block design is
a commonly used experimental setup in fMRI, in which the subject is in-
structed to perform experimental and control tasks in an alternating sequence
of blocks. Biswal 1995 et al. [6] were the first to report resting-state (i.e. not
related to a specific task) functional connectivity networks in the brain. They
found temporal correlation across functionally related areas in spontaneous
low-frequency fluctuations of resting-state BOLD fMRI signals. Functional
connectivity magnetic resonance imaging (fcMRI), takes the advantage of the
similarity in large-amplitude low-frequency fluctuations of the BOLD signal
intensity across spatially separated brain regions [7].

Common to the different analysis methods used for resting-state fMRI is the
preprocessing procedure of the fMRI data employed to enhance the quality of
the functional connectivity mapping. However, the preprocessing steps used
in the literature are far from standardized, which makes it difficult to directly
compare the functional connectivity results from different studies of the same
neural pathology. For example, many resting-state and task-based fMRI stud-
ies included some type of correction for the global signal averaged across the
entire brain. This is thought to enhance the observation of localized neuronal
effects. One reproducible consequence of the global signal removal has been
the observation of increased anti-correlation in a number of functional brain
networks.
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1.2 Multivariate data analysis
Multivariate data analysis (MVDA) is a collective name for a number of statis-
tical methods for exploration and analysis of multidimensional data. To find
a suitable representation of a complex dataset, a principle of optimal trans-
form is usually defined to represent the original data. Examples of principles
are dimension reduction, statistical ’interestingness’ of the resulting compo-
nents, simplicity of the transformation, or other criteria, including application-
oriented ones [13].

In this thesis, the linear MVDA methods principal components analysis
(PCA), partial least squares projections to latent structures (PLS) and inde-
pendent component analysis (ICA) were applied (Figure 1.5). PCA and PLS
are both projection methods that convert multi-dimensional data into lower-
dimensional representations. A principal component analysis is performed in
both PCA and PLS but they rarely result in the exact same principal com-
ponents, since their aims are different. PCA finds the direction of maximum
variance in the data matrix. PLS, on the other hand, works to find the best
correlation between the data matrix and another matrix. ICA is a transform in
which the desired representation is the one that minimizes the statistical de-
pendence of the representation. PCA and ICA are both unsupervised (model-
free) methods, whereas PLS is a supervised (model-driven) method.

 Multivariate 
data analysis 

in thesis  

Data
MRS

Data overview PCA

Main analysis PLS

fMRI Preprocessing PCA Main analysis ICA

Figure 1.5: Overview of the multivariate data analysis methods that were used for
analysis of MRS and fMRI data in this thesis: principal components analysis (PCA),
partial least squares projections to latent structures (PLS) and independent component
analysis (ICA).

1.2.1 Principal components analysis
PCA was first formulated in statistics by Karl Pearson in 1901 [14]. Exam-
ple data, designed by Stefan Rännar [15], will be used here to illustrate the
principle of PCA and PLS. Ten women and ten men are asked about three
things concerning themselves: shoe size, weight and length. Their answers
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are collected in a matrix, X (Table 1.21). Looking at one variable at a time it
is not possible to separate women from men since there are overlaps in the
data, i.e. some women are taller than some men etc. The question is then: can
PCA, based on all variables in X, separate women from men? The multivariate
analysis of the example data was carried out using [16].

Table 1.2: The answers from the survey of ten women and ten men regarding shoe size,
length and weight.

Sex Shoe size Length [cm] Weight [kg]

Female 37 167 57
Female 36 170 54
Male 42 167 71
Female 40 173 62
Male 42 174 76
Male 44 181 78
Female 38 175 53
Female 35 165 51
Male 40 189 71
Male 44 178 73
Female 41 168 51
Female 38 174 49
Male 42 174 62
Female 38 162 62
Male 40 184 78
Male 41 181 81
Female 37 168 50
Female 39 172 53
Male 44 175 78
Male 42 182 78

The observations can be represented as points in a multidimensional space
where the variables define the axes (Figure 1.6 (left)). The lengths of the axes
are determined by the scaling of the variables. If one has no prior information
about the importance of the variables, autoscaling all variables to unit variance
is recommended [17]. To the right in Figure 1.6 the points are shown after
scaling to unit variance and mean centering.

In Figure 1.6 (right) the first (t[1]) and second (t[2]) principal components
that are the result of a PCA based on X are also plotted. t[1] best approxi-
mates the data in a least squares sense and represents the maximum variance

1It should be noted that 7/10 women (and none of the men) are underweight in this example
and their assumed body shapes do not reflect reality very well, at least not in the developed
countries. However, the example data are still useful to explain PCA.
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Figure 1.6: Black points correspond to women and red points to men. In the left
figure the data in Table 1.2 are plotted in the three dimensions spanned by the original
variables. In the right figure the data are plotted after mean centering and scaling to
unit variance. The first and the second principal component are shown, and together
they form a plane to which the data points can be projected.

direction in the data. t[2] is computed in a direction that is orthogonal to t[1]
and reflecting the second largest source of variation. Projection of the points
onto the plane spanned by the two first principal components is presented
in Figure 1.7. This is shown in the t[1]/t[2] score plot (upper), which is a
summary of the relationships among the observations (women and men). A
corresponding loading plot (lower) is a summary of the variables (shoe size,
length and weight). The two plots are superimposable: a direction in one plot
correspond to the same direction in the other plot. A point in the score plot, a
score, represent one individual and all three variables that were registered for
that individual. The confidence ellipse is based on Hotelling’s T2, a multivari-
ate generalization of Student’s t-test, at significance level 0.05. T2 measures
how far away an observation is from the center of the model and provides a
tolerance region for the data in a two-dimensional score plot. The loadings
can be used to interpret the score. The position of an observation in a given
direction in a score plot is influenced by variables lying in the same direc-
tion in the loading plot. Hence all three variables length, weight and shoe size
were important for the separation of men and women in the score scatter plot
in Figure 1.7.

In this example, a two-dimensional representation of the original three-
dimensional data was formed. The method can be extended to create two-
dimensional representations of data that originally consisted of many more
variables. Looking at the score plot we see that the data points separate into
the two groups men and women, so to answer the original question: yes, PCA
could separate women from men using the data in Table 1.2.
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Figure 1.7: Score plot with women (black) and men (red) (upper) and corresponding
loading plot (lower).

