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ABSTRACT 

 

Mechanisms of malignant transformation and cancer invasion and factors controlling 

them in response to various stimuli remain elusive. We used proteomics and systems 

biology to explore these mechanisms in human breast epithelial cells. The objective has 

been to identify a set of biomarkers for diagnostics and prognostics of breast cancer.  

Acquiring of high proliferation by cells is a major hallmark of malignant 

transformation. Using global expression proteome profiling approach, we identified a set of 

proteins associated with high proliferation rate of human breast epithelial cells upon 

carcinogenic transformation (paper I). In this study, we described a proteome signature of 

cells with enhanced proliferation rate, and observed that deregulation of CDK4 and cyclin 

D3 may be among the early malignant transformation events. 

Distal metastasis is the leading cause of death among breast cancer patients, and 

invasion of cancer cells is the first step in metastatic process. We established a highly 

invasive clone of MCF7 cells from non-invasive MCF7 cells (paper II). Using proteome 

profiling, we identified key regulators of invasiveness. Systemic analysis suggested that the 

invasive-specific network has features of a scale-free network, with TGF, EGFRB, TAF1, 

HNF4, MYC and RB1 as key nodes. Analysis of TGF and EGF-centered network 

showed more than 30 key nodes which may define how TGF and EGF cooperate. Among 

these nodes were identified insulin, VEGF, HNF4 and NFB. This result indicates that 

the insulin signaling disturbance may interfere with the invasiveness, thus explain the 

clinical observation of the increased risk of breast cancer metastasis in diabetes patients. 

The correlation between protein translation and breast cancer is crucial in 

understanding of breast carcinogenesis. In paper III, we identified eukaryortic elongation 

factor 1 A1 (eEF1A1) as a direct substrate of type I transforming growth factor--receptor 

(TRI). We showed that the phosphorylation of eEF1A1 at Ser300 by TR-I mediates a 

direct inhibitory effect of TGF on protein synthesis, and contributes to effects on cell 

proliferation, anchorage-dependent and anchorage-independent cell growth. Furthermore, 

we showed that the phosphorylation of Ser300 is decreased in human breast tumors. In 

paper IV, we showed that eEF1A1 itself  contributed to the increased proliferation of 

human breast epithelial cells by promoting transition of cells through the S- and G2/M-

phases of the cell cycle. Therefore, our identification of eEF1A1 as a substrate of TR-I 

unveiled novel translation-related regulatory pathway downstream of TR-I, which is 

involved in breast tumorigenesis.  

Breast cancer metastatic suppressor I (BRMS1) was identified by us as an 

invasiveness-related protein. In paper V, we showed that expression of BRMS1 resulted in 

a shift to epithelial morphology of otherwise mesenchymal morphology MDA-MB-231 

cells. Our study concluded that TGF and EGF may modulate BRMS1-dependent breast 

cancer invasion by regulating focal adhesion and cytoskeletal rearrangement, and that 

Smad2 and Erk1/2 phosphorylation are involved in molecular mechanisms engaged by 

BRMS1. 

Thus, presented here studies delivered a proteome signature of invasiveness and 

enhanced proliferation, and explored roles of eEF1A1 and BRMS1 in breast tumorigenesis. 

We described proteome signatures and proteins which may be considered as markers for 

diagnostics and prognostics of human breast cancer.  
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1 INTRODUCTION 
 

1.1 BREAST CANCER 

 

Breast cancer is the most common female malignancy worldwide. In Europe, breast 

cancer is the most frequent cancer and the most frequent cause of cancer death among 

the women (Ferlay et al., 2007). Most deaths of the breast cancer patients, as a 

consequence of resistance to treatment, result from cancer metastasis to distal organs 

rather than from primary tumors.  

 

Mechanisms of malignant transformation and invasion, and the intrinsic factors 

controlling them in response to various stimuli remain elusive. Unraveling the 

underlying mechanisms is a prerequisite step for further developing of therapeutics 

drugs. Over last several decades, cancer researchers pay great efforts in identifying 

underlying molecular pathways and biomarkers for diagnosis, treatment and prognosis 

purposes. 

 

1.1.1 Malignant transformation in breast cancer 

 

During malignant transformation, normal cells have to undergo multistep processes and 

acquire a series of changes that enable them to become cancerous. There are two main 

models of tumorigenesis, i.e. cancer stem cell/hierarchy model and clonal 

evolution/stochastic model of cancer growth (Fig. 1) (Dick, 2009; Shackleton et al., 

2009). The cancer stem cell/hierarchy model suggests that cancer is derived from 

population of highly specialized cancer stem cells, e.g. CD44+/CD24- cells represent 

the population of breast cancer stem cells. These cells are able to self-renew and 

proliferate extensively and eventually developed into tumor mass. However, the clonal 

evolution/stochastic model of cancer growth suggested that all cancer cells possess 

intrinsic potential that contribute to the unlimited growth (Dick, 2009; Shackleton et al., 

2009). To date, there is no definitive evident in favor of either model. This is probably 

depending on the type of cancer, stage of cancer development and environmental 

factor. Further studies are required to understand the origin and development of cancer. 

 

In recent year, “Hallmarks of Cancer” have been proposed, which is an attempt to form 

organizing principles that provide a framework for understanding the complexity of 

cancer formation (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011). The 

Hallmarks of Cancer compose of six essential alterations in cell physiology that lead to 

malignant transformation of normal cells. These included self-sufficiency of cells in 

growth signals, insensitivity to growth-inhibitory signals, evasion of apoptosis, limitless 

replicative potential, sustained angiogenesis, and tissue invasion and metastasis (Fig. 2) 

(Hanahan and Weinberg, 2000). The advance in cancer research over past decade has 

added two additional hallmarks, i.e. deregulation of cellular metabolism and avoiding 

of immune destruction; and two characteristics of cancer, i.e. genomic instability and 

mutation and tumor-promoting inflammation (Fig. 2) (Hanahan and Weinberg, 2011). 
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Each of these changes lead to the breaching of the anti-cancer defense mechanism of 

the body, followed by unlimited growth and proliferation of tumor cells, and eventually 

spread to the distal part of body. 

 

 
 

Fig 1. Models of tumorigenesis: cancer stem cell/hierarchy model and clonal 

evolution/stochastic model of cancer growth. The cancer stem cell/hierarchy model 

suggests that cancer is derived from population of highly specialized cancer stem 

cells. These cells are able to self-renew and proliferate extensively and eventually 

developed into tumor mass. Clonal evolution/stochastic model of cancer growth 

suggested that all cancer cells possess intrinsic potential that contribute to the 

unlimited growth. Reprinted from Dick, Nature Biotechnology 2009, with permission 

from Nature Publishing Group. 

 

In addition to understand the biology of cancer, the Hallmarks of Cancer form a solid 

platform for the targeting therapy of cancer. Drugs that interfere with each of the 

acquired capabilities necessary for cancer formation have been developed, and are in 

clinical use for the treatment of various form of cancer (Fig. 2). For example, EGFR 

inhibitors can be used for targeting the proliferative signal of the cancer cells. 

Transtuzumab, or Herceptin, a humanized monoclonal antibody directed against 

HER-2, is used for the treatment for metastatic breast cancer in the clinic (Browne et 

al., 2009; O'Donovan and Crown, 2007). Further understanding of the physiology of 

cancer will aid the development of novel therapeutic strategies. 
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Fig. 2. Hallmark of cancer. Most cancers have acquired the same set of functional 

capabilities during their development through various mechanistic strategies. 

Acquiring of these capabilities lead to an unlimited growth and proliferation of tumor 

cells, eventually spread to the distal part of body. Various drugs that interfere with 

each of the acquired capabilities necessary for cancer formation have been developed 

and are in clinical use for the treatment of various form of cancer. Reprinted from 

Hanahan and Weinberg, 2011, with permission from Elsevier. 

 

1.1.1.1 Regulation of cell proliferation in breast cancer 

 

In a normal mammary gland, cell proliferation is tightly regulated by a complex 

interaction of hormones, growth factors and cytokines, and converges on activation of 

the cell cycle regulatory machinery, e.g. cyclins, cyclin-dependent kinases (CDK), 

CDK inhibitors, e.g. p16, and their regulators, e.g. c-myc, Ras/Raf/Erk. During the 

breast malignant transformation, expression and activities of these proteins is often 

deregulated, thereby the signaling pathways that control the normal proliferation are 

defective, causing the abnormal and unlimited growth of breast cancer cells (Butt et al., 

2008; Doisneau-Sixou et al., 2003; Mester and Redeuilh, 2008). The expression of 

oncogenes, cell cycle regulators and mitogenic signaling pathways are associated with 

malignant and aggressive phenotype, of cancer. 

 

In familial breast cancer, mutation of multiple breast cancer susceptibility genes, such 

as BRCA1, BRCA2 and p53 have been implicated. It has been shown that mutation of 

BRCA1, BRCA2, and p53 are involved in the deregulation of cell cycle control, cell 

proliferation, as well as genomic instability, subsequently leads to malignant 
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transformation of breast epithelial cells. The occurrence of these multiple mutations 

implicates the exertion of distinct selective pressure during malignant transformation in 

familial breast cancer (Gasco et al., 2003; Gretarsdottir et al., 1998; Holstege et al., 

2009). 

 

To date, the complexities of regulation of cellular proliferation remain elusive. An in-

depth understanding of regulation of cellular proliferation upon first steps of 

carcinogenic transformation of human breast epithelial cells may identify novel targets 

for diagnostic and therapeutic purposes. 

 

1.1.1.2 Regulation of protein synthesis in breast cancer 

 

Protein synthesis is the fundamental mechanism essential for any living cell, and is 

involved in normal physiology and disease development. Protein synthesis is a multiple 

step process that depends on the coordinated action of hundred of proteins and different 

RNAs. The protein synthesis consists of three phases: initiation, elongation and 

termination. Eukaryotic elongation factor 1A (eEF1A) is a GTP-binding protein that 

plays a crucial role in translational elongation process. Deregulation of translational 

elongation contributes to the development of cancer (Edmonds et al., 1996; Liu et al., 

2010).  

