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ABSTRACT 
Decreased kidney function is associated with higher levels of oxidative stress, 
inflammation and malnutrition. Chronic kidney disease (CKD) patients have a higher 
risk to develop cardiovascular disease, atherosclerosis and cancer compared to the 
general population. Cardiovascular disease is the major cause of death in CKD patients. 
Many CKD patients also report oral health problems including dry mouth symptoms, 
inflammation in the oral cavity and changes in the salivary constitution. These 
alterations can increase the systemic inflammation. CKD patients are often also 
deficient in several vitamins, due both an impaired kidney function, depletion during 
dialysis and decreased nutritional intake. In this thesis, including two clinical studies on 
CKD patients, levels of oxidative stress, inflammation, saliva production and blood 
markers were investigated. Oxidative stress was measured by analysis of oxidative 
DNA damage in salivary glands using the comet assay.  
 
Paper I: The objective was to assess the levels of DNA damage in salivary gland 
biopsies, saliva production and inflammation in 79 CKD patients and compare the 
levels to controls. The relationships between the study parameters were investigated 
and the results for predialysis and dialysis patients were compared. The results showed 
that the dialysis patients had lower levels of DNA breaks and that predialysis patients 
had higher levels of DNA breaks compared to their controls. The saliva production was 
found to be lower in the dialysis patients compared to the control group as well as the 
predialysis group. The inflammation levels were found to be higher in CKD patients 
compared to the controls. Previous studies have shown raised levels of DNA damage in 
peripheral blood mononuclear cells from CKD patients. The results from this study 
suggest that the DNA in peripheral tissue in dialysis patients is affected differently.  
 
Paper II: The objective was to investigate the effects of oral supplementation with sea 
buckthorn oil (SBO) on oxidative stress, saliva production and inflammation in 
hemodialysis patients. Sea buckthorn is rich in polyunsaturated fatty acids, vitamins 
and other phytochemicals. Positive health effects by SBO on dry eye symptoms, 
platelet aggregation and skin diseases have been reported. The 45 hemodialysis patients 
completed the 2 x 8 weeks placebo-controlled crossover study and the results did not 
show any effects on DNA damage, inflammation or saliva production. However, the 
levels of phosphate and sodium increased and iron levels decreased after SBO 
supplementation. The results from this study did not show any positive health effects of 
SBO supplementation on DNA damage, saliva production or inflammation.  
 
In conclusion; oxidative stress and inflammation are important risk factors that 
contribute to disease progression and mortality in CKD patients. The interrelations 
between these events are complex and factors including dialysis treatment, medication, 
diet and oral health are of importance. In our study we found that despite elevated 
systemic inflammation, the levels of DNA damage in salivary glands in dialysis 
patients were lower compared to controls. The results suggest the involvement of DNA 
repair and antioxidative mechanisms in this tissue. Supplementation with SBO did not 
show any reduction on DNA damage or inflammation in dialysis patients, concluding 
that SBO supplementation did not have any beneficial health effects in our study group.  
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1 INTRODUCTION 

1.1 OXIDATIVE STRESS 

Oxygen is essential for the energy production in humans. In the mitochondria, electrons 

are transferred from reducing agents to O2, forming H2O as the final end product. In 

this electron transport chain, energy is conserved to synthesise adenosine-5’-

triphosphate (ATP), the energy source of the cell. This reaction is tightly controlled by 

enzymes, however, electrons occasionally leak from the mitochondria, creating reactive 

oxygen species (ROS). Aerobic living cells are thus constantly exposed to ROS during 

the metabolism. ROS have the potential to oxidise and damage cellular 

macromolecules like DNA, proteins and lipids. Aerobic organisms have therefore 

evolved an antioxidant defence to counteract the oxidative burden. Oxidative stress is a 

term to describe an imbalance between the oxidants and the antioxidative defence in a 

biological system [1]. Even though ROS are potentially hazardous for the cell, they are 

also essential for the cell. Many signalling pathways are dependent on ROS and they 

play important roles in several redox-regulated processes. Pathogen defence is also a 

source of ROS and crucial for the cell; white blood cells produce ROS in response to 

stimulation by foreign agents. Beyond the endogenously production of ROS, formation 

can also be induced by extra cellular sources such as radiation and exposure to toxic 

compounds, drug metabolites and air pollutants including tobacco smoke, 

nanoparticles, diesel exhaust and ozone.  

 

1.1.1 Formation of reactive species 

Molecular oxygen (O2) is transported from the air via the lung to tissue and cells by 

hemoglobin in the blood. The binding of O2 to the protein is mediated by a hemgroup, 

containing Fe2+ that is consequently oxidised to Fe3+. In the cell, O2 is the final electron 

acceptor in the production of energy. Electron donors (e.g. NADH, FADH2) derived 

from metabolic pathways, are used for single step reductions of O2 (Figure 1), coupled 

to proton pumping and ATP synthesis in the mitochondria. In this electron transport, 

leakage of electrons occasionally occurs and as a consequence, ROS are generated. The 

mitochondria is considered as the major source of ROS in the cell.  
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ROS include both radical and non-radical species. A free radical can be 

classified as any specie with one or more unpaired electrons in its atomic or molecular 

orbital. Most of the free radicals are highly reactive, with some exceptions. While 

molecular oxygen can be classified as a free radical containing two unpaired electrons 

(a diradical) with parallel spins, the reactivity is limited due to spin restrictions. The 

superoxide anion, O2
•-, is a free radical with one unpaired electron and it does generally 

not oxidise biomolecules in aqueous solutions. However, it can react with other radicals 

and oxidise Fe-S clusters, thus inactivating enzymes [2]. Dismutation of O2
•- generates 

hydrogen peroxide, H2O2, a relatively weak redox reactive agent. However, H2O2 can 

be cytotoxic, inactivate enzymes and it is also a potential source of the extremely 

reactive hydroxyl radical, HO•, by reacting with transition metals in the Fenton reaction 

(1). 

 

 

 

HO• is extremely reactive with a rate constant of 1 x 1010 M-1s-1 for the reaction with 

guanine, and it can oxidise any cellular macromolecule close to its formation site, 

inducing radical chain reactions [1]. The rate of reaction is often only limited to the rate 

of diffusion of the reactants. 

Other central ROS are ozone (O3), singlet oxygen (1O2), hypochlorous acid 

(HOCl) and peroxyls (R-OO•). Reactive nitrogen species (RNS), including nitric oxide 

(NO•), nitrogen dioxide (NO2
•) and peroxynitrite (ONOO-) are also important sources 

of oxidative stress.  

 

1.2 OXIDATIVE DAMAGE  

Oxidative stress, caused by a weak antioxidant system and/or an increased ROS 

production can cause damage to all the biomolecules in the cell.  Oxidative damage to 

Fe2+ + H2O2   →  Fe3+ + OH- + HO•     (1) 

 

Figure 1.  The stepwise reduction of molecular oxygen to water. 
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the DNA, proteins and lipids can cause mutations and dysfunctions of the molecules. 

Several diseases, including cancer, atherosclerosis, cardiovascular diseases, chronic 

kidney disease and diabetes have been associated with oxidative stress.  

 

1.2.1 DNA damage and repair 

The DNA is responsible for storing genetic information in human cells. It is also 

subject to damage and instability, processes involved in both ageing and disease 

development. The integrity of the genome can be compromised by oxidising agents, 

alkylating agents and ionising radiation that induce modifications to the DNA. The 

major forms of DNA damage include DNA breaks, cross-links, base lesions, bulky 

adducts and modifications of the backbone. Cellular responses to DNA damage are 

DNA repair, apoptosis, cell cycle arrest or changes in the transcription of genes. Failure 

in the cellular response may lead to mutations and cancer.  

Single strand breaks occur constantly in the cell and one major cause is 

oxidative attack. The break can either be direct, mediated through metabolites or as a 

consequence of enzymatic repair. All four bases are susceptible for oxidative damage. 

Guanine has the lowest redox potential and it is therefore the most readily oxidised 

base. The most studied oxidation product of guanine in DNA is 8-oxo-7,8-dihydro-2’-

deoxyguanosine (8-oxodG) which is formed by oxidation at the 8-position of 2’-

deoxyguanosine (dG) (Figure 2) [3]. This oxidised form can assume syn conformation 

and base pair with adenine, causing a transversion of GC  TA. 8-oxodG is a common 

biomarker of oxidative stress and due to its pro-mutagenicity it is also a potential 

biomarker of carcinogenesis [4].  

 

Figure 2. Structures of dG and the oxidation product 8-oxodG. 
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The cell has evolved a DNA repair system consisting of several groups of 

enzymes to protect the cell from genetic damage. There are excision repair pathways 

that remove the damage prior replication, mismatch repair systems that correct wrongly 

incorporated bases after replication and also homologous or non-homologous 

recombination that repair double strand breaks. In base excision repair (BER), the 

damaged base is recognised by a glycosylase that via hydrolysis of the N-glycosyl 

bond, removes the base, creating an apurinic or apyrimidinic (AP) site. After AP 

endonuclease or AP lyase activity, DNA polymerase can insert the appropriate 

nucleotide and the repair pathway is completed by ligase activity and sealing of the 

DNA. In humans, 8-oxoguanine DNA glycosylase (Ogg1) is an enzyme with both 

glycosylase and lyase activity, responsible for the removal of oxidised bases, including 

8-oxoG [5]. Formamido pyrimidine DNA glycosylase (FPG) is a corresponding 

enzyme in Escherichia coli and is often used to quantify oxidised DNA lesions in DNA 

analysis, including in the comet assay [6] that was used in the studies of this thesis. 