To evaluate the performance of the model one can look at how well the
model fitted the data, and how good the predictive power of the model is. The
distance from the observations in variable space to the model plane in Fig-
ure 1.6 represent the amount of variation that is unexplained by the model, the
residuals. Hence X is approximated by a least squares plane, spanned by t[1]
and t[2], and the residuals. The explained variation, R2, is a measure of how
well the model was able to fit the original data. R2, ranging between 0 and 1,
is defined as

R2 = 1− residual sum of squares
total variation in X after mean centering

. (1.4)

Cross-validation has become standard in MVDA to test the significance of a
PC- or a PLS-model [18]. Cross-validation means that a part of the data is left
out, and used as a prediction set in the model. The procedure is repeated in a
systematic way until all the data have been left out and predicted. The sum of
squared differences between predicted and observed data serve as a measure
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of the predictive power of the model. Q2 (ranging between 0 and 1) specifies
the predicted variation and is calculated as

Q2 = 1− predictive residual sum of squares
total variation in X after mean centering

. (1.5)

If a new principal component enhances the predictive power compared with
the preceding principal component, the new component is kept in the model. If
not, the new principal component is said to be insignificant, and no more com-
ponents are calculated for the model. In the PC-model presented in Figure 1.7
there was one significant component, t[1]. (The second component, t[2], was
computed only to enable a two-dimensional visualization of the data.) There
are a number of rules in [16] that are used to decide if a component is sig-
nificant or not. In the PC-model in Figure 1.7 the limit was set to Q2 > 0.29.
R2 and Q2 for t[1] were 0.76 and 0.42 respectively. In conclusion, PCA of
the data in Table 1.2 resulted in one significant principal component with an
explained variation of 76 % (R2 = 0.76) and a predicted variation of 42 %
(Q2 = 0.42).

As PCA was applied to MRS data quantified with LCModel in this thesis
the variables correspond to the different metabolites. Hence, the number of
variables in the analysis depends on the method of quantification. For analysis
of MRS data PCA can be applied to get an overview of the data, and track
outliers, before building PLS-models for classifications. PCA can also be used
as a preprocessing tool of fMRI data prior to ICA as in study IV. PCA is then
performed to reduce the dimension of the data so that the maximum amount
of variance is preserved.

1.2.2 Partial least squares projections to latent structures
PLS, a regression extension of PCA, is a method for relating two data matrices
to each other by a linear multivariate model [19, 20]. Many studies typically
constitute of a set of controls and treated/diseased samples or subjects. Some-
times additional knowledge of the samples is also of interest, e.g. dose, age,
gender and diet. The additional information can be put in another matrix, Y.
PLS can then be applied to the data with the aim to predict Y from X. PLS
forms ’new X-variables’, principal components, as linear combinations of the
original variables, and thereafter uses the components as predictors of Y [18].
Y may contain both quantitative (e.g. age, dose, concentration) and qualitative
(e.g. control/diseased) data. In the case of qualitative data in Y, PLS analysis
is referred to as PLS-discriminant analysis (PLS-DA) [21, 22]. Y then en-
codes class membership by a set of ’dummy’ variables (e.g. zeros and ones).
The dummy matrix, Y, for X in Table 1.2, is presented Table 1.3. Y has two
dummy variables (Y1 and Y2), one for each class (women and men).
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Table 1.3: Dummy matrix Y (Y1 and Y2) for PLS-DA of the data in Table 1.2 . Also
shown are the predictions of class (Predicted Y1 and Predicted Y2). Using a cut-off of
0.5 all samples will be considered correctly classified.

Identification Y1 Y2 Predicted Y1 Predicted Y2

Female 1 1 0 0.99 0.01
Female 2 1 0 1.04 -0.04
Female 3 1 0 0.56 0.44
Female 4 1 0 0.81 0.19
Female 5 1 0 1.27 -0.27
Female 6 1 0 0.80 0.20
Female 7 1 0 0.91 0.09
Female 8 1 0 0.94 0.06
Female 9 1 0 1.09 -0.09
Female 10 1 0 0.81 0.19
Male 1 0 1 0.40 0.60
Male 2 0 1 0.16 0.84
Male 3 0 1 -0.16 1.16
Male 4 0 1 0.05 0.95
Male 5 0 1 -0.01 1.01
Male 6 0 1 0.41 0.59
Male 7 0 1 0.04 0.96
Male 8 0 1 -0.02 1.02
Male 9 0 1 -0.03 1.03
Male 10 0 1 -0.05 1.05

PLS-DA of X and Y gave a one-component model. R2X, the variance in
X explained by the model, was 0.75. R2Y, the variance in Y explained by
the model, was 0.84 and Q2 was 0.82 (The limit for a significant component
was Q2 > 0.05.). The t[1]/t[2] score plot of the PLS-DA (Figure 1.8 (left)) is
useful to overview the class discriminating ability of the model. To further in-
terpret the model, the parameter variable influence on projection (VIP) can be
inspected (Figure 1.8 (right)). VIP is a condensed summary of a PLS model,
showing the influence of each X-variable on the model. In Figure 1.8 (right)
the VIPs are sorted in descending order of importance and it can be concluded
that the variable ’weight’ was the most important for the separation.

Class predictions can be performed by leave-one-out cross validation.The
information in Y is left out for one individual at a time while the model pre-
dicts the information in Y based on the data in X. A cut-off of 0.5 means
that a predicted Y value below/above 0.5 is categorized as a correct predic-
tion if the correct Y value is zero/one. On the other hand, a predicted Y value
above/below 0.5 is categorized as an incorrect prediction if the correct Y value
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Figure 1.8: Score scatter plot as a result of PLS-DA with women (black) and men
(red) based on data in Table 1.2 shown to the left. VIP parameters presented to the
right.

is below/above zero/one. Inspection of Table 1.3, containing class predictions
based on the significant component, will probably clarify this. As shown in
Table 1.3 we were very lucky; there were no misclassifications, and the accu-
racy of the binary classification test was 100 %.

In study I-II PLS-DA of MRS data was applied to create predictive models
that, using linear combinations of the metabolites, best separate groups within
the data.

1.2.3 Independent components analysis
A commonly used set up in an fMRI experiment is to instruct the subject to
perform experimental and control tasks in alternating sequence blocks. A ref-
erence function that contains information about how and when the tasks were
carried out can then be constructed. Model based techniques such as SPM
[23] use such a reference function to separate the signals of interest and the
signals not of interest. The multivariate method independent component anal-
ysis (ICA) on the other hand allows extraction of signals of interest and not of
interest without any prior information about the task. One example of a situa-
tion where that can be useful is resting state fMRI data. Calhoun et al. has pro-
posed a model to apply ICA to group studies of fMRI data [24]. It is based on
the assumption of statistical independence of the extracted component maps
(’spatial ICA’). The GIFT toolbox (http://icatb.sourceforge.net/groupica.htm)
supports a group ICA approach, which first concatenates the individual data
set from each subject, followed by the computation of the subject-specific ICA
components and corresponding time courses. There are three main stages in
group ICA of fMRI data: data compression (with PCA), application of the
ICA algorithm and back reconstruction for each individual subject.
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A number of different ICA algorithms are available. The majority of appli-
cations of ICA to fMRI use infomax [25], as the sources of interest are super-
Gaussian in nature and the algorithm favors separation of super-Gaussian
sources.