 

There are two eEF1A isoforms, eEF1A1 and eEF1A2, that are expressed in a tissue-

specific manner (Knudsen et al., 1993; Lee et al., 1992). During protein translation, 

following the codon/anticodon matching, GTPase activity of eEF1A catalyzes the 

binding of aa-tRNA to the A site of ribosome. The formation of peptide bond between 

the amino acid and the growing peptide chain is catalyzed by ribosomal peptidyl-

transferase. Following hydrolysis of GTP, eEF1A-GDP leaves the ribosome. In order 

for additional translocation events to occur, the GDP must be exchanged for GTP, 

which is carried out by eEF-1βγ (Moldave, 1985) (Fig. 3). 

 

eEF1A is a key regulator of various physiological processes, such as embryogenesis, 

aging, proliferation, apoptosis, protein degradation and cytoskeletal rearrangement 

(Condeelis, 1995; Kato et al., 1997; Lamberti et al., 2004). It is believed that the role of 

eEF1A in protein synthesis is of the key importance in these activities. However, non-

canonical functions of eEF1A, such as interaction with cytoskeleton, may also be 

considered. Deregulation of eEF1A in these processes may contribute to development 

of various diseases, including cancer (Edmonds et al., 1996; Liu et al., 2010). 

 

Several studies suggested the enhanced expression of eEF1A in human breast cancer 

cells (Chen and Madura, 2005; Pecorari et al., 2009). It was also reported that eEF1A 

increased metastatic potential of breast adenocarcinoma in rat (Edmonds et al., 1996). 

Therefore, eEF1A is involved in the breast tumorigenesis. 

 

Several reports implicated that post-translational modifications (PTMs) of eEF1A are 

associated with its regulatory function. As an example, phosphorylation of eEF1A1 is 
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involved in stimulation of GDP/GTP-exchange rate in rabbit reticulocytes (Peters et al., 

1995), and reduces binding to F-actin in rat liver cells (Izawa et al., 2000). Methylation 

of eEF1A was associated with the SV40-dependent transformation of mouse 3T3B 

cells (Coppard et al., 1983). As PTMs play a significant role in a wide array of cellular 

processes, uncovering novel PTMs in eEF1A1 enable us to understand how eEF1A1 

functions, and their contribution in tumorigenesis (Lin and Souchelnytskyi, 2010; Lin 

and Souchelnytskyi, 2011; Lin et al., 2010). 

 

 
 

Figure 3. Elongation phase of protein synthesis. During protein translation, following 

the codon/anticodon matching, GTPase activity of eEF1A catalyzes the binding of aa-

tRNA to the A site of ribosome. The formation of peptide bond between the amino acid 

and the growing peptide chain is catalyzed by ribosomal peptidyl-transferase. 

Following hydrolysis of GTP, eEF1A-GDP leaves the ribosome. In order for additional 

translocation events to occur, the GDP must be exchanged for GTP, which is carried 

out by eEF-1βγ. 

 

1.1.2 Breast cancer invasion 

 

Metastasis is the most common cause of death among the breast cancer patients. The 

understandings of mechanism of cancer metastasis enable us to develop the therapeutic 

strategies for targeting the metastatic cancer cells.  

 

Metastasis is a complex biological process that involves a series of events, i.e. 

detachment of tumor cells from primary side, invading into surrounding stroma, enter 

the circulation (extravasation) directly or through lymphatic spread, arrested and exit 

from the circulation (intravasation) and eventually colonization in the distal organs 

(Fig. 4) (Gupta and Massague, 2006).  
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Figure 4. Model of cancer metastasis. Metastasis proceeds through the progressive 

acquisition of traits that allow malignant cells originating in one organ to disseminate 

and colonize a secondary site. This involves the detachment of primary tumor cells, 

invading into surrounding stroma, enter the circulation (extravasation), arrested and 

exit from the circulation (intravasation) and eventually colonization in the distal 

organs. Reprinted from Gupta and Massague, Cell 2006, with permission from 

Elsevier. 

 

Most of the models of metastatic human breast epithelial cells have been developed by 

recovering cells from metastatic tumors formed in animals by originally non-metastatic 

cells. However, in these models there is no distinguishing between all the steps in 

cancer metastasis, e.g. no discrimination between invasiveness, extravasation, 

intravasation and colonization. Therefore, in vitro models reflecting specific steps of 

metastasis may provide crucial information on these specific steps, e.g. on detachment 

of cells from a primary tumor and invasion in stroma, passing in and from vessels 

through vessel walls, homing to specific organs and forming metastatic tumors in new 

tissues.  

http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6WSN-4MC1FM1-F&_image=B6WSN-4MC1FM1-F-4&_ba=&_user=650310&_coverDate=11/17/2006&_alid=908880429&_rdoc=6&_fmt=full&_orig=search&_cdi=7051&view=c&_isHiQual=Y&_acct=C000034918&_version=1&_urlVersion=0&_userid=650310&md5=71cc02e63aa29898630681302b24e382
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1.1.2.1 In vitro models of invasive breast cancer 

 

Current in vitro models have been focused on use of highly invasive and metastatic cell 

lines, and genetically-modified cell lines. Among the most commonly studied cell lines, 

Hs578T, MDA-MB-231, BT-549, and MDA-MB-435S cells are classified as highly 

invasive cells, which are frequently used as in vitro model of breast cancer invasion 

(Zajchowski et al., 2001). Recently, an isogenic model of MCF10 has been developed 

for the study of malignant transformation and invasion. Invasive MCF-10CA1h cl2, 

MCF-10CA1a cl1, and MCF-10CA1d cl1 used as in vitro model of invasiveness, as 

compared to initial untransformed outgrowths cells (MCF10MS and MCF10A), 

hyperplastic cells (MCF10AT1, MCF10AT1kcl2), and cancerous cells (MCF10CA1h 

cl13) (Hurst et al., 2009; Rhee et al., 2008; Worsham et al., 2006). However, these 

cells have also undergone passages in animals to select various clones, and therefore do 

not reflect strictly invasiveness but metastatic properties. 

 

It was shown that many proteins play important roles in breast cancer invasion. Non-

invasive cell lines transfected with these regulators also serve as in vitro model of 

breast cancer invasion. One of the examples is S100A4 model, in which the 

transfection with S100A4 breast cancer cell lines will lead to increased invasiveness 

(Jenkinson et al., 2004). 

 

More efforts are needed in order to understand the underlying mechanism of 

invasiveness, which may provide insight of both diagnostic and therapeutic importance. 

Special emphasis has to be on models which reflect well defined steps in metastasis. 

  

1.1.2.2 Molecular mechanisms of cancer invasion 

 

Breast cancer invasion is a complex biological process that involved a series of cellular 

events. These include an interaction of invasive cells with surrounding non-tumor 

stroma and cells, interaction between tumor cells, and changes in the tumor cell 

physiology. 

 

Invasion of cancer cells into surrounding stroma represents a first barrier of cancer cells 

to metastasize. For decades, cancer invasion models have been centered on protease-

driven mechanism (Liotta, 1986). A three-step model was developed to describe the 

biochemical events during cancer cell invasion of the extracellular matrix. The first step 

is adhesion, where cancer cell attach and bind to components of the extracellular 

matrix, such as laminin (for basement membrane) and fibronectin (for stroma). The 

second step is secretion of hydrolytic enzymes by malignant cells, or induction of host 

cells to secrete enzymes by anchored cancer cell, which can locally degrade matrix and 

attachment components. Lysis of the matrix most probably takes place in a highly 

localized region close to tumor cell surface. Some molecules, i.e. MMP-9, MMP-2, 

TIMP-1 and TIMP-2 are crucial in extracellular matrix and basement membrane 

degradation (Wolf et al., 2007). The third step is movement of cancer cell into region of 
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matrix modified by proteolysis. Continued invasion of extracellular matrix may take 

place by cyclic repetition of these steps. MMP regulate a broad spectrum of 

tumorigenic functions. Besides regulation of proteolytic activity in cancer invasion, 

MMP’s also promote growth, angiogenesis, and migration of cancer cells (Fig. 5) (Rao, 

2003). 

 

 
 

Figure 5. Matrix metalloproteinases are key regulators that promote tumor growth, 

angiogenesis, invasion and migration. Reprinted from Rao, Nature Reviews Cancer 

2009, with permission from Nature Publishing Group. 

 

Cell-cell interactions also play an important role in invasion of cancer cells. 

Homophilic epithelial cell-cell interaction could lead to activation of signaling to the 

cytoskeleton, E-cadherin and -catenin. Interaction with fibroblast is shown to be 

essential in invasion of epithelial cells, as it is capable of extracellular matrix (ECM) 

remodeling (Gaggioli et al., 2007; Macpherson et al., 2007). Interaction with 

macrophages will activate Wnt 5a signaling critical for macrophage-induced invasion 

of MCF-7 (Pukrop et al., 2006). 

 

Ability of epithelial-derived cancers to progress to an invasive, metastatic state 

correlates with a shift from adherent, epithelial shape to a motile, fibroblast-like 
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morphology, epithelial to mesenchymal transition (EMT) (Fig. 6) (Peinado et al., 

2007). In invasive cells, stable cell-cell and cell-ECM contacts are dissembled, actin 

cytoskeleton remodeled, and cells have an increased ability or migrate and degrade 

ECM (Thiery, 2002). Recent advances in DNA microarray technology have led to the 

isolation of several other metastasis-associated genes, many of the products of which 

are associated with the cellular cytoskeleton (Khanna et al., 2001) and its regulation 

(Clark et al., 2000). Immunohistochemical studies reported correlation between E-

cadherin loss and initiation and progression of tumors. 