In nucleotide excision repair (NER), bulky adducts e.g. formed by UV light or 

chemicals are removed. The enzyme system responsible for this excision nuclease 

activity starts with the recognition of the damage, followed by the hydrolysis of the 

phosphodiester bonds on both sides of the adduct and the release of an oligomer 

containing 24-32 nucleotides [7]. The gap is then filled and the nicks are ligated by 

DNA polymerase and DNA ligase. 

 
1.3 ANTIOXIDATIVE DEFENCE 

To counteract the oxidative load and avoid oxidative damage, human cells have 

evolved an antioxidative defence. This defence includes mechanisms to prevent the 

formation of ROS, neutralise ROS after formation or mechanisms to repair the 

oxidative damage. It consists of enzymes, proteins and low molecular weight molecules 

such as glutathione and dietary antioxidants. 

 

1.3.1 Antioxidant enzymes and proteins 

Superoxide dismutase (SOD), catalase, glutathione peroxidase and peroxiredoxins are 

examples of antioxidant enzymes preventing damage by direct removal of ROS. SOD 

catalyses the dismutation of the superoxide anion to O2 and H2O2. The human classes 

of this enzyme include CuZn-SOD (present in the cytosol, in the intermembrane space 

of the mitochondria as well as extracellular) and Mn-SOD (present in the mitochondria) 
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[8, 9]. H2O2 is eliminated in cells mainly by two types of mechanisms, dismutation and 

reduction, and three families of enzymes are known to be involved. The catalases 

catalyse the dismutation of H2O2 to H2O and O2. Glutathione peroxidase is a family of 

enzymes reducing H2O2 to H2O (or lipid peroxides to alcohols) by a selenocystein-

based mechanism, and subsequently glutathione is oxidised. Glutathione-S-transferase 

is a non-seleno-dependent glutathione peroxidase reducing lipid peroxides but not 

H2O2. The peroxiredoxin is a family of enzymes catalysing the same reactions through 

cystein-based activities. Since H2O2 is an important molecule for cell signalling, the 

elimination of H2O2 is well regulated. 

Several proteins act as antioxidants by limiting the presence of free metal ions 

that otherwise could take part in Fenton reactions resulting in formation of the 

extremely reactive hydroxyl radical. Since both copper and iron are essential for many 

proteins in the cell, the management and transport of the ions are tightly controlled to 

avoid pro-oxidant effects. Transferrin, lactoferrin, ferritin, caeruloplasmin and albumin 

are examples of proteins that are sequestering and managing transport of iron and 

copper ions. 

 

1.3.2 Dietary antioxidants 

Dietary derived antioxidants include vitamins, carotenoids, flavonoids and other 

phytochemicals. Vitamins are small organic molecules required in human diet, due to a 

lack of capacity to synthesise them in sufficient amounts [10]. Vitamins often have a 

broad range of functions and many of them have antioxidative properties. Vitamin C, 

well known as ascorbic acid, is a water-soluble nutrient that has two ionisable OH-

groups and at physiological pH the predominant form is the mono-anion ascorbate [1]. 

It is a cofactor for several enzymes needed for the proper biosynthesis of collagen and 

carnitine. While most animals and plants are able to synthesise ascorbate from glucose, 

humans lack this ability and need to ingest vitamin C through the diet. Lack of vitamin 

C can cause scurvy, a deficiency disease that leads to defect collagen [11]. Plasma 

levels of vitamin C are in the range of 50-60 µM for healthy individuals but the 

intracellular concentration can reach 1 mM in several cell types [12]. Ascorbate has a 

reducing ability and can act as a scavenger of ROS and RNS. The one-electron 

oxidation of ascorbate generates the ascorbyl radical that can be further oxidised to 

dehydroascorbate. The antioxidant effect of ascorbate is due to the replacement of 

damaging radicals by the less reactive ascorbyl radical. Ascorbate can also interact with 
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the radical species from α-tocopherol and glutathione, regenerating the antioxidant 

molecules [11]. Recommended daily intake of vitamin C for healthy adults in Sweden 

is 75 mg [13]. 

The carotenoids, including β-carotene, is a group of red and yellow coloured 

pigments that contain 40 carbon atoms. They can be found in a variety of fruit and 

vegetables and are important for humans as precursors of vitamin A. Vitamin A is a 

designation of a group of fat-soluble compounds that includes retinol, retinaldehyde, 

retinoic acid and retinyl esters. They all have vitamin A-activity and are essential for 

many biological processes in humans, including the immune system, vision, cell 

growth and cell differentiation [1]. Vitamin A is ingested through the diet as retinyl 

esters, from animal sources, or as provitamin A from plant sources [14]. The Swedish 

dietary recommendations for vitamin A compounds are 700 - 900 retinol equivalents (1 

retinol equivalent = 1 µg retinol = 12 µg β-carotene) per day for healthy adults [13]. β-

carotene is the most important provitamin A and must be oxidatively cleaved in the 

intestine to achieve vitamin A-activity [1]. Retinal, the formation product, can further 

be reversibly reduced to retinol or oxidised to retinoic acid [14]. The carotenoids can 

act as antioxidants by quenching singlet oxygen. This property depends on the length of 

the conjugated double bond chain. β-carotene can also scavenge peroxyl radicals, 

forming an unstable β-carotene radical adduct that further can generate non-radical 

products [15]. However, if the oxidation products of β-carotene are not neutralised by 

other antioxidants, they can have pro-oxidative effects in the cell.  

Eight fat-soluble tocopherols and tocotrienols derivatives have been found to 

have vitamin E activity. Their chemical structure includes a chromanol ring with one to 

three methyl groups and a sidechain that contains either three double bonds 

(tocotrienols) or a phytyl chain (tocopherols). Both types have four isomers, α, β, γ and 

δ. The α-tocopherol is considered to be the most bioavailable vitamin E in humans 

[16]. Recently more focus on the other vitamin E compounds has been raised. The 

vitamin E compounds are able to scavenge peroxyl radicals, thereby inhibiting the free-

radical chain reaction of lipid peroxidation. Tocopherols can also show pro-oxidant 

effects, in the way that the α-tocopherol radical can react with a polyunsaturated fatty 

acid, starting a lipid peroxidation chain reaction. Nevertheless, the rate constant is much 

lower than for the peroxyl radical to react with the polyunsaturated fatty acid and the 

importance of this α-tocopherol-mediated peroxidation in vivo is questioned. Vitamin 

A can prevent such oxidation by recycling the α-tocopherol radical [17]. Tocopherols 
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can also protect cellular membranes against singlet oxygen by quenching [17]. The 

Swedish dietary recommendations for vitamin E compounds are 8-10 α-tocopherol 

equivalents (1 α-tocopherol equivalent = 1 mg RRR- α-tocopherol) per day for healthy 

adults [13]. 

 

1.4 ANALYSIS OF OXIDATIVE STRESS 

ROS react fast and are short-lived in vivo. Due do this, measurements of the actual 

ROS levels are difficult and it is more feasible to assess oxidative stress by measuring 

the levels of oxidation products. The assessment of oxidative stress in this thesis is 

based on analysis of oxidative DNA damage, mainly 8-oxoG, using the comet assay. 

Other biomarkers of oxidative stress include malondialdehyde, isoprostanes and 

carbonylated proteins. 

 

1.4.1 The comet assay 

Single cell gel electrophoresis, commonly called the comet assay, is a method that can 

be used to assess DNA damage in eukaryotic cells. Cells from blood, tissue or cell 

cultures can be analysed. The alkaline comet assay, firstly described by Singh et al 

[18], is often modified to include the following general steps. Initially, a single cell 

suspension is required and when analysing tissue, single cell suspensions can be 

obtained either by homogenisation or by enzymatic degradation. The cells are then 

lysed during which the cell membrane is destroyed and most of the proteins are 

disrupted. Treatment with lesion-specific enzymes to enable detection of different DNA 

damages is a common modification of the comet assay [6]. In this thesis FPG was used 

to detect oxidative lesions, FPG-sensitive sites. This enzyme detects oxidised purines, 

mainly 8-oxoG, fapy-G and fapy-A, and exerts its glycosylase function by cutting the 

bond between the base and the sugar backbone [19]. This site is then transformed to a 

strand break by the lyase activity or during the alkali treatment. Alkali treatment is 

performed to unwind the DNA double helix and obtain single stranded DNA in order to 

detect single strand breaks (SSB). It also enables alkali-labile sites (ALS) to form SSB 

by hydrolysation. During the electrophoresis, the negatively charged DNA loops 

migrate under the electric field out of the nucleoid towards the anode, forming the tail 

of the comet. The migration is dependent on the level of damage. 

Staining the DNA enables visualisation and assessment of the amount of DNA 

in the head and the tail of the comet, hence an estimation of the level of DNA damage 
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is feasible. Ethidium bromide (EtBr) has been used in this thesis and is a fluorescent 

dye that binds to DNA. Other dyes that are frequently used are Sybr® safe, Sybr® gold 

or DAPI (4',6-diamidino-2-phenylindole). Using a fluorescent microscope, the comets 

can be scored manually or automatically using software that provides information on % 

DNA in tail (preferably used) or other measure units (tail length or tail moment). In this 

thesis %-DNA in tail was measured using a software for computerised image analysis 

(Komet 4.0; Kinetic Imaging Ltd). 