The idea behind ICA is that there are latent variables, sources, hidden in
the data. It is assumed that they are statistically independent and that they are
(linearly) mixed in the data. The aim of ICA is to recover the signals with
minimum a priori information. The observed data, x, is modeled by a linear
latent variable model

x = As (1.6)

where A, the mixing matrix, is constant (a parameter matrix) and s contains
the latent random variables called the independent components. The goal is to
estimate A and s, observing only x under the assumptions that the sources, si,
are mutually independent and non-Gaussian.

Each independent component provides a spatial distribution pattern in the
imaged brain volume that share sufficiently similar temporal response pattern
thus providing a natural measure of functional connectivity [26]. A component
consists of a time course and a spatial map. Figure 1.9 presents an example of
a component calculated with ICA of resting state fMRI data.

Figure 1.9: Example of ICA component: spatial map and corresponding time course.
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1.3 Overview of investigated diseases and conditions
In this thesis MR experiments investigating the central nervous system (brain
and spinal cord) were performed on both animals (rodents) and humans. Three
different animal models were examined with proton MRS; a genetically mod-
ified mouse model for Alzheimer’s disease (AD), a rat model for spinal cord
injury (SCI) and a genetically modified mouse model for premature aging.
Also, human resting state fMRI data of young and old controls were acquired.

Translational researches are laboratory investigations targeting disease
problems identified in the health care. In this type of research animal models
for defined diseases in humans play an important role. The basic idea is that
the results obtained in an investigated animal model can be generalized and
extrapolated to humans. Genetically modified animals can serve as model
systems of human diseases although an animal model rarely fully mirrors
the human state in health or disease [27]. Instead an animal model might
reflect one aspect of the investigated condition. One of the benefits of using
animal models for scientific examinations rather than human subjects is
the homogeneity of the animal group. In human experiments there might
be variations within the group caused by e.g. age, diet, lifestyle, genes or
diseases other than the investigated. In animal experiments the individuals are
often identical twins, eating the same food and living in similar cages, which
leads to a more homogenous group. From a statistical point of view this is
preferable since the experimental variation of the investigated population is
kept at a minimum.

1.3.1 Alzheimer’s disease
AD is a progressive neurodegenerative disorder that leads to dementia;
a chronic, usually progressive disease first characterized by memory
impairment and later by deterioration of intellectual capacity. AD is
responsible for approximately two thirds of all dementia cases and is
distinguished from frontotemporal dementia, Lewy body dementia and
vascular dementia. AD is characterized by the destruction of nerve cells and
neural connections in the cerebral cortex of the brain and by a significant
loss of brain mass [28]. The primary criteria to diagnose AD relies on
clinical observations, however a definite diagnosis is today only possible by
a postmortem examination of brain tissues revealing amyloid plaques and
neurofibrillary tangles. Amyloid plaques consist of deteriorating neuronal
material surrounding deposits of a sticky protein, beta-amyloid [28].
Neurofibrillary tangles are twisted protein fibers located within nerve cells
[28]. Early diagnosis of AD is difficult and the identification of novel early in
vivo biomarkers is therefore of substantial interest. Neuroimaging has been
used to complement clinical assessments in the early detection of AD.
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Approximately 25 % of all AD is familial (i.e. ≥ 2 persons in a family
have AD) of which approximately 5 % is early-onset (age < 65 years) [29]. It
is from these unusual early-onset forms of AD that genetic engineers have
been able to transfer defect genes to laboratory animals and create trans-
genic animals that develop AD-like changes in the nervous system. Three
forms of early-onset familial AD caused by mutations in one of three genes
(APP, PS1, PS2) have been recognized. Different mouse models featuring a
range of aspects of AD are available. Many models show different levels of
beta-amyloid expression whereas other models also produce tangles. In this
thesis a double transgenic mouse model, APP/PS1, was investigated.

1.3.2 Spinal cord injury
The spinal cord serves as a conduit for motor information, which travels down
the spinal cord and for sensory information, which travels up the spinal cord.
It also serves as a center for coordinating certain reflexes. If the spinal cord is
injured the connection can be partly or completely cut off between the brain
and the nerves in the spinal cord. Therefore, nerves from the brain can no
longer give signals to the muscles and the information from nerves in the body
can not reach the brain. SCI is classified as either complete or incomplete. A
complete injury is indicated by a total lack of sensory and motor function
below the level of injury. People with incomplete injuries retain some motor
or sensory function below the injury. Every incomplete injury is unique and
how much of the body that will be paralyzed depends on where the injury
is, and how extended it is. If the spine is injured in the neck region, nerve
paths to legs, trunk and arms will be affected (tetraplegia). If the injury is
located in the thoracic spine or lower back, legs and parts of the trunk will be
affected (paraplegia). In this thesis, data from rats with complete paraplegia
were investigated.

1.3.3 Aging
Aging takes place at different levels in an organism, from DNA through cells,
tissue, organs, organ systems, to the individual as a whole. A mitochondrial
theory of aging [30] suggests that damage to mitochondrial DNA (mtDNA),
mutations, slowly accumulates with time. One point mutation is a change
within a gene in which one base pair in the DNA sequence is altered. The
role of mtDNA point mutations in aging has been questioned, because the
overall level of mtDNA mutations is usually lower than the threshold needed
to cause respiratory chain dysfunction [31]. mtDNA polymerase is an enzyme
that, among other things, repair mutations, i.e. it ’proofreads’ the mtDNA. In
this thesis we investigated mutator mice [32, 33] in which the proofreading
ability of mtDNA polymerase is deficient. Therefore, mutations accumulate
at a much higher rate than normal. There is a threefold to fivefold increase in
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the levels of point mutations, as well as increased amounts of deleted mtDNA.
The increase in mtDNA mutations is associated with reduced lifespan and pre-
mature onset of aging-related phenotypes.
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2. Aim of thesis

MRS and fMRI can provide detailed information about complex metabolic ac-
tivity in the central nervous system. The aim of this thesis was to explore how
the information can be extracted and analyzed using model free and model
driven MVDA.

Specific aims
Study I
To investigate how the neurochemical profile in mice, as measured by in vivo
1H MRS, changes during normal aging and in a model for AD. To test if, and
at what time point, it was possible to differentiate wild type control mice
from transgenic AD mice using MVDA of 1H MRS data.

Study II
A variety of tests of sensorimotor function are used to characterize outcome
after experimental spinal cord injury. These tests typically do not provide
information about chemical and metabolic processes in the injured central
nervous system. In this study we wanted to investigate the potential of
1H MRS and MVDA for monitoring chemical changes in the central nervous
system in vivo following spinal cord injury in rats.

