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Abstract 

 

In the last two decades, functional magnetic resonance imaging (fMRI) has become an 

important and widely used imaging technique for functional brain mapping. However, 

blood oxygen level dependent (BOLD) technique is quite insensitive and task invoked 

BOLD signal change at 3T is typically in the order of a few percent. Furthermore, the 

coupling between BOLD signal changes and neuronal activities is quite complicated, 

involving a cascade of events remaining poorly understood even today. In this thesis, 

some of the basic characteristics of the BOLD signal are investigated. Better 

understanding of the BOLD signal characteristics can be beneficial for the design of 

BOLD fMRI experiment aimed to improve the time efficiency. It can also provide 

guidelines for developing fMRI data processing strategies. 

 

In study I and II, a single-shot dual-echo spiral acquisition technique was used for 

characterizing the T2* changes associated with motor activation task. In study I, the 

optimal strategy for head motion correction was investigated. Based on the 

improvement in the detection of brain activation, the best strategy is to perform the 

head motion correction using the imaging data from the second echo and then apply the 

derived motion correction parameters to the first echo, instead of conducting motion 

correction of the individual echoes independently. In study II, several aspects of brain 

mapping methods based on T2*-weighted imaging and T2* (R2*=1/T2*) mapping were 

quantitatively compared, including the detected activation volume, functional contrast, 

signal-to-noise ratio, and contrast-to-noise ratio. fMRI studies based T2* mapping have 

the following potential advantages: maximum functional contrast, independence of 

echo time; and reduced inflow effects. The sensitivity for brain activation detection is 

significantly correlated with the contrast-to-noise ratio, which is determined by both the 

signal-to-noise ratio and functional contrast. 

 

 

In study III, the hemodynamic responses to functional activation were characterized 

using T2*-weighted BOLD imaging, arterial spin labeling, and bolus tracking of MRI 

contrast agent.  In addition to the BOLD signal change, the relative cerebral blood flow 

and cerebral blood volume associated with brain activation were independently 

determined. 

 

In study IV, the characteristics of the global signal in resting-state fMRI were 

investigated. It was found that the global signal time courses and regional contributions 

differ individually. However, after removing the contribution from the cerebral spinal 

fluid, a consistent brain network responsible for the remaining global signal changes 

was identified. The involved brain regions include: posterior cingulate cortex, 

precuneus, superior temporal gyrus, medial frontal gyrus and the cerebellar vermis, 

which is likely to be related to the perception and cognitive processes of the brain 

occurred in the specific environments during resting-state fMRI. 

 

  



 

 

List of publications 

 

This doctoral thesis is based on the following publications, referred to in the text by 

their Roman numerals. 

 

 

 

 

I.  An image registration strategy for multi-echo fMRI 

T. Jonsson, A.B.A. Wennerberg, H. Forssberg, G.H. Glover, T-Q. Li 

J Magnetic Resonance Imaging, 1999, 10, 154-158 

 

 

II.  A comparative fMRI study: T2*-weighted imaging versus R2* mapping 

A.B.A Wennerberg, T. Jonsson, H. Forssberg, T-Q. Li 

NMR in Biomedicine, 2001, 14, 41-47  

  

  

III. Assessment of hemodynamic response during focal neural activity in 

human using bolus tracking, arterial spin labeling and BOLD techniques 

T-Q. Li, T. Neumann Haefelin, B. Chan, A. Kastrup, T. Jonsson, G. H. 

Glover, M. E. Mosely 

NeuroImage, 2000, 12, 442-451 

  

  

IV. The global signal of resting-state BOLD fMRI and associated brain 

network 

T. Jonsson, H. Fischer, A. Rieckmann, T-Q. Li 

manuscript 

  

  

  

  

 



 

 

List of Additional Publications 

 

 

Howner K; Fischer H; Dierks T; Federspiel A; Wahlund L-O; Jonsson T; Kristoffersen 

Wiberg M; Kristiansson M. Brain processing of fearful facial expression in mentally 

disordered offenders. Journal of Behavioral and Brain Science. 2011 Aug; Vol 1 (3): pp 115-

123.  

Petkova, VI; Bjornsdotter, M; Gentile, G; Jonsson, T; Li, TQ; Ehrsson, HH  

From Part- to Whole-Body Ownership in the Multisensory Brain  

Current biology 2011 Pages 1118-1122 Volume 21 Issue 13 

 

Lindholm Terri L; Botes Lisa; Engman Eva-Lena; Jonsson T et al. Parallel imaging: is 

GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis?  

Source: BMC medical imaging 2009 Volume: 9    

 

Bergfeldt U; Jonsson T; Bergfeldt L; Julin P. Central nervous system plasticity and 

functional effects in stroke patients receiving comprehensive focal spasticity management – 

an fMRI study. PhD Thesis 2009, ISBN 978-91-7409-523-4 

 

Bergfeldt U; Jonsson T; Julin P.Atlas based analysis of single subject fMRI central nervous 

system activity during a hand motor task – a validity and reliability study in healthy 

individuals. PhD Thesis 2009, ISBN 978-91-7409-523-4 
 

Wahlund K; Fischer H; Dierks T; Wahlund LO; Wiberg MK; Jonsson T; Kristiansson M. 

Psychopathy and brain imaging--a literature review. With focus on functional magnetic 

resonance tomography. Lakartidningen. 2009 Feb 4-10;106(6):361-5. Review. 

 

Vannini, P; Almkvist, O; Franck, A; Jonsson, T; Volpe, U; Wiberg, MK; Wahlund, LO; 

Dierks, T Task demand modulations of visuospatial processing measured with functional 

magnetic resonance imaging Neuroimage 2004 Pages 58-68 Volume 21 Issue 1 

 

Huang, CR; Wahlund, LO; Almkvist, O; Elehu, D; Svensson, L; Jonsson, T; Winblad, B; 

Julin, P Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and 

psychological heterogeneity of mild cognitive impairment  Neuroimage 2003 Pages 1137-

1144 Volume 19 Issue 3 

 

 

 

 

 

  



 

 

List of Abbreviations 

 

2D Two-dimentional 

3D Three-dimentional 

B0 Main static magnetic field 

BOLD Blood oxygen level dependent 

BT Bolus tracking 

(r)CBF (relative)Cerebral blood fluid 

(r)CBV (relative)Cerebral blood volume 

CC Correlation coefficient  

CMRO2 Metabolic rate of oxygen consumption 

CNR Contrast-to-noise ratio 

CSF Cerebral spinal fluid 

DMN Default mode network 

EEG Electroencephalogram 

EPI Echo planar imaging 

FAIR Flow-sensitive alternating inversion recovery 

FC Functional contrast 

FLASH Fast low angle shot  

fMRI Functional MRI 

M1 Primary motor cortex 

MFG Medial frontal gyrus 

MRI Magnetic resonance imaging 

MRS Magnetic resonance spectroscopy 

MTT Mean transit time 

LFP Local field potential 

NMR Nuclear magnetic resonance 

PCC Posterior singulate cortex 

PET Positron emission tomography 

R2* Relaxation rate 

RF Radio frequency 

rs Resting-state 

RVT Respiration volume per time 

SD Standard deviation 

SMA Supplementary motor area 

SNR Signal-to-noise ratio 

T1 Longitudinal relaxation time constant 

T2 Transversal relaxation time constant 

T2* Transversal relaxation time constant for gradient echo 

TE Echo time 

TR Repetition time 

V1 Primary visual cortex 

  

 



 

 

Contents 

1 Introduction ................................................................................................... 1 

1.1 Historic overview ................................................................................ 1 

1.2 Basic physical principles of mri ......................................................... 1 

1.3 MRI pulse sequence and k-space concept ......................................... 2 

1.4 Blood oxygen level dependent contrast ............................................. 3 

1.5 BOLD fMRI pulse sequences ............................................................ 4 

1.5.1 Echo Planar Imaging (EPI) .................................................... 5 

1.5.2 Spiral pulse sequence ............................................................. 6 

1.5.3 Anatomical references ............................................................ 7 

1.6 Some characteristics of the BOLD signal .......................................... 7 

1.6.1 TE dependence ....................................................................... 7 

1.6.2 Temporal characteristics of the BOLD signal ....................... 9 

1.6.3 Noise sources in the BOLD signal ....................................... 10 

2 Aims of the thesis ....................................................................................... 13 

3 Methods ...................................................................................................... 14 

3.1 Experimental setup ........................................................................... 14 

3.1.1 Study I and II ........................................................................ 14 

3.1.2 Study III ................................................................................ 15 

3.1.3 Study IV ................................................................................ 15 

3.2 Data preprocessing............................................................................ 16 

3.2.1 Study I and II ........................................................................ 16 

3.2.2 Study III ................................................................................ 16 

3.2.3 Study IV ................................................................................ 17 

3.3 fMRI data analysis ............................................................................ 18 

3.3.1 Study I ................................................................................... 18 

3.3.2 Study II ................................................................................. 18 

3.3.3 Study III ................................................................................ 19 

3.3.4 Study IV ................................................................................ 20 

4 Results ......................................................................................................... 21 

4.1 Study I ............................................................................................... 21 

4.2 Study II .............................................................................................. 22 

4.3 Study III ............................................................................................ 23 

4.4 Study IV ............................................................................................ 25 

4.4.1 Scanner stability ................................................................... 25 

4.4.2 Physiological correction ....................................................... 26 

4.4.3 Global signal network .......................................................... 28 

5 Discussion ................................................................................................... 29 

5.1 Study I ............................................................................................... 29 

5.2 Study II .............................................................................................. 30 

5.3 Study III ............................................................................................ 31 

5.4 Study IV ............................................................................................ 33 

Acknowledgements ............................................................................................ 36 

6 References ................................................................................................... 38 

 

 



 

 

  



 

  1 

1 Introduction 

 

1.1 Historic overview 

 

The discoveries made by Paul Lauterbur and Peter Mansfield in the 1970’s have made 

it possible to develop the modern magnetic resonance imaging (MRI) technique based 

on the nuclear magnetic resonance (NMR) phenomena. 