 
1.5 CHRONIC KIDNEY DISEASE 

Chronic kidney disease (CKD) is a worldwide public health problem. In the US, more 

than 10 % of the population over 20 years, almost 20 million people, are estimated to 

have a decreased kidney function [20].  In the beginning of year 2010, over 570,000 

patients in the US were being treated for End-Stage Renal Disease (ESRD), including 

hemodialysis treatment (370,274), peritoneal dialysis treatment (27,522) and kidney 

transplanted (172,553) patients [21]. In Sweden, 8,501 patients were included in uremic 

care at the end of year 2010. This number includes patients undergoing hemodialysis 

(2,920), peritoneal dialysis (841) and patients with kidney transplant (4,740) [22].  

Both the kidney disease and the renal replacement therapy significantly affect 

the life of CKD patients. Dialysis treatment results in a major loss of both life-quality 

and economical income for the patient. Hemodialysis treatment involves treatment 

sessions for several hours at medical care centres, three times per week. Cardiovascular 

disease is the major cause of death in CKD patients and it is strongly associated with 

decreased kidney function [23]. Glomerulonephritis, diabetes nephropathy and 

polycystic kidney disease are common causes of kidney failure in Sweden [22]. 

 

1.5.1 Kidney function 

The kidneys accomplish several functions to purify the blood, produce urine and 

maintain a homeostatic extracellular milieu. Kidney function is essential for the 

excretion of waste products such as creatinine and urea that are formed during the 

metabolism. In addition, many drugs and drug metabolites are excreted by the kidney. 

The kidney regulates the water and electrolyte balance by controlling the excretion and 

reabsorption of water, potassium, sodium, phosphate, calcium and other substances. 

Maintaining the balance in electrolytes and water is important for the regulation of 

blood pressure and body fluid volume. The acid-base status of the blood is also 
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Table 1. Classification of chronic kidney disease according to the US National Kidney 
Foundation. ( * mL/min/1.73 m2) 
* (mL/min/1.73 m2) 
 

controlled by urinary excretion of protons. Further, the kidney exerts an endocrine role, 

producing hormones including erythropoietin, renin, prostaglandins and vitamin D. The 

functional unit of the kidney is the nephrons and they are responsible for the filtration 

of the blood in the renal capillaries. Glomerulus is the filtration unit that produces urine 

and in the tubules the reabsorption and secretion of substances takes place. In a healthy 

individual, each kidney has between 400,000-800,000 nephrons, a number that 

decreases with age [24].  

 

1.5.2 Kidney failure and disease 

CKD is a progressive loss of nephrons and a decrease of renal function. This will lead 

to an augment of uremic symptoms including increased levels of urea and creatinine in 

the blood, disturbances in the electrolyte and water balance. Furthermore, the reduction 

of erythropoietin production can cause anaemia and the impaired vitamin D synthesis 

can cause hyperparathyroidism. The disease is preferably determined by measuring the 

glomerular filtration rate (GFR) and is often classified into different stages according to 

the National Kidney Foundation (Table 1) [25]. At stage 1, the kidney function is 

normal and in stage 2, the function is mildly reduced. These stages of disease might not 

be noted by the person and do not always cause uremic symptoms. However, in both 

stages signs of kidney disease such as proteinuria, haematuria, structural abnormalities 

of the kidney or genetic diagnosis can be found and diagnosis is of importance for 

anticipating and preventing disease progress and risk for cardiovascular disease. 

Patients at stage 3 have a moderately reduced kidney function with an increased need of 

dietary restrictions, medical care and monitoring of the disease. At stage 4, the kidney 

function is severely reduced and at stage 5, the disease is life-threatening and renal 

replacement therapy is necessary for survival.  

 

CKD stage GFR* Description 

1 >90 Normal kidney function, signs of kidney disease 

2 60-89 Mildly reduced kidney function, signs of kidney disease 

3 30-59 Moderately reduced kidney function 

4 15-29 Severely reduced kidney function 

5 <15, dialysis Very severe kidney failure 
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ESRD is managed by protein-reduced diet, medication for hypertension and 

correction of electrolytes, renal replacement therapy including dialysis treatment or 

kidney transplantation. Transplantation is often desired, however, it is not suitable for 

all patients and due to shortage of donors, the waiting list for kidney transplantation can 

be a few years. Dialysis treatment is performed to replace an impaired kidney function.  

This is an artificial purification of the blood where waste products are removed and the 

balance between salts and fluids is regulated. In hemodialysis, the blood is pumped out 

of the patient’s body and filtered using a dialyzer before it returns to the patient. The 

dialyzer is designed with a semi-permeable membrane allowing passage of substances 

and fluids between the blood and the dialysate. In peritoneal dialysis, the exchange of 

substances and fluids is performed using the patient’s peritoneal lining as a filter inside 

the abdomen. A catheter is used to transfer the dialysis solution in and out of the 

peritoneal cavity [24].  

 
1.5.3 Oxidative stress and inflammation in kidney disease 

Kidney failure is associated with higher levels of oxidative stress, inflammation and 

malnutrition that contribute to the higher risk for cardiovascular diseases, 

atherosclerosis and cancer [26-28]. Elevated levels of oxidative stress are frequently 

reported in CKD patients [29-32]. This imbalance can occur as a consequence of both 

an increased production of ROS and insufficient antioxidant defence. Beyond the 

generation of ROS during normal cellular metabolism, potential sources of oxidative 

stress in CKD patients also include systemic inflammation, incidence of diabetes, 

dialysis treatment, reduced levels of dietary intake of antioxidants and the uremia itself. 

Inflammation, oxidative stress and malnutrition are closely related in renal failure and 

contribute to the increased risk for cardiovascular disease and mortality. Raised levels 

of inflammation markers such as specific cytokines and acute-phase reaction proteins 

are observed in CKD patients [29-31]. Commonly used inflammation markers in blood 

include C-reactive protein (CRP), interleukins, albumin, fibrinogen, amyloid A and 

tumour necrosis factor-α [33].  

The dialysis treatment itself is also a source of oxidative stress and 

inflammation. The contact between the blood and the dialysis membrane (that can be 

more or less biocompatible depending on material) will cause alterations in the 

constitution of blood cells during hemodialysis. The alternate pathway of the 

complement system can be activated, demonstrated by analysis of the activation 

products C3a and C5a [34]. Memoli et al showed that PBMCs harvested after 
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hemodialysis with cuprophane membrane produced higher levels of IL-12 compared to 

both controls and patients dialysed with a polymethylmethacrylate membran [35]. In 

the process of neutrophil activation, the superoxide anion is formed by the NADPH 

oxidase complex throughout respiratory burst as a part of pathogen defence. 

Furthermore, degranulation of neutrophils also triggers ROS production. Contaminated 

dialysate containing endotoxins and bacterial cell wall fragments, can also stimulate the 

activation of monocytes and production of cytokines such as IL-1 and tumour necrosis 

factors with pro-inflammatory effects [36].  

The prevalence of anaemia, a decrease in red blood cells, is higher in CKD 

patients and can be caused by reduced production of erythropoietin (a hormone 

important for red blood cell production) by the kidney, lack of folate or vitamin B12, or 

iron deficiency. Impaired erythropoiesis can be improved by erythropoiesis-

stimulating-agents and supplementation with oral or intravenous iron. Iron 

supplementation has also been discussed as a potential source of oxidative stress since 

free iron, not bound to iron-binding proteins such as transferrin, is a possible participant 

in Fenton reactions that generate hydroxyl radicals. Lipid peroxidation has been shown 

to be increased shortly after intravenous iron infusion [37, 38]. However, the 

significance of these pro-oxidative effects is uncertain and the benefits of iron 

supplementation on iron repletion and anaemia are central [39]. Intravenously iron 

supplementation in appropriate dose and preparation is widely used and recommended 

[40]. 

  

1.5.4 Malnutrition 

Malnutrition and protein-energy wasting (PEW) are considered to be additional risk 

factors for the high mortality in CKD patients [41] [42]. PEW is used to describe a state 

where the storage of protein and body fat is depleted [43]. This will lead to loss of body 

weight and muscle mass. The prevalence of PEW among CKD patients is higher as a 

consequence of several factors including inadequate nutritional intake, malnutrition and 

uremic effects such as uremic toxins, increased inflammation and hormonal 

disturbances. Hypoalbuminemia is commonly used as a marker for malnutrition and 

PEW [43]. It is also considered as a negative marker for acute phase reactions, thus 

illustrating the close interrelation between inflammation and malnutrition in CKD 

patients.  
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Dietary restrictions for CKD patients may be required to diminish the 

complications of kidney failure and dialysis treatment. The purpose is to decrease 

uremic symptoms and to keep the patient at a healthy weight by individual restrictions 

and dietary advice. Reduced intake of proteins, potassium, sodium, phosphorus, 

calcium and excess fluid are often recommended. Alterations in the diet, in some cases 

with a reduction of intake of fresh fruits and vegetables to evade hyperkalemia and 

limit levels of phosphorus and calcium, is a potential cause of antioxidant deficiency. In 

addition, dietary restrictions and decreased nutrient intake can enhance the state of 

PEW [43]. 