Study III
To analyze the role of mitochondrial dysfunction and abnormal metabolism
on central nervous system aging in wild type control mice and prematurely
aging mtDNA mutator mice in vivo using 1H MRS and ex vivo using
high-performance liquid chromatography, histology and biochemistry
methodology.

Study IV
To investigate putative changes in functional connectivity networks
associated with aging using ICA of human resting-state fMRI data. To
evaluate the resting-state data with three different pre-processing procedures.
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3. Materials and methods

The studies were performed with superconducting, horizontal bore magnets
of magnetic field strength ranging from 3.0-9.4 T (see Table 3.1). Studies I-III
were based on rodent in vivo 1H MRS data, while human resting state fMRI
data were investigated in study IV.

Materials  
and        

methods

Study I

Mice
AD model

Data
MRS

Data 
analysis

LCModel
PLS-DA

Study II

Rats
SCI model

Data
MRS

Data 
analysis

LCModel
PCA

PLS-DA

Study III

Mice

Premature 
aging 
model

Data
MRS

Data 
analysis

LCModel

Study IV

Humans
Elderly

Young

DatafMRI

Data 
analysis

ICA

Figure 3.1: Overview of study subjects, type of MR data generated and data process-
ing in the thesis.

3.1 Magnetic resonance spectroscopy
In study I-III, MRS and MRI data were generated in vivo in rodents. The stud-
ies were approved by the Stockholm Ethics Committee and all experiments
were performed in accordance with guidelines from the Swedish Animal Wel-
fare Agency. Food and water were provided ad libitum and animals were kept
on a 12/12 h light/dark cycle. Anesthesia was induced with isoflurane and
maintained during scans by spontaneous breathing of about 2 % isoflurane.
Body temperature and respiratory rate were monitored continuously. Refer-
ence images for positioning of the VOI were acquired using a spin echo se-
quence with rapid acquisition with relaxation enhancement (RARE) [34] in
axial, sagittal and coronal planes. Effective TE was 25.16 ms in study I and
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Table 3.1: Overview of hardware, magnets and coils used in this thesis together with
their location in Sweden.

Study Location Magnet B [T]

I AstraZeneca Bruker Biospec 9.4
(Södertälje) Avance 94/30

II and III Experimental MR Bruker Biospec 4.7
research centre, Avance 47/40
Karolinska Institutet
(Solna)

IV Karolinska Sjukhuset Siemens Trio 3.0
(Huddinge)

37.41 ms in study II and III. Voxel shape and localization was achieved by
PRESS [1] using Hermite radio frequency pulses with matched bandwidths.
To achieve sufficient accuracy for quantification, a repetition time of sufficient
length (3500 ms) was chosen, allowing complete relaxation of most metabo-
lites in the spectrum between consecutive scans. Spectra were acquired with
256-1024 averages and water suppression (VAPOR [5]). Outer volume sup-
pression was used to avoid spectral contamination.

Metabolites in the resulting spectra were quantified by the software
package LCModel [3, 35]. Corresponding LCModel simulated basis
set (provided by Stephen Provencher) matched B0 field strength,
localization sequence and TE. Phasing, referencing and quantitation is
done automatically with LCModel. Metabolite concentrations were given
relative to tCr. In study I and II, data were also analyzed with MVDA
using [16]. Before MVDA, data were zero meaned and scaled to unit variance.

3.1.1 Study I
MR data were generated from brains of double transgenic APP/PS1 mice and
wild type mice. Animals were investigated with in vivo 1H MRS, to examine
the neurochemical profile of a VOI (8 mm3) positioned in dorsal hippocam-
pus (see Figure 1.1 on page 3). Animals were also examined with 3D MRI
to enable volume measurements of anatomical regions. To study features of
early AD, transgenic and wild type mice were investigated at the time points
2.5, 6.5 and 9 months of age, with the first time point chosen before first
plaques appear. Histology of individual animals was performed (three trans-
genic animals sacrificed at each time point) to verify the absence or presence
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Figure 3.2: Flowchart of method used to acquire and analyse MRS data in study I and
II.

of amyloid deposits. MR data were acquired using a 9.4 T Bruker magnet.
A 72 mm volume coil was used for excitation and a quadrature mouse brain
surface coil was used for signal detection. Localization was achieved by short
(20 ms) TE PRESS. Fastmap was used for localized shimming. Metabolite
concentrations were quantified relative to tCr and spectral data associated with
CRLB > 50% were excluded from further analysis. MRS data were also an-
alyzed with PLS-DA to investigate if transgenic mice could be distinguished
from wild type mice. Leave-one-out cross-validation was applied, and sensi-
tivity and specificity were calculated. VIP parameters of the metabolites were
determined to examine their relative importance for the separation of groups.
Manual volume segmentation were performed in the 3D MR images in which
hippocampus and brain were outlined and lateral ventricles measured.

3.1.2 Study II
Rats with SCI were investigated using in vivo 1H MRS at several time points
starting with naive control rats. Four different VOIs were investigated posi-
tioned in the cerebral cortex (2 VOIs, 72 mm3 and 18 mm3 respectively), tha-
lamus/striatum (76 mm3) and lumbar spinal cord (16 mm3) (see Figure 4.2 on
page 29). A bilateral cortex VOI was used to monitor short-term and long-term
metabolic changes. A unilateral cortex VOI was centered over the sensorimo-
tor area of the hind limbs, to investigate short-term changes. Another VOI,
including thalamus/striatum, located in the deep centre of the brain, was used
to examine long-term changes. Spectra were also acquired from a VOI in the
lumbar spinal cord, beneath the injury, to monitor both short-term and long-
term changes. MR data were acquired using a 4.7 T Bruker magnet. A linear
bird cage resonator (Bruker, Ettlingen, Germany) with an inner diameter of
35 mm was used for excitation and reception to acquire bilateral cortex and
thalamus/striatum spectra. A 72-mm bird cage resonator for transmission and
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a ’rat brain’ quadrature receiver coil (Bruker, Ettlingen, Germany) secured to
the animal holder above the head was used to acquire the unilateral cortex
VOI spectra. For acquisition of spinal cord spectra, a surface coil (T9510;
Bruker, Ettlingen, Germany) with an inner diameter of 20 mm was used for
transmission and detection. Localization was achieved by short TE PRESS.
B0 was optimized at the VOI using linear shims. Metabolite concentrations
from all VOIs were quantified relative to tCr and spectral data associated with
CRLBs > 20% were excluded from further analysis. Data for each metabo-
lite were tested for normal distribution and for homogeneity of variances.
The data were then analyzed VOI-wise by multivariate analysis of variance
(MANOVA) followed by separate univariate analysis of variance (ANOVA)
of the metabolites. Post hoc tests were applied to determine which groups
(time points) differed. Data were also investigated with MVDA using PCA
and PLS-DA. Leave-one-out cross-validation were applied, to estimate the
overall predictive power of the models. VIP parameters were calculated.

