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ABSTRACT 
Cancer is characterized by uncontrolled malignant proliferation of cells that eventually 
interfere with tissue/organ functions. Traditionally, cancer is treated with chemo- 
and/or radiotherapy when surgery is not an option. Unfortunately, the efficacy of 
conventional anti-cancer chemotherapy is severely limited by therapy resistance. A 
conceptually appealing strategy to combat tumor resistance is to use chemosensitizers, 
compounds that selectively sensitize tumor cells to chemotherapy without affecting 
normal tissue. Phenothiazines belong to a class of “old” drugs that are used clinically to 
treat psychiatric disorders. In this thesis, we characterized the chemosensitizing 
potential of phenothiazines in combination with DNA damaging chemotherapeutic 
drugs. Our primary aims are to elucidate the molecular mechanisms by which 
phenothiazines impart sensitization and to delineate molecular determinants that predict 
responsiveness of tumors to phenothiazine-based intervention. In Paper I, we 
confirmed that the phenothiazine compound trifluoperazine (TFP) was a potent 
sensitizer of bleomycin in human non-small cell lung carcinoma (NSCLC) cells; the 
likely mechanism being inhibition of repair of DNA single strand breaks (SSB) as well 
as DNA double strand breaks (DSB). In Paper II, we found that TFP delayed the 
resolution of bleomycin- or cisplatin-induced γH2AX, a marker of unrepaired DNA 
DSB, prolonged the cell cycle arrest and increased oxidative stress in NSCLC cells. 
TFP co-treated cells eventually resumed cycling without fully repairing the DNA 
damage, which led to mitotic defects, secondary checkpoint arrest, exacerbated 
oxidative stress, organelle dysfunction, caspase activation and ultimately apoptosis. In 
Paper III, we uncovered a possible link between phenothiazines and chromatin 
remodeling by in silico gene expression analysis. We found that TFP and structurally 
related phenothiazines significantly enhanced the activity DNA-PK/ATM in tumor but 
not normal fibroblasts in response to DNA DSB-inducing agents, resulting in increased 
selective phosphorylation of a subset of ATM substrates with chromatin regulatory 
functions. Notably, this represents an adaptive response which could be targeted by 
DNA-PK/ATM inhibitors to further enhance TFP-mediated chemosensitization in 
NSCLC cells. Moreover, we found that wild-type p53 is a potential predictor of 
unresponsiveness to phenothiazine-based chemosensitization. We further demonstrated 
that TFP preferentially increased the cytotoxicity of direct-acing DNA damaging 
agents, but not indirect-acting DNA damaging or non-DNA damaging agents, in p53-
deficient tumor cells (NSCLC, breast cancer). In Paper IV, we compared the gene 
expression profile of NSCLC residual clones that survived cisplatin treatment with 
counterparts that survived cisplatin/TFP co-treatment. We found that survival after 
cisplatin was associated with enrichment of pathways involved in DNA 
metabolism/repair, cell cycle and RNA post-translational modification. Pathway 
analysis showed that several DNA repair genes were concurrently up-regulated in 
residual clones that survived cisplatin treatment, but not in residual clones that survived 
cisplatin/TFP co-treatment did not shown such enrichment of DNA repair genes. In 
summary, our data showed for the first time that inhibition of DNA DSB repair by TFP 
is related to alterations in DNA-PK/ATM signaling, which led to increased apoptosis in 
the short term and gene expression changes as well as loss of clonogenicity in the long 
term. Further, our identification of molecular contexts that predict responsiveness to 
phenothiazines will aid in the design of future clinical trials. 
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1 INTRODUCTION 

1.1 DNA damaging chemotherapy in cancer treatment 
Cancer is the collective name for a large number of pathologic conditions characterized 
by uncontrolled malignant proliferation of cells. It may originate from almost any type 
of tissues in the body and is usually rapidly fatal if not promptly treated. The latest 
estimates for the global incidence of cancer and its associated mortality are 12.7 million 
and 7.6 million, respectively, in 2008 1. Although cancer can affect people of all ages, 
there is a steep increase in cancer incidence amongst the elderly (>65 years), suggesting 
that it is an age-related pathology. Whenever possible, surgery is the treatment of 
choice because it has the highest chance of achieving a complete cure. If surgery is not 
an option, for instance due to physical inaccessibility of the tumor site or poor health of 
the patient, chemotherapy and/or radiotherapy may be considered. Ionizing radiation 
(IR) and most conventional chemotherapeutic agents directly or indirectly cause DNA 
damage, which is generally more toxic to proliferating cells. However, as neither of 
these treatment modalities can discriminate tumor cells from rapidly dividing non-
cancerous cells (e.g. bone marrow cells, intestinal cells), their anti-tumor efficacy 
comes at the cost of significant normal tissue toxicity. Therefore, the development of 
chemosensitizers, compounds that can selectively enhance the cytotoxicity of 
chemotherapeutic agents without affecting the sensitivity of normal tissues, is urgently 
needed. 
 

1.2 The DNA damage response (DDR) 
DNA molecules are chemically reactive, and as such are susceptible to attack from 
endogenous (e.g. reactive oxygen intermediates of mitochondrial aerobic respiration) 
and/or exogenous DNA damaging agents (e.g. ionizing radiation, chemotherapeutic 
drugs), which produce a wide spectrum of DNA lesions, ranging from oxidative base 
damages (e.g. 8-oxoguanine) to breakage of DNA strands (e.g. DNA double strand 
break, DSB) 2. The cytotoxic potential of any DNA lesion is influenced by a variety of 
cell-intrinsic factors, such as lineage, position within the cell cycle, availability of 
dedicated or redundant DNA repair factors, etc. It is generally accepted that DNA DSB 
has the highest cytotoxic potential 3. Different types of DNA lesions can also occur 
within close proximity of each other (i.e. clustered damage), making them more 
difficult to repair 4, 5. Incursion of DNA damage in eukaryotic cells triggers the DNA 
damage response (DDR), which elicits temporally concerted activation of multiple 
signaling networks  that together bring about cell cycle arrest, cessation of RNA 
polymerase II-mediated transcription, localized chromatin remodeling and DNA repair 
6-11 (Figure 1). If the DNA damage is successfully repaired by the afflicted cells, DDR 
signaling is shut off allowing cell cycle to recommence. However, if the lesions can not 
be adequately repaired or if DDR signaling cannot be turned off following completion 
of repair, persistent DDR signaling can drive cells into senescence or apoptosis 12, 13. 
The ultimate goal of DDR is to maintain genomic integrity at the organism level. 
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1.2.1 Detection of DNA DSBs 

DNA DSB sensors  
DNA DSBs are particularly dangerous because they can lead to loss of genetic 
information and genomic rearrangements 14. To ensure rapid detection of these 
potentially deleterious lesions, eukaryotic cells are equipped with a set of damage 
sensors that can recognize DNA DSBs, including the Ku70/Ku80 (Ku) complex, the 
Mre11/Rad50/Nbs1 (MRN) complex, poly(ADP-ribose) polymerase 1 (PARP-1), and 
Rad52 15-18. These factors bind to similar double stranded DNA substrates in vitro and 
can under certain circumstances functionally compensate for each other in vivo. As of 
yet, the molecular parameters that determine which of these DNA DSB sensors will be 
recruited to a given DNA DSB are not well understood. Cell-intrinsic factors such as 
protein expression level, cell cycle position, chemical milieu in the vicinity of the break 
and genomic localization of the break may all influence which sensors are 
preferentially engaged. Regardless, it is clear that the choice of DNA DSB sensor 
governs repair pathway utilization. In line with this, direct competition between 
different sensors for binding dsDNA ends has been demonstrated 19-21. 
 

DNA damage-associated chromatin remodeling 
The DNA of eukaryotes exists in close association with a large number of proteins that 
together comprise the chromatin, whose primary functions are to enable efficient 
packaging of DNA into nucleosomes, to protect DNA from damage and to allow 
molecular fine-tuning of essential DNA-centered processes such as gene expression 
and DNA replication 22. The chief protein components of the chromatin are histones, 
which contain numerous amino acids in their N-terminus that are amenable to post-
translational modifications (PTMs), including phosphorylation, acetylation, 
methylation, ubiquitination, sumoylation and ADP-ribosylation 23. Histone PTMs 
determine the level of chromatin compaction/relaxation as well as the recruitment of 
non-histone proteins by creating specific docking sites 24. While some PTMs can occur 
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independently, others are induced in a synergistic or antagonistic manner. In addition, 
the structure of chromatin can also be regulated by processes that do not involve 
histone PTMs, such as CpG island DNA methylation or nucleosome shuffling/eviction 
by ATP-dependent chromatin remodeling complexes 25, 26. 
 
The compact organization of eukaryotic chromosomes poses a big challenge to the 
cellular DNA repair machinery due to its limited accessibility 27. To ensure rapid 
detection and repair of genomic lesions, damage-proximal DDR signaling triggers the 
concerted activation of many proteins with chromatin remodeling functions leading to 
changes in both local and global chromatin landscape 28, 29 (Figure 2). Localized 
chromatin relaxation can occur by several parallel mechanisms. Activation of the apical 
kinase Ataxia Telangiectasia Mutated (ATM) represents one of the earliest events in 
DDR signaling 30. Active ATM relocates to sites of DNA DSB where it phosphorylates 
histone H2AX on serine-139 (aka γH2AX) in the immediate vicinity of the break 31. 
The initial ATM-dependent γH2AX formation is facilitated by localized chromatin 
relaxation following casein kinase 2-mediated release of HP1β from histone H3 
trimethylated on lysine 9 (H3K9Me3, a marker of compact chromatin) 32. This 
generates a binding site for the Tip60 histone acetyltransferase, which acetylates ATM 
on lysine-3016 resulting in enhanced ATM kinase activity 33. Efficient activation of 
ATM also requires HMGN1-dependent histone acetylation 30, 34. In turn, γH2AX serve 
as molecular platforms to help concentrate various checkpoint mediators (e.g. ATM, 
MDC1, MRN, BRIT1/MCPH1) and ATP-dependent chromatin remodeling complexes 
(e.g. NuA4, SWI/SNF) at the sites of DNA DSB 24, 35-38. This creates a self-sustained 
cycle whereby ATM promotes further spreading of γH2AX along the chromosome 31, 

39, 40. Recruitment of NuA4 and SWI/SNF complexes to γH2AX domains surrounding 
DSBs leads to local destabilization/disruption of nucleosomes and promotes histone 
ubiquitination by RNF8/RNF168, which facilitates the subsequent ubiquitination-
dependent recruitment of BRCA1 to amplify checkpoint signaling 38, 41-45. 53BP1 is an 
important checkpoint mediator whose retention on chromatin in response to DNA 
damage requires de novo histone methylation as well as unmasking of pre-existing 
ones. Localized methylation of histone H4 on lysine-20 (H4K20Me) and histone H3 on 
lysine-79 (H3K79Me) are catalyzed by MMSET and Dot1L, respectively 46-49. 
Unmasking of pre-existing H4K20Me requires RNF8/RNF168-mediated displacement 
of JMJD2A and L3MBTL1 50, 51. In turn, 53BP1 interacts with the chromatin 
architectural protein EXPAND/MUM1 to bring about chromosomal decondensation 52. 
Moreover, phosphorylation of KAP-1 (S824) by ATM causes chromatin relaxation by 
disrupting the SUMO-dependent interaction between KAP-1 and CHD3, a component 
of the Mi-2/NuRD ATP-dependent chromatin remodeling complex 53, 54. The precise 
role of ATM-dependent phosphorylation of cohesin components SMC1 (S957, S966) 
and SMC3 is less clear, but appears to be required for the activation of intra-S 
checkpoint and reinforcement of chromosome cohesion 55-58. The latter function may be 
important for maintaining the positional stability of DNA DSBs 29, 59-61. 
 