 

 
 

Figure 6. During EMT process, cancer cells are characterized by the loss of cell–cell 

adhesion and polarity accompanied by cytoskeleton rearrangements and increased 

cell motility. Reprinted from Peinado, Olmeda and Cano, Nature Reviews Cancer 

2007, with permission from Nature Publishing Group. 

 

Further studies are needed to reveal the detail mechanism of cancer invasion, its 

regulators are involved signaling pathways, which are crucial in the developing of drug 

targets to block the invasive-specific pathway. Transcriptomics studies have indicated 

that the number of metastasis-related regulators may be significantly higher than has 
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been reported biased one gene/one protein studies. As proteins are the main functional 

entities in cells, proteomics is expected to deliver a comprehensive description of all 

proteins involved in invasiveness mechanism. 

 

1.1.2.3 BRMS1 in breast cancer invasion 

 

Breast cancer metastasis suppressor 1 (BRMS1), a member of a growing metastasis 

suppressors family, has been reported to reduce breast and melanoma metastasis in 

vivo without affecting primary tumor growth (Hedley et al., 2008; Hurst and Welch, 

2011; Liu et al., 2011). Recent progress in BRMS1 research leads us to the further 

insight in the molecular mechanism of BRMS1. It was suggested that BRMS1 can 

restore gap junctional intercellular communication of cells, as possible mechanism 

contributing to suppression of metastasis (Kapoor et al., 2004; Saunders et al., 2001). 

More recently, it was discovered that BRMS1 associates with large chromatin 

remodelling complexes such as SIN3:HDAC, which are the epigenetic regulators of 

gene expression. Besides, BRMS1 inhibits the activity of NF-κB (Cicek et al., 2009; 

Li and Li, 2010). Despite the recent advance of our knowledge in BRMS1 role in 

cancer metastasis, the involvement of BRMS1 in other signalling pathway and 

regulation of invasiveness of breast cancer cells is relatively unexplored.  

 

1.2 TGF SIGNALING 

 

1.2.1 TGF signaling and breast cancer 

 

Transforming growth factor-TGF is a regulatory polypeptide which belongs to the 

TGF superfamily of secreted growth factors. Three isoforms of TGF-, namely 

TGF1, TGF2, TGF3 were observed in mammalian cells (Massague et al., 2000). 

TGF is secreted as biological inactive, latent form L-TGF, and formation of 

biological active TGF is the consequence of cleavage of the pro-form, and 

dissociation of active TGF- from latency-conferring proteins, i.e. latency-associated 

peptide (LAP) and latent TGF-binding protein (LTBP).  

 

The TGF signaling consists of Smad and non-Smad pathway. In Smad pathway, the 

TGF intracellular signalling is initiated by binding of the ligand to the 

heterotetrameric complex of TGF receptors type II and type I. Activated type II 

receptor kinase subsequently phosphorylated and activated type I receptor. The 

activated type I receptor phosphorylates receptor-activated Smads (R-Smads), i.e. 

Smad2 and Smad3. The activated R-Smads bind to a common-mediator Smad4 (Co-

Smad) and this complex translocate into nucleus which leads to the activation or 

repression of transcription (Fig. 7) (Shi and Massague, 2003). 

 

In addition to the canonical Smad-dependent TGF- pathway, there are numbers of 

TGFsignalling pathways that do not involve direct activation of Smad proteins 

(Derynck and Zhang, 2003; Mu et al., 2011). These non-Smad pathways include 
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MAPK, Rho-like GTPase, and PI3K/Akt. These pathways are activated by receptor-

interacting proteins, and also by non-Smad substrates of the receptor kinases. Among 

which ShcA and Par6 were shown to be directly phosphorylated by TGF- receptor 

kinases (Lee et al., 2007; Ozdamar et al., 2005). 

 

 
 

Figure 7.  Smad-dependent TGF-β signaling. TGF- intracellular signalling is initiated 

by binding of the ligand to the heterotetrameric complex of TGF- receptors type II 

and type I. Activated type II receptor kinase subsequently phosphorylated and activated 

type I receptor. The activated type I receptor phosphorylates R-Smads. The activated R-

Smads bind to a Co-Smad and this complex translocate into nucleus which leads to the 

activation or repression of transcription. Reprinted from Shi and Massague, Cell 2003, 

with permission from Elsevier. 

 

TGF signaling plays important roles in a very broad range of cellular functions, i.e. 

proliferation, differentiation, migration, apoptosis, adhesion, angiogenesis, immune 

surveillance, survival, and ECM deposition. This diversity of TGF functions plays a 

role in TGF dual impact on tumor progression. In early stage of cancer, TGF plays a 

tumor suppressor role. In this stage, cancer cells are responsive to TGF, which will 

lead to growth inhibition, cell cycle arrest, and apoptosis. However, in advanced stage 

of cancer, TGF plays a tumor promotion role. The cancer cells may loss 

responsiveness to TGF and may acquire aberrant TGF signaling, followed by 

promotion of survival, proliferation, EMT and increased motility and invasiveness of 

the cells (Jakowlew, 2006). 

 

http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6WSN-4C5HGH5-4&_image=B6WSN-4C5HGH5-4-4&_ba=&_user=650310&_coverDate=06/13/2003&_alid=908880429&_rdoc=13&_fmt=full&_orig=search&_cdi=7051&view=c&_isHiQual=Y&_acct=C000034918&_version=1&_urlVersion=0&_userid=650310&md5=e7267a1060c0784280ce9161b2c4211f
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In breast cancer progression, TGF have also been implicated in both tumor suppressor 

and tumor promotion roles. Overexpression of TGF1 in mouse breast tissue inhibited 

tumorigenesis, while interfering with it receptor promote tumorigenesis (Pierce et al., 

1995). On the other hand, loss of TGF receptors are observed in advanced stage of 

human breast cancer (Gobbi et al., 2000). It was shown that expression of TGF 

associated with the progression of breast cancer. The increased expression of TGF1 

was observed in late stage breast cancer, particularly associated with invasion and 

metastasis (Gorsch et al., 1992; Walker and Dearing, 1992).

 

Due to the broad range of biological effects of TGF signaling in tumor progression, it 

has been extensively studied as a potential biomarker for diagnosis and prognosis and 

as a source of novel drug targets. 

 

1.2.2 TGF in the regulation of cancer invasion 

 

TGF play a pivotal role in invasive activity of tumor cells, either by affecting the 

stromal cells and microenvironment, or by affecting the tumor cells directly (Dumont 

and Arteaga, 2002). In the presence of TGF, ECM protein and protease secretion by 

fibroblast correlated with the invasiveness of breast cancer (Casey et al., 2008). On the 

other hand, direct affect of TGF on tumor cells can regulate their capacity of 

remodeling ECM by protease activities and EMT. 

 

TGF regulates the protease activities of tumor cells through a complex interaction 

network of various signaling pathway. In human breast epithelial cells, MMP2 and 

MMP9 upregulated by TGF are dependent on p38-MAPK, but not ERK (Kim et al., 

2004). Upregulation of MMP expression, in turn leads to activation of L-TGF, and 

provides a positive feedback to the regulation of invasion and migration (Johansson et 

al., 2000; Lin et al., 2000). Smad7 inhibited invasion activity in breast tumor cell lines 

and mouse (Azuma et al., 2005). Inhibition of Smad signaling by Smad7 lead to 

inhibition of MMP1 and MMP13 production and subsequently invasion of the cells 

(Leivonen et al., 2006). HGF treatment increased cellular migration/invasion in 

response to TGF signaling through the JNK/pSmad3L pathway (Mori et al., 2004). 

The induction of TGFβ leads to upregulation of MMP and suppression of TIMP (Wick 

et al., 2001). 

 

TGF is a crucial regulator of EMT, which lead to invasive phenotype of the tumor 

cells. During carcinogenesis, tumor cells show EMT and become less sensitive to 

TGF-mediated growth inhibition while showing increased tumor invasion and 

metastasis (Oft et al., 1996; Zavadil and Bottinger, 2005). Studies showed that TGF 

signaling interacts with other major protein hubs in regulation of invasion. Induction of 

-integrin and Src expression by TGF is essential for induction of EMT and invasion 

in breast epithelial cells (Galliher and Schiemann, 2006). TGF activation of NF-B 

lead to the induction of EMT and invasion of cancer cells (Neil and Schiemann, 2008). 

Earlier study showed that TGF activation of NF-B mediated expression of EMT and 
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metastasis-related genes in response to TGF (Huber et al., 2004). Several studies 

showed that TGF and EGF crosstalk play a crucial role in invasion activity of tumor 

cells. Overexpression of erbB2 can alter cellular responses to TGF-β and lead to 

invasion and migration (Seton-Rogers et al., 2004; Ueda et al., 2004). TGF- and EGF-

mediated invasion are probably linked to cytoskeleton rearrangement, however, further 

study is needed to elucidate the underlying mechanism of invasion. 

 

Due to the complexity of biological effects of TGF in cancer invasion, it has been 

extensively studied as a potential biomarker for predicting the invasive and metastatic 

capacity of cancer. 

 

1.3  PROTEOMICS AND SYSTEMS BIOLOGY 

 

1.3.1 General concept 

 

Personalized medicine is the most promising approaches in the treatment of various 

diseases, especially cancer. The use of appropriate biomarkers for personalized 

treatment has advantage over conventional therapeutics approach, as it confer 

maximum effectiveness with minimum side effect. Personalized treatment can be 

achieved by implementation of omic studies in clinical practices. Application of 

genomic, transcriptomic, proteomic and metabolomic studies deliver a vast amount of 

data that lead to the discovery of novel biomarkers for diagnostic, prognostic and 

therapeutic purposes. Therefore, further exploration in omic study could lead to the 

implementation of personalized medicine as a standard therapeutic scheme in the clinic 

(Lin et al., 2011). 