3.1.3 Study III
Normally aging mice and prematurely aging mtDNA mutator mice [32, 33]
were investigated in this study. Animals were examined with in vivo 1H MRS
in two VOIs located in cerebral cortex (10 mm3) and in striatum (20 mm3).
MR data were acquired with the same magnet as in study II. A linear bird cage
resonator (Bruker, Ettlingen, Germany) with an inner diameter of 25 mm was
used for excitation and reception. Localization was achieved by short (16 ms)
TE PRESS. B0 was optimized at the VOI using linear shims. Metabolite con-
centrations were quantified relative to tCr and spectral data associated with
CRLBs > 50 % were excluded from further analysis. The data were then ana-
lyzed VOI-wise by ANOVA. mtDNA mutator mice and normally aging mice
were further investigated ex vivo using high-performance liquid chromatogra-
phy (HPLC), histology and biochemistry methodology.

3.2 Functional magnetic resonance imaging
3.2.1 Study IV
Human resting state fMRI data of two groups of healthy controls, young
and elderly, were evaluated. The resting-state fMRI data were acquired us-
ing a Siemens whole-body 3T clinical MRI system (Magnetom Trio, Erlan-
gen, Germany). Three different preprocessing pipelines were conducted (see
Figure 3.3) in batch mode with shell scripts.

ICA of the data were performed in batch mode using the program Group
ICA of fMRI Toolbox (GIFT) version 1.3h. The approach is to first concate-
nate the individual data set from each subject, followed by the computation of
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 Preprocessing 
of resting-state 

fMRI data

- Exclusion of ten first timeframes                        
- Head motion correction                                     
- Removal of scull                                               
- Creation of whole-brain mask                            
- Spatial normalization to MNI template  

Set 1 Low-pass filtering and 
linear de-trending

Set 2
Further de-trending by 
removal of polynomial 
up to the cubic order

Set 3 Regression analysis with 
the following regressors:

Motion corrected parameters

Global signal based on 
whole-brain mask

CSF signal based on  
CSF mask

Average white matter signal 
based on white matter mask

Figure 3.3: Three different preprocessing pipelines in study IV.

the subject-specific independent components and corresponding time courses.
Data reduction, using PCA, was performed both for individual subject data
and group data followed by ICA (infomax) on the reduced data-set.

Aging related changes were statistically assessed by voxel-wise student
t-test between subjects of the two age groups. A threshold at t > 3.5 and a
minimum spatially connected cluster size > 60 voxels were employed. The
inter-network coherence was evaluated by computing the cross-correlation
between the time courses for each functional connectivity networks. The
cross-correlation was evaluated for each dataset that underwent different
pre-processing steps and for each individual subject of the different age
groups. Histograms for the group t-maps were also computed for each
independent component.
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4. Results

4.1 Study I
In Figure 1.3 on page 4 and example spectrum from this study is shown. Shim-
ming resulted in unsuppressed water signal line widths with full width at half
maximum (FWHM) of 15-20 Hz. Fifteen metabolites were considered as de-
tected and were further analyzed.

Group comparisons of individual metabolites revealed significant differ-
ences between transgenic and wild type mice for Ins and Gua at 2.5 months
age, and for Glu, NAA and macromolecules at 1.2 ppm at both 6.5 months and
9 months of age. PLS-DA of the quantified metabolites resulted in one or two
significant (Q2 > 0.05) components for the investigated time points. t[1]/t[2]
scatter plots are presented in Figure 4.1, showing an increased separation be-
tween the transgenic and wild type mice as they grew older. Leave-one-out
cross-validation with cut off value 0.5 classified individuals as transgenic or
wild types with an accuracy of 80 %, 88 % and 100 % at 2.5, 6.5 and 9 months
of age respectively.

Volume measurements, based on 3D MRI, revealed that APP/PS1 mice had
5-6 % smaller brains and 6-15 % smaller hippocampus than wild type mice.
Moreover, the areas measured over lateral ventricles were 20-33 % larger in
transgenic mice as compared with wild type mice. Histology showed that amy-
loid plaques were present in mice at the age of 6.5 and 9 months, but not in
2.5 months old animals. No plaques were found in wild type animals (N=3) at
9 months of age.
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Figure 4.1: Scatter plots of PLS-DA models of transgenic and wild type animals at
the age of 2.5 (a), 6.5 (b) and 9 (c) months.
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4.2 Study II
Figure 4.2 shows the VOI locations together with examples of corresponding
in vivo 1H MR spectra from the four investigated regions in the central ner-
vous system. Shimming resulted in unsuppressed water signal line widths with
FWHM of 8-16 Hz. Figure 4.3 presents an overview of the quantified metabo-
lites from the four investigated VOIs. Concentration ratios of 4-8 metabolites
were quantified in the VOIs in cortex, thalamus/striatum and the spinal cord
of rats with SCI and control rats. Mean CRLBs corresponding to the quan-
tified metabolites are also shown. Ins, tCho, tNAA and Glx were discernible
in spectra from all the examined regions. In addition, Glu was detected in
all brain spectra, and Gln in the bilateral VOIs, cortex and thalamus/striatum.
Moreover, GABA was detected in thalamus/striatum and taurine in bilateral
cortex.

Bilateral cortex                                      VOI = 6.0 x 2.0 x 6.0 mm3

Thalamus/striatum                   VOI = 6.0 x 3.5 x 3.6 mm3

   Spinal cord                             VOI = 2.3 x 1.4 x 5.0 mm3

    Unilateral cortex                              VOI = 4.0 x 1.5 x 3.0 mm3

VOI = 72 µL
NT = 256

VOI = 16 µL
NT = 512

VOI = 18 µL
NT = 512

VOI = 76 µL
NT = 256

1.02.03.04.0 ppm

Figure 4.2: Multislice RARE images of the rat brain with the volumes of interest
(VOIs) bilaterally in cerebral cortex, thalamus/striatum, unilaterally in cerebral cortex
and spinal cord and representative in vivo 1H MR spectra measured from the corre-
sponding brain regions.

The statistical distributions of data for each metabolite in all studied regions
and at all time points were assessed to be normal. MANOVA revealed signifi-
cant changes over time for the investigated metabolites for the bilateral cortex
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VOI and for the spinal cord VOI, but not for the regions investigated in uni-
lateral cortex or in thalamus/striatum. Stars in Figure 4.3 indicate metabolites
for which significant changes over time were found using ANOVA. Signifi-
cant changes were found in the bilateral cortex VOI for Glu, tCho and Glx. In
the spinal cord, significant changes were found for Ins, tCho, tNAA and Glx.
No significant changes were found for any of the detected metabolites in the
VOIs in unilateral cortex or in thalamus/striatum.
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Figure 4.3: Mean concentration ratios of brain metabolites and corresponding CRLBs
quantified by LCModel in bilateral cortex, unilateral cortex, thalamus/striatum and the
spinal cord. Stars indicate metabolites for which significant differences were found
over time.
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4.3 Study III
Figure 4.4 presents spectra acquired in cerebral cortex and in striatum of
mtDNA mutator mice and control mice. Shimming resulted in unsuppressed
water signal line widths with FWHM of 8-13 Hz.
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Figure 4.4: Baseline corrected 1H MR spectra obtained from the VOIs in cerebral
cortex and in striatum of a 33-week-old mutator mouse and an age-matched control.