MRI represents a great breakthrough in medical diagnostics and research. In 2003, Paul 

Lauterbur and Peter Mansfield were awarded the Nobel Prize in Physiology or 

Medicine for their achievements. NMR phenomena itself was discovered already in 

1946 by Felix Bloch(Bloch et al., 1946) and Edward Purcell(Purcell et al., 1946), 

whom were also awarded with Nobel Prize in 1952. NMR spectroscopy has now 

become widely used to study the molecular structures of pure materials and the 

composition of mixtures. With Lauterbur and Mansfields contributions (along with 

many others) the applications of NMR migrated to the medical imaging field. 

 

1.2  Basic physical principles of mri 

 

Analogous to mass and charge, spin and associated angular momentum is a 

fundamental property of particles. The spin quantum number, I, of a nucleus depends 

on the nuclear species, and has been observed to follow the pattern in table 1. 

 

Table 1. Nuclear spin quantum number I 

Mass Number Atomic Number Nuclear Spin (I) Example 

odd even or odd 1/2, 3/2, 5/2, ... I(1H) = 1/2 
even even 0 I(12C) = 0 
even odd 1, 2, 3, ... I(2H) = 1 

 

The nuclear spin quantum number gives rise to nuclear spin angular momentum, which 

in turn gives rise to a nuclear magnetic moment. In the absence of external fields, there 

is no preferred orientation for a magnetic moment.  In the presence of a magnetic field, 

however, the energy of a nuclear magnetic moment depends on its orientation relative 

to the field:  

E = -µzB0 

 

where µz is the z-component of the magnetic moment, which can only take the discrete 

values  

 

µz  =  γћm 

 

where γ is the gyromagnetic ratio, ћ is Plancks constant and m is dependent on the 

angular momentum vector I can take the values  

 

m = -I, -I+1, …, I-1, I 
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In the presence of an external magnetic field, different nuclear spin states have different 

energies. The energy is a minimum when the magnetic moment is aligned parallel to 

the magnetic field and a maximum when it is anti-parallel to the magnetic field. At 

thermal equilibrium, nuclear spins at different energy states will be distributed 

according to the Boltzmann distribution. In practice, the difference between nuclear 

spin energy levels in achievable fields is very small, implying that the spin population 

between the different energy states is only very slightly different and, therefore, the 

sensitivity of NMR spectroscopy is very low. 

 

 

NMR spectroscopy is performed by inducing transition between adjacent nuclear spin 

energy states (∆mI = ±1).  The understanding of NMR can be achieved by considering 

the effect of applied magnetic fields on the nuclear magnetic moments in the system.  

Briefly, an NMR sample in a homogenous external magnetic field is disturbed from 

equilibrium by application of a variable transverse secondary magnetic field, and its 

response to the disturbance is recorded. That is, the time dependence of the return to 

equilibrium is measured, from which frequency spectrum is generated via a Fourier 

transform. A tremendous enhancement of signal-to-noise (SNR) , as well as the ability 

to carry out multiple-pulse experiments can be achieved by replacing the traditionally 

used slow, sweeping field with short, intense radio-frequency (RF) pulses. Richard R. 

Ernst was awarded 1991 year’s Nobel Prize in chemistry for his major contribution in 

this area. 

 

1.3  MRI pulse sequence and k-space concept 

 

The human body is largely composed of water and each water molecule has two 

hydrogen nuclei or protons. Proton has the quantum number, I = ½, implying that the 

hydrogen nucleus spin can exist in two possible energy states. Like most MRI 

applications for medical diagnostic purpose, the studies involved in this thesis are 

solely based on the spin state transition of protons. Protons in different tissues return to 

their equilibrium state at different relaxation rates. Different tissue characteristics, 

including spin density, T1 and T2 relaxation times, self-diffusivity, flow, and spectral 

shifts can all be used to construct images of different contrasts.
 
 

 

In order to obtain the spatial information of the signal origin in 3D space, additional 

magnetic fields need to be applied during a MRI scan. These fields, generated by 

passing electric currents through gradient coils, make the magnetic field strength vary 

depending on the position within the main static magnetic field. Because this makes the 

frequency of released radiofrequency signal also dependent on its spatial origin in a 

predictable manner, the distribution of protons in the body can then be mathematically 

recovered from the recorded NMR signal, typically by the use of the inverse Fourier 

transform. 

 

 

In practice, a computer program called MRI pulse sequence is used to control hardware 

aspects of the MRI measurement process. It preselects a set of defined RF and gradient 

pulses of different shapes and durations. The pulse sequence is usually repeated many 
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times during a scan, wherein the time interval between pulses and the amplitude and 

shape of the gradient waveforms will control NMR signal reception and affect the 

characteristics of the images. By changing the settings, not only images of different 

sizes and resolutions can be acquired, the tissue characteristics can also be used to 

create contrast between the different tissues.   

 

Unlike CT, MRI uses RF and gradient pulses, which are not ionizing radiation. 

Therefore, MRI is generally considered non-invasive, very safe and can be repeated for 

many times. MRI has been used to image every part of the body, and is particularly 

useful for tissues with many hydrogen nuclei and little density contrast, such as the 

brain, which is the focus of this thesis.  

 

For simplicity, MRI physicists use the k-space formalism to describe the different MRI 

data acquisition methods. The k-space concept was independently introduced in 1983 

by Ljunggren(Ljunggren, 1983) and Twieg(Twieg, 1983). In its essence, k-space is the 

2D or 3D Fourier transform of the measured MR image. Its complex values are 

sampled during an MRI scan, in a premeditated scheme controlled by the pulse 

sequence. In practice, k-space often refers to the time-domain raw data sampled from 

the digitized NMR signals before image reconstruction. 

 

Typically, k-space has the same number of rows and columns as the final image and is 

filled with raw data during the scan, usually one line per repetition time (TR). 

However, in a single-shot scan, such as, echo-planar imaging (EPI), the entire k-space 

is filled rapidly with raw data acquired during a single TR. The middle of k-space 

(lower k-space) contains the signal to noise and contrast information for the image, 

while data close to the boundary of k-space (higher k-space) contain the information 

determining the image spatial details (resolution). This is the basis for many advanced 

scanning techniques, such as, variable density spiral and keyhole acquisitions, in which 

the central k-space is more frequently sampled than the outer k-space.  

 

 

1.4 Blood oxygen level dependent contrast 

 

 

The discovery of blood oxygen level dependent (BOLD) contrast in the early 90’s 

opened up a new research field in neuroscience. Before the discovery of BOLD fMRI, 

neuroscientists mainly used electro-encephalogram (EEG) and positron emission 

tomography (PET) to study the brain functional networks and their organization.  With 

EEG, the electrical potentials caused by neuronal firings can be detected with sensitive 

electrodes placed on the skull. The temporal resolution of EEG is excellent, but the 

anatomical precision is poor, especially for the deeper brain structures, such as the basal 

ganglia. With PET, a radioactive tracer (such as O
15

 and 
18

F)
 
is injected into a subject 

and is followed in the brain’s metabolism pathways to reveal the locations of the 

activated neurons in response to a specific task.  Such metabolic measurements can 

map the oxygen and glucose consumptions in the brain, and, therefore, the brain 

functional activities.  



 

4 

 

When Ogawa coined the BOLD expression 1990 in his studies of rats (Ogawa et al., 

1990), a method to trace brain activity without an invasive tracer was born and made 

the exploration of the brain function much more accessible for the neuroscience 

community. The first BOLD fMRI studies in humans were published two years later 

(Bandettini et al., 1992, Kwong et al., 1992, Ogawa et al., 1992), and ever since then, 

the number of brain studies using BOLD contrast has grown exponentially.  

 

The BOLD contrast is based on the fact that deoxyhemoglobin is slightly paramagnetic 

(Pauling and Coryell, 1936), while oxyhemoglobin is diamagnetic. Simply speaking, 

the mechanism behind the detection of BOLD signal change in response to a brain 

activation is due to the mismatch between cerebral metabolism rate of oxygen 

consumption (CMRO2) and cerebral blood flow (CBF) supply. When the brain is 

activated, the neurons start firing more intensively and hence consume more oxygen, 

which is extracted from the capillaries in the brain parenchyma. At first thought, the 

concentration of deoxyhemoglobin should therefore increase in the venous vessels and 

an initial MRI signal decrease is expected, because a higher concentration of 

deoxyhemoglobin increases the disturbance of the local magnetic field and the MRI 

signal decays faster. However, this is not what has normally been observed. Instead, an 

increase of the MRI signal has been observed. The detailed physiological mechanisms 

behind such phenomena have not yet been fully understood. However, with 

independent measurements of CBF and CBV, it can be estimated that the increased 

supply of oxyhemoglobin to the activated brain area excesses the local oxygen 

consumption and the concentration of oxyhemoglobin in the venous vessels is actually 

increased. Hence, less disturbance of the local magnetic field gives rise to an invoked 

MRI signal increase in response to a brain activation.  