 
1.5.5 Oral health in CKD 

Both kidney failure and dialysis treatment have impact on oral health. It is also 

known that in the general population, oral health affects the general health. 

Inflammation and complaints in the oral cavity contribute to systemic inflammation and 

the development of atherosclerosis and cardiovascular disease [44]. Several studies 

report impaired oral health status in CKD patients. The complaints include xerostomia 

(mouth dryness), mucosal lesions, gingival enlargement, periodontitis, tooth loss and 

changes in the saliva [45-48]. Potential causes of oral health problems among CKD 

patients include a reduced oral care by the patients, medication, altered diet with 

increased levels of carbohydrates and enhanced susceptibility to infections due to 

dysfunction of the immune defence caused by the uremia and dialysis treatment [49]. 

The saliva is essential for maintaining a good oral health. By coating the oral cavity it 

protects the oral tissue from infections and breakdown. The production of the saliva is 

managed by three pairs of major salivary glands and hundreds of minor salivary glands. 

Measurements of unstimulated or stimulated saliva production can provide information 

regarding salivary gland function and oral health status. 

 
1.6 DIETARY SUPPLEMENTS 

Epidemiological studies show that a diet rich in fruit and vegetables is inversely 

correlated to cancer, cardiovascular diseases and mortality [50, 51]. The positive health 

effects are often attributed to the vitamins and antioxidants present in large amounts in 

fruit and vegetables. Therefore, there is a large interest in dietary supplements 

containing these substances. However, results from intervention studies on vitamin 

supplements are inconclusive in showing beneficial effects on health, several studies do 

not show any health effects and some even show harmful effects [52, 53]. The 
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inconsistent results highlight the complexity in the topic of dietary supplementation, 

suggesting that there are other important components of fruits and vegetables that also 

play significant roles in disease prevention. The studies also indicate that there might be 

certain groups that would benefit more from dietary supplement, potentially groups that 

are poorly nourished and have low levels of antioxidants. In the Linxian study, with 

participants of poor nutritional health, the mortality decreased after supplementation 

with α-tocopherol, β-carotene and selenium [54]. In the French SU.VI.MAX study it 

was found that supplementation with multivitamins and minerals lowered the incidence 

of cancer and mortality in men. The same effect was not seen among women and it was 

suggested to be due to the lower baseline levels of vitamin C and β-carotene in men 

compared to women [55]. It must also be noted that some groups are more susceptible 

for increased health risks, e.g. smokers [52, 53].  

 

1.7 SEA BUCKTHORN OIL  

Recently, the sea buckthorn berry has raised more interest in the Western world, both as 

a part of the diet and as a substrate in health products. Sea buckthorn has traditionally 

been used as a medicinal plant for several hundred years in China, Turkey and Russia. 

The sea buckthorn berry contains high levels of unsaturated fatty acids, vitamin C, 

vitamin E, carotenoids and phytochemicals including flavonoids and other phenolic 

compounds. It has been attributed antioxidative properties, anti-tumour effects, anti-

inflammatory effects and also immune response regulatory effects [56-59]. Most 

studies are in vitro studies of different extracts of the berry. A few clinical studies on 

both whole berries and extracts have also been published. Reported effects include 

inhibition of induced platelet aggregation [60], reduction of CRP-levels in serum [61] 

and attenuated increased tear film osmolarity in drye eyes symptoms [62]. 

The berry can be found on the consumer market, as an ingredient in jam, juices 

and other food products. Different extracts of the sea buckthorn berry are also used as 

dietary supplement and as ingredients in skin products. There are seven subspecies of 

sea buckthorn with different geographical origin; Hippophae rhamnoides L. is the most 

frequent species in Europe.  

 

1.7.1 Fatty acids 

Fatty acids, carboxylic acids with varying length of unbranched carbon chains, are 

important to the cell for the structure of membranes, storing energy and as precursors of 
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hormones. Classification of fatty acids is based both on the number of carbon atoms 

and the number and position of any double bond in the chain. The number of double 

bonds determine whether the fatty acid is saturated (no double bond), monounsaturated 

(one double bond) or polyunsaturated (more than one double bond). Saturated fatty 

acids have a straight arrangement in the carbon chain whereas a double bond causes a 

kink of the chain, allowing packed structures to be less compact. Certain 

polyunsaturated fatty acids (PUFAs) including α-linolenic acid and linoleic acid are 

considered as essential fatty acids since humans can not produce sufficient amounts by 

themselves. Omega-3 fatty acids, containing a double bond at the third carbon from the 

methyl group, include the key derivates α-linolenic acid (18:3 ω-3), eicosapentaenoic 

acid (20:5 ω-3) and docosahexaenoic acid (22:6 ω-3). Omega-6 fatty acids include 

linoleic acid (18:2 ω6), γ-linolenic acid (18:3 ω-6), arachidonic acid (20:4 ω-6) and 

docosapentaenoic acid (22:5 ω-6). The derivates from the two families of omega-3 and 

omega-6 fatty acids have been shown to play important roles in the immune system and 

in inflammation. Omega-6 can induce inflammation, mediated by prostaglandin 2 that 

is generated from arachidonic acid via activity of cyclooxygenase (COX) enzymes. 

This enables TNF-α induced transmigration of neutrophils across endothelial cells. 

Prostaglandin 3, generated from omega-3 fatty acids, can act as antagonist in this 

pathway, thus acting in an anti-inflammatory mode [63].  

The type of fatty acid in sea buckthorn varies between plant origins and also 

between the different parts of the berry; the seeds are rich in linoleic, α-linolenic, oleic 

(18:1 ω-9) and palmitic (16:0) acids.  Whereas the fruit flesh is rich in more saturated 

fatty acids including palmitic acid and palmitoleic acid (16:1 ω-7) [64]. 
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2 AIM 
The overall aim of this thesis was to examine oxidative stress, inflammation and oral 

health among patients with chronic kidney disease. Further, to investigate the 

possibility to affect these factors with dietary supplementation of a natural extract of 

sea buckthorn oil. 

 

Specific aims: 

- Assess the DNA damage and oxidative DNA damage in salivary glands in 

CKD patients.  

- Investigate salivary secretion rates, inflammation and blood parameters in CKD 

patients. 

- Investigate correlations between DNA damage in salivary glands with salivary 

secretion rates, inflammation and blood parameters. 

- Investigate possible effects of a dietary supplement of sea buckthorn oil on 

oxidative stress, inflammation and oral health. 
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3 METHODS 

 
3.1 STUDY PARTICIPANTS AND METHODS 

 
3.1.1 Participants and study design 

In the observational study (Paper I) the patient group was CKD patients with renal 

disease stages 4-5 including predialysis patients (patients with a GFR <20 ml/min/1.73 

m2, not yet on dialysis) and dialysis patients. The patients were recruited from the 

Department of Renal Nutrition at Karolinska University Hospital and from the dialysis 

units at Löwenströmska Hospital, Kungsholmsdialysen and Sophiahemmet, Stockholm, 

Sweden. Healthy control patients, age- and sex-matched, were recruited from the public 

dental service at Solna municipality. Patients with active hepatitis, earlier detection of 

MRSA or participation in other studies were excluded. 79 patients were included in the 

study (25 women and 54 men, mean age 60 years). 10 patients were predialysis 

patients, 3 were peritoneal dialysis patients, and 66 were hemodialysis patients. 

The study was conducted to assess levels of DNA damage in minor accessory 

salivary glands, salivary secretion rates, inflammation and uremic markers in saliva and 

blood. Interactions between the parameters and potential influence of sex, age, smoking 

and diabetes were also investigated.  

In the intervention study (Paper II) the patient group was hemodialysis patients 

recruited from the Department of Renal Nutrition at Karolinska University Hospital. 

The inclusion criteria were age above 19 years, hemodialysis treatment for more than 

three months, stable medication and original teeth. Patients with dysphagia, active 

hepatitis, earlier detection of MRSA or participation in other studies were excluded. 

The study approach was to investigate the potential effect of a dietary supplement of 

commercially available sea buckthorn oil extract (supercritical CO2-extraction of both 

fruit flesh and seeds), on DNA damage in minor accessory salivary glands, 

inflammation and blood parameters. The study design was a randomised and double-

blinded crossover study with 2 x 8 weeks treatment periods. To avoid carry-over 

effects, a four week wash-out period between the treatment periods was performed. 72 

hemodialysis patients were included in the study and randomised into two groups, one 

group (AB) receiving SBO in the first treatment period and the other group (BA) 
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receiving placebo (Figure 3). The intake was instructed to four capsules per day and the 

content and daily dose can be seen in Table 2.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. A crossover study design (2 x 8 weeks) with two sequence groups; 
AB receiving sea buckthorn oil and BA receiving placebo in the first 
treatment period (Paper I) 

1 SBO capsule (500 mg) Daily dose (4 capsules, 2 g)

Oleic acid (C18:1 !9) 124 mg (24.8%) 496 mg

Palmitoleic acid (C16:1 !7) 97  mg (19.5%) 388 mg

Linoleic acid (C18:2 !6) 92 mg (18.4%) 368 mg

"-linolenic acid (C18:3 !3) 63 mg (12.6%) 252 mg

Vitamin E 931 µg 3.72 mg

Vitamin A 88 µg 352 µg 

Table 2. Daily dose and capsule content according to the producer of the 
SBO capsule.  
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3.1.2 Ethical permissions 

Both studies were approved by the regional Ethics Committee for Human Research at 

Karolinska Institutet and conducted in accordance with the Helsinki Declaration 

(2008).  