Lactate levels quantified by LCModel in the in vivo 1H MR spectra were
higher in the mtDNA mutator mice compared with controls (Figure 4.5). In
cerebral cortex, lactate levels were increased twofold in 6- to 9-week-old and
threefold in 35- to 38-week-old mtDNA mice compared with wild type litter-
mates. In striatum, lactate levels were also twofold higher in 6- to 9-week-old
mtDNA mutator mice and these levels were maintained as mtDNA mutator
mice aged. During normal aging lactate levels were found to be increased
later in life. Mean CRLBs of lactate in mutator mice (10.7 (± 4.0 SD) in cor-
tex and 7.8 (± 2.4 SD) in striatum) were lower than in control animals (26.5
(± 13.7 SD) in cortex and 12.2 (± 3.8 SD) in striatum).

Brain lactate levels measured in mtDNA mice and controls using HPLC
confirmed the MRS findings. HPLC showed a threefold increase in brain lac-
tate in 25-week-old mtDNA mutator mice, while the levels in wild type mice
were within the physiological range as reported by others.

Further analysis ex vivo using histology and biochemistry led to the con-
clusion that high lactate levels in both brain and peripheral tissues (liver and
heart) are the result of a metabolic shift to a glycolytic or anaerobic condi-
tion, where large amounts of lactate are being produced from pyruvate in an
environment with increasingly dysfunctional mitochondria.
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Figure 4.5: Two-way between subjects ANOVA on age-matched groups was per-
formed on brain lactate concentrations (mean values ± SEM) in cerebral cortex (left)
and striatum (right) from female mtDNA mutator (n = 19, red), compared to littermate
wild-type (n = 18, black) mice. All mutator mice showed a significant increase in lac-
tate levels and ANOVA demonstrated a significant effect for the mtDNA mutator al-
lele both in cerebral cortex (F(1, 25) = 84.1, P < 0.0001) and striatum (F(1, 24) = 134,
P < 0.0001), compared to controls. Post hoc analysis are denoted with *** P < 0.001.

4.4 Study IV
Based on t-score threshold and visual inspection of the t-maps and
the corresponding time courses, twelve components were identified as
relevant functional connectivity networks, eighteen components as artifacts
related to CSF, vascular, susceptibility or motion-related artifacts and six
components as mixed, representing brain functional networks contaminated
by cerebrospinal fluid, motions and large veins. Figure 4.6 presents the
twelve components common for the entire subject group (preprocessing Set
2) showing significant (p < 0.001) synchronized low-frequency fluctuations
in the resting-state BOLD fMRI signal intensities. The observed networks
are almost identical to those reported previously by Damoiseaux et al. [9]. In
addition to the previously identified ten functional connectivity networks [9],
we observed two more consistent functional networks in the studied subjects.

The results for the resting-state fMRI data that underwent different levels
of preprocessing are quite consistent except for the increased anti-correlation
with the removal of the global signal. Though the overall ICA results for the
entire subject pool are largely comparable across the different stages of pre-
processing, the results from band-pass filtering (Set 1) and higher order base-
line correction (Set 2) were more similar to each other than those after the
removal of the global, white matter, and CSF signals (Set 3). Figure 4.7 shows
the t-map histogram comparisons between data that underwent different levels
of pre-processing for the independent component corresponding to the default
mode network. As shown, the removal of global, white matter, and CSF sig-
nals introduced more voxels with high negative t-scores (anti-correlation) in
the network in addition to the overall statistical degradation for the estima-
tion of the component, as demonstrated by increased number voxels with low
t-scores and reduced number of voxels with high positive t-scores.
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Figure 4.6: 12 relevant function connectivity networks identified by group ICA of the
resting-state fMRI data acquired in the entire subject group after the second-stage pre-
processing including only band-pass filtering and the third order baseline corrections.

The group comparison between elderly and young subjects revealed
decreases in network coherence and connectivity with increasing age
(Figure 4.8). The young subject group exhibited higher inter-network
coherence than the elderly subject group.
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Figure 4.7: Histograms for the t-maps of the independent component corresponding
to the default mode. The red (Set 1), blue (Set 2) and black (Set 3) curves represent the
results for the data sets that underwent different levels of pre-processing, respectively.
The inserts are the amplifications for the tails of the distribution.

Figure 4.8: A summary of the brain regions that showed significant differences
(p < 0.01 and cluster size ≥ 60 voxels) in functional connectivity as identified by the
ICA of the resting-state fMRI data between the healthy elderly subjects and young
control groups.
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5. Discussion

Study I
Transgenic APP/PS1 mice and control mice were investigated using 1H MRS.
Metabolites were quantified relative to tCr with LCModel and further ana-
lyzed with PLS-DA.

NAA is found primarily in mature neurons and neuronal processes, such as
axons. We found smaller amounts of NAA in the transgenic mice compared
with wild types when the animals were 6.5 and 9 months old. At these time
points the mice also showed plaque loads. Decreased levels of NAA in trans-
genic mice compared with wild types have previously been described by von
Kienlin et al. [36] in the APP/PS2 mouse model at 24 months of age, by Mar-
janska et al. [37] in the APP/PS1 mouse model at 16 months of age and by
Chen et al. [38] in the APP/PS1 mouse model at 8 months of age. von Kien-
lin et al. [36] investigated if the metabolite/tCr ratios could be correlated with
plaque load (examined in histological data). They found a significant negative
correlation of NAA with plaque load. In AD patients, NAA has been reported
to decrease [39].

Glu is abundant in the central nervous system and acts as an excitatory
neurotransmitter. We quantified smaller amounts of Glu in the transgenic mice
compared with wild types at the age of 6.5 and 9 months of age. A decrease
in the levels of Glu in transgenic mouse models for AD compared with wild
type mice has been described earlier [36, 37].