 

 

1.5 BOLD fMRI pulse sequences 

 

 

To detect the subtle changes in the local magnetic field, the MRI pulse sequences need 

to be sensitive to susceptibility induced magnetic field inhomogeneity. Typically, a 

gradient recalled echo (GRE) pulse sequence is used for BOLD fMRI, where no 

refocusing RF pulse is used, as in the spin echo (SE) pulse sequences. On the other 

hand, for more accurate determination of anatomical locations, the SE pulse sequence 

are preferred, since the local stationary field inhomogeneity caused by e.g. air cavities, 

implants and hemorrhage, can be mitigated by the refocusing RF pulse. In the early 

days of BOLD fMRI, the fast low angle shot magnetic resonance imaging (FLASH) 

pulse sequence was used to detect the brain activation. The disadvantage with the 

FLASH data acquisition method is its limited temporal resolution. It takes quite a long 

time (a few second) to complete a single image slice, because only one row of k-space 

data can be collected per TR.  
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1.5.1 Echo Planar Imaging (EPI) 

  

The GRE EPI has become the golden standard pulse sequence for BOLD fMRI. As 

shown in figure 1, its appealing features include a very fast acquisition scheme and 

high sensitivity to local field inhomogeneity, implying high sensitivity to the BOLD 

contrast. Even though the technique was invented 1977, the hardware to perform the 

pulse sequence was not quite ready until the beginning of 1990’s. The technique was 

not even included into the standard pulse sequence library on many clinical MRI 

scanners until the late 1990’s. EPI data acquisition has not only high demands on the 

gradient strength and slew rate but also stringent requirements for the signal digitization 

system, because it requires accurate broadband data acquisition and the raw data for a 

whole image slice has to be sampled during a few tens of milliseconds within a single 

GRE signal decay.   

 

Depending of the number of slices, a whol- brain can be collected with EPI within 2-3 

seconds, which gives a reasonable temporal resolution for functional brain studies. The 

main shortcoming associated with EPI data acquisition method is its sensitivity to off-

resonance artifacts including ghosting, signal dropout, and geometrical distortions. 

These off-resonance artifacts are largely due to the local magnetic field inhomogeneity 

caused by magnetic susceptibility differences in the brain and poor shimming of the 

magnetic field. By conducting higher order shimming, the overall inhomogeneity in the 

brain can be reduced, but the problems associated with susceptibility differences are 

more difficult to handle. Especially in the orbital frontal regions of the brain, severe 

image distortions and signal dropout caused by the air cavities in the sinuses and ear 

canals are quite common. With the advent of parallel acquisition techniques in last 

decade, the EPI image quality has been greatly improved.  

 

Figure 1. The schematic time schedule of a typical EPI sequence. (a) The timings of the 
slice selection, frequency, and phase-encoding gradient waveforms and slice selection 
RF pulse. (b) The k-space trajectory   
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1.5.2 Spiral pulse sequence 

 

Like the EPI acquisition method, the data acquisition with spiral pulse sequence can 

also be completed with single-shot. This means that the entire k-space can be sampled 

within a single TR. With the spiral pulse sequence, the k-space sampling starts 

normally at the center and then continuously spirals out in a spiral trajectory to cover 

the entire k-space (see figure 2). The main advantages associated with the spiral 

acquisition method include starting the center k-space sampling at the beginning of the 

acquisition while the signal is strong, high time efficiency, less stringent demand on the 

gradient hardware duet to the lack of phase-encoding, and robustness against motion 

artifacts. Modified spiral acquisition methods based on the combinations of spiral-in 

and spiral-out readouts have also been demonstrated to be robust against susceptibility 

artifacts. Since the spiral readout does not follow regular Cartesian trajectory, gridding 

procedure is required for the image reconstruction and the regridding procedure is 

usually carried out off-line. Approximations used in the gridding algorithm and other 

off-resonance effects can all contribute to blurring artifacts in the reconstructed spiral 

images.  Because of the robustness of the spiral acquisition method, most of the studies 

(I-III) included in the thesis were based on the spiral pulse sequence.   

 

 

Figure 2. The spiral sequence is shown. Upper figure shows the gradient time 
schedule. In the lower left image the k-space trajectory. The lower middle image 
shows the real k-space and the lower right image shows the final image after Fourier 
transformation.  
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1.5.3 Anatomical references 

 

Since the pulse sequences discussed above are meant for rapid sampling of the 

functional MRI data and offer relatively low spatial resolution. In fMRI studies, high-

resolution anatomical reference images are usually acquired to cover the brain areas of 

interest. With registration software, the low resolution fMRI data can be registered onto 

the anatomical reference dataset for better localization of the activated brain areas. 

Furthermore, the high-resolution anatomical reference scan can also facilitate the inter-

subject comparison of the fMRI data by improving the registration quality of the 

individual brain data with the standard brain template. A T1-weighted 3D pulse 

sequence is usually preferred, but T2-weighted pulse sequences can also be used, as 

done in study I and II.  

 

 

 

1.6 Some characteristics of the BOLD signal 

 

fMRI BOLD signal has its unique characteristics. As mentioned above, it can be 

detected non-invasively with relative high-resolution at any given specific brain region. 

However, it has poor sensitivity, low temporal resolution, and provides only an indirect 

measure of neuronal activity. A better understanding of its pros and cons can be very 

useful for the fMRI experimental design in order to maximize its strengths and 

minimize its weaknesses.  

 

1.6.1 TE dependence 

 

As has previously been shown, the sensitivity of BOLD signal is TE dependant 

(Bandettini et al., 1994, Jonsson, 1997). The functional contrast, that is the signal 

difference between activation and reference states, has an optimum. It has been 

experimentally and theorectially demonstrated that the maximum functional contrast 

can be achieved  at TE ≈ T2*. This is also illustrated in figure 3, where the MRI signal 

decays for typical T2* values of activation and resting state at 1.5 T are plotted. 
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Figure 3. The TE dependence of fMRI BOLD signal.  (a) signal decays  for two typical 
T2* values of brain tissue at 1.5 T, 73 ms for activation and 70 ms for resting state, 
respectively.  (b) the signal difference between the two decay curves as a function of 
TE. The maximum difference appears around TE ≈ T2*. 
 

By assuming exponential decay, it can be mathematically shown that the maximum 

difference between two GRE signals of differenct T2* values can be achieved when 

 

 

      
     

           
     

  
       

    
  

where R2* is 1/T2* and a and r is the R2* value for activation and resting states 

respectively.  

 

Since T2* is dependent on the main magnetic field strength and decreases with B0, the 

optimal TE for BOLD fMRI studies is different at different field strength and the 
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estimate of T2* should be carried out adequately in order to optimize the sensitivity of 

the BOLD fMRI measurements.  

 

 

1.6.2 Temporal characteristics of the BOLD signal 

 

The temporal behavior of the BOLD signal is determined by the hemodynamic 

response involving the associated CBF and CBV changes. Figure 4 shows a schematic 

representation of the hemodynamic response function to a brief stimulus applied at time 

t = 0 sec.  

 

Figure 4. A schematic diagram of the hemodynamic response function.  (a) is the initial 
dip immediately after the stimulus, (b) is the time needed for the BOLD signal to reach 
its maximum, and (c) illustrate the post-stimulus undershoot.   
 

1.6.2.1 The initial dip 

 

The initial dip, or the so-called fast response, is usually not seen at magnetic field 

strengths < 3 T which made it a bit controversial when it was first reported (Ernst and 

Hennig, 1994, Menon et al., 1995), since most fMRI sites had only 1.5 T scanners at 

that time. This effect is now believed to represent the increased demand of oxygen from 

the stimulated neurons before the start of blood flow increase, which causes an 

increased concentration of deoxyhemoglobin in the blood, and gives rise to a negative 

BOLD response. Its typical magnitude is about 0.5-1 % lasting up to 1 second. This 

effect vanishes when the blood flow response starts due to the increased demand of 
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oxygen. The precise physiological mechanisms behind the increased blood flow supply 

are still not very clear at the present time. 

 

1.6.2.2 BOLD signal maximum 

 

The time that takes for the BOLD signal to reach its maximum in response to a brief 

stimulus has been reported to be between 4-8 seconds. For a sustained activation task, 

lasting for several seconds, an over-shoot may be observed at the beginning of the 

BOLD response. This overshoot can be explained by the slower response of the 

cerebral blood volume. The magnitude of the maximum is usually in the order of a few 

percent depending on the types of used stimuli. The BOLD signal change may also 

differ individually.   

 

1.6.2.3 The Post-stimuli undershoot 

 

After the stimulus has ceased the BOLD signal returns to the baseline, but a post 

stimulus undershoot can occur, which delays the return to baseline with several 

seconds. Even if the blood oxygenation level and the cerebral blood flow return quickly 

back to the baseline levels, the CBV lags with a much slower transient response 

(Buxton et al., 1998).  

 

 

1.6.3 Noise sources in the BOLD signal 

 

Accurate detection of the BOLD signal is hampered by its low sensitivity and various 

noise sources in BOLD fMRI measurements. The signal noise can be commonly 

divided into thermal and non-thermal noise. The thermal noise is inherent to the MRI 

imaging process and originates from the subject itself and the electrical circuits and 

components in which the MRI signal is induced and transported. This kind of noise, 

also called “white noise”, is hard to remove afterwards, and can be reduced by choosing 

high end equipment, such as high field scanners and phased array coils with short 

cables. The non-thermal noise consists of a variety of noise sources, such as 

physiological (cardiac and respiration) noise, head movements, spontaneous neuronal 

activation and linear drifts in the scanner electronics (Kruger and Glover, 2001, Kruger 

et al., 2001).  The non-thermal noise also has components that scale with the signal 

SNR and the physiological noise can be the dominating source at higher magnetic field 

strength(Triantafyllou et al., 2005).  