 

3.1.3 Blood samples 

Blood samples were collected venously and in Paper I, the levels of high sensitive C-

reactive protein, albumin, urea and creatinine were measured in serum, leukocyte 

particle concentration (LPC) and hemoglobin in blood and haptoglobin in plasma. The 

proteins were quantified with near infrared particle immunoassay (Beckman Coulter, 

Brea, CA).  

In Paper II, venous blood samples were collected before and after each 

treatment period. The following markers were measured in plasma (p) or blood (b): p-

albumin, p-antitrypsin, p-calcium, p-calcium x phosphate product, p-carbon dioxide 

(CO2), p-creatinine, b-erythrocytes, p-glucose, p-haptoglobin, b-haemoglobin, p-high 

sensitive C-reactive protein (hs-CRP), p-immunoglobulin A (IgA), p-immunoglobulin 

G (IgG), p-immunoglobulin M (IgM), p-iron, p-iron saturation, b-leukocytes, p-

orosomucoid, p-phosphate, p-potassium, p-sodium, b-thrombocytes, p-transferrin and 

p-urea. 

 

3.1.4 Salivary secretion rates 

Measurement of the saliva production was made according to standardised methods. 

The patients were asked to lean forward and hold a funnel and a test tube to collect the 

produced saliva. For measurement of produced saliva at rest, the patients were asked to 

achieve a passive flow of saliva without masticatory movements for 15 min. For 

assessing the saliva produced under stimulation, the patients were asked to chew 

paraffin capsules and collect the produced saliva during 5 min. The level of salivary 

secretion rate was expressed in ml/min.  

 

3.1.5 Gland collection 

The salivary glands were collected from CKD patients and control persons by incision 

with scalpel (Number 15, Braun, Tuttlingen, Germany) under local anesthesia (Citanest 

Dental-octapressin 30%, Dentsply, Stockholm, Sweden). The region for the incision 
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was on the inside of the lower lip, close to an accessory gland, and the region was the 

same for each person. Immediately after the gland removal, the tissue was kept in 

physiological saline solution and frozen at -70° C prior DNA analyses. The incision 

was closed with an Ethicon suture 5.0 (Johnson & Johnson International, New 

Brunswick, NJ, USA) when needed. 

 

3.1.6 Comet assay 

After thawing, the salivary glands were homogenised in phosphate buffer saline (PBS) 

using a Dounce B Pestle. 27 µL of the cell suspension was added to 210 µL 37°C 

0.75% low melting point agarose and the mixture was spread out to thin layers on 

microscope slides. Each gland was prepared in duplicate for analysing both strand 

breaks and alkali-labile sites (SB and ALS) and FPG-sensitive sites. After solidifying 

of the gels on a cold plate, the slides were put in a lysis solution (2.5 M NaCl, 0.1 M 

EDTA, 10 mM Tris, pH 10 and 1 % Triton X-100) for 60 min on ice and in dark. After 

washing the slides 3 x 5 min in enzyme buffer (0.1 M KCl, 40 mM HEPES, 0.5 mM 

EDTA, 0.2 mg/ml bovine serum albumin, pH 8), 30 µL FPG enzyme in enzyme buffer 

(FPG-sites) or only enzyme buffer (SB and ALS) was added to the slides and incubated 

in a humidity chamber at 37°C for 30 min. The slides were then put in an alkali 

solution (0.3 M NaOH, 1 mM EDTA) for 40 min prior to electrophoresis. The 

electrophoresis was performed in alkali solution in a black electrophoresis tank with a 

cooling system of ice-cold water circulating under the platform of the tank. The 

duration of the electrophoresis was 30 min and the applied electric field was 1.15 V/cm. 

After the electrophoresis, the slides were put for 2 x 5 min in TRIS (0.4 M, pH 7.4) for 

neutralisation and 5 min in H2O. The slides were allowed to dry over night and then put 

in methanol for 5 min to dehydrate prior to DNA staining.  

The slides were stained with ethidium bromide solution (1 µg/mL) for 5 min 

and analysed using a fluorescence microscope (Olympus BH-2 with a 20x 

apochromatic objective).  

Scoring was performed using the software Komet 4.0 (Kinetic Imaging Ltd) 

and the % DNA in tail was measured for the assessment the DNA damage. By 

subtracting the % DNA in tail of the non-FPG-treated slides from the FPG-treated 

slides, the level of FPG-sensitive sites was assessed. For each gland and sample, 105 

cells were scored in total, 35 cells on each of 3 fields on the microscope slide.  
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To verify the stability of the comet assay, one aliquot of PBMCs from one 

single donor was used for each day of comet assay analysis. The isolation of PBMCs 

from whole blood was performed with a Histopaque-1077 (Sigma-Aldrich, St Louis, 

MO) gradient. The mononuclear cell layer was washed with phosphate-buffered saline 

(PBS) solution, as instructed by the supplier. Aliquots of isolated PBMCs were slowly 

frozen to –80°C in freezing media consisting of 90% fetal bovine serum (FBS) and 

10% sterile dimethyl sulfoxide (DMSO) prior analysis. 

 
3.2 STATISTICAL ANALYSIS  

SPSS software 17.0 (SPSS, Inc., Chicago, IL) was used for most of the statistical 

analyses. Stata software (Stata Corp, College Station, TX) was used for multivariate 

nonparametric quantile regression analyses in Paper I. 

In Paper I, Shapiro-Wilk’s test was used to evaluate whether the data was 

normal or non-normal distributed. Since most of the data were not normal distributed, 

non-parametric tests were used. The Mann-Whitney test was used for comparison 

between groups and for analysis of correlations of factors, Spearman’s correlation test 

was used.  

Shapiro-Wilk’s test was also used in Paper II to evaluate the distribution of the 

data. Both parametric as well as non-parametric statistical methods were applied since 

both normal and non-normal distributed data were present. Within-groups comparisons 

(values before and after treatment) were performed by paired two-sampled t-test 

(normal distributed) or Wilcoxon signed rank test (non-normal distributions). Possible 

carry-over or period effects were investigated by comparing the sum and the 

differences of the responses between the sequence groups with unpaired two-sample 

student’s t-test or Mann-Whitney. Any p-value of < 0.05 was considered as statistically 

significant. No adjustment for multiple testing was made. [65] 
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4 RESULTS 

4.1 PAPER I; OBSERVATIONAL STUDY 

The results from the observational study in CKD patients, both predialysis patients and 

dialysis patients are shown in Tables 3 and 4. 

 

 

 

Table 3. Predialysis patients and matched controls. 
( *, ** and *** represent a p-value < 0.05,  < 0.01 and  < 0.001 respectively.) 

Median Mean (min-max) n Median Mean (min-max) n Sign.

Age (years) 57 56 (33-66) 10 57 57 (36-69) 10 0.76

DNA strand breaks (%DNA in tail) 8 8.9 (5.9-13.8) 10 6 6.4 (5.1-9.9) 9 *

Oxidative DNA lesions (%DNA in tail) 8 7.9 (2.4-14.4) 10 8.2 7.8 (6.1-10.1) 9 0.87

Secretion rate at rest (mL/min) 0.2 0.3 (0.0-0.9) 10 0.3 0.3 (0.1-0.4) 9 0.653

Secretion rate, stimulated (mL/min) 1.6 1.9 (0.7-4.4) 10 1.8 1.8 (1.1-3.0) 9 0.683

IL-6 in saliva (pg/L) 15.5 16.1 (1.3-40.0) 9 5 14.5 (1.6-74.4) 8 0.63

hs-CRP in serum (mg/L) 5 10.8 (1.0-67.0) 10 1 1 (0.0-2.0) 10 **

Orosomucoid in plasma (g/L) 1.1 1.2 (0.8-2.0) 8 0.7 0.7 (0.6-0.9) 10 ***

Haptoglobin in plasma (g/L) 1.4 1.8 (1.0-3.2) 8 0.8 0.7 (0.3-1.1) 10 **

LPC in blood (10
9
/L) 8.5 9 (5.6-14.9) 10 6.1 7.5 (5.7-17.2) 10 0.075

Urea in serum (mmol/L) 25.6 26.5 (12.9-36.6) 10 5.8 5.8 (4.9-6.8) 10 ***

Creatinine in serum (µmol/L) 628 626 (341-937) 10 72 73 (54-95) 10 ***

Albumin in serum (g/L) 38 37 (23-48) 10 40 40 (36-43) 10 0.062

Hemoglobin in blood (g/L) 121 119 (92-135) 10 148 148 (126-165) 10 ***

Inflammation parameters

Uremic state

Predialysis patients Matched controls

DNA damage

Salivary secretion

Median Mean (min-max) n Median Mean (min-max) n Sign.