Ins is a sugar alcohol with a structure similar to that of glucose, and is
mainly considered as a glial marker. Ins has been found to increase in AD in
humans. Reported results in the literature for Ins in mouse models for AD are
diverse. We found less Ins in transgenic mice only at the first investigated time
point. Marjanska et al. [37] investigated Ins levels in APP/PS1 and wild type
mice 66-904 days of age. No increase in Ins levels were observed in animals
between 66 and 400 days old. Marjanska et al. however found increased levels
of Ins in APP/PS1 mice older than 400 days. Dedeoglu et al. [40] found no
significant difference in m-Ins levels when investigating 10 and 12 months old
transgenic APP and wild type mice. von Kienlin et al. [36] found no significant
differences between transgenic mice and wild types, an no correlation between
m-Ins and plaque load. Chen et al. [38] studied the APP/PS1 mouse model and
found elevated levels of Ins/tCr in transgenic mice compared with wild types
at 3, 5 and 8 months of age.
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PLS-DA resulted in models that classified individual animals with increas-
ing accuracy, 80 % - 100 % at 2.5 - 9 months of age. Lower levels of Ins and
Gua in transgenic mice coincide with the first separation of transgenic and
wild types. At this time point, volume defects in transgenic brains were seen.
Later in life (6.5 and 9 months), when amyloid plaques were present, the sepa-
ration between the groups became even stronger, and the involved metabolites
were Glu, NAA and macromolecules at 1.2 ppm.

In conclusion, group differences in brain metabolites acquired in vivo with
1H MRS were found for APP/PS1 mice and wild type mice. First differ-
ences in metabolite content were seen at 2.5 months, when volume defects
in transgenic mice were present, but no amyloid plaques. PLS-DA of MRS
data showed that transgenic mice could be distinguished from wild type mice
with 80 % accuracy before plaques were formed.

Study II
In this study we compared acute and chronic consequences for the brain and
lumbar spinal cord of low thoracic SCI in rats. Acutely in cortex decreased
Glx levels were found, which slowly returned to normal levels. Conversely,
this metabolite sum increased in the lumbar spinal cord, in which Glx levels
remained increased 14 days post-injury, but were normalized 4 months after
injury. In cortex, we were able to determine that the Glx decrease was caused
mainly by a decrease in Glu. Additional changes of 1H-MRS-identifiable
metabolites included alterations of tCho in the brain and spinal cord, and
of Ins and tNAA in the spinal cord. The most conspicuous was a marked
increase of Ins in the spinal cord below injury, seen first after 3 days and
remaining at 4 months, the longest postoperative interval studied. Given the
roles of Ins in intracellular signaling pathways, these observations point to
marked and long-lasting alterations of cell signaling in spinal cord segments
that no longer have bilateral axonal connections with the rest of the spinal
cord and the brain. We found that thalamic and striatal tissue appeared less
affected by the SCI, because no significant changes were identified in a VOI
including these brain areas.

Qian et al. [41] used 1H-MRS to study rats with traumatically injured spinal
cord and observed changes in NAA, tCr and tCho levels in segments cau-
dal to the injury. In a study of 1H-MRS in SCI metabolic changes in thala-
mus/striatum of rats with SCI [42], MRS revealed an increase in the levels
of NAA, Cr, Ins and Glu. In sham-operated animals increase in NAA and Cr
levels were found.

The Glu/Gln/GABA cycle plays an important role in controlling levels of
the major excitatory neurotransmitter Glu and the major inhibitory neurotrans-
mitter GABA in the central nervous system. Gln produced in astrocytes is
taken up by neurons, and converted to Glu or GABA. Glu released into the
synaptic space is recycled by astrocytes. Excitotoxicity is thought to play a
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role in the secondary degenerative events that follow SCI [43, 44, 45, 46], and
increased levels of Glu have been found after SCI at levels neurotoxic even
for neurons in the uninjured spinal cord [47]. To the extent that the marked
alterations of Glx in the lumbar spinal cord may reflect alterations of Glu, as
seems to be the case in cortex, the Glx increase in the spinal cord could help
explain a state of hyperexcitability/increased reflexes often noted after SCI. In
cortex, the loss of Glu presumably reflects decreased afferent activity, due to
loss of input from hind limbs and other areas below the level of injury.

Ins has a key role in intracellular signalling and has also been regarded as an
osmolite and glial marker [29, 48], and increases have been interpreted as in-
crease of glial content or glial proliferation. After SCI, substantial astrogliosis
occurs, and starting within 3 days after injury we found a significant increase
of Ins in the spinal cord below injury, which was maintained throughout the
studied postoperative time. This increase fits with the known long-term in-
crease of glial fibrillary acidic protein-immunoreactivity in most parts of the
spinal cord after injury. In group comparisons of spinal cord spectra, Ins was
clearly the most important metabolite at 3 days and at all later time points. In
the brain, Ins levels were fairly stable, and did not change significantly over
time. This is in line with the lack of any marked astroglial responses in the
brain to SCI.

GPC and PCh are the main components of the prominent choline peak, and
constitute metabolites of phospholipid components of cellular membranes.
Compared with the changes of Ins, we found only moderate changes of tCho.
We noted a 16 % decrease of tCho in the spinal cord already 1 day after in-
jury, a time when there was no change of Ins. This suggests that cell membrane
changes occur faster in the spinal cord below injury than hitherto appreciated,
and that astroglial changes occur as a consequence of the massive axonal dam-
age.

NAA is seen as a prominent peak in the MRS, making NAA one of the most
reliable markers for brain MRS studies. Under normal conditions, NAA is
synthesized in and exported from the mitochondria, predominantly in neurons,
and hence considered a neuronal marker for many brain diseases [49, 50, 51].
NAA increases are seen during development [52]. In a study of patients with
incomplete SCI, NAA elevations were detected in the cerebral cortex [53].
Chromatography-mass spectrometry has also been used to study NAA con-
centrations up to 1 week after SCI in rats [54]. Caudal to injury, NAA lev-
els were virtually indistinguishable from those in control animals. We found
an increase of NAA in the lumbar enlargement of the spinal cord following
SCI. The increase in the spinal cord was temporary, and might reflect a com-
pensatory up-regulation, as NAA is considered to be an important osmolytic
regulator for neurons, and/or a regulator of local sprouting. In humans with in-
complete SCI [53], 50 % higher NAA levels in cerebral cortex were reported
0.5-2 years after injury.
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Limitations of the technique as performed in the rat include the rather in-
homogeneous VOI content in the small rodent central nervous system. Also,
we had to scan five segments distal to the spinal cord lesion, in order for the
surface coil to be close enough to cord tissue.

In study II, the initial idea was to simultaneously monitor metabolic changes
in brain and spinal cord and put all the data into one model. However, it was
not successful to build robust PLS-DA models for classifications in which data
from different VOIs were combined. The PCA t[1]/t[2] score plot based on
data from all investigated VOIs revealed groupings among the observations.
The data separated into four clusters that can be interpreted as differences
between the four selected central nervous system areas, but also between the
three brain areas on the one hand and spinal cord data on the other, between
bilateral and unilateral VOIs, and/or between the different coils that were used
in this study. These distinctions overshadowed the differences between classes
of animals at different time points. Models for classification were therefore
built VOI-wise.