In addition to its role in checkpoint regulation, chromatin remodeling is also intimately 
linked to DNA DSB repair. Localized mono-ubiquitination of histone H2B by 
RNF20/RNF40 is required for chromatin relaxation and the timely recruitment of 
several DSB repair factors that participate in non-homologous end joining (NHEJ) as 
well as homologous recombination repair (HRR) 62-64. Binding of Ku to damaged DNA 
is facilitated by acetylation of histones H3 and H4 by the CBP/p300 complex 65. On the 
other hand, HDAC1/2-mediated deacetylation of histone H3 on lysine-56 (H3K56Ac) 
is required for efficient Ku-dependent NHEJ 66. Direct polyADP-ribosylation 
(PARylation) of histones by PARP-1 enhances chromatin accessibility 67. PARP-1 and 



Ku also recruit several ATP-dependent chromatin remodeling complexes (e.g. NuRD, 
ALC1, CHRAC) to facilitate DNA DSB repair 68-71. Together, these data suggest that 
chromatin remodeling and loading of repair factors occur in tandem self-amplifying 
cycles. Finally, a number of proteins implicated in stem cell renewal and over-
expressed in tumors, such as BMI1 and Piwil2, have recently been found to function in 
the chromatin response to DNA damage 72, 73. This raises the possibility that tumors 
may utilize lineage/differentiation-related differences in chromatin remodeling to 
enhance their own tolerance for DNA damaging chemotherapy. 
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Figure 2. DNA DSB-induced chromatin remodeling. This is a 
highly complex process involving multiple protein-protein
interactions and PTMs but their potential interplay and individual
kinetics remain largely undefined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.2.2 Cell cycle checkpoints 

Cell cycle arrest versus cell death 
As mentioned earlier, DDR signaling in response to genotoxic stress triggers the 
activation of checkpoint proteins that block further progression in the cell cycle, giving 
the afflicted cell time to repair its damaged DNA 74 (Figure 3). The duration, 
reversibility and final outcome of any cell cycle arrest is governed by a complex 
interplay between numerous factors (e.g., cell type, extent of DNA damage, position in 
the cell cycle when damage was sustained, repair capacity, etc.). In general, relatively 
transient arrest favors cell survival while prolonged arrest frequently culminates in cell 
death or premature senescence 75. There are, however, exceptions where the reverse is 
true. For instance, radioresistant tumor stem/progenitor cells tend to have a longer and 
more stable checkpoint response than their more differentiated and radiosensitive 
progenies 76, 77. Conversely, chemically-induced G2 checkpoint abrogation (e.g. Chk1 
inhibition) are exceedingly toxic in tumor cells whose ability to enforce G1 arrest is 
compromised by p53-deficiency 78, 79.   
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G1 checkpoint 
The G1 checkpoint is activated during late G1 to prevent cells with DNA damage from 
transiting into S phase and initiate DNA replication 80. The best characterized 
mechanism by which DNA damage triggers G1 arrest is mediated by the tumor 
suppressor protein p53 80. Stabilization of p53 and up-regulation of its transcriptional 
activity can be achieved by multiple PTMs, such as phosphorylation and acetylation. 
Depending on the precise pattern of PTMs, p53 may selectively transactivate genes that 
contain high affinity p53-binding sites (e.g., CDKNA1) or broadly transactivate genes 
containing p53-binding sites of varying affinity, many of which are pro-apoptotic (e.g., 
PUMA, BAX) 81, 82. The main effectors of p53-mediated G1 arrest are p21Cip1/Waf1 
(encoded by CDKNA1), a universal inhibitor of cyclin-dependent kinases (cdks), and 
to a lesser degree p16INK4a, a predominantly G1-restricted cdk inhibitor 80. Suppression 
of the kinase activities of G1 cyclin-cdk complexes by p21Cip1/Waf1 (cyclin D-cdk4/6, 
cyclin E-cdk2) and p16INK4a (cyclin D-cdk4/6) prevents the phosphorylation-dependent 
release of E2F family transcription factors from the Pocket proteins (pRb, p107, p130) 
and inhibits the E2F-mediated transactivation of genes required for S phase entry. 
Transient G1 checkpoint arrest is usually reversible while prolonged activation of p21 

Cip1/Waf1/p16 INK4a can drive cells into premature senescence 83. Given that the p53 
pathway is functionally inactivated in a majority of human tumors 84, the G1 checkpoint 
(and hence the ability to senesce) is compromised or lacking in most cancer cells.   
 

Intra-S checkpoint 
The intra-S checkpoint (aka replication checkpoint) is activated primarily by 
disturbances in DNA replication, such as replication stress caused by oncogene-induced 



hyper-proliferation and stalling of replication forks on DNA strands damaged by anti-
cancer drugs 74, 85, 86. Regardless of the cause, collapse of replication forks may follow 
their initial stalling leading to the exposure of single stranded DNA (ssDNA), a potent 
signal for the activation of ATR 87. ATRIP recruits ATR to RPA-coated ssDNA where 
Rad9-Rad1-Hus1 (9-1-1 complex), claspin and TopBP1 collaborate to promote ATR 
activation and phosphorylation of the downstream checkpoint effector kinase Chk1. In 
turn, Chk1 phosphorylates Cdc25A leading to the latter’s proteasomal degradation 
and/or cytoplasmic sequestration by 14-3-3 proteins 88-92. The loss of Cdc25A 
phosphatase activity prevents the activation of cyclin A-cdk1/2, which is required for 
completion of S phase and entry into G2. 
 

G2 checkpoint  
The G2 checkpoint (aka G2-M checkpoint) functions to prevent cells from entering 
mitosis. DNA damage detected in G2 activates both ATM-Chk2 and ATR-Chk1 arms 
of the DDR, with the net result being the inactivation of Cdc25 family of protein 
phosphatases (Cdc25A/B/C) and inhibition of cyclin B-cdk1 whose activity is required 
for mitotic entry 74, 93, 94. The p53-p21Cip1/Waf1 pathway in p53 wild-type tumors and the 
p38MAPK-MK2 pathway in p53-deficient tumors have also been implicated in the 
enforcement of G2 checkpoint arrest 95-97. It is worth pointing out that in human tumors, 
the ATM/R-Chk1/2-Cdc25 pathway may be incapacitated by over-expression of Akt or 
polo-like kinases (e.g. Plk-1), while both the p53-p21Cip1/Waf1 and the p38MAPK-MK2 
pathways may also be attenuated 84, 98-103. Therefore, the G2 checkpoint may be 
compromised or sub-optimal in a large proportion of tumor cells, rendering them more 
susceptible to pharmacologically-induced checkpoint abrogation 78, 79. 
 

Antephase checkpoint 
The term "antephase" refers the relatively short window of time from late G2, when 
chromosome condensation first becomes visible, until commitment to mitosis. Based 
on this definition, the antephase checkpoint is a putative checkpoint that blocks cell 
cycle progression somewhere between late G2 and early prophase 104. Signals that 
activate the antephase checkpoint appear to be topologic disturbances in the DNA 
molecule rather than bona fide DNA damage 104, 105. In this respect, it is similar to 
another putative checkpoint that operates at the G2-M border, the decatenation 
checkpoint, which is activated in response to chromosome entanglement (e.g. 
topoisomerase II inhibition) 106, 107. It is not clear whether the antephase checkpoint 
represents an extension of the “conventional” DNA damage-induced G2 checkpoint or 
is in fact a separate entity with its own distinct molecular control mechanisms. It is 
however possible that there is a temporal constraint on the activation of the 
conventional G2 checkpoint and that the antephase checkpoint represents a last attempt 
by the cell to arrest before progressing into mitosis. So far, p38MAPK and CHFR are 
the only proteins that have been implicated in the antephase checkpoint 105, 108.  
 

Spindle assembly checkpoint 
During late G2 and early prophase, the nuclear membrane breaks down and the 
chromatin undergoes marked condensation accompanied by phosphorylation of histone 
H3 on serine-10 109. From late prophase through metaphase, sister chromatids become 
attached to the mitotic spindle at their kinetochores, which are specialized protein 
structures that form at centromeres. Sister chromatids align at the metaphase plate but 
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are prevented from separating by the spindle assembly checkpoint (SAC, aka mitotic 
checkpoint). The SAC is an active signal generated by mitotic spindle microtubules that 
lack tension at unattached or improperly attached kinetochores 110, 111. A host of 
proteins have been implicated in the execution of SAC, including MAD1, MAD2, 
MAD3, BUB1, BUB3, BUBR1 and MPS1. SAC blocks anaphase by negatively 
regulating CDC20, a component of the anaphase promoting complex/cyclosome 
(APC/C) 112. Once correct bi-orientation of sister chromatids has been achieved, SAC is 
turned off and its inhibition on APC/C is lifted. The E3 ubiquitin-ligase activity of 
APC/C is required to target securin and cyclin B for proteasomal degradation. This in 
turn frees a protease called separase to cleave the cohesin ring that holds sister 
chromatids together. Loss of cohesion then allows the sister chromatids to segregate 
towards opposite spindle poles to complete anaphase. This is followed by telophase and 
cytokinesis in which the nuclear membrane reforms around the newly-separated 
chromosomes and the cytoplasm is cleaved along the mitotic furrow to produce two 
daughter cells. A functional SAC is therefore vital for the maintenance of genome 
integrity by ensuring faithful division of genetic material between two daughter cells. 
Mutation of SAC components is quite common in human cancers and compromised 
SAC function is thought to be a major cause of aneuploidy 113, 114. However, even a 
fully functional SAC cannot arrest cells in mitosis indefinitely and mitotic slippage can 
occur, especially in cancer cells, as a result of checkpoint adaptation 115-117. Since 
prolonged mitotic arrest promotes apoptosis, blocking mitotic exit may be a promising 
strategy to selectively sensitize tumor cells to anti-mitotic drugs such as taxanes 75, 116, 

118-120.    
 

Checkpoint recovery 
Checkpoint recovery refers to the resumption of cell cycle progression after dissipation 
of signals that maintain cell cycle arrest. Recovery from DNA damage-induced 
checkpoint arrest occurs when genomic lesions have been repaired with sufficient 
fidelity that they no longer engage the DDR machinery. As human tumors show a high 
propensity to harbor mutations that inactivate the G1 checkpoint, considerable efforts 
have been devoted to the elucidation of regulatory mechanisms that control recovery 
from G2 arrest 121-125. These mechanisms can be broadly divided into three categories: 
(1) epigenetic modifications, (2) inactivation of checkpoint signaling and (3) 
transcriptional responses. The best characterized epigenetic modifications that 
accompany checkpoint recovery are γH2AX dephosphorylation by protein 
serine/threonine phosphatases (e.g., PP2A, PP4, PP6, Wip1) and re-acetylation of 
H3K56 by histone chaperones/histone acetylases 126-131. Meanwhile, checkpoint 
signaling can be shut off by several mitotic kinases (e.g., Plk1, Aurora A) that block the 
activation of checkpoint kinases while promoting Cdk1 activation 132-134. Finally, a 
number of transcription factors (e.g., B-Myb, FoxM1) have been shown to facilitate 
checkpoint recovery by transcriptionally up-regulating genes that are essential for 
mitotic entry while repressing genes that are involved in checkpoint control 135, 136. It is 
conceivable that these mechanisms act in a non-mutually exclusive manner and may 
promote and/or cooperate with each other. The complex network of molecular 
interactions that regulates checkpoint recovery is only partially understood. 
 

Checkpoint adaptation 
Cells that cannot adequately repair its damaged DNA can still resume cell cycle 
progression by undergoing a process called checkpoint adaptation, which involves 



active shutdown of checkpoint signaling in the face of residual DNA damage 121, 122, 137. 
Checkpoint adaptation was originally observed in yeast and was thought to be limited 
to unicellular organisms, since it carries a high risk for mutations 138. Nevertheless, 
checkpoint adaptation has since been found in human cancer cells after exposure to 
chemo- and/or radiotherapy 139. The molecular pathways involved in G2 checkpoint 
adaptation appear to overlap with those that control checkpoint recovery 121, 122, 137. In 
particular, Plk1 has been implicated in the adaptation to the G2 checkpoint. Given the 
fact that human tumors frequently over-express Plk1, checkpoint adaptation may be 
expected to play a critical role in promoting tumor survival and genomic instability, 
making it a promising target for anti-cancer intervention 140. 
 