 

Proteomics is a global study of entire proteome of cell, tissue and organism in a 

particular condition and time point (Graves and Haystead, 2002). Proteomics is a very 

comprehensive discipline that includes the study of expression, function, localization, 

structure, modification of proteins, as well as protein-protein interaction (Graves and 

Haystead, 2002; Lim and Elenitoba-Johnson, 2004). A proteomics experiment 

generates vast amount of data that require further analysis, and systems biology is the 

main approach. Systems biology is an integrative science that studies the complex 

behavior of biological entities at the systems level (Kitano, 2002a; Kitano, 2002b). 

Integrating the proteomics data into systems biology language is an important approach 

in understanding the behavior of the complex organisms at various levels 

(Souchelnytskyi, 2005). In recent years, our knowledge of proteomics and systems 

biology is growing rapidly and create an excitement in scientific community because of 

its potential in novel biomarker and drug discovery (Duncan and Hunsucker, 2005). 

 

Proteomics studies are highly dependent on the technology for protein separation and 

identification, and bioinformatics for data analysis. By protein separation techniques, 

gel-based and liquid chromatography (LC)-based approaches represent the primary 

stream in proteomics. In gel-based approach, that is, conventional 2D gel 

electrophoresis (2D-GE) and 2D differential gel electrophoresis (2D-DIGE), the 
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proteins are separated by their isoelectric point (pI) and molecular weight (Mw). In LC-

based approach, the proteins or peptides are separated by using high performance liquid 

chromatography (HPLC) (Aebersold and Mann, 2003; Cravatt et al., 2007). The 

identification and characterization of proteins or peptides by mass spectrometry are 

followed after separation (Kolker et al., 2006). In recent years, antibody-based methods 

emerging as important approaches in proteomics. These approaches included the use of 

immunohistochemistry (IHC) on tissue microarrays (TMAs), pathway analysis using 

reverse phase protein arrays (RPPAs) and serum-based diagnostic assays using 

antibody arrays (Borrebaeck and Wingren, 2007; Brennan et al., 2010; Wingren and 

Borrebaeck, 2004). 

 

Ontological Classification Systems and Network 

Analysis 

Query Tools 

 

Visualization Tools 

 

Osprey 

(Breitkreutz et al., 2002) 

 

BioLayout 

(Enright & Ouzounis, 2001) 

 

CellDesigner 

(Funahashi et al., 2007) 

 

Cytoscape 

(Kohl et al. 2011) 

 

 

GO-TermFinder 

(Boyle et al., 2004) 

 

AmiGO 

(Carbon et al., 2009) 

 

MatchMiner 

(Bussey et al., 2003) 

 

 

GoMiner 

(Bussey et al., 2003) 

 

FatiGO  

(Al-Shahrour et al., 2004, 

2007) 

 

Onto-Express 

(Draghici et al., 2003; 

Khatri et al., 2002) 

 

GOSurfer 

(Zhong et al., 2004) 

 

GOTM 

(Zhang et al., 2004) 

 

Table 1. List of bioinformatics tools that are commonly used for gel-based proteomics. 

 

In the subsequent section, we focus our discussion on the various ways of translating 

gel-based proteomics data into systems biology using different bioinformatics 

approaches. Firstly, we will discuss the dataset from gel-based proteomics, including 

the acquisition of primary data and type of data for bioinformatics analysis. In the 

subsequent section, we will discuss the several way of analyzing the data acquired from 

gel-based proteomics, which included the ontological-based classification, systems and 

network analysis (Table 1). We will focus our discussion on the general concepts of the 

analysis, type of datasets used and bioinformatics software. Some examples of studies 

and future directions are presented for each approach (Lin et al., 2011). 
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1.3.2 Dataset in gel-based proteomics 

 

The general workflow of bioinformatics analysis of gel-based proteomics is shown in 

Figure 8. In gel-based proteomics, various types of datasets can be generated. There can 

be an annotated 2D gel, mass spectra, and list of identified proteins (Taylor et al., 

2003). These dataset can be qualitative or quantitative. In this section, we focus on the 

analysis of 2 type of datasets generated from annotated 2D gel, i.e. global expression 

profile and differential expression profile. 

 

 
 

Figure 8. General workflow of bioinformatics analysis of gel-based proteomics. Once 

the 2D gels are generated, 2 type of dataset can be acquired from annotated gel, i.e. 

global expression and differential expression profiles. These datasets can be used for 

further analysis by various approaches, such as ontological classification, hierarchical 

clustering and systems/network analysis. These analysis approaches can improve our 

insight into particular biological questions, such as discovery of novel disease 

biomarkers for diagnosis and prognosis, drug target, study of disease mechanism and 

disease classification. 

 

By identifying the protein spots on a 2D gel, a comprehensive, global protein 

expression profile can be generated. This approach can deliver a list of proteins 

expressed in a cell or tissue in a particular condition, which is exceptionally useful in 

understanding their biological characteristic. An example is a recent study on proteome 

profiling of breast epithelial cells with various proliferation potential. This study 

generate the most comprehensive 2D protein expression map with 183 proteins 

identified in 184A1 cells and 318 proteins identified in MCF10A cells, which lead to 
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the understanding of their biological properties and delivered a list of potential 

biomarkers of early event of tumorigenesis (Bhaskaran et al., 2009). 

 

By identifying the protein spots in 2D gels that are different in their staining intensity in 

different conditions, a differential expression profile can be generated. Various 

biological questions can be addressed by differential expression analysis. The proteome 

changes upon drugs application can be studied by comparing the 2D gel of a particular 

cell treated or not with drugs. For example, cellular response to histone deacetylase 

inhibitor in colon cancer cells was evaluated by such approach (Milli et al., 2008). 

Besides, various disease stages can also be compared, for example, a list of proteins 

were identified to be differentially regulated between normal liver tissue and 

hepatocellular carcinoma (Corona et al., 2010). Furthermore, the dynamic changes of 

proteome can also be studied. Comparison of the differentially expressed proteins in the 

neuroblastoma grown in mice in different time interval revealed the proteome changes 

of the disease progression and effect of host-tumor interaction (Turner et al., 2009). 

Therefore, differential expression analysis of 2D gels often called comparative 

proteomics. 

 

By applying various systems biology analysis tools, these proteomics dataset can 

further improve our insight into particular biological questions. The first objective of 

gel-based proteomics data mining is to search for protein of biological importance, such 

as diagnostic biomarker and potential drug target. By comparing two or more 

predefined biological conditions, we can precisely define the proteins of interest among 

thousands of spots in the 2D gel (Meunier et al., 2007). This can be achieved by using 

differential expression proteome profile, or by comparative analysis of two or more 

global protein expression profiles. The second objective of gel-based proteomics data 

mining is to use clustering approach to group or classify the proteins. This is important 

for understanding the complex biological systems, such as classification of tumor 

according to the expression of proteins, for the diagnostics and therapeutics purposes 

(Meunier et al., 2007). This approach can be realized applying the bioinformatics tools 

on both differential expression and global expression profile. In the subsequent section, 

we will discuss the analysis of gel-based proteomics dataset by using various 

approaches, and their biological significance.  

 

1.3.3 Ontological classification 

 

The postgenomic era has brought an exponential growth of biological databases. In 

recent years, researchers have begun to use unique identifiers to describe components 

of a database, and the relationship between them. The concept of unique identifiers 

forms the basis of ontology. Ontology can be described by a set of representative, 

unambiguous and non-redundant vocabulary or identifiers, which define classes, 

relations, functions, objects and theories (Gruber, 1993). It is not only represents an 

individual component but also its related components (Dimmer et al., 2008).  
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The Open Biomedical Ontology (OBO) consortium (http://www.obofoundry.org/) 

provides a resource where biomedical ontologies are presented in a standard format. 

Ontology-based approaches for data integration provide a platform of communication 

between researchers. It also allowed the retrieval/query of information across multiple 

resources and more efficient data mining and exploration. To gain the functional insight 

in a large-scale proteomics study, the traditional “literature mining” method is laborious 

and inefficient. Therefore, ontology-based approach is an effective solution.  

 

In gel-based proteomics, the large dataset can be annotated and explored by application 

of Gene Ontology (GO) (http://www.geneontology.org/). Gene Ontology is a part of 

the OBO, which is the most widely used ontology in biomedical research community 

(Smith et al., 2007). The main objective of GO is to produce a controlled and unified 

vocabulary for genes and gene products, such as proteins, that can be applied to all 

organisms. Furthermore, classification of these components in defined groups or classes 

allowed us to gain the functional insight in the large-scale proteomics data. 

 

GO annotation organizes genes or gene products into hierarchical order based on 3 

categories: cellular component, biological process and molecular function (The Gene 

Ontology Consortium, 2000). Cellular component describe the localization of particular 

active gene products in the cell or its extracellular environment. It may be particular 

cellular structure, e.g. mitochondrion, Golgi apparatus; or gene products groups, e.g. 

proteosome, ribosome. Biological process describes the biochemical reaction of gene 

products in the cells. Examples of higher order categories are cell death, signal 

transduction. Examples of lower order categories are lipid metabolism, purine 

metabolism. Molecular function describes the elemental activities of gene products at 

molecular levels. Examples of higher order categories are enzyme, cytoskeletal 

regulator. Examples of lower order categories are glycine dehydrogenase, apoptosis 

activator. Since March 2007, 25,000 unique GO identifiers have been created, these 

provide researchers a broad set of descriptors for cellular component, biological process 

and molecular function for genes and their products (Dimmer et al., 2008). 

 

There are various GO tools available for this task (Table 1). The complete list of tools 

can be found in http://www.geneontology.org/. These tools belong to either query tools 

or visualization tools. Prior to analysis, the genes or proteins have to be converted from 

generic or common name into the unique identifier, i.e. GO term, by using query tools. 