In conclusion, changes of metabolites in brain and spinal cord after SCI
were found using in vivo 1H MRS. Both long-term and short-term changes
were investigated. Metabolite alterations were found distant to the site of pri-
mary damage, in bilateral cortex. In two other investigated brain areas, uni-
lateral cortex and thalamus/striatum, no changes in metabolite concentrations
were found. Four metabolites, Ins, tCho, tNAA and Glx, were detected in the
spinal cord caudal to injury. Changes over time were found for all detected
metabolite ratios in the spinal cord.

Study III
Cerebral lactate metabolism and its compartmentalization in astrocytes, neu-
rons, and elsewhere is not fully understood [55]. Lactate is continuously pro-
duced in brain, heart, skeletal muscle, and other tissues, even during com-
pletely aerobic conditions [56]. It has been suggested that lactate constitutes
an alternative source of energy that the brain uses under strenuous situations
[57]. It has been shown that, under conditions of increased lactate produc-
tion (i.e. exercise), the use of blood lactate as an energy source in the brain
increases at the expense of blood glucose [58]. Lactate is a substrate for the
mitochondrial TCA cycle, and its oxidation can produce a significant amount
of ATP [59].

When healthy aging in humans was recently accessed with combined
13C−/1H−MRS, an association was found between reduced neuronal
mitochondrial metabolism and altered glial mitochondrial metabolism in
aged (76 ± 8 years) participants [60]. Another study found that lactate
levels measured by 1H-NMR in 88- to 96-weeks-old rats were significantly
increased [61].
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Comparing normally aging and mtDNA mutator mice allows us to conclude
that the increased LDH-A/LDH-B gene expression ratio is causative of high
brain lactate levels and that these lactate levels could predict aging. We have
strong evidence that lactate levels are elevated in advance of other indices of
aging in the prematurely aging mtDNA mutator mouse. We found that mito-
chondrial dysfunction in brain leads to a metabolic shift from aerobic respi-
ration to glycolytic metabolism, resulting in expression changes of the lactate
dehydrogenase genes (LDH-A, LDH-B). This shift results in increased brain
lactate levels, detectable using 1H MRS, prior to the appearance of overt aging
phenotypes.

Study IV
Consistent functional connectivity networks
The concept of resting-state functional connectivity suggests that the brain is
spontaneously active in the absence of a goal-driven task, showing rich intrin-
sic dynamics, which can be modulated by external stimuli. As found in the
present study, multiple previous resting-state fMRI studies [8, 9, 10, 62] have
reported apparent inter-subject similarity in the identified network patterns.
Damoiseaux et al. [9] quantitatively evaluated the inter-subject consistency of
these resting-state network patterns. Reproducible network patterns consistent
across subjects and sessions were found, and also the voxel-wise cross-subject
variation for these networks. More recent studies [8, 62] based on much larger
subjects pool further confirmed these findings.

Preprocessing methods on the accuracy and reliability of group ICA
results
ICA has emerged as a robust technique to process resting-state and task-
modulated fMRI data and to identify brain functional networks without de-
tailed hypothesis about brain activations. Despite its widely application, there
is little consensus on how data should be pre-processed prior to ICA. Here,
we investigated the effects of three frequently used methods: 1) frequency fil-
tering, 2) baseline correction (involves voxel-wise division of the time series
mean and higher order de-trending) and 3) global signal removal. Band-pass
filtering reduce contaminations from physiological artifacts associated with
respiration and cardiac cycles [63]. Both baseline corrections and global sig-
nal removal aim to make distinction between global effects and the global sig-
nal. Global effects generally confound local signals in BOLD fMRI studies.
They may reflect diffuse physiological processes or variations in scanner sen-
sitivity and are difficult to measure directly. Particularly, in resting-state fMRI
studies, the status of the resting-state is not so well defined. It is therefore
necessary to understand the consequence of each pre-processing procedure.
Improved auxiliary monitoring of the physiological activities, attention, alert-
ness, and other mental activities using simultaneous EEG recordings during
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resting-state fMRI may provide bases for some specific data pre-processing
procedures.

Deactivation, anti-correlation and default mode network
The concept of deactivation can be divided into task-independent and task-
specific. Certain brain regions show a decreased BOLD activity during a va-
riety of attention-demanding tasks in comparison to the resting-state baseline
[12]. The baseline activity of this brain network has been defined as an or-
ganized default mode of brain function [12] that is suspended during task- or
goal-directed brain activity. It was suggested that with the increasing work-
load in cognitive tasks, resources are redirected from the default mode net-
work to task-specific cortical regions, resulting in decreased activity of the
default mode network. Activity within the default mode network was hy-
pothesized to be mostly inwardly directed high-order cognitive processes, e.g,
goal-oriented planning, encoding, and memory functions [10, 64]. Task spe-
cific deactivations in normal controls have been a subject of extensive studies
[65, 66, 67, 68, 69, 70, 71, 72]. Kawashima et al. [73], using a selective atten-
tion task, first demonstrated the existence of deactivation in brain irrelevant to
the stimuli. It was suggested that the task-specific deactivation has the func-
tion to facilitate the task-specific activations through the suppression of task
irrelevant cortical regions to enable the subject to focus the attention on the
relevant task. However, another PET study by Friston et al. [74] demonstrated
that the global flow was related with the experimental conditions, such as the
magnitude of the adjusted local effect. Similarly, Aguirre et al. [75] reported
that there was a significant correlation between observed global fMRI signals
and an experimental paradigm. These results seem to suggest that global neu-
roimaging signals can be correlated with the experimental manipulations and
are thus not necessarily simple nuisance variables to be excluded. The impli-
cation is that excluding the global signal variation in PET and fMRI analyses
may not be simply increasing the statistical power, but meaningfully changing
the results and hence interpretation of these studies. For example, the removal
of global signal by linear regression in resting-state fMRI can mandate the
introduction of anti-correlation into the identified functional connectivity net-
works, as demonstrated mathematically [76] and experimentally.

Age effects on resting-state functional connectivity
Both previous [8, 62] and the current study showed that normal brain aging
can lead to extensive changes in functional connectivity and coherence. These
changes do not seem to be very specific and are spatially widely distributed
in a large number of functional networks. A relevant question for using the
resting-state fMRI approach to assess aging is how these the resting-state
functional networks in general, and the default mode network in particular, are
affected by ongoing neuronal degeneration in elder subjects. Recently, abnor-
mal resting-state functional connectivity patterns have been reported in differ-
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ent brain regions in individuals at the risk for AD [77, 78, 79, 80, 81, 82, 83].
The involved brain regions include anterior prefrontal cortex, middle temporal
lobe, posterior cingulate cortex, precuneus and parietal lobe. The most con-
sistent observation is the decreased connectivity in posterior cingulate cortex,
precuneus and prefrontal cortices, which are the important parts of the default
mode network.
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