1.3 DNA DSB repair 
Since the DNA molecule can incur a broad spectrum of lesions, eukaryotes have 
evolved an elaborate set of DNA repair mechanisms (Figure 4). Two principal modes 
of DNA DSB repair, namely NHEJ and HRR, are utilized by eukaryotic cells. In 
NHEJ, the two ends of a DNA DSB are directly rejoined with little or no requirement 
for terminal homology 141. In HRR, homologous sequences on another chromosome 
(usually sister chromatids) is used as a template to restore the lost genomic information 
across the DNA DSB 142. Notably, DNA DSB repair is frequently intersected by other 
DNA repair pathways because genomic lesions tend to be structurally and chemically 
heterogeneous, requiring additional factors to process the damaged DNA into substrates 
that can be used by NHEJ or HRR. This scenario is neatly illustrated the cooperation 
between Fanconi anemia (FA) pathway and HRR (see below). There is evidence that 
NHEJ and HRR can function cooperatively, independently/sequentially or 
antagonistically 143-146. Moreover, both NHEJ and HRR contain several competing sub-
modules that differ in repair efficiency as well as fidelity. In general, low fidelity sub-
modules are mostly employed as backups that are negatively regulated by high fidelity 
ones 147, 148. 
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1.3.1 Non-homologous end joining  

Classic NHEJ 
Classic NHEJ is initiated by Ku, which binds DNA DSB with high avidity in a 
sequence- and homology-independent manner by forming a ring shaped structure that 
encloses the DNA double helix 149 (Figure 5). Ku in turn recruits the catalytic subunit 
of DNA-dependent protein kinase (DNA-PKcs) to form the DNA-PK holoenzyme 17. 
The physical interaction between two DNA-PK molecules on either side of a DNA 
DSB helps align the ends in a synapse that facilitates end joining 150, 151. Binding to Ku 
and DNA greatly stimulates its serine/threonine kinase activity, resulting in substrate 
phosphorylation (including autophosphorylation) which is required for efficient NHEJ 
152, 153. DNA-PKcs also causes Ku to slide inwards away from the DNA termini 
allowing chromatin access to several end-processing enzymes (e.g. Artemis, DNA 
polymerase µ, DNA polymerase λ, polynucleotide kinase/phosphatase) which together 
with Ku convert DNA ends into chemical configurations suitable for ligation 141, 154-158. 
The final resealing of the broken DNA ends is carried out by a ternary complex 
consisting of XRCC4, XLF and DNA Ligase IV 154. Although the above description 
gives the impression that NHEJ follows a highly ordered sequence of events, 
substantial amount of mechanistic flexibility are observed during NHEJ in vivo 
whereby the order of recruitment of different factors may be more varied and the two 
broken strands can be rejoined independent of each other 154, 159.  Moreover, several 
NHEJ proteins, including Ku and DNA-PKcs, are mobile and dynamically exchange 
between chromatin-bound and soluble forms 160, 161. It is not yet clear at what stage of 
NHEJ DSB repair proteins are released from the chromatin. The available data suggest 
that DNA-PKcs dissociates from the DNA DSB in an autophosphorylation-dependent 
manner and that the Ku complex is removed from DNA following RNF8-dependent 
K48-linked poly-ubiquitination and subsequently degraded 162-164. In the budding yeast, 
release of Ku from DNA requires the nuclease activity of Mre11, but it is not known 
whether Mre11 has a similar function in mammalian cells 165.  
 

Backup NHEJ 
Backup NHEJ (B-NHEJ) refers to cellular processes that promote rejoining of DNA 
DSBs when classic NHEJ (C-NHEJ) is absent or functional inactivated 166. The 
molecular composition of B-NHEJ is largely undefined and might possibly encompass 
several sub-pathways with overlapping activities. For instance, it is not known whether 
alternative NHEJ (A-NHEJ), microhomology-mediated end joining (MMEJ) and B-
NHEJ are simply different terms used to describe the same pathway or in fact represent 
distinct sub-pathways that operate (at least partially) independent of each other 167-169. 
For the purpose of this thesis, however, all end joining events supported by non-
canonical NHEJ will be collectively called B-NHEJ. There is substantial experimental 
evidence demonstrating that B-NHEJ is normally suppressed by DNA-PK and that B-
NHEJ utilizes a separate set of DNA repair proteins such as PARP-1, Mre11, CtIP and 
XRCC1/DNA Ligase III 20, 147, 167, 170-177 (Figure 5). In comparison to C-NHEJ, which is 
usually rapid and relatively accurate, DSB repair via B-NHEJ is both slower and 
generally more error-prone, which increases the likelihood of chromosomal 
translocations especially involving the immunoglobulin heavy chain (IgH) locus in 
developing lymphocytes 14, 166, 175, 177-180. Moreover, increased activity of B-NHEJ has 
been observed in human cancers, such as bladder, breast and acute/chronic myeloid 
leukemia, concomitant with a reduced ability to perform C-NHEJ 14, 174, 179, 180. These 



data suggest that de-regulation of NHEJ may favor mutation-driven tumor evolution 
and adversely affect clinical treatment responses. 
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1.3.2 Homologous recombination repair  
Homologous recombination repair (HRR), aka homology-directed repair (HDR), is 
actually a collective term for a number of functionally overlapping DSB repair sub-
modules that all use a homologous template to restore lost genetic information 142 
(Figure 6). Unlike MMEJ, which is facilitated by short terminal homologies (2-3 
nucleotide), all HRR sub-pathways require significant longer (>100 nucleotides) 
homology tracts on the template, which is usually but not always provided by the sister 
chromatid 142, 169, 181. HRR begins with DNA DSB end resection, whereby stretches of 
the 5’-strand is removed by the concerted actions of Mre11, CtIP and BLM-Exo1 to 
form long single stranded 3’-DNA (ssDNA) tails which becomes coated with RPA 182-

184. DNA DSB end resection is most efficient during S and G2, when it is stimulated by 
CDK2-mediated phosphorylation, but is significantly suppressed by Ku during G1 

185-

187. Next, Rad51 is recruited to the RPA-coated ssDNA where it forms Rad51 
nucleofilament by displacing RPA 188. Loading of Rad51 is facilitated by Rad52, 
BRCA2, PALB2 and the Rad51 paralogs but the molecular details of Rad51 
nucleofilament formation are not fully defined 142, 189-192. Regardless, Rad51 then 
catalyzes a homology-dependent strand exchange (or invasion) reaction in which the 
3’-overhang of a resected ssDNA end becomes annealed to the 5’-strand of an intact 
template DNA molecule, resulting in the formation of a displacement loop (D-loop) 
connected by a Holliday junction (HJ) 142, 188. This is followed by end extension 
through polymerase-mediated DNA synthesis and D-loop expansion. After this stage, 
the HRR sub-modules become distinct. In the DSB repair (DSBR, aka gene 
conversion) pathway, Rad52 promotes the annealing of a second resected ssDNA end 
to the displaced strand of the template molecule in a reaction known as second-end 
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capture to form a stabilized joint molecule with double HJs 193. Rad54 has the ability to 
promote ATP-dependent branch migration of HJs along the joint molecule in a bi-
directional manner, which determines the extent of heteroduplex formation and hence 
the amount of genetic information that is transferred during recombination 194. Upon 
completion of repair-associated DNA synthesis and ligation of the broken strands, the 
double HJs are resolved by specialized endonucleases such as GEN1 and SLX1-SLX4 
195, 196. Depending on which strands of the HJ the enzymatic nicks occur, crossover or 
non-crossover recombinants will be produced. DSBR is thought to be the predominant 
HRR pathway during meosis due to its propensity to generate crossover recombinants. 
Conversely, the synthesis-dependent strand annealing (SDSA) and break-induced 
replication (BIR) pathways are primarily used to repair DSBs in proliferating somatic 
cells. In SDSA, where only a single HJ is formed, end extension is coupled to branch 
migration followed by D-loop dissociation such that the newly synthesized 3’-end of 
the invading strand is annealed to the 3’-overhang of the second resected end. Any gaps 
or flaps that may arise are subsequently filled in/resealed and excised by polymerases 
and nucleases, respectively. The SDSA pathway generates only non-crossover products 
142. DSBR and SDSA are generally perceived as conservative HRR pathways because 
recombination occurs preferentially between sister chromatids 190. However, mitotic 
HRR can also occur between allelic loci located on homologous chromosomes, which 
may lead to loss of heterozygosity (LOH) if the homologues are polymorphic. 
Moreover, on relatively rare occasions (<2% compared to gene conversion) when the 
other end of the DSB is either missing or is heterologous, DNA synthesis on the 
invading strand primes the assembly of replication forks, leading to extensive DNA 

3’ 3’

DSBR
crossover or non-crossover

SDSA
non-crossover

BIR
non-reciprocal crossover

3’ End resection

Strand invasion 
Holliday junction (HJ) 

DNA synthesis

DNA synthesis
second end capture

HJ resolution

Strand 
displacement

Annealing

DNA 
synthesis Ligation

DNA synthesis until the end
of the template chromosome

Ligation

deletion of intervening
sequences

SSA

homology pairing
of repeat sequence

LigationRemoval of flap

Figure 6. A schematic view of the different sub-modules of homologous
recombination repair (HRR). DSBR and SDSA are considered to be error-free as 
long as the sister chromatid is used as the template for repair. BIR and SSA are 
considerd to be mutagenic.

3’ 3’

DSBR
crossover or non-crossover

SDSA
non-crossover

BIR
non-reciprocal crossover

3’ End resection

Strand invasion 
Holliday junction (HJ) 

DNA synthesis

DNA synthesis
second end capture

HJ resolution

Strand 
displacement

Annealing

DNA 
synthesis Ligation

DNA synthesis until the end
of the template chromosome

Ligation

deletion of intervening
sequences

SSA

homology pairing
of repeat sequence

LigationRemoval of flap

Figure 6. A schematic view of the different sub-modules of homologous
recombination repair (HRR). DSBR and SDSA are considered to be error-free as 
long as the sister chromatid is used as the template for repair. BIR and SSA are 
considerd to be mutagenic.



replication to the end of the template chromosome. This process, termed break-induced 
replication (BIR), always leads to non-reciprocal crossover and as such may lead to 
LOH or even chromosomal translocation 197. Unlike DSBR, SDSA and BIR, which 
involve inter-chromosomal recombination events, repetitive sequences within the 
vicinity of the break on the same chromosome can also be used for DSB repair. This 
pathway, termed single strand annealing (SSA), is initiated by Rad52-mediated 
homologous pairing of two complementary repeat sequences exposed by DNA end 
resection 142. This annealing reaction produces non-homologous 3’-overhangs that are 
cut by nucleases such as ERCC1-XPF and SLX1-SLX4. DNA synthesis then fills in 
any gaps and ligation re-seals the broken strands. Since one of the two repeats along 
with the intervening sequences in-between are lost during the process, SSA should 
always be considered as mutagenic.  
 

1.3.3 Fanconi anemia pathway  
The Fanconi anemia (FA) pathway is involved in the repair of DNA DSBs and 
interstrand crosslinks (ICLs) 198 (Figure 7). ICLs, which can be induced by platinum- 
and nitrogen mustard-based chemotherapeutic drugs, covalently connects two guanines 
located on opposite strands of the DNA molecule and thereby block any DNA 
transaction that require strand separation, such as DNA replication and transcription 199, 

200. ICLs are therefore exceeding toxic in proliferating cells. Thirteen FANC proteins 
have been identified to date, namely FANCA, FANCB, FANCC, FANCD1/BRCA2, 
FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ/BRIP1, FANCL, FANCM, 
FANCN/PALB2 201. ICLs physically block the progress of replication forks during S 
phase, causing the fork to stall. This in turn leads to activation of ATR signaling, which 
engages the intra-S checkpoint, stabilizes the fork and coordinates the recruitment of 
repair proteins to the site of DNA damage 202. Incision on either side of the lesion on 
one DNA strand by ERCC1-XPF helps unhook the ICL. The gap generated by 
unhooking is filled in by translesion synthesis (TLS) utilizing error-prone DNA 
polymerases that can bypass the lesion, and the unhooked adduct is subsequently 
removed by nucleotide excision repair (NER) 199, 200, 203. This process creates a DNA 
DSB at the same time, which undergoes end resection and is then channeled into HRR. 
It is thought that the primary function of FA in ICL repair is to couple DSB generation 
to HRR, although the precise mechanisms are still being investigated 203, 204. Eight of 
the identified FA proteins, FANCA, B, C, E, F, G, L and M, form a nuclear complex 
(the FA core complex) and together with two other non-FA proteins FAAP24 and 
FAAP100 promotes the mono-ubiquitination of FANCD2 and FANCI, which is critical 
for mediating cellular resistance of ICL-inducing agents, such as cisplatin or mitomycin 
C 198, 203-205. FANCD2 and FANCI can also be phosphorylated by ATM/ATR in 
response to replication and/or oxidative stress although its significance to activation of 
the FA pathway is not yet clear. Identified interaction partners of FA proteins are 
implicated in a number of cellular processes including DNA repair, chromatin 
remodeling and anti-oxidant defense, suggesting that the FA pathway may broadly 
influence several aspects of the DDR 206, 207. Consistent with this notion, loss-of-
function mutation in any of the known components of FA causes Fanconi anemia, a 
pediatric cancer disposition syndrome characterized by bone marrow failure, 
developmental defects and a high incidence of hematologic malignancies 201.  
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1.4 DNA DSB and the fate of cells with damage 
The fate of cells that incur DNA DSBs is determined by a complex interplay between 
many factors 208. First, the intrinsic ability of cells to maintain cell cycle arrest, which 
provides time for DNA repair, has a major impact on cell survival. For instance, acute 
myeloid leukemia (AML) cell lines that exhibit stringent G2 checkpoint responses are 
more resistant to chemotherapy than counterparts that show transient G2 arrest 77. 
Likewise, glioma progenitor cells have a more robust G2 checkpoint response than non-
progenitor cells and are consequently more radioresistant 76, 209. However, prolonged 
checkpoint activation can also be detrimental to cells in certain settings due to depletion 
of anti-apoptotic factors with short half-lives (e.g. Mcl-1) and in the extreme case, 
cause permanent loss of proliferative capacity 12, 13, 119. Second, the ability of cells to 
accurately repair DNA DSBs influences whether cells can survive DNA damaging 
treatment. This point is particularly well illustrated by the extreme radio- and 
chemosensitivity of mammalian cells that are genetically deficient in DNA DSB repair 
210.   Moreover, the developmental identities of cells are important determinants of fate 
by impinging on the proficiency of DSB repair. Thus for a given lineage, DNA repair is 
generally more precise in stem/progenitor cells than in more differentiated progenies 
211-213. In addition, mesenchymal cells tend to be more resistant than epithelial or 
hematopoietic cells due to inherent differences in growth rate and/or apoptotic 
threshold. Fourth, microenvironmental factors including autocrine/paracrine growth 
factor signaling, oxygenation/hypoxia and pH can greatly influence the 
susceptibility/resistance to DNA damage 214, 215. Finally, mutations and/or de-regulated 
expression of certain proteins can sever (e.g. p53) or strengthen (e.g. E2F1) the 
signaling link between the DDR and cell death pathways, leading to either decreased or 
increased sensitivity to DNA damage 216, 217. 
 