 

In every major software package for fMRI data analysis, both motion correction of the 

head movements and linear de-trending of the data are included as standard 

preprocessing steps. To reduce the influence of the physiological noise, several 

correction methods have been developed. The simplest approach is to perform a high 

pass filtering, where slowly varying frequencies are filtered out from the data set. Since 

the typical TR used of whole-brain fMRI scans is in the order of 2-3 seconds, the 

physiological activities can be under-sampled and appears as aliased signals with much 

lower frequency. When auxiliary physiological data, such as the cardiac and respiratory 
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waveforms, are recorded, more sophisticated approaches can be used to retrospectively 

remove the physiological noise (Hu et al., 1995, Glover et al., 2000). Recently, 

regression analysis based noise reduction has become quite attractive for fMRI studies, 

as high field MRI scanners are more accessible and physiological noise reduction 

becomes a very relevant issue. The key point for regression analysis is to construct 

creative regressors effective for noise reduction (de Zwart et al., 2008).   

 

 

1.6.3.1 Noise reduction in resting-state fMRI 

 

 

The resting brain is not resting at all. Resting-state fMRI investigations have revealed 

coherent intrinsic activity identified by mapping patterns of slow temporal coherence (< 

0.1 Hz) of signal fluctuations between brain regions, which is often referred to as 

functional connectivity (Biswal et al., 1995, Raichle et al., 2001, Fransson, 2005, 

Biswal et al., 2010). A number of co-activating functional systems have been found 

consistently across subjects (Beckmann et al., 2005, Damoiseaux et al., 2006, Öberg et 

al., 2011) covering brain regions known to be involved in motor function, visual 

processing, executive function, auditory processing, memory and the so called default-

mode network. To enhance these networks and suppress the background noise, several 

noise reduction methods have been developed. Much attention has been given to 

reducing the physiological noise components which have been aliased into the 

frequency range of interest (< 0.1 Hz). Studies have shown that spontaneous 

fluctuations in end-tidal CO2 correlate significantly with resting-state fMRI time series 

(Wise et al., 2004, Chang and Glover, 2009b), which implies that not only the 

respiratory cycle but also the respiratory volume variation influences the resting-state 

fMRI signal.  Several studies have addressed these issues and suggest correction 

methods for both respiratory (Birn et al., 2006) and cardiac (Shmueli et al., 2007, 

Chang et al., 2009, van Houdt et al., 2010) variations.  

 

In most resting-state fMRI studies, the average time-course from all voxels in the brain, 

the global signal, is removed from the data to further enhance the detection of the local 

neuronal networks. This is justified by assuming that the global signal contains signal 

from non-neuronal sources, such as instrumental noise, physiological noise, CSF and 

white matter. This has partly been verified and there is a significant correspondence 

between the global signal and cardiac and respiratory activities (Birn et al., 2008, 

Chang and Glover, 2009a). One problem with the removal of the global signal from the 

resting-state fMRI data is the contingency if the regression introduces anti-correlated 

networks (Chang and Glover, 2009a, Fox et al., 2009, Murphy et al., 2009, Cole et al., 

2010), especially the default-mode network. A solution for this problem could be a 

combined regression of the white matter average signal, CSF average signal and motion 

correction parameters, which provides an effective approach for dealing with global 

correlations. This has also the advantage of reducing the risk of introducing “fictitious” 

negative correlations into the datasets (Giove et al., 2009).  
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2 Aims of the thesis 

 

 

In this thesis, some of the basic characteristics of the BOLD signal are investigated. 

Better understanding of the BOLD signal characteristics can be beneficial for the 

optimization of the BOLD fMRI experiment design aimed to improve the time 

efficiency. It can also provide guidelines for developing fMRI data processing strategy. 

 

The specific aims for the individual studies are the following: 

 

Study I – To use a single-shot dual-echo spiral pulse sequence for fMRI study and 

develop an optimal strategy for image registration of the dual-echo fMRI data. 

 

Study II - To systematically compare BOLD fMRI results based on T2* mapping and 

T2*-weighted imaging in terms of the detected activation volume, signal-to-noise ratio 

(SNR), the functional contrast (FC), and functional contrast to noise ratio (CNR). To 

characterize the T2* changes induced by brain activation at 1.5T. 

 

Study III – To use different MRI techniques including sequential bolus tracking 

measurements of a contrast agent, T2*-weighted imaging and arterial spin labeling for 

fMRI studies. To measure the CBF, CBV, and BOLD signal changes induced by motor 

and visual stimuli. 

 

Study IV - To characterize the global signal changes in resting state fMRI 

measurements in normal volunteers. To identify the brain regions responsible for the 

generation of the global signal changes, and elucidate the possible underlying 

mechanisms. 
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3 Methods 

 

3.1 Experimental setup 

 

An overview of the hardware, data acquisition method, and scanning parameters used 

in the BOLD fMRI experiments are listed in table 2. 

 

Table 2. The BOLD fMRI setups for the different studies. 

Study Scanner Sequence TR/TE/TE2 Resolution 

(mm3) 

Stimuli Subjects 

I & II GE Signa 
1.5 T 

Double 
echo 
Spiral 

3s/20ms/90ms 1.7x1.7x5 Motor 6 

III GE Signa 
1.5 T 

Spiral 3s/45ms 1.7x1.7x5 Motor 
Visual 

8 

IV Siemens 
Trio 3 T 

EPI 2.5s/35ms 3x3x3 Resting 
state 

71 

 

 

 

 

3.1.1 Study I and II 

Six healthy subjects were scanned. In study II, the subjects were scanned at least at 

three different occasions which produced a total of 19 datasets. The functional images 

were acquired in the motor areas of the brain, including motor cortex, premotor cortex 

and the supplemental motor area, SMA. A single-shot dual-echo spiral sequence (Li et 

al., 2006) with two different echo times, TE1 = 20 ms and TE2 = 90 ms was used for the 

fMRI data acquisition (see figure 5). The six volunteers performed a motor paradigm, 

in which they were instructed to do self-paced finger tapping with their right hand 

during 4 epochs of activation interleaved with 5 epochs of resting periods, to achieve 

robust motor activation in the brain. To reduce the motion artifacts in the images the 

volunteers’ heads were immobilized with a bite bar. 



 

  15 

Figure 5. The pulse sequence used for the study plays out two successive spiral 
readouts after each excitation. The data acquisition for the first echo image starts at 
TE1= 20 ms and the spiral readout lasts for 65.6 ms. The same readout waveforms 
were used for the acquisition of the second echo image with TE2 = 90 ms. 
 

3.1.2 Study III 

 

In study III, the functional MRI data acquisition protocol consisted of four sessions: 

FAIR, BOLD and two bolus tracking measurements. Both motor and visual stimuli 

were used for obtaining the maximum information with only one bolus tracking (BT) 

experiment. Eight volunteers participated in the study. The motor stimulus was a self-

paced finger tapping task, and the visual stimulus was a flickering checkerboard pattern 

presented for each subject on a screen inside the MRI scanner bore, with an 8 Hz 

flickering frequency. The FAIR pulse sequence measures the rCBF changes in the 

brain, while the T2*-weighted GRE measurement provides the change in the BOLD 

signal in the activated brain regions. The BT experiment consisted of one bolus 

injection without activation and a second injection with brain activation tasks 10 min 

after the initial injection. With these BT measurements, the rCBF and rCBV changes 

induced by the brain activation tasks can be estimated. For the T1 mapping needed for 

the FAIR measurements, a Look-Locker pulse sequence was used.  

.   

 

3.1.3 Study IV 

 

 A total of 71 volunteers participated in the study, and a total of 108 resting-state (rs) 

fMRI data sets were collected, lasting 10 minutes. For 19 of the subjects, also 

physiological data was recorded (respiration and cardiac waveforms). Six subjects were 

scanned with a prolonged rs-fMRI measurement, lasting for 42 minutes.  A phantom 

was also scanned during 50 minutes for control measurements at three times. The fMRI 

sequence was a standard EPI acquisition with a TR of 2.5 sec and a TE of 35 ms. The 

in plane resolution was 3x3x3 mm
3
. 
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3.2 Data preprocessing 

 

The preprocessing procedure involves a number of steps where the data sets are 

prepared for the detection of brain functional activation. Since the BOLD signal 

amplitude is only a few percent of the total signal, the preprocessing procedure can be 

crucial for a successful detection of these tiny BOLD signal changes.  

 

3.2.1 Study I and II 

 

For study I, the question was how to optimize the preprocessing steps for achieving the 

most sensitive detection of the BOLD signal. In fMRI studies with sing-shot data 

acquisiton, it is a standard procedure to perform rigid body image registration in order 

to correct for the small head motions that occur involuntarily during the scans. For 

fMRI datasets acquired with dual-echo pulse sequence, there was no motion correction 

procedure available at the time when the study was carried out. We tested two different 

approaches; in order to take into account the different contrast in the two different 

echoes, motion registration was first conducted independently with the individual echo 

datasets, at TE1 and TE2, This procedure was named as SepReg. The second approach 

was to do the motion correction with the data acquired at the late echo at TE2 and then 

apply the motion correction parameters for in-plane translational and rotation motions 

to the first echo data at TE1. This procedure was labeled as SigReg. After image 

registration, a T2* map was calculated from each dual echo image pair on a pixel-by-

pixel basis using the signal intensities from the T2*-weighted images at TE1 and TE2. 

Assuming that T2*-relaxation obeys a mono-exponential function T2* is given by 

 
 

  
  

                 

       
    

 

where STE1 and STE2 are the signal intensities of the T2* - weighted images at TE1 and 

TE2, respectively.   

In study II, we used the most efficient motion correction strategy, SigReg, derived from 

study I to register the fMRI data before further analysis. 