The most commonly used query tools are GO-TermFinder (Boyle et al., 2004), AmiGO 

(Carbon et al., 2009), and MatchMiner (Bussey et al., 2003). For example, the GO 

identifier for cyclin D3 is CCND3.  

 

Once the list of GO identifiers are generated, visualization the data are carried out, 

using the tools such as GoMiner (Zeeberg et al., 2003), FatiGO (Al-Shahrour et al., 

2004; Al-Shahrour et al., 2007), Onto-Express (Draghici et al., 2003; Khatri et al., 

2002), GOSurfer (Zhong et al., 2004), and GOTM (Zhang et al., 2004). These tools 

provide visualization of data in the form of either AmiGo view or Direct Acyclic Graph 

(DAG) view (Fig. 9). AmiGO view is in the form of expandable tree structures, and it 
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is linked to external databases, such as NCBI and CGAP. DAG is similar to hierarchies 

but differ in that a more specialized and narrower term or “child” can be related to more 

than one less specialized and broader term or “parent”. Each term are represented by a 

node and they connected by path in hierarchical order. Each node can often be reached 

from multiple paths, which allow the comparison of genes/gene products involved in 

more than one molecular function or biological processes. 

 

 
 

Figure 9. Data visualization of ontological-based classification. Gene Ontology tools, 

such as GoMiner showed in this figure, provides visualization of data in the form of 

either AmiGo view or Direct Acyclic Graph (DAG) view. (a) AmiGO view is in the form 

of expandable tree structures, and it is linked to external databases. (b) In DAG view, 

each GO term are represented by a node and they connected by path in hierarchical 

order. Each node can often be reached from multiple paths, which allow the 

comparison of genes/gene products involved in more than one category. 

 

In gel-based proteomics, data generated from global expression and differential 

expression profiles can be used for ontological-based classification. Many studies 

suggested that ontological classification is a powerful tool in functional characterization 

of the cells in gel-based proteomics studies. For instance, a study from Alfonso et al. 

showed the use of ontological classification in a gel-based proteomics study to provide 

a functional insight of the colorectal cancer. In this study, 41 out of 52 analyzed 

proteins were unambiguously identified as being differentially expressed in colorectal 

cancer (Alfonso et al., 2005). An ontology analysis of these proteins revealed that they 

were mainly involved in regulation of transcription, cellular reorganization and 

cytoskeleton, cell communication and signal transduction, and protein synthesis and 

folding (Alfonso et al., 2005). 

 

Although current proteomics study benefit from using Gene Ontology, the major 

drawback is that Gene Ontology does not describe and annotate the multiple forms of a 
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gene, such as alternative slicing, proteolytic cleavage and post-translational 

modification. Therefore, Gene Ontology cannot describe the functional stage of the 

gene products. In recent year, Protein Ontology (PRO) database has been created, 

which provide a formal classification of proteins (Natale et al., 2007; Natale et al., 

2011; Reeves et al., 2008). The PRO included the classification of proteins based on the 

basis of evolutionary relationships and the structured representation of multiple protein 

forms of a gene. An initial attempt in applying PRO for the annotation of TGF 

signaling proteins showed that PRO provide a more accurate annotation and also 

facilitate various analysis, such as cross-species analysis, pathway analysis and disease 

modeling (Arighi et al., 2009). Despite of that, implementation of PRO in proteomics 

study is still in the infancy stage and there is no tools developed for the analysis of 

large-scale proteomics data. This implicates that further refinement and development of 

tools for PRO is needed in order to fill the gap. 

 

1.3.4 Systems and network analysis 

 

The behavior of a biological system, such as cells, is the consequence of complex 

interaction between their individual components, such as DNAs, proteins, metabolites, 

and other biological active molecules. In the past decades, signaling pathway has been 

the only approach to understand the interaction between these components. However, it 

is impossible to predict the behavior of biological systems solely from understanding of 

their individual component or single signaling pathway. Integration of signaling 

pathways into a higher order biological network is a very crucial approach for studying 

the complex behavior of a biological system. These can be achieved by implementation 

of systems and network analysis tools.  

 

Over the past few years, application of system and network analysis in genomics and 

proteomics study had showed a great promise in understanding of complex behavior of 

biological systems. Global mapping of the cells or organelles using these tools enable 

us to discover, visualize and explore the behavior of the biological systems relevant to 

our experimental design. In addition, by studying the topological, functional, and 

dynamic properties of biological networks, the regulatory and control mechanism of the 

cells underlying the changes of environment can be explored. Examples are studies of 

the overexpression of certain signaling pathway of the tumor cells under the challenge 

with chemotherapeutics drug (Barabasi and Oltvai, 2004; Kwoh and Ng, 2007). 

 

Networks are displayed as graphs, which represented by nodes and edges/links. Nodes 

are displayed in various shapes, which represent various types of molecules, such as 

genes, proteins, and metabolites. The nodes are connected with each other by the edges 

or links. Edges or links represent the biological relationships between the nodes, such 

as induction, activation, inhibition, post-translational modification, enzymatic-substrate 

reaction, and physical binding. Most of the biological networks are scale-free, in which 

most of the nodes have only a few links, while a few nodes with a very large number of 

links, which are called hubs (Barabasi and Oltvai, 2004).  
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The general principle of network construction is based on the known interaction pair of 

gene or protein. In brief, Swiss-Prot and GeneBank accession numbers from the 

experimental dataset are used to search against the external databases that contain 

information about the interaction between the genes or proteins. Subsequently, the 

genes or proteins from the experiment data were integrated and merged with their 

known interacting partners and pathways. This process is continued until all proteins of 

interest are included into the network. 

 

 
 

Figure 10. Visualization of network structure using Cytoscape. Networks are displayed 

as graphs, which represented by nodes and edges. For visualization of network 

structure, Cytoscape supports a variety of network layout algorithms, such as (a) force-

directed layout, (b) circular layout, (c) hierarchical layout, and (d) spring-embedded 

layout. 

 

There are a number of available tools for construction and analysis of networks 

(Thomas and Bonchev, 2010), such as Osprey (Breitkreutz et al., 2002; Breitkreutz et 

al., 2003), BioLayout (Enright and Ouzounis, 2001), CellDesigner (Funahashi et al., 

2007), and Cytoscape (Kohl et al., 2011; Smoot et al., 2011). Each tool has distinct 

functional features. Although most of these tools were initially designed for genomics 

data analysis, most of them are well adapted for proteomics data analysis. For gel-based 

proteomics, both global expression profile and differential expression profile can be 

used to construct the network, depending on the experimental design and question to be 

answered.  
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Here we show an example of workflow of network analysis in gel-based proteomics, by 

using Cytoscape. Cytoscape is open source software that provides basic functionality 

for integrating proteomics data on the network, editing and visualization of network, 

and also implementation of external plug-ins for network analysis. Data generated from 

gel-based proteomics, i.e. the list of the proteins, are integrated with the graph using 

tools for network construction, such as MiMi (Gao et al., 2009), cPath (Cerami et al., 

2006) and BioNetBuilder (Avila-Campillo et al., 2007). Subsequently, using the 

annotation tools, the node and edge can be annotated with attribute and expression data, 

such as expression ratio obtained from 2D gel analysis. For visualization of network 

structure, Cytoscape supports a variety of network layout algorithms, such as spring-

embedded layout, circular layout and hierarchical layout (Fig. 10). In order to reduce 

the complexity of a large network, user can selectively display the set of nodes and 

edges in the graph, using graph selection and filtering tools. Nodes and edges can be 

selected according to a wide variety of criteria, including selection by name or by the 

property of the attribute (Fig. 11) (Shannon et al., 2003).  

 

 
 

Figure 11. Graph selection tool in Cytoscape. User can use graph selection tool to 

reduce the complexity of the graph. In this example, the components of ERBB pathway 

were selected and colored (green) using selection tools. 

 

When the network construction is complete, user can implement various external plug-

ins for analysis of the network. This is one of the most powerful functionality of 

Cytoscape for solving biological questions by mean of network exploration. There is a 

variety of plug-ins which is commonly used in network analysis. Several examples of 

Cytoscape plug-ins for network analysis, such as MCODE (Bader and Hogue, 2003), 

NetworkAnalyzer (Assenov et al., 2008) and Centiscape (Scardoni et al., 2009), are 

discussed here. MCODE is a plug-in that search for clusters or highly interconnected 

regions in the network (Bader and Hogue, 2003). NetworkAnalyzer is a Java plug-in 
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that analyses and visualizes the molecular interaction networks (Assenov et al., 2008). 

These enable us to understanding the property of biological network, such as protein 

signaling network, protein-protein interaction network, that are of biological 

importance. Centiscape is another plug-in for analysis of complex topology of 

biological network (Scardoni et al., 2009). Centiscape computes centrality indexes of 

each node in the network, and relationship between the nodes. This may enable us to 

identify the critical nodes and regulatory circuits in the protein network. 

 

In gel-based proteomics, network construction and pathway analysis are very useful in 

identifying novel regulatory mechanism of diseases and drug target discovery (Dudley 

and Butte, 2009). This was showed by a recent study that network analysis of 

proteomics data from clear cell renal cell carcinoma patient revealed the role of TNFα 

in clear cell renal cell carcinoma pathogenesis. In addition, it was suggested that 

clinically available TNFα inhibitors, such as thalidomide and etanercept can be used for 

the treatment of renal cell carcinoma (Perroud et al., 2006). 

 

Network and pathway analysis is a robust approach in analyzing large proteomics 

dataset. However, network analysis is unbiased and hypothesis-free because the built of 

network are based on known interaction sets that recruited from published data.  As a 

consequent, network analysis is not able to uncover the new or unknown pathway and 

interaction. Nevertheless, network analysis remains a powerful tool in understanding 

the gel-based proteomics data, and it can serve as a good starting point for a further 

exploration of the dataset. 
 