 



1.4.1 Cell survival 
In order for a cell to survive DNA damage, several conditions must be satisfied. First, 
the amount of DNA damage incurred must not be large enough to trigger cell death 
outright 218-221. Second, checkpoint mechanisms need to kick in promptly and provide 
time for DNA repair 79. Third, genomic lesions need to be repaired with sufficient 
fidelity such that residual damage, if any, no longer sustains checkpoint signaling 
(recovery) 121, 122, 222, 223. Alternatively, checkpoint signaling must be actively shut off 
by pro-survival signaling (adaptation) if efficient repair of DNA damage cannot be 
accomplished 121, 122, 137. Fourth, cells must maintain low level expression of essential 
cell cycle regulators during checkpoint arrest allowing them to retain cell cycle 
competency following checkpoint release 135. Fifth, any residual DNA damage should 
not elicit (prolonged) DDR signaling in the next cell cycle phase or overtly interfere 
with mitotic chromosome segregation 119. Finally, the complement of genetic material 
inherited by each daughter cell after mitosis must be of sufficient quality to support 
various cellular processes that are essential for long-term viability 221. Hence, cell 
survival following complete and faithful repair of all DNA lesions represents the best 
case scenario of a continuum of possible scenarios, where variable but relatively low 
levels of residual DNA damage may exist in viable cycling cells. As such, cells that 
survive DNA damage carry an increased risk for the development of delayed 
chromosomal instability. 
 

1.4.2 Cell death 
A failure to meet one or more of the above-mentioned conditions for survival 
significantly increases the likelihood that a cell will succumb to DNA damage-induced 
cell death, which has been shown to occur by multiple modes 220, 224-226. Apoptosis and 
necrosis are two unequivocal cell death mechanisms. On the other hand, autophagy and 
mitotic catastrophe are more ambiguous in that they can also promote survival under 
certain conditions 227-231. Senescence is not strictly a cell death mode since senescent 
cells remain metabolically active albeit being clonogenically dead 232. While apoptosis 
and necrosis are generally considered to be irreversible, both autophagy and senescence 
are clearly reversible 233, 234. Notably, multiple cell death modes can be triggered by 
different genotoxic stimuli, the same stimulus at different strengths, the same stimulus 
at identical strength in different cells or even transition into each other in the same cell 
235-240. 
 

Apoptosis  
Apoptosis is a form of programmed cell death that is evolutionarily conserved from 
yeast to humans. Morphologically, apoptosis is characterized by cell shrinkage, 
membrane blebbing, chromatin condensation and DNA fragmentation that culminate in 
the formation of apoptotic bodies and rapid removal by professional phagocytes or 
neighboring cells 241, 242. The main cellular enforcers of apoptosis are a family of 
cysteine proteases known as caspases 243 . These are synthesized as inactive zymogens 
containing an N-terminal pro-domain of variable length and a C-terminal protease 
domain. Depending on the length of their pro-domains, caspases are subdivided into 
two categories: initiator and effector (executioner). Initiator caspases (e.g. caspases-2, -
8, -9) have large pro-domains containing specialized protein-protein interaction motifs 
(e.g. caspase recruitment domain, CARD; death effector domain, DED) that enable 
their recruitment into multi-protein complexes (e.g. PIDDosome, death-inducing 
signaling complex, apoptosome) through homotypic interactions with adaptor 
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molecules (e.g. RAIDD, FADD, Apaf-1) 244. Within these complexes, inactive pro-
caspases undergo conformational changes and/or auto-processing leading to their 
activation. By contrast, effector caspases (e.g. caspases-3, -6, -7) have short pro-
domains. Activation of these caspases requires proteolytic maturation by either initiator 
caspases or other proteases (e.g. cathepsins) 245. Enzymatically active effector caspases 
cleave protein substrates that function in a wide variety of cellular processes, such as 
structural maintenance (e.g. lamins), adhesion (e.g. focal adhesion kinase), anti-
apoptotic signaling (e.g. Bcl-2) and DNA repair (e.g. DNA-PKcs, PARP-1), to bring 
about cell demise in an ordered and energy-dependent manner 246, 247. There are two 
main apoptotic pathways operating in mammalian cells which are activated 
predominantly by extracellular (extrinsic) and intracellular (intrinsic) stimuli, 
respectively (Figure 8). In the extrinsic pathway, binding of extracellular death ligands 
(e.g. FasL/CD95L, TRAIL) to cell surface death receptors triggers receptor clustering 
and the formation of a death-inducing signaling complex (DISC) leading to the 
recruitment and activation of caspase-8, which in turn activates caspase-3 248. In the 
intrinsic pathway, intracellular stress signal (e.g. DNA damage) trigger multiple pro-
apoptotic signaling modules (e.g. JNK, p38) to bring about the conformational 
activation of pro-apoptotic Bcl-2 family members Bak and Bax, leading to 
mitochondrial outer membrane permeabilization (MOMP) and the release of 
cytochrome c 249, 250 Roos, 2006 #737]. Once in the cytosol, cytochrome c and Apaf-1 
assemble into a complex called the apoptosome that leads to the recruitment and 
activation of caspase-9, which in turn activates caspase-3. In addition, there is 
substantial cross-talk between these two pathways. For instance, cleavage of the pro-
apoptotic Bcl-2 family member Bid by caspase-8 produces a truncated molecule (tBid) 
that translocates to the mitochondrial membrane where it contributes to the activation 
of Bak and Bax 251. Conversely, caspase-3 activated through the intrinsic pathway can 
also cleave caspase-8 to further amplify the apoptotic cascade 252. Moreover, many 
noxious stimuli are known to induce oxidative stress, causing damage to intracellular 
organelles such as lysosomes and endoplasmic reticulum (ER) 253, 254. In turn, 
lysosomal membrane permeabilization (LMP) and ER stress could lead to activation of 
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cathepsins and calpains, which in some experimental models have been shown to 
activate effector caspases 255, 256. Unlike caspases-3, -8 and -9, the role of caspase-2 in 
DNA damage-induced apoptosis is not clearly defined 257-261. Although its structure 
resembles that of an initiator caspase, the phenotype of caspase-2-deficient cells 
suggests that it may have a more prominent role in regulating the G2 checkpoint rather 
than apoptosis. 
 
Because inappropriate activation of caspases carries potentially deleterious 
consequences, mammalian cells are equipped with a number of braking mechanisms 
that inhibit caspase activation and/or activity. Activation of caspase-8 within the DISC 
can be suppressed by c-FLIP, a DED domain-containing caspase homolog that lacks 
catalytic activity 262. Anti-apoptotic Bcl-2 family members such as Bcl-2, Bcl-XL and 
Mcl-1 normally hold Bak and Bax in inactive complexes, thereby preventing them 
from inducing MOMP 263. Furthermore, the pro-apoptotic Bcl-2 family member Bad is 
phosphorylated by Akt, which leads to its sequestration by 14-3-3 proteins in the 
cytosol 264. Accidental activation of caspases is also prevented by the inhibitor of 
apoptosis (IAP) family of anti-apoptotic proteins (e.g. XIAP, c-IAP1/2, survivin) which 
bind to caspases and suppress their activity. In response to DNA damage, p53 becomes 
stabilized and transcriptionally active, leading to the increased expression of a variety 
of pro-apoptotic proteins, such as FasL, death receptor-4/TRAIL receptor-1 
(DR4/TRAIL-R1), Apaf-1 and the pro-apoptotic Bcl-2 family proteins Puma, Noxa and 
Bax 265. Moreover, cytosolic p53 appears to directly induce MOMP by activating Bak 
and Bax 266, 267, which can release mitochondrial SMAC/Diablo and Htr2a/Omi to 
inactivate IAPs. Human tumor cells frequently show increased expression of various 
anti-apoptotic proteins as well as functional inactivation of p53. As expected, the 
apoptotic propensity of p53 deficient cells in response to DNA damage is markedly 
reduced 216. In these cells, however, p53-independent apoptosis can still occur, but the 
molecular mechanisms are not well understood.  
 

Necrosis  
Necrosis is a form of cell death characterized by swelling and rupture of organelles as 
well as cells that leads to the release of noxious pro-inflammatory mediators and injury 
to surrounding tissues 241, 242. In the context of chemotherapy, it is generally believed 
that the probability of triggering necrosis increases with increasing doses. Historically, 
cell death by necrosis is considered to be un-regulated and pathologic, caused by 
massive irreparable damage to cellular components. However, evidence has emerged 
over the past decade suggesting that necrosis can also be highly regulated. PARP 
appears to be an important regulator of necrosis. Over-stimulation of PARP activity by 
excessive alkylating or oxidative DNA damage causes rapid depletion of intracellular 
ATP and NAD(+), resulting in the shutdown of metabolism and caspase-independent 
programmed necrosis (aka necroptosis) 268 (Figure 9). As the name indicates, 
necroptosis share some features with apoptosis, in that its main effector apoptosis-
inducing factor (AIF) needs to be released from mitochondria via a process that 
depends on calpain and Bax. AIF then translocates into the nucleus where it induces 
chromatinolysis (but not internucleosomal DNA cleavage as in apoptosis) by 
interacting with H2AX 268.  Two additional forms of programmed necrosis have been 
described recently (Figure 9). In one model, necrotic cell death after DNA damage was 
regulated by p53-dependent up-regulation of lysosomal cathepsin Q and reactive 
oxygen species (ROS) independently of Bak/Bax-mediated MOMP 269. In the other 
model, necrotic cell death induced by tumor necrosis factor-α (TNFα) was shown to 
involve RIP1/RIP3-dependent formation of a “necrosome” complex that enhances ROS 
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production, calcium mobilization and lysosomal dysfunction 270.  Moreover, apoptotic 
cells can undergo secondary necrosis, especially in the absence of phagocytes as under 
most in vitro culture conditions 271. The processes of apoptosis and necrosis are clearly 
more intertwined than previously thought and both are likely to contribute to 
chemotherapy-induced cell death in vivo 233. 
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Mitotic catastrophe 
Mitotic catastrophe is a term used to describe highly disorganized and defective mitosis 
225, 242, 272. It is not clear whether mitotic catastrophe represents a distinct mode of cell 
death because there are no molecules exclusively linked to the execution of mitotic 
catastrophe. As such, mitotic catastrophe is more likely a physical manifestation of 
failed mitosis that is severe enough to trigger cell death by any mode(s) 225 (Figure 10). 
Mitotic catastrophe appears to be more easily invoked in tumor cells with compromised 
cell cycle checkpoints due to p53 deficiency or pharmacologically induced checkpoint 
abrogation 225, 273, 274.  Hallmarks of apoptosis (e.g., caspase activation) are frequently 
observed following mitotic catastrophe, suggesting that severe mitotic defects can 
trigger apoptotic cell death 275. However, there is also evidence implicating an adaptive 
and pro-survival role of mitotic catastrophe 276 (Figure 10). Notably, severe DNA 
damage can drive p53-deficient tumor cells into the endocycle, whereby cells 
continuously replicate their DNA without undergoing cytokinesis leading to high-level 
ploidy (endopolyploidy) and formation of giant cells. While the vast majority of 
endopolypoid tumor cells are not clonogenically viable, a small fraction has been 
shown to up-regulate genes that control embryonic self-renewal, such as Oct4, Sox2 
and Nanog, resulting in transient acquisition of stem cell properties and resistance to 
apoptosis 277. Subsequent depolyploidization and reorganization of the genetic material 
can produce seemingly diploid daughter cells that are clonogenic. The process of 