 

3.2.2 Study III 

 

All data sets were motion corrected with the auxiliary program imreg from the AFNI 

software package(Cox, 1996).  

 

The FAIR images were calculated by magnitude subtraction of the nonselective 

inverted images from the selective inverted images (Li et al., 1999a, b). The CBF 

quantification from the FAIR measurements was based on the perfusion model of Detre 

(Detre et al., 1992). The baseline data collected prior to the onset of the sustained 

activation was used as a reference to calculate the relative CBF changes induced by the 

activation. 
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Since each FAIR image requires a pair of images with selective and nonselective 

inversion, the temporal resolution of the FAIR data was 6 s with a TR of 3 s. 

 

For the bolus tracking measurements, the image data was processed using the 

deconvolution algorithm described by Østergaard et al (Ostergaard et al., 1996a, 

Ostergaard et al., 1996b). This resulted in rCBF and rCBV maps for both the resting 

and activation states. Since the time interval between the two successive BT 

measurements is too short for the contrast agent to be cleared out from the vascular 

system, an effect of the residual contrast agent from the first injection can be detected. 

This has carefully been corrected by using a scheme based on the assumption that non- 

activated regions should have the same regional CBF and CBV values in the two 

successive BT measurements.  

 

3.2.3 Study IV 

 

All the functional image data was preprocessed before the statistical analysis in the 

same way: 

 

 Exclusion of the first 10 time frames to ensure that the BOLD fMRI signal 

reached the steady state.  

 Head motion correction. Two data sets were excluded because of too much 

motion. 

 Creation of a whole brain mask, for excluding non-brain tissue.  

 Registration to a standard brain atlas in Talairach-Tournoux space  

 A global-signal mask was created of the registered brain volumes 

 Spike removal and low pass filtering at a threshold of 0.1 Hz. This step also 

included the linear de-trending to remove first-order baseline drifts. 

 Voxel-wise high order de-trending using least-square curve fitting and removal 

of polynomial trends. 

 

For the 19 subjects with physiological recordings, the program RETROICOR(Glover et 

al., 2000) removed the cardiac and respiration waveforms from the data sets. To further 

study the impact of the different preprocessing steps, these data underwent three levels 

of regression analysis to remove non-neuronal signals. The levels consisted of: 

 

1) Alignment parameters, cardiac rate, and RVT time course; 

2) Alignment parameters and the average CSF time course; 

3) Alignment parameters, cardiac rate, RVT, and the average CSF time course. 

 

Here the alignment parameters are taken from the motion correction step, the cardiac 

rate is derived from the cardiac data, RVT is the respiratory volume per time derived 

from the respiration data and the CSF time course is the average time course taken from 

the functional data masked with a CSF template taken from standard tissue-type 

probability maps provided by the FSL group (www.fmrib.ox.ac.uk/fsl/fsl/list.html). 

 

For the remaining subjects without physiological recordings, regression analysis was 

performed with alignment parameters and average CSF time course as regressors.  
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3.3 fMRI data analysis 

 

 

3.3.1 Study I 

 

The calculated T2* maps were statistically analyzed using the fMRI software 

AFNI(Cox, 1996) for functional activation detection. Statistical significance of the 

activation was assessed by cross-correlation thresholding and cluster analysis. An ideal 

boxcar reference waveform having a 30 second period of activation, assigned a value of 

1, alternating with a 48 second period of rest, assigned a value of 0, was used. The 

same reference waveform was used for both original and registered data. Using a 

threshold correlation coefficient of at least 0.55 guaranteed that the significance P was 

less than 0.001, after including a multiple comparison correction. A minimum cluster 

size of 3 pixels was also adopted to produce the final activation maps, which further 

improves the statistical significance level of the detected activation. The total number 

of activated voxels was determined by counting the activated voxels in all the slices.  

 

 

 

3.3.2 Study II 

 

 

Based on the results from study I, we used the SigReg data set for further analysis. We 

also included the T2*-weighted images at TE1 and TE2 for the statistical analysis. The 

T2*-maps was converted to R2*-maps by  

 

  
  

 

  
   

These three types data were all analyzed using a student t-test with a t-score threshold 

of 3.2, which gave a significance of p < 0.001. To further reduce false positive results, 

the detected voxels were clustered with a minimum cluster size of 5 voxels. The mean 

time series from the remaining detected voxels from the motor cortex regions was 

extracted for the different data sets, and used for parameter comparison between the 

different methods. The total number of activated voxels was also counted.   

 

Three different parameters were investigated: SNR, FC and CNR. The signal-to-noise 

ratio, SNR is given by 

 

     
  

 
   

where S and σ are the mean signal intensity and the square root of the variance of the 

subtracted image between two consecutive time frames, respectively.   
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The functional contrast, FC, was estimated by using the following definition: 

 

   
    

  
    

  
              

  
    

  

 

where the mean signal intensities in activation and resting states are represented by   
     

and   
    . 

 

Finally, the contrast to noise CNR was estimated by using the following relationship: 

 

    
  

 
          

 

3.3.3 Study III 

 

The fMRI data analyses were performed differently depending on the different imaging 

data acquisiton methods that were used. The FAIR pulse sequence requires a pair of 

images, with and without selective inversion, and the temporal resolution was only half 

of the BOLD images, 6 sec and 3 sec respectively. The BOLD and FAIR data were 

analyzed similarly, with a student’s t-test and the same t score threshold and cluster 

analysis. After including a multiple comparison correction, using a threshold t score > 

3.2 guaranteed that the significance P was less than 0.001. A minimum cluster size of 5 

pixels was also implemented to produce the final activation maps. The activation 

induced signal changes in the motor and visual cortexes for both the BOLD and the 

FAIR experiments were evaluated by analyzing the mean time courses of the voxels in 

the activated areas. The mean time series for further analysis was taken from the areas 

where both methods detected activation. 

 

For the BT measurements, a correction for the remaining contrast agent in the second 

run was carried out throughout the brain. The corrected CBV and CBF maps for the 

resting and activation states were subtracted to reveal areas involved in the functional 

tasks using a threshold of 2 standard deviations above the mean of the subtracted 

images. The relative CBV and CBF changes associated with the functional activation 

were determined from the subtracted images as the mean values of the voxels that were 

activated in both BOLD and FAIR measurements. 
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3.3.4 Study IV 

 

The global signal was calculated for each data set, using the brain mask which was 

created in the preprocessing step. A power spectrum for each subject’s global signal 

was calculated. All voxels in the brain were cross correlated to the global signal time 

course. The calculated cross-correlation coefficients were converted into t-statistics of 

correlation. Maps were created showing the differences in cross-correlation coefficient 

between regression analyses with successive addition of regressors, which would reveal 

the anatomical locations responsible for the differences. To determine whether the 

anatomical locations responsible for the global signal changes were consistent across 

subjects, group maps of pooled t-statistics were created from the individual t-

maps(Jansma et al., 2001). A voxel-based t-test was carried out to test whether the 

mean t value over all the subjects was significantly different from zero, using a pooled 

standard deviation over all voxels. The t-maps were then produced using a voxelwise t-

score threshold of 3.2 and a minimum cluster size of 40 μl. The clusters which survived 

the t-score and cluster size thresholds were detected using the AFNI routine 3dclust. 

The coordinates for the center of gravity of each cluster, along with its cluster size, 

average, and maximum correlation coefficient were extracted using the AFNI ROI 

utility programs. 
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4 Results 

 

4.1 Study I 

 

All the calculated data for the six subjects is summarized in table 3.  

All subjects showed distinct activation in the primary sensorimotor cortex, as well in 

the supplementary motor area. For the motion corrected datasets, 4 of 6 subjects 

showed bilateral activation in the primary sensorimotor cortex as can be expected in 

this kind of stimuli.  The number of activated voxels increased in both methods of 

motion correction for all subjects. The average increase was 13% for SepReg and 15% 

for SigReg method. 

 

 

  

Table 3. Number of Activated Voxels and T2* Values at Activated and Baseline States 
Results for Nonregistered (NotReg) and Registered Data (SepReg and SigReg) 

Data set 1 2 3 4 5 6 Mean 

Activated voxels 

NotReg 341 372 1595 367 326 338 556 

SepReg 361 471 1799 407 366 365 628 

SigReg 381 493 1811 417 371 360 639 

T2* values for activated state in ms 

NotReg 79.5±2.5 75.8±3.0 67.2±2.9 74.7±1.9 74.1±3.1 71.0±2.6 73.7±2.7 

SepReg 78.8±2.3 77.7±2.8 66.7±2.5 75.2±1.6 73.4±3.0 69.3±2.4 73.5±2.4 

SigReg 77.4±2.3 77.6±2.6 66.7±2.6 75.0±1.6 73.3±3.0 69.5±2.4 73.3±2.4 

T2* values for resting state in ms 

NotReg 75.1±2.7 71.0±2.5 64.3±2.5 70.7±2.3 70.3±2.4 67.8±2.0 69.9±2.4 

SepReg 74.7±2.6 73.3±2.4 64.1±2.2 71.3±2.2 70.1±2.4 66.3±1.9 70.0±2.3 

SigReg 73.3±2.5 73.2±2.3 64.1±2.2 71.1±2.2 70.0±2.4 66.5±1.9 69.7±2.3 

 
 
 
The mean T2* value was calculated from the activated voxels for the activation state 

and for the resting state. The mean values based on all subjects were 73.4 and 69.8 ms 

for the activation and resting states, respectively. The average T2* value did not differ 

significantly between the non-registered datasets and the registered datasets , but the 

standard deviation decreased by 11 % when comparing the registered datasets with the 

unregistered datasets. 
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4.2 Study II 

 

Both the R2* maps and the T2*-weighted images were analyzed for the detection of 

functional brain activation. Robust activation in the contralateral primary motor cortex 

and primary somatosensory cortex was detected in all datasets. An example activation 

map from one subject is shown in figure 6. The detected activation volume, FC, SNR 

and CNR were calculated for each data set. The activation volume demonstrated 

significant inter-subject variability but was relatively constant for the same subject 

measured at different occasions. A summary of the results is listed in table 4. The 

largest detected activation volume was found in echo 2 datasets. About 40 % more 

voxels was detected than the results from the datasets of R2* maps, while the first echo 

detected only one third of the volume compared with the second echo datasets. The 

average functional contrast, FC, was 1.7 % for echo 1, 4.4 % for echo 2 and 6.2 % for 

the R2* map. On the contrary, the signal-to-noise goes in the opposite direction. The 

average SNR values were 98, 42 and 32 for echo 1, echo 2 and R2* map, respectively. 