1.4 PROTEOMICS AND SYSTEMS BIOLOGY IN BREAST CANCER 

RESEARCH 

 

Tremendous efforts have been made during past decade in understanding the biology of 

normal and diseased cells at systemic level. In recent year, proteomics is one of the 

most common approaches in the study of breast cancer. Proteome profiling of a number 

of breast cancer cell lines has been reported, such as MCF7, HMEC, MCF10A, HB4a, 

HB2, 8701-BC, EM-G3, and 184A1 cells (Hamler et al., 2004; Jacobs et al., 2004; 

Page et al., 1999; Selicharova et al., 2007). Most of the breast cancer cell lines were 

used to study specific treatments, such as chemotherapeutic drugs (Souchelnytskyi, 

2002). Besides, proteome profiling of various biological materials, including serum, 

plasma, tissue, nipple aspirate fluid, ductal lavage fluid and saliva has also been 

reported (Gast et al., 2009). 

 

Despite many proteins from proteome profiling study have been reported to possess 

significant diagnostic and prognostic value, only few of them have been characterized. 

Moreover, none of the identified biomarkers has been validated and investigated for 

their utility as breast cancer markers in clinical practices. The importance of proteomics 

analysis at systems level has been implicated (Souchelnytskyi, 2005). Combination of 

proteomics and systems biology is one of the most comprehensive approaches in 
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identifying the novel function and signaling pathway of the identified markers, which 

lead to the further development of biomarker for clinical application. 
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2 AIMS OF STUDY 

 

The specific aims are: 

 

 To identify set of proteins associated with acquiring of the high proliferation rate 

upon carcinogenic transformation of human breast epithelial cells by global 

expression proteome profiling approach. 

 

 To establish an invasiveness model of isogenic human breast epithelial cells and to 

identify key regulators and prognostic signature of breast cancer invasion by 

differential expression proteome profiling approach. 

 

 To identify and explore eEF1A1 as a novel substrate of TR-I and the role of serine 

300 phosphorylation of eEF1A by TR-I in the regulation of protein synthesis, cell 

proliferation, and promotion of carcinogenesis. 

 

 To study the role of serine 300 phosphorylation of eEF1A by TR-I in the 

regulation of cell cycle regulation. 

 

 To study the mechanism of BRMS1 in the invasiveness of breast cancer cells and 

the underlying signaling pathway. 

 

 

 



 

  25 

3 RESULTS AND DISCUSSION 
 

3.1 PAPER I 

 

Comparative proteome profiling of MCF10A and 184A1 human 

breast epithelial cells emphasized involvement of cdk4 and cyclin D3 

in cell proliferation 

 

To gain insights into molecular mechanisms which may explain how proliferation rates 

of cells are defined, we performed comprehensive proteome profiling of 184A1 and 

MCF10A cells. 184A1 and MCF10A cells are often used in breast cancer research 

(Ethier, 1996; Hondermarck et al., 2001; Lacroix and Leclercq, 2004; Souchelnytskyi, 

2002). These two cell lines were established from normal human breast epithelial cells 

and non-disease tissue, and they have showed significant similarities. Notably, 184A1 

and MCF10A cells express wild-type p53 and pRb, show enhanced telomerase activity, 

have near-diploid karyotypes with minimal rearrangements, negative ER status, and 

express keratins 14, 8 and 18 (Ethier, 1996; Lacroix and Leclercq, 2004; Stampfer and 

Yaswen, 2000). The important feature of 184A1 and MCF10A cells is that they both 

are immortalized, but not tumorigenic. These characteristics put these cells at the step 

of early changes on the scale of tumorigenic transformation. However, evaluation of 

proliferation rates confirmed that MCF10A cells proliferate faster, as compared to 

184A1 cells, and as measured by [
3
H]thymidine incorporation assay. This implicates 

that MCF10A cells are more advanced in transformation process, as compared to 

184A1 cells.  

 

In this paper, we described the most comprehensive proteome expression map of 

184A1 and MCF10A cells. We performed proteome profiling of 184A1 and MCF10A 

cells. By systemic identification of all proteins detected in 2D gels using MALDI-TOF 

mass spectrometry, we identified 183 proteins in 184A1 cells and 318 proteins in 

MCF10A cells. In combination with other reports, our data contribute to annotation of 

proteomes of human breast epithelial cells. As an example, the overall protein 

expression maps of the normal primary luminal and myoepithelial cells were similar to 

those of 184A1 and MCF10A (Page et al., 1999).  

 

Functional clusters were defined by GoMiner, which is a tool used to identify 

biological processes and functions represented by proteins and genes of interest 

(http://discover.nci.nih.gov/gominer/). As it was expected, analysis of functional 

domains represented by identified proteins confirmed significant similarities of 184A1 

and MCF10A cells, despite differences in protocols for establishing of 184A1 and 

MCF10A cells.  

 

To explore relations between identified proteins in 184A1 and MCF10A cells, we 

built large-scale networks in which identified proteins formed connections between 
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themselves. The networks allowed incorporation of other proteins which are in direct 

physical or functional relations with the proteins identified by us. Such approach 

partially compensated for the limitations of identification of only a part of proteome, 

and introduced into the analysis proteins and genes which have not been identified or 

detected in 2-D gels. Networks which were built with all identified proteins showed 

complex character for both 184A1 and MCF10A cells. Both networks had features of 

a scale-free network, although highly connected components were observed. These 

networks showed similarities in regulatory mechanisms unveiled by identified 

proteins and their analysis. Similarities included involvement of TNF, AKT, F2, and 

IGF hubs. The second important observation is the higher expression in MCF10A 

cells proteins directly involved in cell cycle regulation and mitogenic signaling, as 

compared to 184A1 cells. Such enhanced expressions of proliferation-dependent and 

growth-promoting proteins are likely to explain why MCF10A cells have higher 

proliferation rate, as compared to 184A1 cells.  

 

Among proteins of interest, we focused on cdk4 and cyclin D3 which are known as 

potent direct regulators of the cell cycle (Jiang et al., 2007; Yu et al., 2006). Cyclin D3 

can bind cdk4, and the resulting complex can phosphorylate pRb. The level of D-

cyclins, including D3, is regulated by extracellular stimuli, and therefore cyclin D3 can 

be considered as a mediator of signals to the core cell cycle machinery. Expression of 

cyclin D3 is required for progression of the cell cycle in human breast cancer cells 

(Jiang et al., 2007). In human breast tumors high levels of expression of cdk4 and 

cyclin D3 were observed, as compared to normal breast tissues (Ito et al., 1996; 

Montanaro et al., 2007). Cdk4 kinase activity was also found to be required for breast 

tumorigenesis (Yu et al., 2006), and involvement of cdk4 and cyclin D3 in a number of 

other cancers was reported, e.g. in melanoma, prostate cancer and acute myeloid 

leukemia. These reports of cdk4 and cyclin D3 role in regulation of the cell 

proliferation and their expression in breast tumors and normal tissues suggested that our 

data are of relevance to the observations with clinical samples. Our data showed that 

higher expression of cdk4 and cyclin D3 in MCF10A cells may promote higher 

proliferation rate, as compared to 184A1 cells, and as was validated by using siRNA 

approach. Thus, our results suggest that enhanced expression of cdk4 and cyclin D3 

may be among the early events in the breast cancer progression. 

 

A comprehensive proteome profiling of human breast epithelial cells is required for 

understanding of carcinogenesis. Reported here proteome datasets of 184A1 and 

MCF10A cells will be of importance not only for cancer studies in vitro, but also for an 

extrapolation of results obtained with cultured cells to proteome changes in tumors 

from patients.  
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3.2 PAPER II 

 

Proteome signature of invasiveness of human breast epithelial cells 

 

Metastases are the main cause of lethality in breast cancer. Invasiveness of malignant 

cells from the site of a primary tumor is the first step of metastasis. Knowledge of 

mechanisms of invasiveness is essential for development of novel treatments and novel 

prediction markers (Mego et al., 2010; Valastyan and Weinberg, 2011). However, 

current in vitro models have been focused on use of highly invasive and metastatic cell 

lines, and genetically-modified cell lines, these cells do not reflect strictly invasiveness 

properties. In this study, we report a development of an isogenic model of invasiveness 

of human breast epithelial cells and its proteome profiling. This allows us to identify 

key regulators of breast tumour invasiveness and may be explored as a prognostic 

signature of invasiveness.  

 

To generate isogenic model of invasiveness of human breast epithelial cells, we use 

non-invasive MCF7 cells. This was performed using collagen invasion assay. Collagen 

invasion assay was used to collect more than 50 clones of MCF7 cells which showed 

enhanced invasiveness. Two cycles of selection were performed, with each cycle 

consisting of collection of the collagen-invading cells and their expansion. Selected 

invasive cell clones were further subjected to a rigorous validation using membrane 

invasiveness assay to confirm their invasive phenotype. For evaluation of invasiveness, 

membranes were coated with matrigel. For proteomics study, we selected a clone 

MCF7c46, as this clone was among the most invasive and stable in maintaining of its 

invasive phenotype over the long-term culturing.  

 

2D gels were generated for MCFc46, MCF7 and MDA-MB-231 cells. For each cell 

line, 2000 protein spots were detected in a 2D gel in average. The overall patterns of 

protein separations in 2D gels of tested cells were similar, which is in line with 

similarity of origin of the cells, i.e. from breast epithelium. Gel image analysis was 

performed to detect protein spots differentially expressed between MCF7c46 and 

MCF7, MCF7 and MDA-MB-231, and MCF7c46 and MDA-MB-231. These three 

combinations allowed extraction of proteins which are invasiveness-specific, and 

exclude proteins which changed their expression due to differences between the cell 

lines and due to invasiveness-unrelated changes upon selection of the MCF7c46 clone. 

 

We identified 150 proteins which change their expression upon acquisition of invasive 

phenotype by MCF7 cells (parental MCF7 vs invasive MCF7c46). We identified also 

302 proteins with different expression in invasive MCF7c46 and metastatic MDA-MB-

231, and 279 proteins with different expression in non-invasive parental MCF7 and 

MDA-MB-231 cells.  