depolyploidization appears to be regulated by a set of genes normally involved in 
meiosis, a form of reduction cell division that generates haploid gametes (i.e., 
spermatogonia and oocytes) 278. Alternatively, before they die non-viable polyploid 
giant cells produced from mitotic catastrophe may also give rise to mitotically viable 
daughter cells via nuclear budding and asymmetric cytokinesis in a phenomenon 
termed neosis 279. Importantly, endopolyploidization-depolyploidization and neosis-like 
events have been observed during tumorigenesis as well as in response to DNA 
damaging treatment, suggesting that these processes have the potential to promote 
tumor heterogeneity and drug resistance 229, 230, 276, 278, 280, 281.   
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Autophagic cell death 
Autophagy involves the sequestration of cellular proteins and organelles into 

raned vesicles (autophagosomes) which subsequently fuse specialized double-memb
with lysosomes resulting in proteolytic degradation of the vesicular contents 282 (Figure 
11). Autophagy is an essential physiologic process during development and its de-
regulation has been demonstrated in a variety of human pathologies, including 
neurodegenerative diseases and cancer 283-285. Autophagy is also elicited by ionizing 
radiation and many clinically used chemotherapeutic agents, such as temozolomide and 
etoposide 227, 286-288 (Figure 11). However, the consequence of drug-induced autophagy 
may be either cytoprotective or cytotoxic, depending on the cellular and experimental 
context under which it was induced 233. In general, transient induction of autophagy is 
beneficial for tumor cells by isolating damaged cell components (e.g., mitochondria) 
and recycling limiting resources (e.g. nucleotides, amino acids, lipids). On the contrary, 
persistent autophagy is usually detrimental and leads to cell death. Notably, autophagic 
cell death often displays certain hallmarks of apoptosis (e.g., caspase activation), 
suggesting that these cell death modes may share some common features 289. Inhibition 
of apoptotic effectors can sometimes trigger autophagic cell death 290. Furthermore, 
apoptosis and autophagy appears to be co-regulated by Bcl-2 family members Bcl-2, 
Bcl-XL and Beclin-1 at the level of mitochondria and ER 291, 292. Therefore, autophagic 
cell death and apoptosis probably exist in a continuum and both of these cell death 
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Senescence 
fers to a state where cells remain metabolic active but are unable to 
ese cells are typically larger, appear flattened and express senescence-

 

modes can be induced in a given tumor. Interestingly, autophagy plays a dual role in 
tumorigenesis, serving as a barrier against the initiation of incipient tumors while 
enhancing the survival of established tumors in the face of metabolic crisis or drug 
treatment 293, 294. Consistent with this notion, autophagy inhibition has emerged recently 
as a promising strategy for combating cancer 295, 296. 
 
 

Senescence re
proliferate. Th
associated β-galactosidase 297. The replicative life span of mammalian cells is limited 
by their ability to maintain telomere length 298. The telomere is a region of highly 
repetitive nucleotide sequence at the end of a chromosome which interacts with 
specialized protein complexes (i.e. shelterin) to form a protective cap that prevent 
chromosome end-to-end fusion 299. During each round of cell cycle, the telomeres 
become successively shorter because DNA polymerases cannot replicate DNA all the 
way to the end of the chromosomes. Critically shortened telomeres trigger a p53-
dependent DNA damage response leading to permanent cell cycle arrest or replicative 
senescence that is maintained by p21Cip1/Waf1 and p16INK4a 12 (Figure 12). Adult tissue 
stem cells typically express the enzyme telomerase and are therefore able to delay the 
onset of replicative senescence 300. By contrast, differentiated cells normally do not 
express telomerase and consequently have a relatively short proliferative life span 301. 
Notably, human tumors frequently re-activate telomerase expression giving them the 
ability to sustain proliferation indefinitely 232. In telomerase-negative tumors, 
alternative means to maintain telomere length (e.g. BIR) have been described 302.  
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De-regulated oncogenic signaling and chemotherapy have been shown to induce 
terminal growth arrest in tumor cells by two related processes called oncogene-induced 

nescence (OIS) and premature senescence (aka accelerated senescence), respectively 

.5 DDR signaling in cancer 

tumorigenesis 
the DNA damage response constitutes an early 

305, 313 iven hyper-
to chronic activation of the 

se
303, 304 (Figure 12). Unlike replicative senescence, OIS and premature senescence are 
triggered by DNA damage that is not necessarily caused by telomere dysfunction. DDR 
signaling appears to plays a key role in the enforcement of senescence program 305, but 
there is no strict requirement on the p53-p21Cip1/Waf1/p16INK4a pathway 306, 307. OIS 
constitutes an early barrier against tumorigenesis that indolent tumors must overcome 
to achieve full-blown malignancy 308. Drug-induced premature senescence is an 
important route for tumor clearance in vivo 309, 310 and its evasion may limit the efficacy 
of cancer treatment 311. However, senescence induction is a double-edged sword 
because senescent tumor cells and fibroblasts have been shown to secrete pro-
inflammatory cytokines, proteases and mitogenic factors that lead to tissue remodeling 
in the microenvironment and accelerated tumor growth 312. Hence, novel agents that 
can prevent the acquisition of senescence-associated secretory phenotype (SASP) have 
the potential to significant improve tumor eradication by conventional chemotherapy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1.5.1 DDR as a barrier against 
There is ample evidence to suggest that 
barrier against tumorigenesis . In pre-neoplastic tissue, oncogene-dr
proliferation causes significant replication stress leading 
DDR machinery, orchestrated by ATR-Chk1 and ATM-Chk2 314, 315. Persistent DDR 
signaling induces senescence or death of oncogene-transformed cells resulting in 
delayed tumor formation. To achieve full-blown malignancy, pre-neoplastic cells must 
breach this early DDR-imposed barrier, which would explain the propensity of human 
malignant tumors, including lung cancer, to harbor genetic and/or epigenetic defects 
that inactivate key components of the DDR network, including ATM, Chk2, H2AX, 
53BP1 and p53 316-318.  
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pair deficiency and cancer predisposition 
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1.5.2 DNA DSB re
A
expression of genes encoding proteins that participate in DNA DSB rep
checkpoint regulation (Table 1). This list is likely to grow over time as resear
intricacy of the DDR network continues to reveal novel factors not previously known to 
function in DNA DSB repair. A common characteristic of these familial syndromes is 
hypersensitivity to endogenous (and exogenous) DNA damage, which in certain 
instances may predispose afflicted individuals to cancer and/or premature aging. Some 
inherited DNA DSB repair deficiencies also cause developmental abnormalities, mental 
retardation and/or immunodeficiency. Complete bi-allelic inactivation of DSB repair 
genes is relatively uncommon because it is usually not conducive to survival. Instead, 
most clinically relevant DNA DSB repair deficiencies stem from hypomorphic 
mutations which allow the mutant proteins to retain some residual activity. Notably, 
many genes implicated in DNA DSB repair, especially those involved in the ATR 
network, are haploinsufficient 319, suggesting that even partially compromised DNA 
DSB repair may precipitate the development of human pathologies. In addition to these 
familial cancer predisposition syndromes, somatic mutations and single nucleotide 
polymorphisms (SNPs) in DSB repair genes have also been implicated in 
tumorigenesis 320-325. Finally, the DSB repair machinery itself appears to become less 
efficient and more error-prone during physiological aging, which may account for the 
age-dependent increases in cancer incidence 326. 
 
Table 1. Human familial syndromes associated with DNA DSB repair deficiency. 
Disorder  Gene Radiation 

sensitivity 
Cancer 

predisposition 
Reference 

Ataxia telangictasia ATM yes yes 327 
ATR-Seckel syndrome ATR yes ? 328 
Nijmegen breakage syndrome NBN a 329yes yes  
AT-like disorder M  RE11 yes ? 330 
Li-Fraumeni syndrome TP53, C 2 a yHEK yes es 331 
Hereditary breast/ovarian 
cancer syndrome 

BRC D1, 
BRC B2 

332-  A1, BAR
A2, PAL

yes yes 334

Primary Microcephaly MCPH1 a yes ? 335 
RS-SCID PRKDC a yes ? 336 
LIG4 syndrome LIG4 yes ? 328 
Omenn syndrome (RS-SCID) D  yCLRE1C a yes es 328 
NHEJ1 syndrome (RS-SCID) NHEJ1 a yes ? 337 
RIDDLE syndrome R  NF168 yes ? 338 
Bloom syndrome BLM yes yes 339 
Werner syndrome WRN yes yes 339 
Rothmund-Thomson syndrome RECQL4 yes no 339 
Fanconi anemia FANC(A-N) yes yes 199 
Abbreviations: SCID, severe combined immunodeficien

MCP 1 and PRKDC encode f bs1, Chk2, temis, 
XLF and DNA-PKcs, respectively.  

cy. 
a NBN, CHEK2, DCLRE1C, H1, NHEJ or N Ar
microcephalin, 



1.5.3 De-regulation of DNA DSB repair in cancer 
As partial inactivation of DDR signaling during early stages of tumorigenesis is 
required for the transition into full-blown malignancy 314, 315, DNA DSB repair 
pathways in established human tumors are likely to be profoundly different from their 
normal counterparts. For instance, DNA repair in bladder cancer is often characterized 
by low fidelity NHEJ caused by diminished Ku DNA-binding activity 340, 341. In 
leukemia, expression of oncogenic (fusion) tyrosine kinases (e.g. FLT3-ITD, BCR-
ABL, TEL-JAK2, etc.) causes a shift from C-NHEJ to DNA Ligase III-mediated B-
NHEJ 342, 343. Multiple myelomas also show impaired NHEJ function although these 
cells seem to become genomically instable due to over-activation of HRR 344, 345. Over-
expression of Rad51 has been linked to hyper-recombination and/or increased usage of 
alternative HRR in a variety of cancers, including breast, pancreatic and BCR-ABL+ 
CML 321, 346-349. Similarly, loss of BRCA1/2 in breast and ovarian cancer compromises 
error-free HRR and causes up-regulation of mutagenic SSA 148. Moreover, large tumors 
with hypoxic regions may resort to error-prone DSB repair due to reduced expression 
of HRR factors 350. Finally, B-NHEJ can promote fusion of dysfunctional telomeres 
while BIR may facilitate telomerase-independent alternative lengthening of telomeres 
(ALT) 302, 351. De-regulation of DNA repair is thus a double-edged sword; on the one 
hand promoting genomic instability to fuel the malignant evolution of tumors, while on 
the other hand imposing over-reliance on inefficient repair and checkpoint mechanisms 
for survival. As such, many tumors may exist in a primed-for-death state whereby sub-
optimal DNA repair just barely manages to hold the mutation load at a survivable level. 
Consequently, therapeutics that abolish DNA checkpoint and/or repair have the 
potential to tip this precarious balance and selectively eradicate tumor cells 352, 353.   
 

1.5.4 DNA DSB repair and tumor chemosensitivity 
The relationship between DNA DSB repair and chemosensitivity is very complex and 
most likely context-dependent. In terms of relative mRNA and protein expression, 
different tumors have been found to produce higher, comparable or lower levels of 
certain DNA DSB repair factors than adjacent normal tissues (Table 2). However, 
depending on their histological origin and/or stage, such expression changes may or 
may not be associated with tumor aggressiveness or chemosensitivity. In addition, 
SNPs in DSB repair genes may also have important bearings on the outcome of 
treatment 322, 354. 
 

1.6 Resistance to DNA damaging chemotherapy 

1.6.1 Mechanisms of resistance 
The underlying causes of resistance, whether intrinsic or acquired, can be pleiotropic 
and different for each chemotherapeutic agent. Intrinsic resistance refers to profound 
drug insensitivity that is apparent already at initial exposure to a particular treatment 
and is usually linked to processes involved in tumorigenesis itself. By contrast, 
acquired resistance is by definition induced upon (recurrent) drug treatment, whereby 
tumors cells that are initially sensitive become progressively more resistant to 
subsequent treatment. Drug resistance mechanisms can evolve independently or in 
tandem in a given tumor, and can be transient or long-lasting. Moreover, exposure to a 
single chemotherapeutic agent may elicit cellular defense mechanisms that render 
tumor cells cross-resistant to a multitude of other drugs, a condition termed multidrug 
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resistance (MDR). Because they obvious impact on treatment outcome, resistance 
mechanisms that human tumors utilize to survive conventional DNA damaging 
chemotherapy have been the subject of intense research. Known causes of 
chemoresistance can be broadly divided into four categories: (1) failure of the drug to 
reach its intended target, the DNA (pre-target resistance), (2) inability of the drug to 
efficiently induce DNA lesions (on-target resistance), (3) malfunctioning of cell death 
pathways (post-target resistance) and (4) constitutive activation of pro-survival 
signaling pathways that are unrelated to the drug treatment per se but which can abolish 
its death-inducing capacity (off-target resistance). A few examples clinically relevant 
resistance mechanisms are provided below.  
 