For the contrast-to-noise, CNR, the highest value is found for the R2* map at 1.95, 

followed by echo 2 at 1.87. Datasets from echo 1 has the lowest average CNR at 1.70. 

The calculated averaged R2* values for the activation and the resting states were 13.21 

s
-1

 and 14.08 s
-1

 respectively. These R2* values correspond to the T2* values of 75.7 ms 

for the activation state and 71.4 ms for the resting state, which are in good agreement 

with the results from the literature.  

 

Figure 6. A typical set from one subject. The three slices cover the motor areas. 
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Table 4. Summary of the detected activation volume, functional contrast, signal-to-

noise ratio for the first echo, second echo and R2* parametric maps. 

 Echo 1 Echo 2 R2* 

 Volume 

(voxels) 

FC 

(%) 

SNR CNR Volume 

(voxels) 

FC 

(%) 

SNR CNR Volume 

(voxels) 

FC 

(%) 

SNR CNR 

Mean 296 1.7 98 1.70 818 4.4 42 1.87 581 6.2 32 1.95 

SD 106 0.3 7 0.28 164 0.4 4 0.17 129 0.5 2 0.16 

 
 
4.3 Study III 

 

Figure 7 shows a representative set of perfusion maps obtained from a BT measurement 

in one of the subjects. The gray and white matter contrast is very apparent in the CBF 

and CBV maps, but the mean transit time, MTT, appears to be quite homogeneous in 

the entire brain except for regions contaminated by cerebrospinal fluid (CSF). As 

expected, residual contrast agent effects became apparent when analyzing the rCBF and 

rCBV data obtained during rest (1
st
 injection) and activation (2

nd
 injection). Linear 

regression analysis of CBF and CBV values in non-activated ROIs, where we assumed 

that both parameters did not change, demonstrated a highly significant linear 

correlation (Table 5; Figure 8), but the slope of the regression curves was not equal to 

one (average ratio: CBF2/CBF1 = 1.63; CBV2/ CBV1 = 0.87). We corrected the 

residual bolus effects by normalizing the second CBF and CBV values to the values 

obtained with the first bolus injection on a pixel-by-pixel basis. 

 

Figure 7. A representative set of rCBF, rCBV, and rMTT maps measured with BT. 
Grey/white matter differences are evident in the rCBF and rCBV images, whereas 
rMTT maps are quite homogeneous in the entire brain except for regions 
contaminated by CSF. 
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Table 5. Linear regression results for uncorrected BT rCBF and rCBV values (in 
nonactivated tissue) obtained during activation and the control period in eight 
subjects. The ratio (a), intercept (b), and Pearson product–moment coefficient (r) 
between the first and second measurements. 

 

With simultaneous motor and visual stimulation, activation in the primary sensorimotor 

cortex (M1), supplementary motor area (SMA), and primary visual cortex (V1) were 

observed in all subjects (Fig. 9). There was generally good agreement in activation 

responses between BOLD, FAIR, and BT measurements; however, there are 

observable differences in terms of the spatial extent of activation. The activation 

volumes detected by BOLD and FAIR are quite comparable in size, but BOLD and 

FAIR measurements only partially overlap. The data were calculated for pixels 

activated in both BOLD and FAIR measurements and should be relatively free from 

large vessel contribution because of the macrovascular suppression of the FAIR 

measurements. The average rCBV and rCBF values in the motor cortex increased by 

19.4± 2.7 and 35.1 ± 8.6% respectively. The corresponding rCBV and rCBF changes in 

the visual cortex were 18.2 ± 2.8 and 36.9 ± 8.8% respectively. The percentage BOLD 

signal changes in motor and visual cortexes were 1.8 ± 0.5% and 2.6 ± 0.5% , 

respectively.  Both BOLD and FAIR results are consistent with the data from previous 

studies using similar experimental conditions (Kwong et al., 1992; Kim and Ugurbil, 

1997; Kastrup et al., 1999; Davis et al., 1998) 

 

Figure 8. Correlation between rCBV and rCBF values from nonactivated 
ROIs obtained in two successive BT measurements (resting versus activation). 

 CBF2/CBF1 CBV2/CBV1 

 a b r a b r 

Mean 1,62 1.9 0,97 0,87 0,5 0,93 

SD 0,84 3,9 0,04 0,26 0,52 0,08 
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Figure 9. A representative set of functional activation maps for axial slices that cover 
the motor cortex. The identified activation by BOLD and FAIR measurements was 
overlaid onto the corresponding anatomic images. The bolus tracking results (CBF and 
CBV) are simply presented as subtracted images between resting and activation 
states.   
 

 

4.4 Study IV 

 

4.4.1 Scanner stability 

 

Three measurements with a phantom were done throughout the study to control for 

scanner instabilities. The scans lasted for 50 minutes and an EPI sequence was used. 

After base line drift correction and other common pre-processing procedures, the global 

signal variation measured in the phantom is less than 0.3% over 50 minutes, indicating 

that the contribution from hardware instability of the scanner to the global signal 

change is nearly negligible. When comparing this with the human scans, the variation 

of the global signal is two orders of magnitude higher.  
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4.4.2 Physiological correction 

 

 

A sub-group containing 19 subjects underwent 4 different levels of physiological 

corrections. The results are summarized in table 6. 

 

 

Table 6: The average effects (N=19) of different levels of physiological noise 
corrections on the cross-correlation coefficients, power spectra, and associated brain 
network. 

Physiological 
noise 

correction 
steps 

 

CC with 
Global signal 

 

CC with CSF 
time course 

Normalized 
Power 

 

Volume 
(ml) 

 

No correction 1.00±0.00 0.70±0.11 1.00±0.63 420 

RETROICOR 0.94±0.05 0.76±0.10 0.87±0.58 365 

Cardiac rate, 
RVT 

0.81±0.08 0.64±0.12 0.86±0.56 342 

Cardiac rate, 

RVT, CSF 

0.53±0.09 0.00±0.00 0.47±0.46 145 

CSF 0.54±0.09 0.00±0.12 0.48±0.30 146 

 

 

 

 As shown, with more elaborated physiological noise correction, the residual power of   

the global signal spectrum was further reduced. Correcting the cardiac and respiration-

related instabilities reduces the power by 13-14%, whereas the removal of 

CSF contamination reduces the power by more than 50%. Similarly, with more 

elaborated physiological correction, the cross-correlation coefficients of the global 

signal time course for the corrected resting-state fMRI datasets with the uncorrected 

global signal are also more markedly reduced. The CSF contribution to the global 

signal is also clearly manifested by the cross-correlation coefficient between the 

global signal and the CSF time course. Correcting the cardiac and respiratory instability 

has little effect on the cross-correlation coefficient between the global signal and the 

CSF time course, whereas regression analysis with CSF time course as regressor 

completely depletes the cross-correlation coefficient. 

With no correction, the global signal correlates with a third of the total brain volume, 

but when correcting for cardiac and respiratory instabilities a reduction of 15 % of the 

associated brain volume is seen. When correcting for the CSF signal the associated 

brain volume is reduced by a factor of 3. This is illustrated in figure 10. 
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Figure 10. Brain regions significantly correlated with the global signal time course. 
Average results for resting-state fMRI data acquired from 19 normal subjects with 
auxilary physiological data are shown. Each row corresponds to the result for 
different levels of physiological noise correction. (a) Standard preprocessing, (b) 
Conventional RETROICOR correction; (c) Regression analysis with alignment 
parameters, cardiac rate, and RVT time courses as regressors; (d) Regression 
analysis with alignment parameters, cardiac rate, RVT, and CSF time course as 
regressors. 
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4.4.3 Global signal network 

 

For the 71 subjects without physiological recordings, only motion correction 

parameters and the CSF signal was regressed out from the global signal. The associated 

brain volumes after regression were in very good agreement with the associated brain 

volumes in figure 10 d, which confirms that CSF is a major source of contribution to 

the global signal. When comparing the associated brain volumes to the global signal 

with standard pre-processing and with the extended regression analysis, a third of the 

associated brain volumes remained. These regions are listed in table 7. A consistent 

brain network associated with and responsible for the global signal changes in resting-

state fMRI is identified. The inter-subject averaged CC map involves a number of brain 

regions include: posterior cingulate cortex (PCC), precuneus, inferior, middle, and 

superior temporal gyri, insula, medial frontal gyrus (MFG), pre- and post-central gyri, 

and the cerebellar vermis. 

 

 

   

 

Table 7: The clusters of brain regions which significantly correlated with the global 
signal time course (p < 0.01, cluster size ≥ 40 voxels) for resting-state fMRI data sets 
(n=108) which underwent standard preprocessing procedure and regression analysis 

with the alignment parameters and the CSF time course as the regressors. 