 

We validated expression of HNF4 and BRMS1 in MCF7, MCF7c46 and MDA-MB-

231 cells. For BRMS1, proteome profiling data showed that expression is enhanced in 

MCF7, as compared to MCF7c46 and MDA-MB-231. To validate this observation, we 
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perform immunoblotting of total cell extract with specific antibodies. We observed that 

BRMS1 was expressed at higher levels in MCF7 cells, as compared to MCF7c46 and 

MDA-MB-231 cells. Correlations of proteomics data and immunoblotting results were 

also observed for HNF4 protein. These results support observed changes in the 

proteome profiling. 

 

The analysis of identified proteins was performed to extract only proteins which would 

be related to acquisition of invasive phenotype. Notably, difference between MCF7c46 

and MDA-MB-231 was considered as cell type-related. Difference between MCF7 and 

MDA-MB-231 was considered as a combination of the cell type-, invasiveness- and 

metastasis-related. Difference between MCF7 and MCF7c46 were considered as 

invasiveness-related if they were present in MCF7 vs MDA-MB-231 and absent in 

MCF7c46 vs MDA-MB-231 comparisons. These combinations showed that the 

invasiveness signature contains 84 proteins. This analysis was further elaborated by 

analysis of networks formed by the identified proteins, as described below. 

 

Functional clustering of identified proteins showed that overall representation of 

domains in all 3 datasets was similar, with cellular metabolism being the largest 

affected functional domain. However, a portion of differentially expressed proteins 

involved in ECM organization and biogenesis were found to represent non-invasive 

versus invasive/metastatic subsets. 

 

To extract invasive-specific network, dependencies common for the MCF7/MCF7c46 

and MCF7/MDA-MB-231 were extracted from these two networks. This common 

network was then compared with the network formed by MCF7c46/MDA-MB-231 

differentially expressed proteins. The MCF7c46/MDA-MB-231 network represents 

proteins different due to the cell line origin and metastasis, and probably not related to 

acquiring invasiveness only. Dependencies related to the cell line differences were 

subtracted from the invasive-specific network. The final network represents invasive-

specific dependencies with 924 nodes of the whole network, as evaluated by the 

Cytoscape-built network. Top functions represented by the invasiveness-related 

network are regulation of metabolism, cell cycle, proliferation, cell death and cell 

motion. Top sub-networks represented these cellular functions, and defined sets of 

specific nodes for each functions. As an example, cyclin-dependent kinases and 

estrogen receptor- were among nodes involved in regulation of cell proliferation. 

TGF, EGF and FGF were also strongly represented as regulators of cell functions 

affected by acquisition of invasiveness phenotype.  

 

Topology analysis showed that the invasive-specific network has features of a scale-

free network, with close to rectangular hyperbolic distribution of frequency to the 

number of shared neighbors. This suggests that the regulation of invasiveness is rather a 

robust system. The nodes of high importance for robustness of a scale-free network are 

often the nodes of highest weight in the network. These nodes represent key regulators 

of the studied process, as they have strongest impact on the system stability and 

response to perturbation. In the context of invasiveness, we expect that the key nodes of 
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the invasiveness network would be crucial regulators of invasiveness. Analysis of the 

degree of connectivity of nodes identified EGFRB, TAF1, HNF4, MYC and RB1 as 

potential key regulators. An impact of other nodes, e.g. TGF, was estimated as 

significant due to higher betweenness as expected to a node with such connectivity. 

 

TGF and EGF were two growth factors that appeared as key nodes and in the top of 

functional domains. TGF and EGF are also known to affect breast tumorigenesis, and 

their signaling mechanisms are targeted in treatment of breast cancer. Therefore we 

explored how TGF and EGF may cooperate in regulation of invasiveness. The TGF 

and EGF-centered network showed 2-levels with more than 30 highly connected nodes 

which may define how TGF and EGF may cooperate. Among these nodes were 

identified insulin, VEGF, HNF4 and NFB. Studies of diabetes impact on breast 

cancer output have shown that diabetes, and therefore deregulated insulin signaling, 

correlated with worse prognosis and aggressive development of the disease. The rate of 

death from breast cancer was enhanced from 20 % to 50 % for patients who suffered 

also from diabetes. Our study indicates that the insulin signaling disturbance may 

interfere with the invasiveness-related network signaling. 

 

In conclusion, we generated MCF7c46, an isogenic model of breast cancer invasion, 

which allowed the study of cancer invasion activity as a distinct step in metastasis. 

Proteome profiling and systemic analysis showed relations of TGF, EGF, insulin, 

VEGF, HNF4 and NFB in regulation of invasiveness. This indicates that insulin 

signaling disturbance may interfere with the invasive network, thus explained the 

increased risk of breast cancer metastasis in diabetes patients. 
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3.3 PAPER III 

 

Phosphorylation of eukaryotic elongation factor eEF1A at Ser300 by 

type I transforming growth factor--receptor (TR-I) results in 

inhibition of protein translation 

 

More than 100 proteins associated with TGF receptor complex were identified, and 

many of these interactions are dynamically dependent on the activation of the receptor 

complex. These suggested that, in addition Smad2 and Smad3, and Smad-independent 

signalling substrate (i.e. ShcA, Par6), TGF receptors might have more substrates to be 

uncovered. Since the kinetics of phosphorylation is very rapid by its nature, and the 

interaction between a kinase and its substrate is transient, identification of substrates of 

TGF receptors remains a daunting task. Undoubtedly, characterization of the novel 

substrates might reveal novel molecular mechanisms of TGF signalling.  

 

To identify novel substrate of TR-I, we screened a human fetal lung gt11 phage 

library with purified TR-I containing constitutively active kinase. The screening 

identified eEF1A1 as a novel substrate that is directly phosphorylated by TR-I 

containing constitutively active kinase. Phosphopeptide mapping and phosphoamino 

acid analysis identified Ser300 as the site of phosphorylation. We observed TGF-1-

dependent phosphorylation of eEF1A1 upon transfection of wild-type TR-I, strong 

phosphorylation upon transfection of constitutively active TR-I, and no 

phosphorylation upon transfection of kinase-inactive TR-I. SB431542 strongly 

inhibited Ser300 phosphorylation, further confirm the involvement of TR-I in 

phosphorylation of eEF1A1. 

 

We showed that the phosphorylation of eEF1A1 at Ser300 by TR-I is a mechanism of 

a direct inhibitory effect of TGF on protein synthesis, cell proliferation, anchorage-

dependent cell growth and anchorage-independent cell growth. We found that the 

phosphorylation of Ser300 is also altered in human breast cancer. Enhanced 

expression of eEF1A was observed in human cancers, without discriminating its 

isoforms1 and 2, and eEF1A was found to promote carcinogenic transformation of 

epithelial cells and fibroblasts (Anand et al., 2002; Cans et al., 2003; Chen and 

Madura, 2005; Joseph et al., 2002; Taniguchi et al., 1991; Tatsuka et al., 1992). 

eEF1A is highly expressed in metastatic cell lines (Taniguchi et al., 1991; Tatsuka et 

al., 1992), tumorigenesis. TGF signaling also has a strong impact on tumorigenesis 

(Feng and Derynck, 2005; Massague, 2008; Miyazono et al., 2003). Our results show 

that eEF1A1 is a convergence point of TGF signaling and regulation of protein 

synthesis, with the direct phosphorylation of eEF1A1 by TR-I as a triggering 

mechanism of this crosstalk.  

 

eEF1A1 has a number of functions in mammalian cells (Liu et al., 2002). Location of 

Ser300 in domain II of eEF1A pointed to the possible interference of Ser300 
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phosphorylation with aa-tRNA binding, which was confirmed experimentally. This is 

in agreement with the potent growth-inhibitory activity of TGF and may be the 

mechanism that prepares cells for the lower rate of proliferation by inhibiting protein 

synthesis. Our observations indicate that TGF has an impact on protein synthesis via 

targeting eEF1A1. This pathway does not require transcriptional activation of genes 

and may function in cooperation with the other pathways of TGF, e.g., the Smad-

dependent pathway (Feng and Derynck, 2005; Massague, 2008; Miyazono et al., 

2003). An indirect effect of TGF on the cell cycle via activation of 

dephosphorylation of p70S6K in EpH4 cells has been reported (Petritsch et al., 2000), 

although in smooth muscle cells, TGF had no effect on p70S6K activity 

(Krymskaya et al., 1997). An involvement of the mTOR pathway in TGF-dependent 

regulation of cell size, and therefore protein synthesis, via S6K1 and eIF4E binding 

protein 1 has also been reported (Lamouille and Derynck, 2007). Two proteins known 

to be involved in protein synthesis, TRIP-1 (a component of the eIF3 complex) and 

eIF2a, have also been reported as modulators of TGF- signaling, but not in the 

context of regulation of mRNA translation (Chen et al., 1995; Choy and Derynck, 

1998; McGonigle et al., 2002). Multiplicity of TGF-initiated pathways is a feature 

that ensures robustness of TGF action. Smad2 and Smad3 phosphorylation by TR-I 

is observed as early as after 20 min of treatment with TGF, followed by initiation of 

transcriptional responses (Feng and Derynck, 2005; Massague, 2008; Miyazono et 

al., 2003). eEF1A1 phosphorylation at Ser300 contributes to the inhibition of cell 

proliferation predominantly at the late stage of TGF action, after 4 to 6 hr of cell 

treatment with TGF.  