Table 2. Alterations in the expression of DNA DSB repair factors and their impact on 
tumor progression and resistance. 
Tumor type Transcript expression Protein expression Resistance a Reference 
T-cell lymphomas   
B-cell lymphomas 
Multiple myeloma 

decreased XRCC6 b  
and MRE11A; increased 

XRCC4 and Rad50 in 
MM 

n.d. n.d. 355 

Multiple myeloma increased endo-/ 
exonucleases, helicases, 
ERCC1, Rad23, Rad50, 

Rad51, Rad51B, 
Rad51C, Rad51D and 

XRCC3 

increased Rad51, 
Rad51B, Rad51C 

and Rad51D 

n.d. 344 

Diffuse large B-
cell lymphoma 

decreased 53BP1 in a 
subset of tumors 

n.d. n.d. 356 

Chronic myeloid 
leukemia 

n.d. Increased DNA-
PKcs 

chlorambucil 357 

Breast cancer 
Bladder cancer 

n.d. increased Ku70/80 
only in breast 

cancer 

n.d. 358 

Breast cancer  n.d. increased Rad51 
with tumor grade in 

sporadic cases; 
increased Rad51 in 
BRCA1-deficient 

cases 

n.d. 359, 360 

Cervical cancer 
Esophageal 
cancer  

n.d. increased DNA-
PKcs and Ku70/80 
in residual tumors 

expression 
correlates with 
IR resistance 

361, 362 

Abbreviation: n.d., not determined. 
a Resistance to chemo-/radiotherapy; b XRCC6 encodes forKu70.  
 

Altered drug transport and detoxification as examples of pre-target resistance 
Most if not all chemotherapeutics with intracellular targets require some types of 
transport mechanism en route to their destination. Alterations in drug transport can thus 
be an important contributor of resistance by preventing chemotherapeutics from 
reaching their intended targets. For instance, tumor cells may acquire resistance to 
platinum-based compounds (e.g. cisplatin) as a result of reduced drug uptake, which 
can occur by drug-induced down-regulation of the copper influx transporter hCtr1 or 
enhanced expulsion of internalized drug by the copper efflux transporters ATP7A/B 363. 
Likewise, intracellular accumulation of anthracyclines (e.g. doxorubicin) is hampered 



by over-expression of several efflux pumps of the ATP-binding cassette (ABC) 
transporter superfamily (e.g. p-glycoprotein) 364.  
 
Detoxification refers to processes by which cells inactivate xenobiotics either 
enzymatically or by sequestering them away from their intended targets. Given that 
many anti-cancer drugs (e.g. bleomycin, cisplatin) trigger the production of ROS 
through iron-catalyzed redox reactions and/or disruption of mitochondrial respiratory 
chain, it is perhaps not surprising that increased expression of proteins involved in the 
cellular antioxidant defense (e.g. glutathione S-transferases, thioredoxin reductase, 
superoxide dismutase) is frequently observed in chemoresistant tumors 365. In addition, 
increased acidification of intracellular organelles (e.g. lysosomes, endosomes, trans-
Golgi network) with concomitant cytoplasmic alkalinization is a recurrent feature in 
many tumors. This would allow the membrane-permeable neutral form of weakly basic 
drugs (e.g. anthracyclines) to diffuse into acidic organelles where they become 
protonated and trapped, thereby reducing the intracellular concentration of drugs at 
their nuclear target sites 366.  
 

Enhanced DNA repair as an example of on-target resistance 
DNA represents the major intracellular target of many commonly used 
chemotherapeutic agents. Unrepaired DNA damage is highly cytotoxic, as 
demonstrated by the extreme radiosensitivity in patients afflicted with rare human 
syndromes caused by inherited mutations in DNA repair genes, such as ataxia 
telangiectasia, Fanconi anemia and xeroderma pigmentosum 367, 368. It is generally 
believed that elevated DNA repair capacity correlates with diminished tumor sensitivity 
to DNA damaging chemotherapy. For instance, high expression of the nucleotide 
excision repair (NER) and HRR component ERCC1 is associated with platinum 
resistance in non-small cell lung carcinoma (NSCLC) 369, 370.  Similarly, high 
expression of the DNA repair protein MGMT is associated with resistance to alkylating 
agents, in particular temozolomide, and conversely MGMT promoter methylation 
correlates with increased drug sensitivity 371. Enhanced FA/BRCA-mediated ICL repair 
contributes to melphalan resistance in multiple myeloma and there is evidence 
suggesting that high expression/activity of DNA-PK is associated with chlorambucil 
resistance in B-cell chronic lymphocytic leukemia (B-CLL) 357, 372-374. The epidermal 
growth factor receptor (EGFR), which is frequently over-expressed in NSCLC and 
gliomas, is a positive regulator of DNA-PK activity and this may account for the 
observed benefit of adding an EGFR inhibitor to standard platinum-based 
chemotherapy 375-377. Finally, Rad51 is over-expressed in many human tumors; the 
available data suggest that Rad51 may confer chemoresistance as well as genomic re-
stabilization of previously instable tumors 346, 378. 
 
The cellular DNA repair machinery is subject to complex regulation by growth receptor 
signaling. For instance, both the EGFR and IGF1R exert cytoprotective effects in lung 
cancer cells by promoting NHEJ 376, 379. Essentially all growth factor receptor studied in 
connection with DDR have been shown to enhance DNA repair, including c-Met, 
TrkA, Her2/ErbB2 and the aforementioned EGFR and IGF1R 376, 379-383. In addition, 
growth factor receptor signaling almost invariably leads to activation of the 
phosphatidylinositol 3’-kinase (PI-3K)/Akt pathway, which is a potent inhibitor of both 
apoptosis and checkpoint responses 103, 264. Since over-expression of growth factor 
receptors is a fairly common phenomenon in human tumors, paracrine growth factor 
signaling could have a major influence on chemoresistance by promoting DNA repair, 
checkpoint override and apoptosis evasion.  
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Defective apoptotic signaling as an example of post-target resistance 
Human tumors can acquire resistance to apoptosis through de-regulation of the 
extrinsic and intrinsic apoptotic pathways as well as their upstream regulatory networks 
384, 385. For instance, reduced apoptosis sensitivity of cisplatin-treated NSCLC cells has 
been shown to result from diminished expression of Fas, pro-caspase-8, pro-caspase-9, 
XIAP, Bcl-2 and Bcl-XL 386. Similarly, over-expression of c-FLIP in breast cancer cells 
confers resistance to doxorubicin/interferon-γ co-treatment 387. Increased expression of 
anti-apoptotic Bcl-2 family members (e.g. Mcl-1) is associated with poor prognosis as 
well as chemoresistance (e.g. etoposide, doxorubicin) in both neuroblastoma and 
leukemia, while decreased expression/activation of their pro-apoptotic counterparts Bax 
and Bak in colon cancer and NSCLC resulted in resistance to etoposide and IR, 
respectively 388-391.  Elevated expression of IAPs and heat shock proteins, which 
negatively regulate caspase activity, has also been implicated in chemoresistance in 
some tumors 384, 392. Furthermore, hyper-activity of Akt, caused by de-regulated 
upstream signaling from receptor tyrosine kinases (e.g. EGFR), Ras and PI-3K or 
deletion of its negative regulator PTEN, is observed in a large proportion of tumors and 
contributes to suppression of chemotherapy-induced apoptosis 385, 389, 393. In fact, 
defective apoptotic signaling is a recurrent feature for most if not all human solid 
tumors 394.  
 

Hypoxia, quiescence and EMT as examples of off-target resistance 
Insufficient oxygen delivery is fairly common in solid tumors, especially when a tumor 
has reached beyond the size of 3 cm. In these cases, the cells located in the center of the 
tumor experiences hypoxia, which has significant impact on chemosensitivity 395. First, 
the lack of adequate perfusion of blood results in diminished drug delivery to the 
hypoxic region of the tumor. Second, hypoxia limits the formation of cytotoxic ROS 
that is induced by many chemotherapeutic drugs. Third, hypoxic cells often enter 
quiescence and become insensitive towards drugs that selectively target DNA 
replication-related processes. Finally, hypoxia directly shifts the balance of DNA repair 
from error-free HRR to error-prone NHEJ 350, 395. This decrease in repair accuracy in 
tandem with increased resistance to cell death can cause genomic instability, rapid 
tumor evolution and metastasis.  
 
Cancer stem cells (CSCs, aka tumor-initiating cells, TICs) belong to a rare sub-
population of cells within the tumor bulk endowed with the capacity to self-renew and 
sustain tissue ontogeny, a defining property of normal embryonic/adult stem cells 396, 

397. CSCs typically activate transcriptional modules associated with maintenance of 
pluripotency (e.g. Oct4, Sox2, Nanog) and express similar surface markers as normal 
stem cells (e.g. CD133, CD44) 398-400. CSCs generally show increased chemo- and 
radioresistance as compared to their more differentiated counterparts, which is due 
partly to their superior capacity in DNA repair and/or checkpoint arrest and partly to 
their quiescent state 72, 76, 209, 401-406. Quiescence refers to a state of dormancy during 
which cells resides in G0. Since many chemotherapeutic agents (e.g. cisplatin, 
gemcitabine) preferentially kill fast proliferating tumor cells, the lack of cell cycle 
progression as a result of quiescence largely negates the activity of S-phase targeting 
drugs. Quiescence can also be reversibly induced in differentiated cells by certain anti-
cancer treatments and might represent an adaptive response to adverse metabolic 
conditions 407.  
 



Epithelial-mesenchymal transition (EMT) refers to a developmental process in which 
cells with a predominantly epithelial identity acquire features consistent with a 
predominantly mesenchymal identity, characterized by decreased cell adhesion (loss of 
E-cadherin) and increased motility 408. Although EMT is physiologically important 
during normal embryonal development, organ formation and wound healing, it can also 
be pathologically induced in tumors by de-regulated oncogenic signaling pathways 
(e.g. growth factors, Ras, Wnt/β-catenin and Notch) 408. EMT is controlled by a number 
of transcription factors (e.g. Snail, Slug, Twist, Smads) that collectively promote 
survival signaling, acquisition of stem cell properties, increased DNA repair (e.g. up-
regulation of ERCC1) and metastasis 409-411.   
 

1.7 DDR signaling as a target for chemotherapy sensitization  

1.7.1 Abrogation of cell cycle checkpoints  
Functional inactivation of the tumor suppressor protein p53 is a recurrent feature in 
human tumors 84, 412. This can happen through deletion of the chromosomal arm where 
p53 resides, inactivating mutation of p53 itself or over-expression of its chief negative 
regulator MDM2, which targets p53 for proteasomal degradation. Loss of p53 functions 
usually lead to increased tumor resistance to DNA damaging agents due to the absence 
of p53-dependent pro-apoptotic signaling 413. However, these tumors also lack the 
ability to initiate checkpoint arrest in G1, a largely p53-dependent process and become 
overly reliant on checkpoints in S and G2 to deal with endogenous DNA damage and 
replication stress associated with hyper-proliferation 80. Although p53 is not absolutely 
required for enforcing cell cycle arrest in S and G2, it does modulate the functions of 
these checkpoints, which tend to become less stringent in its absence 74, 95. It is 
therefore anticipated that combining DNA damaging chemotherapy with drugs that 
abrogate the intra-S and G2 checkpoints would overwhelm the DNA repair machineries 
of p53-mutant tumors, leading to enhanced therapeutic efficacy 414, 415 (Figure 13). The 
validity of this hypothesis is currently being tested for a number of small molecule 
inhibitors of Chk1/2 that recently entered clinical trials 78, 79. 
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1.7.2 Inhibition of DNA DSB repair 
As most conventional chemotherapeutic agents kill tumor cells by inducing DNA 
damage, it is widely expected that their efficacy should be enhanced by inactivation of 
the cellular DNA repair machinery. While this assumption is intuitively attractive, it 
also presents a number of potential pitfalls. For instance, lowering the DNA repair 
capacity indiscriminately may cause significant collateral damage to highly DNA 
damage-sensitive normal proliferative tissues such as the colon mucosa and bone 
marrow, while inducing mutagenesis in other tissues that are not apoptosis-prone. 
Moreover, as human cells routinely employ multiple DNA repair pathways in response 
to chemotherapy, targeting a single pathway may not be sufficient to markedly augment 
tumor eradication 416. In addition, there is evidence suggesting that functional DNA 
damage signaling might be required to trigger cell death, particularly when damage is 
extensive 218, 219. Nevertheless, the concept of targeting DNA DSB repair as a means to 
enhance chemotherapy does have merits and may be highly effective in certain context 
(see below).  
 