Brain region Broadman 
areas 

Vol 
(voxel) 

TT Corrdinate (mm) 
(X,       Y,          Z) 

CC SD MAX 

R Posterior cingulate, precuneus 18, 23, 30 122053 -7.6 63.0 17.6 0.44 0.03 0.58 
L Postcentral gyrus, inferior parietal lobule 2, 3, 40 19761 48.8 24.4 32.9 0.43 0.02 0.54 
R Middle and superior  temporal gyri 21, 22, 42 976 -57.1 39.4 5.0 0.42 0.03 0.47 
Left Middle frontal, precentral gyri 4, 6 708 33.5 7.0 58.0 0.42 0.03 0.46 
R Middle frontal, precentral gyri 6 613 -29.7 5.6 57.6 0.42 0.01 0.45 
L Insula 13 565 38.3 15.0 10.8 0.43 0.02 0.50 
R Inferior and middle frontal gyri 6, 9 417 -53.2 -11.3 29.8 0.41 0.02 0.43 
L Middle frontal, precentral gyri 6, 8, 9 387 49.7 -4.4 42.0 0.41 0.02 0.43 
L Middle, superior temporal gyri 21, 22, 38 221 56.2 -9.1 -11.3 0.43 0.03 0.47 
R Cingulate gyrus, aracentral lobule 6,7, 31 185 -9.8 27.2 42.2 0.43 0.01 0.45 
L Insula, superior temporal gyrus 13, 21, 22 127 38.2 4.4 -5.6 0.41 0.02 0.43 
R Culmen, fusiform gyrus 20, 36, 37 54 -27.2 40.1 -19.6 0.41 0.01 0.42 
R Middle and suprior temporal gyri 22, 21, 37 52 -58.2 55.1 7.9 0.40 0.01 0.41 
L Middle frontal, precentral gyri 6 52 42.0 0.5 57.2 0.41 0.01 0.44 
L Insula 13, 44 46 37.5 3.5 7.8 0.41 0.01 0.42 
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5 Discussion 

 

5.1 Study I 

 

In study I, two separate image registration strategies are presented. As the results 

shows, SigReg performs slightly better than the SepReg strategy, in terms of increased 

number of activated voxels and reduced standard deviation of the average T2*. It is 

easy to realize that a separated registration for the two echoes can never match perfectly 

between the two echo times. The contrast is much lower for the first echo than the 

second echo, and the image registration algorithm will perform differently on the two 

data sets. Since the time between the two echoes, ∆TE, is 70 ms, any head motion in 

this time interval will be negligible when comparing with the repetition time of 3 

seconds.  Even if a small difference in performance for the two different strategies is 

present, both methods detect the bilateral activation in the right primary motor cortex, 

which was not detected in the non-registered data set.  

 

Using the number of detected activated voxels to quantitatively evaluate the image 

registration improvement can be unreliable, especially when it is compared with the 

non-registered datasets. If only random motions are dominant in the images, image 

registration should reduce the effective noise level and therefore increase the number of 

detected activated voxels. On the other hand, if stimulus-correlated motions are 

approximately synchronized with the stimulus changes the head motions will appear as 

falsely detected brain activation usually around boundaries with high signal contrast, 

like the brain parenchyma and the CSF, or at air/tissue boundaries. In this case, the non-

registered data set might detect a higher number of activated voxels than the registered 

data sets. In a robust and well-known stimulus like the one used here, the finger tapping 

paradigm, motion induced brain activation can easily be identified and removed from 

further analysis, but for more complex, higher cognitive fMRI experiments, where the 

knowledge of the expected activated areas in the brain is vague, motion correction is 

mandatory. 

 

In a study from 2001, where different image registration strategies for single shot multi 

echo EPI were also evaluated, a slightly different result was reported. According the 

study, the echo with the highest signal-to-noise ratio was always performing better than 

the echoes with the higher contrast in the image (Speck and Hennig, 2001). The 

differences might be explained by the different registration techniques used. In the later 

study,  a 3D registration algorithm from the SPM99 package was used, while we used a 

2D registration algorithm from the AFNI package. Unfortunately, we never did motion 

correction on the first echo and applied the motion correction parameters to the second 

echo, which would have been a proper comparison. More recently, a motion correction 

method with linear regression based on the first echo has also been proposed (Buur et 

al., 2009). 
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5.2 Study II 

 

 

It is highly desirable to develop fMRI techniques capable of quantification and 

comparison between different studies. However, the BOLD signal based on T2*-

weighted imaging at a single TE is poorly characterized despite considerable effort 

using modeling and experimental approaches (Yablonskiy and Haacke, 1994, 

Boxerman et al., 1995, Davis et al., 1998, Li et al., 2000). Its relationship with 

physiological parameters such as CBF, CBV, and oxygenation level is further 

complicated by its dependence on acquisition parameters such as TE, TR, flip angles 

and sequence designs. The feasibility of quantifying BOLD signal changes is further 

hampered by inter-subject and within-subject variability. In order to better characterize 

the BOLD contrast mechanism and the spatial localization of functional signal changes 

during neuronal activation, acquisition techniques based on multiple time points of R2* 

relaxation decay have been developed (Glover et al., 1996, Gati et al., 1997, Jonsson et 

al., 1999, Posse et al., 1999). Such techniques have the potential to distinguish R2* 

relaxation from other factors (e.g. inflow) and to produce functional contrast less 

dependent on acquisition parameters. This can facilitate studies involving comparisons 

between exams and subjects. Another aspect is that a parameter map is insensitive to 

linear drifts in the signal caused by scanner electronic instabilities. 

 

The calculation of the parameter map assumes that the signal from the voxels has a 

mono-exponential decay. Since the voxel volume is rather large, a mixture of different 

tissues, capillaries and large vessels, all with different T2* values, contribute to the total 

voxel signal. Our results should represent the average value of vessels and tissue. Not 

only the T2* value is dependent of the contents of the voxel. Large draining veins give 

a much stronger BOLD signal compared to brain parenchyma, creating a T2* difference 

which can span over one order of magnitude(1.6-10.8 ms) (Gati et al., 1997). Even if 

the single shot multi echo imaging techniques use quite low resolution they provide a 

fast tool to obtain reliable T2* distributions in the human brain when compared to T2* 

mapping with a FLASH sequence(Klarhofer et al., 2002). When Bandettini et al used a 

combination of gradient-echo and spin-echo data, they found that spin-echo was 

insensitive to large vessels. Using only voxels that were activated in both 

methods(Bandettini et al., 1994) they found a T2* difference of 1.3 ms between 

activation and rest, which can be compared to the result in this thesis, 3.6 ms and 4.7 

ms for Study I and Study II, respectively. In a comparable study, which also used a 

single shot multi-echo sequence but  a 2 T MRI scanner, a ∆T2* = 3.6 ms was seen, and 

this is in good agreement with our observation if the differences in activation paradigm 

and magnetic field strength are  taken  into account (Speck and Hennig, 1998).  In study 

I and study II, two echoes at different echo times were used to map T2* by assuming a 

mono-exponential decay. Acquiring more echoes as in other studies (Barth et al., 1999, 

Posse et al., 1999) might produce a more robust fitting of the relaxation decay curve. 

Multiple echo data acquisition can also be useful for detecting a non mono exponential 
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relaxation decay phenomena which has been previously reported in a T2 study of gray 

matter(Whittall et al., 1999). 

 

T2* mapping allows quantitative comparison of activation-induced ∆T2* across 

subjects and studies. However, T2*-mapping does not necessarily generate the highest 

functional sensitivity. As can be seen in study II, the activated volume detected by T2* 

mapping is significantly less than that for T2*-weighted imaging at TE2 = 90 ms, even 

though the sensitivity for T2* weighted imaging has not yet been optimized at TE = 90 

ms. One explanation for this can be that the SNR is deteriorated when calculating the 

T2* maps which is not compensated for. The CNR is practically identical for the T2* 

maps and for the second echo T2*-weighted images, which is surprising, since CNR is 

assumed to be a good measure for functional sensitivity, and the difference in activated 

voxels is 40% between the two data sets.  There is a significant correlation between 

CNR and detected activated voxels, but the correlation is rather weak (r=0.39). A 

possible explanation for this is that the CNR values calculated using SNR values 

determined outside the activation areas do not reflect the noise level difference in the 

activation areas. 

 

Single-shot multi-echo sequences can be useful in other ways than for calculating the 

activated voxels in the T2* map. Glover et al used a dual-echo spiral in/spiral out 

sequence to reduce signal losses in the frontal lobes and to increase the 

sensitivity(Glover and Law, 2001), while Weiskopf et al used an alternating phase 

encoding gradient for the consecutive echoes in a multi-echo sequence, to reduce image 

distortions (Weiskopf et al., 2005). One can also use the T2* map to optimize the 

BOLD contrast for the T2*-weighted images, since the optimal TE is approximately the 

T2* value. It has been shown that the T2* value varies strongly across the brain and 

between subjects (Hagberg et al., 2002).  Combining T2* maps and parallel imaging 

acquisition Poser et al developed a inhomogenity-desensitized fMRI method which 

optimized  pixelwise weighted echo summation based on local T2* measurements 

(Poser et al., 2006).  Recently, single-shot multi-echo EPI has also been used in resting-

state fMRI to differentiate between BOLD and non-BOLD signals (Kundu et al., 2011). 

This indicates that multi-echo fMRI can be very useful for characterizing some 

important aspects of the BOLD signal. 