Age (years) 63 62 (25-87) 69 62 63 (35-89) 69 0.821

DNA strand breaks (%DNA in tail) 5.3 5.6 (3.4-13.2) 59 8.3 8.8 (4.7-18.4) 66 ***

Oxidative DNA lesions (%DNA in tail) 7.6 8.4 (1.4-24.2) 59 8.2 8.6 (0.9-16.7) 66 0.515

Secretion rate at rest (mL/min) 0.1 0.1 (0.0-0.5) 68 0.2 0.3 (0.0-1.4) 69 ***

Secretion rate, stimulated (mL/min) 1.1 1.1 (0.0-2.5) 68 1.7 1.8 (0.3-5.2) 69 ***

IL-6 in saliva (pg/L) 15 40.4 (0.2-154.5) 5 5.5 12.9 (0.2-91.5) 53 0.383

hs-CRP in serum (mg/L) 4.5 8.5 (1.0-77.0) 68 2 3.4 (1.0-33.0) 68 ***

Orosomucoid in plasma (g/L) 0.9 1 (0.4-2.2) 67 0.8 0.8 (0.4-1.2) 68 ***

Haptoglobin in plasma (g/L) 1.2 1.2 (0.1-2.6) 67 1.1 1.1 (0.2-2.4) 68 0.308

LPC in blood (109/L) 6.9 7.1 (1.8-14.6) 69 6.1 6.6 (4.2-14.0) 69 0.059

Urea in serum (mmol/L) 20.5 21.7 (13.3-46.4) 69 5.8 6 (3.6-11.2) 67 ***

Creatinine in serum (µmol/L) 716 730 (271-1333) 69 78 79 (48-118) 69 ***

Albumin in serum (g/L) 35 35 (27-44) 68 39 39 (32-46) 69 ***

Hemoglobin in blood (g/L) 125 123 (91-156) 69 146 146 (112-168) 67 ***

Dialysis patients Matched controls

DNA damage

Salivary secretion

Inflammation parameters

Uremic state

Table 4. Dialysis patients and matched controls. 
( *** represents a p-value < 0.001)  



 

 22 

4.1.1 DNA damage 

The level of DNA strand breaks in predialysis patients (Table 3) was significantly 

higher compared to matched controls (p < 0.05). Dialysis patients (Table 4) had 

significantly lower levels of DNA strand breaks compared to their matched controls (p 

< 0.001). There was also a significant difference between the levels in predialysis 

patients (higher) and the dialysis patients (lower) (p < 0.001). There were no significant 

differences between the groups in oxidative DNA lesions.  

 

4.1.2 Salivary secretion rates 

There were no significant differences in salivary secretion when comparing predialysis 

and their controls. The dialysis patients had significantly lower levels of saliva 

secretion both at rest (p < 0.001) and after stimulation (p < 0.001), compared to 

matched controls. The dialysis patients also had lower levels compared to the 

predialysis patients, both at rest (p < 0.05) and after stimulation (p < 0.01). There was a 

borderline correlation between salivary secretion at rest and DNA strand breaks in all 

CKD patients (rs = 0.224, p = 0.066, n = 68). The correlation between salivary secretion 

at rest and after stimulation was significant in both CKD patients (rs = 0.600, p < 0.001, 

n = 78) and in the controls (rs = 0.512, p < 0.001, n = 78). In a multivariate quantile 

regression, the salivary secretion rate at rest predicted the level of DNA strand breaks 

significantly in CKD patients (estimate = 3.5, p < 0.05, n = 68). Age, sex, salivary 

secretion at rest, hs-CRP and creatinine were covariates in the model.  

 

4.1.3 Inflammation parameters 

All inflammation levels were higher in the CKD patients compared to the controls, 

however, not all were statistically significant. In the predialysis patients, hs-CRP (p < 

0.01), orosomucoid (p < 0.001), haptoglobin (p < 0.01) were significantly higher in 

predialysis compared to matched controls. In the dialysis patients, hs-CRP (p < 0.001) 

and orosomucoid (p < 0.001) levels were higher compared to the matched controls. IL-

6 in saliva was only measured in 14 CKD patients and there were no significant 

differences between the groups. The predialysis patients had significantly higher levels 

of LPC compared to dialysis patients (p < 0.05). Haptoglobin correlated significantly 

with oxidative DNA lesions in the dialysis patients (rs = 0.272, p < 0.05, n = 58). In a 

multivariate quantile regression, hs-CRP predicted the level of DNA strand breaks 
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significantly in the controls (estimate = 0.18, p < 0.05, n = 73). Age, sex, salivary 

secretion at rest, hs-CRP and creatinine were covariates in the model.  

 

4.1.4 Blood parameters 

Creatinine (p < 0.001) and urea (p < 0.001) levels were higher in both predialysis and 

dialysis patients in comparison with the matched controls. Albumin concentrations 

were significantly lower (p < 0.001) in dialysis patients compared to controls. 

Hemoglobin levels were significant lower in both dialysis patients and predialysis 

patients compared to their controls (both p < 0.001). Hemoglobin correlated negatively 

to DNA strand breaks in the control persons (rs = -0.294, p < 0.05, n = 73). 

 

4.1.5 Other findings 

Oxidative DNA lesions were found to be sex-dependent; women (9.6 % DNA in tail) 

on dialysis had significantly higher levels (p < 0.01) compared to men (7.8 % DNA in 

tail). The same pattern was seen in the whole CKD group, women had significantly 

higher levels of oxidative DNA lesions when performing the multivariate quantile 

regression, with age, sex, salivary secretion at rest, hs-CRP and creatinine as covariates 

in the model (estimate = 2.2, p < 0.05, n = 68). Levels of DNA strand breaks were 

significantly higher (p < 0.05) in women (11.9 % DNA in tail) compared to men (7.6 % 

DNA in tail) in the predialysis patients.  

 

4.2 PAPER II; INTERVENTION STUDY 

The results from the intervention study (Paper II) on SBO supplementation in 

hemodialysis patients are shown in Table 5. 

 

4.2.1 DNA damage 

SBO treatment did not have a significant effect on the levels of DNA damage in the 

dialysis patients. The level of DNA strand breaks was 5.2 % DNA in tail (median 

value) both before supplement and placebo. The level of oxidative lesions did not 

change significantly, the baseline values were 7.7 % DNA in tail and 8.8 % DNA in tail 

before SBO supplement and placebo, respectively.  
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4.2.2 Salivary secretion rates 

The baseline value of salivary secretion at rest was 0.05 mL/min before supplement and 

the stimulated production was 0.87 mL/min. The SBO treatment did not have any 

significant effect on these levels.  

 

4.2.3 Inflammation parameters 

SBO treatment did not have any significant effect on the inflammation markers hs-

CRP, antitrypsin or orosomucoid in this study, baseline values 4.2 mg/L, 1.4 g/L and 

1.0 g/L respectively. However there was a significant difference between the sequence 

groups, AB and BA (p = 0.001). The levels of hs-CRP increased 3.1 mg/mL in the AB 

group after SBO supplement, whereas the BA group decreased 0.50 mg/mL. The same 

pattern was seen in the orosomucoid levels (p = 0.029), the AB group increased 0.09 

g/L whereas the BA group decreased 0.015 g/L.   

 

4.2.4 Blood parameters 

Creatinine and urea in plasma did not change significantly after SBO treatment. 

However, there was a significant increase in creatinine (p = 0.030) and urea (p = 0.009) 

levels after placebo treatment. The phosphate and sodium levels were significantly 

increased after SBO supplementation (p = 0.02 for both).  Iron was significantly 

reduced after SBO supplementation (p = 0.05). CO2-levels were not affected by SBO 

supplement, however, there was a significant decrease after placebo treatment (p = 

0.004). The potassium level was, in opposite, increased after placebo treatment (p = 

0.03).  Also, the levels of immunoglobulin A and M were increased after placebo 

treatment (p = 0.04 resp. 0.01). The levels of albumin, glucose, thrombocytes, 

erythrocytes, leukocytes, haptoglobin, hemoglobin, iron saturation, transferrin, calcium, 

calcium-phosphate product and immunoglobulin G were not affected by SBO 

supplement or placebo. Carry-over effect was observed for iron levels, period effects 

were observed for CO2, potassium, calcium-phosphate product and calcium levels. 
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SBO supplement

Before After

Mean Median ( min - max ) Mean Median ( min - max ) p

DNA damage

DNA strand breaks (% DNA in tail) 5.5 5.2 ( 3.4 - 9.4 ) 5.3 5.1 ( 3.7 - 8.4 ) 0.23
a

Oxidative DNA damage (% DNA in tail) 9.1 7.7 ( 6.4 - 43.5 ) 8.9 8.8 ( 5.4 - 13.6 ) 0.12
a

Salivary secretion

Secretion rate, at rest (ml/min) 0.1 0.1 ( 0.0 - 0.6 ) 0.1 0.0 ( 0.0 - 0.8 ) 0.29
a

Secretion rate, stimulated (ml/min) 1.0 0.9 ( 0.0 - 2.5 ) 1.0 0.9 ( 0.0 - 3.0 ) 0.46
b

Inflammation parameters

C-reactive protein (hsCRP) (mg/l) 6.7 4.2 ( 0.2 - 65.0 ) 9.4 5.4 ( 0.4 - 77.2 ) 0.24
a