PARP inhibitors and synthetic lethality 
Synthetic lethality refers to the state whereby individual inactivation of two genes is 
tolerated but their compound inactivation causes lethality. The concept of synthetic 
lethality has gained widespread attention since the discovery of BRCAness in breast 
and ovarian cancers, a term that has been used to describe functional inactivation of 
BRCA1/2 or their associated network. BRCAness, which is characterized by 
deficiencies in HRR, renders tumor cells highly susceptible to PARP inhibition because 
the loss of PARP-dependent base excision repair (BER) causes the accumulation of 
DNA single strand breaks (SSB) and their conversion into replication-associated DNA 
DSBs. Such lesions are normally dealt with by HRR during S phase, but remain 
unrepaired or misrepaired by NHEJ in BRCA-deficient cells leading to apoptosis 417-420 
(Figure 13). A multitude of clinical trials have since been initiated to examine the 
feasibility of using PARP inhibitors as mono-therapy as well as in combination with 
conventional chemo/radiotherapy. To date, the main focus has been on breast and 
ovarian cancer where BRCA1/2 deficiency is relatively common, but the scope is 
beginning to widen following the elucidation of the FA pathway as part of the BRCA 
network 332, 421, 422. Certain tumor-specific mutations and drug treatment also appear to 
induce conditions akin to BRCAness which are potentially amenable to PARP 
inhibition 423, 424. Finally, several recent studies identified synthetic lethal interactions 
between PARP and many protein factors not known to participate in BRCA-dependent 
HRR 425-427. Collectively, these data suggest that PARP inhibitors may be useful for 
targeting human tumors with a wide spectrum of DNA repair defects. In addition, the 
utility of PARP inhibitors in repair-proficient tumors also warrant further investigation, 
especially in combination with another DNA repair inhibitor 428. 
 

DNA-PK modulators 
Given the key role of NHEJ for promoting efficient DNA DSB repair, substantial 
efforts have been invested in the research of DNA-PK inhibitors as novel 
chemosensitizers 429. Unfortunately, the development of DNA-PK inhibitors has 
stagnated over the past few years, with no compound yet having been approved for 
clinical trials even though pre-clinical testing has yielded promising results 357, 430-437. 
The main obstacle facing at least one class of experimental small molecule DNA-PK 
inhibitors appears to be related to poor solubility and short metabolic half-lives 438. 



DNA-PK inhibitors are thought to potentiate chemo/radiotherapy by increasing the 
longevity of unrepaired DNA as a result of impaired NHEJ and possibly also HRR 439 
(Figure 13). Interestingly, an alternative approach involving pharmacologically-induced 
hyper-activation of DNA-PK has been recently demonstrated to chemosensitize tumor 
cells 440, 441. This strategy employs double-strand DNA bait molecules (Dbait) that act 
as decoys creating a molecular sink that drains the cellular pool of DNA-PK prior to 
DNA damaging treatment. Considering that hypo- as well as hyper-phosphorylation of 
DNA-PK increased cellular DNA damage sensitivity, it follows that perturbation of 
DNA-PK kinase activity through either inhibition or hyper-activation may have the 
potential to enhance chemosensitivity in tumors 442.   
 

1.8 Phenothiazines – What are they and what can they do? 
Phenothiazines are a class of heterocyclic dopamine receptor antagonists widely used 
as anti-psychotic medication and as anti-emetics to relieve post-operative or 
chemotherapy-induced vomiting  443-445 (Figure 14). They are commonly referred to as 
typical antipsychotics (aka first generation antipsychotics) to distinguish them from 
atypical antipsychotics (aka second generation antipsychotics), such as clozapine and 
risperidone, which target the dopamine pathway more specifically and are considered to 
have superior safety profiles 443. Common mild side effects of phenothiazines include 
dry mouth (anti-cholinergic effect), sedation (anti-histaminergic effect), weight gain 
(metabolic effect) and skin photosensitivity 446, 447. Long-term treatment with 
phenothiazines are also associated with the development of extra-pyramidal symptoms 
(EPS), including akathisia/dyskinesia, muscle tremor and Parkinsonism (anti-
dopaminergic effect), which are more debilitating and usually require therapeutic 
intervention 448. Neuroleptic malignant syndrome (NMS) and agranulocytosis are two 
rare but potentially fatal conditions that can be induced by phenothiazine antipsychotics 
449, 450. The spectrum of adverse effects associated with phenothiazine treatment 
indicate that these compounds are likely to impact on a multitude of physiological 
processes in addition to their activity in the nervous system. 
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1.8.1 Molecular targets of phenothiazines 

Neurotransmitter receptors  
One of the most important clinical indications for phenothiazine-based medication is 
the treatment of psychotic disorders, which is thought to be mediated selectively 
through dopamine D2 receptor antagonism 443. However, phenothiazines also bind with 
significant affinity to several other types of neurotransmitter (e.g. acetylcholine, 
histamine, serotonin) receptors and the moderate anti-emetic activities of many 
phenothiazines are likely derived from antagonism of serotonin receptors 451. Notably, 
high expression levels of neurotransmitter receptors are not restricted to neuronal or 
endocrine cells, but are also found in a variety of human (tumor) cells of non-
neuroendocrine origin (Human Protein Atlas, http://www.hpr.se). Therefore, 
phenothiazines can theoretically influence the behavior of many cell types in a highly 
complex manner. Interestingly, a recent report showed that phenothiazines can inhibit 
the ability of neural stem cells and primary brain tumor cells to form neurospheres, 
suggesting that normal as well as malignant stem/progenitor cells may be sensitive to 
perturbations in neurotransmission pathways 452.  
 

Ion channels 
The effect of phenothiazines on ion channels has mostly been investigated in the 
context of its possible contribution to cardiotoxicity in patients on antipsychotic 
medication. Human cardiomyocytes express a number of ion channels of which hERG, 
a potassium channel, appears to be selectively inhibited by phenothiazines 453. Similar 
results were also observed in HEK293 and Chinese hamster ovary (CHO) cells 
transfected with hERG cDNA 453, 454. Interestingly, hERG channels are expressed in a 
variety of tumor cells, including lung carcinomas, and hERG inhibitors have been 
shown to be of therapeutic value in cancer therapy 455, 456. 
 

Drug efflux pumps 
The ABC transporters belong to a superfamily of transmembrane proteins that utilize 
ATP hydrolysis to translocate a variety of substances, including solutes, nutrients and 
xenobiotics, across biological membranes 364. Over-expression of certain ABC 
transporters, such as p-glycoprotein (pgp), is thought to increase therapy resistance in 
human tumors by facilitating drug efflux 457.  It is therefore anticipated that efflux 
blockers may enhance chemotherapy and considerable efforts have been devoted to 
their development. Early studies showed that many calcium channel blockers (e.g. 
verapamil) and Ca2+/CaM antagonists (e.g. phenothiazines) interfere with pgp-mediated 
transport of vinca alkaloids (e.g. vincristine) and anthracyclines (e.g. doxorubicin) 458. 
Mechanistically, phenothiazines appear to directly bind pgp, possibly at the same site(s) 
as its natural substrates, although an additional indirect effect due to perturbation of 
plasma membrane fluidity cannot be excluded 459. TFP has been reported to increase 
the permeability of the blood-brain barrier (BBB), where pgp is abundantly expressed, 
to a number of compounds which normally have limited accessibility to the CNS, such 
as etoposide and ivermectin 460, 461. In another study, however, TFP had no effect on the 
distribution of vinblastine 462, suggesting that phenothiazines may not universally 
enhance CNS penetration of all chemotherapeutic agents that are substrates of pgp. 
Nevertheless, phenothiazines could enhance plasma retention of doxorubicin and 
etoposide in patients receiving chemotherapy, probably by inhibiting its clearance via 
pgp-expressing cells in the renal proximal tubules 463, 464. Furthermore, phenothiazines 



have been shown to reverse drug resistance in MDR tumor cell lines that over-express 
different ATP-dependent efflux pumps 459. While these data clearly demonstrate that 
phenothiazines are capable of antagonizing drug efflux in vitro as well as in vivo, 
several early clinical trials failed to prove conclusively that phenothiazines are useful 
therapeutically as efflux blockers of anti-cancer drugs 465-468. Although the focus of 
research on phenothiazines have since shifted from cancer treatment to management of 
MDR in bacteria, some new phenothiazine derivatives with promising anti-tumor MDR 
reversing activities did emerge recently 469-472. 
 

Calcium/calmodulin  
Calmodulin (CaM) is a ubiquitously expressed protein that acts as a multifunctional 
calcium sensor and signal transducer. CaM regulates a variety of cellular processes, 
including proliferation, metabolism, inflammation, and cell death. It is not clear 
whether CaM antagonism may underline some aspects of neuromodulation by 
phenothiazines in psychiatric disorders. However, CaM antagonism appears to a major 
contributor of phenothiazine-induced cytotoxicity and the order of anti-proliferative 
potency of phenothiazines closely mirrors their CaM antagonistic activity 473, 474. 
Phenothiazines have also been reported to inhibit the functions of some non-CaM-
regulated calcium-binding proteins (e.g. protein kinase C, troponin C) 475, 476.  
 

1.8.2 Cellular processes that are affected by phenothiazines 

Membrane fluidity 
The amphiphilic nature of phenothiazines favors molecular interactions with 
zwitterionic lipids in biological membranes, such as the plasma membrane 477 (Figure 
15). Insertion of phenothiazines into the lipid bilayer enhances the fluidity and 
permeability of plasma membrane of epithelial cells and causes shape alterations in 
erythrocytes 478, 479. In line with this, phenothiazines appear to affect cholesterol 
homeostasis by modulating the expression of genes involved in sterol biosynthesis 480, 

481. As a result, phenothiazines have been reported to induce dissociation of several 
membrane-bound signaling proteins, including K-Ras and EGFR 482-484. Furthermore, 
phenothiazine-induced membrane stress appears to inhibit translation initiation in both 
yeast and human cells 485, 486. 
 

Cytoskeletal dynamics and cell motility 
Phenothiazines have been reported to disrupt the organization of cellular microfilament 
network and hepatic metabolites of chlorpromazine could induce gelation of actin 487, 

488. Moreover, phenothiazines inhibit the interaction between myosin-IIA and S100A4, 
a member of the S100 family of small calcium-binding proteins implicated in the 
regulation of cell motility, suggesting that phenothiazines may suppress metastasis 489. 
Interestingly, exposure to phenothiazines resulted in rapid apoptotic cell death in 
chemotherapy-resistant high-grade primary breast cancer cells that over-express 
another S100 family member, S100P 490. Phenothiazines are also known to inhibit 
migration of lymphocytes and glioblastoma cells, possibly due to impairment of 
myosin/actin dynamics and/or matrix metalloproteinase activation 491-493. Finally, 
phenothiazine treatment enhances the attachment of human non-small cell lung 
carcinoma (NSCLC) U1810 cells to the plastic substratum of culture dishes, indicating 
that phenothiazines may also affect cell adhesion (our unpublished data). It is tempting 
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to speculate that the cytoskeletal effects of phenothiazines are derived from CaM 
antagonism (Figure 15). However, definitive proof for this assertion is not available at 
present. 
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Figure 15. Examples of cellular processes that are modulated by phenothiazines. 
Processes that may account for phenothiazine-induced cytotoxicity are in 
highlighted in bold. Other processes have been implicated in phenothiazine-
mediated cytoprotection.
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Lysosomal function 
Phenothiazines are lysosomotropic compounds that contain weakly basic amine groups 
attached to a core of largely lipophilic tricyclic ring system (Figures 14 and 15). These 
properties allow uncharged phenothiazines to freely intercalate into biological 
membranes or cross it. Once inside acidic lumen of lysosomes, the amine groups of 
phenothiazines become protonated, thus preventing the now positively charged 
phenothiazines from diffusing out of lysosomes 494. Accumulation of lysosomotropic 
compounds within lysosomes may cause a rise in luminal pH and adversely affect the 
activities of many lysosomal proteins, such as cathepsins and acidic sphingomyelinases. 
Consistent with this notion, resistance to chronic TFP treatment in Sacchromyces 
cerevisiae has been correlated to over-expression of components of the vacuolar 
ATPase which might be required to maintain an adequate level of vacuolar acidification 
495, 496. In mammalian cells, lysosomotropic compounds (e.g. chloroquine) can inhibit 
autophagy due to elevation of lysosomal pH and failure of autophagosome maturation 
497. Paradoxically, phenothiazines have recently been identified as activators of 
autophagy, suggesting that partial disruption of lysosomal function may stimulate 
compensatory autophagy, while more severe lysosomal perturbation can block it 498, 499. 
High intra-lumenal concentrations of lysosomotropic compounds may also cause 
rupture of lysosomal membrane as a result of excessive osmotic pressure, releasing 
lysosomal proteases that can initiate apoptosis 500. Finally, lysosomotropic compounds 
have been shown to affect intracellular distribution of other drugs with similar chemical 



properties 494, 501. As such, phenothiazines can theoretically reduce the lysosomal 
sequesteration of certain anti-cancer drugs (e.g. daunorubicin), which may lead to 
increased therapeutic efficacy or exacerbated toxicity.  
 