 

Furthermore, we also observed decreased Ser300 phosphorylation in human breast 

cancer, as compare to normal breast tissue, indicates that this mechanism may be 

implicated in tumorigenesis, because decreased phosphorylation at Ser300 correlates 

with the higher proliferation rate of cells. Thus, identification of eEF1A1 as a 

substrate of TR-I unveils a novel translation-related regulatory pathway downstream 

of TR-I. 
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3.4 PAPER IV 

 

Eukaryotic elongation factor eEF1A1 promotes and Ser300 mutants 

of eEF1A1 inhibit transition through the S and G2/M phases of the 

cell cycle 

 

In this paper, we described that the enhanced expression of the wild-type (WT) 

eEF1A1 promoted proliferation of MCF-7 cells. Mutations of the Ser300 residue in 

eEF1A1 result in inhibition of aa-tRNA loading onto eEF1A1, and subsequently in 

inhibition of protein synthesis. Expression of the Ser300Ala or Ser300Glu mutants of 

eEF1A1 decreased proliferation of MCF-7 cells.  

 

TGFβ1 is known to have a direct effect on the cell cycle by regulating the activity of 

CDKs, CDK inhibitors and cyclins (Feng and Derynck, 2005; Massague, 2008; 

Miyazono et al., 2003). When the MCF-7 cells were treated with TGF1, the 

[
3
H]thymidine incorporation was dose-dependently inhibited in the WT eEF1A1 

expressing cells and in the empty vector expressing control cells. No TGF1 

responsiveness was observed in cells expressing Ser300 mutants of eEF1A1. This is 

expected, as the mutants cannot be phosphorylated by TR-I (Lin et al., 2010). 

[
3
H]thymidine incorporation test measures synthesis of the genomic DNA and provides 

a readout of how fast the cell cycle is.  

 

To examine the effect of eEF1A1 on the regulation of the cell cycle, we analyzed 

progression of the cells transfected with WT or various mutants of eEF1A1 through 

G0/G1, S, and G2/M phases. Using FACS analysis, we monitored distribution of cells 

in the various phases of the cell cycle. FACS results showed that the WT eEF1A1 

promoted transition of MCF-7 cells through the S- and G2/M-phases and accumulation 

in G0/G1 phase. Abrogation of the binding of aa-tRNA, and therefore inhibition of 

protein synthesis, by mutating Ser300 in eEF1A1, resulted in slower transition of the S-

phase, as compared to the WT eEF1A1. Upon treatment with TGF1, eEF1A1-WT 

decreased the accumulation of cells in G0/G1 phase. Abrogation of Ser300 (S300A) 

and mimic phosphorylation at Ser300 (S300E) of eEF1A1 inhibited TGF-dependent 

accumulation of cells in G0/G1 phase. 

 

In conclusion, our study suggested that overexpression of eEF1A1contributed to the 

increased proliferation of cells by promoting transition of cells through the S- and 

G2/M-phases of the cell cycle. aa-tRNA binding-impaired mutants of eEF1A1, 

especially Ser300Glu, showed the opposite effect. This indicates that the main 

contribution of eEF1A1 to the cell cycle regulation is by the promotion of the transition 

through the cell cycle. Future study will focus on investigating the detail signaling 

pathway of eEF1A1 and the Ser300 mutation in regulation of cell cycle. 
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3.5 PAPER V 

 

TGF and EGF coordinately Modulate BRMS1-mediated Breast 

Cancer Invasion by Activation of Focal Adhesion and Cytoskeletal 

Rearrangement 

 

Breast cancer metastasis suppressor 1 (BRMS1) has been reported to reduce breast 

and melanoma metastasis in vivo without affecting primary tumour growth (Hedley et 

al., 2008; Hurst and Welch, 2011; Liu et al., 2011). Recent progress in BRMS1 

research leads us to the further insight in the molecular mechanism of BRMS1. It was 

suggested that BRMS1 can restore gap junctional intercellular communication of 

cells, a possibly mechanism contribute to metastasis suppression (Kapoor et al., 2004; 

Saunders et al., 2001). Despite the recent advance of our knowledge in BRMS1 role 

in cancer metastasis, the involvement of BRMS1 in other signalling pathway and 

regulation of invasiveness of breast cancer cells is relatively unexplored. This study 

aim to investigate the role of TGF and EGF signalling in BRMS1-regulated 

invasiveness of breast cancer cells. 

 

In this study, we generated BRMS1 stable transfected MDA-MB-231. The expression 

of BRMS1 was demonstrated by immunoblotted with anti-BRMS1 antibody. 

BRMS1-transfected MDA-MB-231 cells showed more of the epithelial morphology, 

as compared to predominantly mesenchymal morphology of wild-type MDA-MB-

231 cells. Thus, we generated cells stably transfected with BRMS1, and observed that 

these cells were viable and changed morphology.   

 

In order to study the cellular activity of BRMS1, we performed proliferation, migration 

and invasion assays. These 3 assays were performed with the treatment of cells with 

TGF, EGF, SB431542, Iressa, alone and in combinations. We showed that TGF and 

EGF coordinately regulate the proliferation, migration and invasion activity of 

BRMS1-transfected MDA-MB-231 breast cancer cells.  

 

In proliferation assay, our data suggested that TGF enhanced proliferation of MDA-

MB-231 cells but decreased the proliferation of BRMS1-transfected cells. The 

combinational treatment of TGF and Iressa significantly enhanced the proliferation of 

BRMS1-transfected MDA-MB-231 cells, as compared to the treated parental cells. 

 

To investigate the migration activity, we performed wound healing assay. We observed 

that TGF had a significantly enhanced effect on would closure upon expression of 

BRMS1. Simultaneous treatment with EGF prevented this effect. No other significant 

effects of BRMS1 expression or treatments were observed. 

 

The most pronounced effect of BRMS1 on the cross-talk between TGF and EGF was 

observed on regulation of cell invasiveness. We observed that TGF- enhanced 

invasiveness of control MDA-MB-231 cells but decreased the invasiveness of BRMS1-
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transfected cells. EGF treatment led also to enhanced invasiveness, but no inhibitory 

effect of BRMS1 was observed. Combined treatment of cells with TGF and EGF led 

to even higher invasiveness of parental cells and re-appearance of inhibitory effect of 

BRMS1 expression. Surprisingly, the strongest stimulatory effect was observed when 

control cells were treated with TGF and inhibitor of TR-I kinase. Even more striking 

is that this stimulation was strongly hampered by BRMS1 expression. Thus, BRMS1 

expression had most pronounce impact on TGF and EGF-dependent regulation of cell 

invasiveness. 

 

The effect of BRMS1 in invasiveness of MDA-MB-231 cells is likely due to 

cytoskeletal rearrangement and expression of molecules involved in focal adhesion. 

Expression of BRMs1 resulted in more epithelial morphology of otherwise more 

mesenchymal morphology MDA-MB-231 cells. We observed also that the vinculin 

staining was more diffuse in cytoplasm of BRMS1-expressing cells, as compared to 

defined patched staining in parental cells. Treatment of BRMS1-expressing cells with 

TGF- and Iressa reverted vinculin staining pattern to patched, and led to more 

mesenchymal type of staining for actin (phalloidin staining). 

 

Phosphorylation of Smad2 and Erk1/2 reflect activation of signaling down-stream of 

TGF and EGF. We observed that expression of BRMS1 decreased intensity of Smad2 

phosphorylation upon treatments with TGF and EGF, and TGF and Iressa. At the 

same time, phosphorylation of Smad2 upon treatment with TGF only was similar in 

control and BRMS1 expressing cells. Phosphorylation of Erk1/2 was found being 

enhanced in control MDA-MB-231 cells, and significantly decreased upon expression 

of BRMS1. Induction of Erk1/2 phosphorylation upon different treatments was also 

modulated by BRMS1 expression. As an example, simultaneous treatment of cells with 

TGF and EGF enhanced Erk1/2 phosphorylation in parental cells, but this enhanced 

was not observed upon expression of BRMS1. Observed differences in phosphorylation 

of Smad2 and Erk1/2 indicate that BRMS1 may affect these signaling pathways in 

modulation of TGF and EGF effects. However, partial correlations of results of 

immunoblotting study with functional assays suggest that it may be also additional 

mechanisms employed by BRMS1 in modulation of TGF and EGF signaling.  

 

In conclusion, our study showed that TGF and EGF may modulate BRMS1-mediated 

breast cancer invasion by regulating focal adhesion and cytoskeletal rearrangement, and 

that Smad2 and Erk1/2 phosphorylation are involved in modulatory molecular 

mechanisms engaged by BRMS1. 
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4 GENERAL CONCLUSION 
 

Results of these studies contribute to the better understanding of the mechanism of 

human breast tumorigenesis, development of novel targets of anti-cancer treatment, and 

signatures for diagnostics and monitoring of breast cancer: 

 

 Proteome profiling of human breast epithelial cells MCF10A and 184A1 cells 

showed that enhanced expression of cdk4 and cyclin D3 represent the early 

proliferation-specific event in the malignant transformation of breast epithelial 

cells. 

 

 MCF7c46, an isogenic model of breast cancer invasion has been generated, which 

allowed the study of cancer invasion activity as a distinct step in metastasis. 

Systemics analysis showed relations of TGF, EGF, insulin, VEGF, HNF4 and 

NFB in regulation of invasiveness. This indicates that insulin signaling 

disturbance may interfere with the invasive network, thus explained the increased 

risk of breast cancer metastasis in diabetes patients. 

 

 Direct phosphorylation on serine 300 of eEF1A1 by TRI provides novel 

mechanism of TGF-dependent regulation of protein synthesis, cell proliferation, 

and promotion of carcinogenic phenotype.  

 

 eEF1A1 contribute to the increased proliferation of cells by promoting transition 

of cells through the S- and G2/M-phases of the cell cycle. Phosphorylation of 

eEF1A1 at Ser300 that impaired aa-tRNA binding inhibits this process. 

 

 TGF and EGF may modulate BRMS1-mediated breast cancer invasion by 

regulating focal adhesion and cytoskeletal rearrangement, and that Smad2 and 

Erk1/2 phosphorylation are involved in molecular mechanisms engaged by 

BRMS1. 
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