 

 

5.3 Study III 

 

 

Only a few human fMRI studies have investigated changes in the rCBV during 

functional activation prior to this work (Belliveau et al., 1991, Zigun et al., 1993, Frank 

et al., 1994). These studies used BT measurements but assumed that the signal 

intensity-time profile of the second bolus injection was not influenced by the first bolus 

injection. This assumption was later found to be incorrect, since the effect of residual 

contrast agent can be seen hours after injection (Levin et al., 1995). In study III, the 

residual contrast effect on the second BT measurement was corrected assuming that 
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CBV (and CBF) do not change in non-activated brain areas between the two bolus 

injections. The correction involved two steps: First, it was established that there is a 

good linear correlation between the data sets from the two successive BT 

measurements in non-activated regions. Using the value obtained for the slope of the 

regression curve, the CBF and CBV data were then corrected from the second BT 

measurement to match the values obtained with the first BT measurement. When 

comparing the measured rCBV and the calculated rCBV using Grubbs law, a marked 

difference was seen. The estimated rCBV data was consistently lower than the 

measured rCBV data, implying that Grubb’s law may underestimate the rCBV based 

on measured rCBF values. These results indicate that caution must be applied when 

using the above stated power-law relationship to estimate rCBV changes during 

functional activation in humans. One explanation of the difference can be that the 

Grubb relationship is based on a hypercapnia-based CBF modulation on anesthetized 

primates. Not only is it difficult to translate results from animals to humans, the CBF 

regulatory mechanisms for hypercapnia and neuronal activation are likely to be 

different. Secondly, the relationship between CBF and CBV may change due to 

changes in cerebral metabolism, which occur at neuronal activation but not with 

hypercapnia. The Grubb relationship has been used frequently to estimate the oxygen 

metabolism change (∆CMRO2) using calibrated BOLD techniques (Hoge et al., 1999, 

Kastrup et al., 2002, Chiarelli et al., 2007). The exact form of this relationship is now 

under debate, since several studies have come up to other constants in the power-law 

relationship using PET (Ito et al., 2001, Ito et al., 2003, Rostrup et al., 2005)  and MRI 

(Chen and Pike, 2009).  

 

The magnitude of the estimated ∆CBV from study III was 19 % in the visual cortex and 

18 % in the motor cortex. These values are somewhat lower than what was reported in 

other studies; 24 % (Mandeville et al., 1998), 27 % (Francis et al., 2003) and 32 % 

(Belliveau et al., 1991, Gu et al., 2006). Newly developed non-invasive MRI 

techniques have also been used to determine the ∆CBV during neuronal activation: a 

study based on vascular space occupancy, VASO, sequence reported a ∆CBV of 56 % 

(Lu and van Zijl, 2005), which is substantially higher than the result from study III, 

while another study using a pulse sequence sensitive to only the venous CBV, VERVE 

(venous refocusing for volume estimation), produced a much lower values, between 10-

14 % (Chen and Pike, 2009). The latter study might be more relevant for BOLD 

response, since the BOLD contrast is established in the venous side of the capillaries. 

 

Our rCBF values are in good agreement with results from earlier studies e g (Li et al., 

1999a, Li et al., 1999b), but the ranges reported can vary between 30-100%. Despite 

the high absolute magnitude of the CBF changes, the low contrast-to-noise ratios in the 

perfusion based methods require considerable signal averaging to detect robust CBF 

changes. With multimodality fMRI measurements including BOLD, FAIR, and bolus 

tracking of contrast agent, rCBF, rCBV and BOLD signal change can be determined 

and the contribution of hemodynamic and oxidative metabolic parameters to BOLD 

signal changes can be assessed quantitatively. 
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5.4 Study IV 

 

The results of study IV demonstrate that a significant portion of the global signal time 

course is likely to be linked to neural activity. About 50% of the variance in the global 

signal could be explained by fluctuations in physiological instabilities related to cardiac 

rate, respiration, and CSF motions. Earlier studies have stated that the global signal is 

mainly of non-neuronal origin and recommend removing the contribution of the global 

signal from the resting-state fMRI data (Hampson et al., 2002, Birn et al., 2006, Chang 

and Glover, 2009a) to  enhance the quality of the observations of the brain’s intrinsic, 

large-scale functional architecture (Fox et al., 2005, Weissenbacher et al., 2009, Van 

Dijk et al., 2010). This has been questioned, especially because of the effect it might 

have on the anti-correlations observed between different functional networks. In 

particular, the interpretation of the default mode network ( see review on DMN 

(Buckner et al., 2008)) becomes a very relevant issue (Raichle et al., 2001, Fransson, 

2005) considering its involvement with the anti-correlation phenomena and the global 

signal removal. Resting-state fMRI time course of the default-mode network is thought 

to be negatively correlated with that of the “task-positive network”, a collection of 

regions commonly recruited in demanding cognitive tasks. However, most resting-state 

fMRI studies have employed some form of global signal normalization and such 

processing steps alter the time courses of voxels giving rise to spurious negative 

correlations (Cole et al., 2010). The apparent negative correlations in many of the task-

positive regions could be artificially induced by pre-processing procedures, such as, 

physiological noise correction and global signal removal (Murphy et al., 2009). It has 

been shown that physiological noise correction increased the spatial extent and 

magnitude of negative correlations and caused region-specific decreases in positive 

correlations within the default-mode network. Although it may still be appropriate to 

remove the global component in order to focus on the differences in local correlation 

strength, growing evidence in the literature (Leopold et al., 2003, He et al., 2008, Hyder 

and Rothman, 2010, Schölvinck et al., 2010, Chen, 2011) and the results of study IV 

indicate that a substantial portion of the global time course is very likely to be linked to 

underlying neural activity, and the result inferred from the removal of the global signal 

must therefore be interpreted with caution. Other regressors than the global signal have 

been proposed to remove signals which are unlikely to have neuronal origin, such as 

CSF, white matter and other non-brain tissue (Behzadi et al., 2007, Bianciardi et al., 

2009, Giove et al., 2009, Anderson et al., 2010)   

 

Local field potentials, LFP, studies in primate (Leopold et al., 2003, Schölvinck et al., 

2010) showed that a considerable portion of the variance in global fMRI signal is 

related to the slow modulation of neuronal events represented by the high- and low-

frequency LFP bands. However, it is not certain to what extent the spontaneous 

fluctuations of the global signal are coupled with the baseline neuronal activity. The 

power spectrum of the global signal time course indicates that physiological instability 

may contribute to about 50% of the variance energy. 
13

C magnetic resonance 

spectroscopy (MRS) studies aimed at brain energy consumption can give us further 

clues on this. 
13

C MRS studies in rats have established that about 80% of the neuronal 

energy in the cerebral cortex supports the global neuronal activity at rest (Hyder and 

Rothman, 2010). If this also applies to the human brain, it can explain why the global 
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signal changes measured in fMRI are much higher than that of the task-invoked local 

BOLD signal. 

 

The remaining portion of the global signal originates from a consistent brain network 

covering approximately 150 ml brain volume. The power spectrum of the global signal 

time course differs individually, but most of its energy is distributed in the low 

frequency range <0.04 Hz. Since the global signal network shows inter-subject 

consistency it is reasonable to hypothesize that the global network is related to the 

perception and cognitive processes of the brain that occur during a resting-state fMRI 

experiment. These may include inward thinking about the subject itself, thought 

suppression, the effort to keep the body still in a relaxed position, sensing the spatial 

orientation of lying in the gantry, and adaptation of the hearing to the noisy 

environment due to rapidly switching gradients. Most of these sensory perceptions, 

cognition and control processes can actually be explained by the functions of the brain 

regions associated with the global signal network. It is known that PCC is activated in 

situations when a person is inwardly oriented, in unconscious problem solving and in 

daydreaming. Cerebellar vermis is the termination site of spinocerebellar pathways that 

carry out unconscious proprioception and is linked to the brain's natural ability to 

integrate and analyze inertial motion. Purkinje cells in this area are thought to receive 

sensory information from the vestibular system of the inner ears and use this to 

compute information about the body's orientation in space. The superior temporal gyrus 

(STG) is involved in hearing. Classical neuropsychology findings suggest that the right 

STG subserves nonverbal sound discrimination, recognition, and comprehension. 

Prefrontal cortex, cingulate, and insula are known to be involved with conscious 

thought suppression. At present, it is not clear to us why these different brain regions 

with distinct functions generate coherent activities during resting-state fMRI scans. The 

suppressions of thought and body movement are probably modulated similarly by the 

sensory input from the scanning environments. 

 

The neurophysiological basis of the BOLD fMRI signal has been extensively studied, 

particularly in the context of invoked response to a stimulus. Studies of tasked-based 

and resting-state fMRI have revealed that BOLD fMRI signal changes are tightly 

linked to neural activity. On the other hand, there is growing consensus that the 

relationship between the BOLD fMRI signal and the underlying neural activity is 

complex and numerous physiological factors, including even behavioral state, 

contribute to the modulation of microvasculature. This implies that explicating the 

neurophysiological basis for baseline global signal changes is quite challenging because 

there is lack of well defined timing, event, and reference status for comparison. 

However, determining the purpose and consequences of intrinsic activities may prove 

to be of high importance for understanding the brain’s most fundamental physiological 

principles. As discussed above, converging evidence suggest that spontaneous intrinsic 

events including the global signal changes, as opposed to sensory processing or motor 

execution, accounts for the majority of the brain’s large energy consumption. It is quite 

intriguing to consider that synchronous global signal changes in an inter-subject 

consistent brain network contribute significantly to the energy consumption but has no 

essential functionality. It is natural then to ask: What drives these intrinsic neural 

fluctuations in the brain and do such fluctuations optimize the functionality of the 

cortex? 
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