Antitrypsin (g/l) 1.5 1.4 ( 0.9 - 2.3 ) 1.5 1.5 ( 0.6 - 2.4 ) 0.48
b

Orosomucoid (g/l) 1.0 1.0 ( 0.6 - 2.1 ) 1.0 1.0 ( 0.6 - 1.8 ) 0.55
a

Blood parameters

Albumin (g/L) 34.3 35.0 ( 21.0 - 44.0 ) 34.3 34.0 ( 25.0 - 44.0 ) 0.68
a

Calcium (Albumin corrected) (mmol/L) 2.4 2.5 ( 1.9 - 1.9 ) 2.4 2.4 ( 1.7 - 3.1 ) 0.43
b

Calcium x phosphate product 3.7 3.5 ( 2.1 - 6.4 ) 3.9 3.6 ( 2.1 - 6.5 ) 0.15
b

Carbon dioxide (mmol/L) 24.3 24.0 ( 15.0 - 32.0 ) 23.9 24.0 ( 19.0 - 30.0 ) 0.39
a

Creatinine (micromol/L) 746 690 ( 345 - 1293 ) 761 765 ( 384 - 1308 ) 0.39
b

Erythrocytes (10^12/L) 3.8 3.8 ( 2.7 - 4.7 ) 3.8 3.8 ( 2.8 - 4.8 ) 0.96
b

Glucose (mmol/L) 5.9 5.4 ( 4.1 - 11.0 ) 5.9 5.4 ( 2.2 - 11.0 ) 0.99
a

Haptoglobin (g/L) 1.1 1.0 ( 0.1 - 2.9 ) 1.2 1.1 ( 0.1 - 2.5 ) 0.30
b

Hemoglobin (g/L) 120 120 ( 95 - 156 ) 120 122 ( 89 - 145 ) 0.82
b

2.6 2.5 ( 0.1 - 6.4 ) 2.7 2.4 ( 0.1 - 6.3 ) 0.46
a

11.3 11.0 ( 4.8 - 21.9 ) 11.6 10.8 ( 5.5 - 24.1 ) 0.13
a

0.7 0.7 ( 0.1 - 3.5 ) 0.8 0.7 ( 0.2 - 3.8 ) 0.21
a

Iron (micromol/L) 12.0 11.0 ( 4.0 - 32.0 ) 10.7 10.0 ( 5.0 - 25.0 ) *
a

Iron saturation 0.3 0.2 ( 0.1 - 0.7 ) 0.2 0.2 ( 0.1 - 0.6 ) 0.05
a

Leukocytes (10^9/L) 7.2 6.8 ( 1.8 - 14.6 ) 7.1 6.9 ( 2.8 - 11.2 ) 0.93
a

Phosphate (mmol/L) 1.5 1.5 ( 0.8 - 2.5 ) 1.7 1.7 ( 0.9 - 2.7 ) *
b

Potassium (mmol/L) 5.1 5.2 ( 2.8 - 6.9 ) 5.0 4.9 ( 3.2 - 9.6 ) 0.36
a

Sodium (mmol/L) 138 137 ( 132 - 146 ) 139 138 ( 132 - 146 ) *
a

Thrombocytes (10^9/L) 218 214 ( 54 - 374 ) 221 212 ( 70 - 389 ) 0.61
b

Transferrin (g/L) 1.8 1.8 ( 0.8 - 2.7 ) 1.8 1.8 ( 1.0 - 2.6 ) 0.87
b

Urea (mmol/L) 22.2 21.2 ( 6.0 - 47.8 ) 22.9 22.8 ( 8.9 - 39.7 ) 0.40
a

Placebo treatment

Before After

Mean Median ( min - max ) Mean Median ( min - max ) p

DNA damage

DNA strand breaks (% DNA in tail) 5.5 5.2 ( 3.6 - 13.2 ) 5.9 5.3 ( 3.6 - 11.5 ) 0.20
a

Oxidative DNA damage (% DNA in tail) 9.0 8.8 ( 4.6 - 24.2 ) 8.6 8.2 ( 4.1 - 13.7 ) 0.89
b

Salivary secretion

Secretion rate, at rest (mL/min) 0.1 0.1 ( 0.0 - 0.5 ) 0.1 0.1 ( 0.0 - 0.9 ) 0.23
a

Secretion rate, stimulated (mL/min) 1.1 1.1 ( 0.0 - 2.4 ) 1.1 0.9 ( 0.0 - 3.3 ) 0.97
a

Inflammation parameters -

C-reactive protein (hsCRP) (mg/L) 10.1 5.0 ( 0.4 - 77.0 ) 9.0 4.5 ( 0.2 - 95.9 ) 0.63
a

Antitrypsin (g/L) 1.5 1.6 ( 0.8 - 2.1 ) 1.5 1.5 ( 0.7 - 2.1 ) 0.37
b

Orosomucoid (g/L) 1.1 1.0 ( 0.4 - 2.0 ) 1.0 1.0 ( 0.6 - 1.6 ) 0.31
a

Blood parameters

Albumin (g/L) 34.4 34.0 ( 22.0 - 43.0 ) 34.6 35.0 ( 25.0 - 41.0 ) 0.60
b

Calcium (Albumin corrected) (mmol/L) 2.4 2.5 ( 2.1 - 2.9 ) 2.5 2.5 ( 2.2 - 2.7 ) 0.43
b

Calcium x phosphate product 4.0 3.9 ( 1.7 - 6.9 ) 4.2 3.9 ( 2.1 - 7.5 ) 0.33
b

Carbon dioxide (mmol/L) 24.4 24.0 ( 20.0 - 29.0 ) 23.1 24.0 ( 14.0 - 29.0 ) **
a

Creatinine (micromol/L) 719 693 ( 346 - 1078 ) 774 751 ( 400 - 1402 ) *
b

Erythrocytes (10^12/L) 3.8 4.0 ( 2.9 - 5.0 ) 3.9 3.8 ( 2.8 - 4.9 ) 0.18
a

Glucose (mmol/L) 6.0 5.4 ( 4.2 - 11.0 ) 6.3 5.2 ( 3.9 - 20.2 ) 0.40
a

Haptoglobin (g/L) 1.3 1.2 ( 0.1 - 2.7 ) 1.2 1.2 ( 0.1 - 2.7 ) 0.61
b

Hemoglobin (g/L) 120 121 ( 94 - 149 ) 123 123 ( 91 - 159 ) 0.27
b

2.7 2.6 ( 0.1 - 5.6 ) 2.8 2.5 ( 0.1 - 6.3 ) *
b

11.2 10.7 ( 4.9 - 22.0 ) 11.4 10.9 ( 5.4 - 5.4 ) 0.33
b

0.7 0.7 ( 0.1 - 3.2 ) 0.8 0.7 ( 0.1 - 3.6 ) **
a

Iron (micromol/L) 12.2 11.0 ( 5.0 - 38.0 ) 11.4 10.0 ( 7.0 - 22.0 ) 0.74
a

Iron saturation 0.3 0.2 ( 0.1 - 0.7 ) 0.3 0.2 ( 0.1 - 0.6 ) 0.73
a

Leukocytes (10^9/L) 7.1 7.1 ( 2.6 - 11.0 ) 7.1 6.8 ( 3.3 - 12.6 ) 0.82
b

Phosphate (mmol/L) 1.7 1.6 ( 0.9 - 3.2 ) 1.8 1.8 ( 0.9 - 3.1 ) 0.46
a

Potassium (mmol/L) 5.0 4.9 ( 3.1 - 6.6 ) 5.4 5.4 ( 3.7 - 8.4 ) *
b

Sodium (mmol/L) 138 138 ( 131 - 150 ) 138 138 ( 128 - 143 ) 0.54
b

Thrombocytes (10^9/L) 213 189 ( 59 - 343 ) 211 204 ( 106 - 395 ) 0.81
a

Transferrin (g/L) 1.8 1.8 ( 1.1 - 2.6 ) 1.8 1.8 ( 1.1 - 2.9 ) 0.15
b

Urea (mmol/L) 21.8 22.0 ( 8.2 - 40.0 ) 24.5 24.6 ( 10.9 - 54.3 ) **
a

a: Non-normal distribution

b: Normal distribution

Immunoglobulin A (g/L)

Immunoglobulin M (g/L)

Immunoglobulin G (g/L)

Immunoglobulin A (g/L)

Immunoglobulin M (g/L)

Immunoglobulin G (g/L)

Table 5. Results from the intervention study. Levels of DNA damage, 
salivary secretion, inflammation and blood markers in hemodialysis 
patients before and after sea buckthorn oil supplementation and placebo. 
( * and ** represent p-value <0.05 and  <0.01 respectively.) 
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5 DISCUSSION 
It is well established that CKD patients have elevated levels of inflammation and 

oxidative stress. This is due to failure of the kidney to excrete waste products, 

imbalance in the regulation of salt and water in the body, antioxidative deficiency and 

malnutrition. In dialysis patients, the dialysis treatment itself also causes increased 

inflammation and oxidative stress levels. Oral complaints including inflammation in the 

oral cavity and changes in saliva production and constitution have been reported in 

CKD patients [49, 66]. These alterations can contribute to systemic inflammation and 

the increased risk for cardiovascular disease.  

In the observational study (Paper I) we investigated inflammation parameters 

mainly in blood, but also in saliva. The results are consistent with earlier studies 

regarding inflammation. All parameters showed higher values on systemic 

inflammation in CKD patients compared to matched controls. The level of 

inflammation in saliva, assessed by the concentration of IL-6, was also higher in CKD 

patients but it was only measured in few patients and the difference was not statistically 

significant. Only one significant difference in inflammation between dialysis patients 

and predialysis patients was found, predialysis patients showed higher levels of LPC 

compared to dialysis patients.  

One aim with the study was to investigate oral health in CKD patients and we 

wanted to assess the oxidative stress levels in the minor accessory salivary glands by 

measuring oxidative DNA damage. Damage to the salivary glands can cause decreased 

saliva production and symptoms of dry mouth. In patients with Sjögren’s syndrome (an 

autoimmune disease leading to the destruction of salivary and lacrimal glands), Ryo et 

al showed increased levels of 8-OHdG in the saliva, suggesting a role of oxidative 

stress in the salivary gland destruction [67]. Earlier studies on CKD patients have 

shown high levels of DNA damage in PBMCs [32, 68], however DNA damage in 

peripheral tissue in CKD patients has not been extensively studied and this study was, 

to our knowledge, the first study that measured DNA damage in the salivary glands. In 

Paper I, it was found that predialysis patients had significant higher levels of DNA 

damage compared to matched controls. This is in accordance with the earlier studies 

showing elevated levels of DNA damage in PBMCs. On the contrary, the findings in 

dialysis patients were the opposite; they had lower DNA damage compared to both the 

matched controls and the predialysis patients. Explanations to the lower levels of DNA 

damage in dialysis patients compared to the predialysis patients could be that the 
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dialysis treatment, with purification of the blood enabling removal of toxic compounds 

that can induce DNA damage. It has been shown that the dialysis treatment itself can 

cause ROS formation by activation of neutrophils due to both bioincompatible dialyzer 

and contaminated dialysate. However, since the samples in our study were collected 

just before the dialysis session, acute effects of neutrophil activation were not likely to 

have a major influence on the results.  

The lower levels of DNA damage in dialysis patients compared to their 

matched control are more difficult to explain. It is possible that the systemic 

inflammation and oxidative stress enhance the DNA repair and/or antioxidative 

enzymes. Herman et al showed increased levels of spontaneous DNA repair just after 

hemodialysis treatment, in response to increased DNA damage [69]. While the 

inflammation and oxidative stress in the blood system is enhanced, the level in 

peripheral tissue might be differently affected. Bibi et al found higher levels of the 

antioxidant enzymes SOD and peroxidase in saliva from peritoneal dialysis patients 

compared to predialysis patients [70]. In contrast, SOD-activity in erythrocytes was 

shown to be decreased in dialysis patients compared to controls [71]. Considering these 

observations, it is possible that in dialysis patients, the enhanced systemic inflammation 

and oxidative stress stimulate antioxidative processes differently in peripheral tissue 

compared to circulating blood cells.  

Dialysis patients had lower levels of unstimulated and stimulated salivary flow 

rates compared to both controls and predialysis patients. Earlier studies have shown 

similar results, Gavalda et al showed a significant decrease in stimulated saliva among 

dialysis patients compared to controls and Kho et al showed decreased levels of saliva 

in rest and stimulated parotid saliva [48, 72]. Damage to the salivary gland and/or 

restricted fluid intake were proposed underlying mechanisms. Hyposalivation could be 

an explanation to the higher prevalence of oral complaints since the saliva is important 

for lubrication, bacterial defence, buffering capacity, taste and digestion. 

In the intervention study we applied a crossover study design and it has the 

advantage of acquiring fewer study subjects since the patients are their own controls. It 

also decreases the influence of patient variation and covariates. The crossover design is 

based on the assumptions that the disease condition is stable during the study and that 

the study period is short enough to avoid period effects. In addition, the effect of the 

intervention should not be permanent and a wash-out period between the treatment 

periods should be long enough to prevent carry-over effects. Violence to the 

assumptions might result in incorrect data analysis. In our intervention study, the 



 

 28 

kidney disease was assumed to remain stable during the study period of in total 20 

weeks. However, we detected period effects of some parameters, including CO2, 

potassium, calcium-phosphate product and calcium levels. Further, despite a wash-out 

period of four weeks, we also detected a carry-over effect on iron levels. In our 

statistical analysis we did not correct for multiple comparison, if adjustments on p-

values had been carried out, a majority of the period effects had not been statistically 

significant. Crossover studies are also more sensitive to drop-outs compared to parallel 

study designs since paired analysis is performed. In the study we had 16 drop-outs, due 

to deaths or patients that were not interested in additional biopsies taken, which limited 

the study. 

Studies have reported health effects from intake of sea buckthorn in terms of 

decreased levels of inflammation markers and ameliorated effects on dry eyes 

symptoms. Antioxidative effects have been shown in in vitro studies and animal models 

[57, 58, 73]. Based on these findings, the aim with the intervention study was to 

investigate if supplementation with SBO could have impact on DNA damage in minor 

accessory glands, inflammation or salivary flow rates in CKD patients. The results 

from this study did not show any effects on the levels of DNA damage after SBO 

supplementation. An explanation to the absence of effect could be that the levels of 

DNA damage in the hemodialysis patients actually were lower than expected, as found 

in Paper I. Earlier results from studies on antioxidant supplementation indicate that 

normal levels of oxidative stress might not be affected by antioxidant supplementation, 

whereas certain risk groups with elevated levels of oxidative stress might be. As 

previous studies on CKD patients have shown increased levels of DNA damage in 

PBMCs, it could be speculated that enhanced levels of DNA damage in circulating 

blood cells might have been beneficially affected by supplementation with SBO. 

Further, the lack of antioxidative effect in this clinical study points out the limitations in 

extrapolating in vitro findings on antioxidative mechanisms to in vivo systems.  

Even though the salivary flow rates were lower in the dialysis patients 

compared to in the controls, discussed in Paper I, SBO did not improve the saliva 

production in the clinical study as hypothesised. While Larmo et al showed an effect of 

sea buckthorn on CRP levels (median reduction was -0.059 mg/L, p = 0.039) we did 

not detect any significant change in the inflammation markers after SBO 

supplementation [61]. However, the reduction of the CRP level in the study of Larmo 

et al was small and the conflicting results might also be due to the difference in 

supplement material, in their study sea buckthorn puree was administered, with a higher 
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content of water-soluble compounds. In another study of Larmo et al, where they 

administered SBO, they could detect an attenuation of increased tear film osmolarity 

[62]. While they could not detect any changes in the fatty acid content of the tear film, 

they proposed a mechanism involving modulation of the local inflammation status of 

dry eyes. However, they did not detect any changes on systemic biomarkers of 

inflammation. These findings further point out the contradictions in nutritional 

supplements versus dietary intake of fruits and vegetables, possibly explained by the 

importance of synergy between vitamins, antioxidants and phytochemicals for positive 

health effects.  

In contrast to the inflammation markers, some blood markers were actually 

affected by SBO supplementation; iron levels were reduced, sodium and phosphate 

levels were increased. A reduction of iron levels is a negative health effect since iron is 

important for oxygen transport and iron deficiency might lead to anaemia. Sodium is an 

important osmolyte and alterations in serum levels of sodium have impact on osmosis 

and cellular functions. Increased phosphate levels are also potentially harmful for CKD 

patients. Hyperphosphatemia stimulates the vascular calcification, a risk factor for 

developing atherosclerosis and cardiovascular disease [74]. However, the changes were 

small and might not be of clinical relevance. In addition, the placebo treatment had 

impact on some parameters; creatinine, urea, potassium, IgA and IgM increased and 

CO2 decreased after administration of coconut placebo oil. Coconut oil is a common 

placebo treatment used when studying effects of fatty acid supplementation. However, 

since creatinine and urea accumulate in blood when the kidney function is impaired, 

these findings suggest that a different placebo substance should be used in future 

clinical studies on CKD patients.  
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6 CONCLUSION 
The results from the studies in this thesis showed: 

 

- Increased systemic inflammation in CKD patients compared to controls. 

- Higher levels of creatinine and urea in CKD patients compared to controls. 

- Lower levels of DNA strand breaks in the minor accessory salivary glands in 

hemodialysis patients compared to both controls and predialysis patients. 

- Higher levels of DNA strand breaks in the minor accessory salivary glands in 

predialysis patients compared to controls. 

- Lower saliva production in CKD patients compared to controls. 

- Positive correlation between oxidative DNA lesions and haptoglobin levels in 

dialysis patients. 

- No significant effect of sea buckthorn oil supplementation on DNA damage, 

inflammation or saliva production in hemodialysis patients. 

- The plasma levels of phosphate and sodium increased and iron levels decreased 

after sea buckthorn oil supplementation. 

 

In conclusion; oxidative stress and inflammation are important risk factors that 

contribute to disease progression and mortality in chronic kidney disease patients. The 

interrelations between these events are complex and factors including dialysis 

treatment, medication, diet and oral health are of importance. In our study we found 

that despite elevated systemic inflammation, the levels of DNA damage in minor 

accessory salivary glands in dialysis patients were lower compared to controls. The 

results suggest the involvement of DNA repair and antioxidative mechanisms in this 

tissue. Supplementation with sea buckthorn oil did not show any reduction on DNA 

damage or inflammation in dialysis patients, concluding that sea buckthorn oil 

supplementation did not have any beneficial health effects in our study group.  
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