Cellular respiration and mitochondrial homeostasis 
Phenothiazines have been shown to influence the activities of several metabolic 
enzymes that participate in glycolysis and the Kreb’s cycle 502. Thus, phenothiazines 
may disrupt mitochondrial energy production, although the concentrations of TFP (66 
µM) needed to significantly inhibit respiration is well above that required for 
chemosensitization (10 µM) 503-505. However, the interplay between phenothiazines and 
mitochondria is very complex (Figure 15). On the one hand, UVA-induced 
phenothiazine free radicals disrupt mitochondrial functions and cause cell death; on the 
other hand, phenothiazines have been shown to exhibit antioxidant activities and 
protect mitochondria from oxidative damage possibly through inhibition of 
mitochondrial permeability transition (mPT) 506-508. Notably, the impact of 
phenothiazines on mitochondrial homeostasis and bioenergetics appears to be dose-
dependent: at non-cytotoxic concentrations (<10 µM), phenothiazines behave 
predominantly as antioxidants, while at cytotoxic concentrations (>10 µM), 
phenothiazines promote mitochondrial swelling accompanied by dissipation of 
mitochondrial transmembrane potential, mPT and release of calcium 509. Moreover, 
TFP potentiates DNA damage-induced ROS production and mitochondrial dysfunction 
in human NSCLC cells but antagonizes hydrogen peroxide-induced oxidative stress in 
rat pheochromocytoma PC12 cells, indicating that the mitochondrial effect of 
phenothiazines is likely to be context-dependent 504, 510. The potential therapeutic 
benefits of harnessing both pro- and antioxidant properties of phenothiazines have been 
demonstrated in experimental models of photodynamic therapy and ischemia/oxidative 
injury, respectively 511-514.  
 

Akt signaling 
The PI-3K/Akt pathway has important pro-survival/anti-apoptotic functions, and as 
such is frequently hyper-activated in human tumors. Interestingly, several lines of 
evidence suggest that phenothiazines may modulate PI-3K/Akt signaling (Figure 15). 
In ovarian cancer cells, phenothiazines have been shown to block phosphorylation of 
Akt on both Thr-308 and Ser-473, which are required for full activation of Akt by 
upstream kinases 515, 516. Phenothiazines have been reported to antagonize de-regulated 
mTOR activity in lung adenocarcinoma and to selectively induce apoptosis in PTEN-
deficient tumors by blocking Akt-dependent export of FOXO1a into the cytosol 517, 518. 
Moreover, phenothiazines are able to interfere the chaperone activity of Hsp70, which 
in turn causes down-regulation of its client protein Akt 519. Taken together, these data 
indicate that phenothiazines may impact PI-3K/Akt/mTOR signaling on multiple 
levels. 
 

Cell cycle progression 
As CaM antagonists, phenothiazines are expected to negatively modulate G1/S 
transition 520 (Figure 15). In line with this, TFP induces p21Cip1/Waf1 expression via 
modulation of its transcriptional regulator Egr-1 in C6 and U87MG glioma cells 521, 522 
as well as in U1810 NSCLC cells via a p53-independent mechanism (our unpublished 
data). Phenothiazines also influence mitosis (Figure 15). For instance, chlorpromazine 
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(CPZ) has been shown to be anti-mitotic, especially in combination with pentamidine 
523-525. The mitotic target of phenothiazines appear to be the Eg5 mitotic kinesin and its 
inhibition results in the formation of monopolar spindles, mitotic arrest and apoptosis 
525, 526. However, another report showed that inhibition of mitotic slippage by CPZ after 
paclitaxel treatment resulted in prolonged mitotic arrest and enhanced survival 527. 
These conflicting results suggest that the outcome of phenothiazine-mediated inhibition 
of mitotic processes may be cell type- and/or context-dependent. 
 

DNA repair 
Evidences of phenothiazines as DNA repair modulators are well-documented (Figure 
15). At the molecular level, studies comparing the effects of phenothiazines with non-
phenothiazine CaM antagonists have implicated CaM antagonism as a likely 
mechanism. For instance, TFP and the naphthalene sulphonamide CaM antagonists W7 
and W13 could inhibit DNA repair in CHO cells following bleomycin treatment while 
the much less potent W12 and TFP sulfoxide were largely ineffective 528. In addition, 
TFP and the calcium chelator EGTA appear to interfere with the excision of UV-
induced pyrimidine dimers by NER in normal human fibroblasts 529. Another study 
found that intracellular calcium regulates a DNA repair signaling pathway in human 
mononuclear cells involving protein tyrosine kinase(s), CaM and calcineurin 530. In 
response to IR, H2AX forms molecular complexes with CaM and several other 
calcium-regulated proteins in a dynamic and temporally distinct pattern, suggesting that 
Ca2+/CaM signaling can modulate DNA damage-induced checkpoint and repair 531, 532. 
Interestingly, the expression of CaM is up-regulated by low-dose IR in murine 
macrophages and forced over-expression of CaM results in enhanced H2AX 
phosphorylation without any changes in the extent of DNA damage incursion 533. This 
mechanism may well account for the enhancement of DNA DSB repair fidelity 
observed after low-dose irradiation which is completely abolished by W7/W13, lending 
further support for a regulatory role of CaM in DNA repair 534. Nevertheless, the 
assertion that phenothiazines and other CaM antagonists should act in identical manner 
(i.e. through CaM antagonism) has its own caveats. First, although CaM undoubtedly 
participates in certain aspects of the DDR, its relevance to cell survival under stress 
may be context-dependent, especially considering the special differences between 
human and rodents. Second, phenothiazines seem to target other cellular processes at 
concentrations where CaM antagonism is observed; therefore the de facto contribution 
of impaired Ca2+/CaM signaling with regard to any observed cellular effects must be 
interpreted with caution 535. This is supported by our own data showing that TFP-
mediated augmentation of DDR signaling is not faithfully recapitulated by the CaM 
antagonists W7 or calmidazolium (CMZ), although all three compounds were used at 
concentrations corresponding to their respective IC50 for CaM antagonism (our 
unpublished data). Ultimately, the relevance (if any) of CaM antagonism in 
phenothiazine-mediated DNA repair modulation can only be defined through 
manipulation of CaM expression, for instance by siRNA.  
 

Chromatin organization and gene expression 
There is circumstantial evidence suggesting that chromatin may be a site of action for 
phenothiazines (Figure 15). First, ultrastructural studies in Ehrlich ascites carcinoma 
cells by electron microscopy clearly demonstrated their accumulation within the 
nuclear compartment, where immuno-positivity of phenothiazines was noted to be 
scattered in the nuclear matrix as well as in close association with electron-dense 



chromatin 536. Second, a variety of patient-derived cell types (both CNS and non-CNS) 
exhibited discernible alterations in chromatin structures following pimozide-based 
therapy, which is thought to act through similar mechanisms as phenothiazines, i.e., 
dopamine D2 receptor antagonism 537. Third, the D2 receptor antagonist haloperidol was 
shown to induce chromatin remodeling in striatal neurons of both mice and rats 538. 
Finally, in silico analysis by Connectivity Map (cmap, this thesis) indicated significant 
similarities in the gene expression signatures of human cancer cells treated with 
phenothiazines compared to those treated with several HDAC inhibitors (see Paper III). 
Consistent with the notion that phenothiazines may be bona fide chromatin-active 
compounds, a recent study identified fluphenazine (FPZ) as a candidate agent that 
could induce normalization of aberrant gene expression found in malignant 
neuroblastoma leading to loss of tumor cell viability 539. Apart from their putative 
modulatory actions on chromatin, phenothiazines have also been shown to directly bind 
nucleic acids. The photodynamic DNA damaging potential of phenothiazines is well-
established and is due to generation of free radical species, but their effect on nucleic 
acids in the absence of photo-activating UVA irradiation is less clear 540. Although the 
planar tricyclic rings of phenothiazines can intercalate into the DNA double helix, 
studies on genotoxicity and mutagenicity have yielded conflicting results 541-544. While 
phenothiazines have also been found to bind double-stranded RNA of both viral and 
human origins, it is not yet known whether phenothiazines can interact with miRNA or 
other types of non-coding RNA 545, 546. 
 

1.8.3 Phenothiazines as potential anti-cancer therapeutics 

Clinical experience 
Although phenothiazines clearly possess anti-proliferative activities, these compounds 
have not been systematically evaluated as potential anti-cancer therapeutics 547, 548. The 
major clinical use for phenothiazines is treatment of psychosis and management of 
chemotherapy-induced emesis 443, 445. Interestingly, a number of studies on cancer 
incidence among patients with schizophrenia point to a possible protective effect of 
phenothiazines 549, 550. There is also indirect and anecdotal evidence supporting a 
beneficial role of phenothiazines in cancer treatment, at least under certain conditions 
551-553.  
 

Pre-clinical evidences 

Mono-therapy 
In contrast to the relatively rare experience with patients, a wealth of studies conducted 
on human cell lines have clearly demonstrated that phenothiazines possess either 
cytotoxic or cytostatic potential, depending on the cell lines tested and/or the 
experimental context (Table 3). There is currently a lack of consensus as to why (and 
how) phenothiazines induce cell death in certain types of cells but not in others; the 
confusion stems partly from the fact that phenothiazines are clearly “dirty” drugs with a 
plethora of putative cellular targets (see below). Since mammalian proteins are subject 
to complex regulations, their availability and mode(s) of interaction with 
phenothiazines are not likely to be identical under all experimental conditions. Taking 
these factors into consideration, it is perhaps more informative to define the activities of 
phenothiazines as a function of any particular cellular context.  
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Table 3. Cytostatic and/or cytotoxic potential of phenothiazines. 
Phenothiazine(s) Tumor model/cell line Effect Reference 
CPZ, FPZ, TFP U1810, MDA-MB-231 cytostatic or cytotoxic this thesis 
CPZ High-grade breast tumor cells cytotoxic 490 
PCZ A549, H23, A427, ACC-LC-94, ACC-

LC-319, SK-LC7 
cytotoxic 518 

TFP A549 cytotoxic 554 
TFP MDA-MB-231 cytotoxic 555 
TRDZ MCF7, ZR75-1B, T47D, MDA-MB-231 cytostatic 556 
CPZ, FPZ, PPZ, 
TFP, TRDZ 

SH-SY5Y, C6, primary mouse neurons 
and glia 

cytotoxic 557 

CPZ, FPZ, TFP, 
TRDZ 

HTB16, human peripheral blood 
leukocytes, L929, chick embryos 

cytotoxic 558 

CPZ, LVPZ, 
PMZ,  TFP, 
TRDZ 

Raji, Daudi, K562, BALL-1, HPB-ALL, 
MOLT4, CCRF-HSB2, normal 

lymphocytes 

cytotoxic only in cancer 
cells 

559 

CPZ, TFP HL60, HCT-8, MIA-PaCa, L1210, 
L5178Y 

cytostatic only in cycling 
cells 

474 

TFP SCC12B2, normal foreskin keratinocytes cytostatic or cytotoxic 560 
CPZ, TFP V79 cytotoxic 561 
TFP C3H10T½ cytotoxic only in cycling 

cells 
562 

Abbreviations: CPZ, chlorpromazine ; FPZ, fluphenazine; LVPZ, levopromazine; PMZ, 
promethazine; PPZ, perphenazine; TFP, trifluoperazine; TRDZ, thioridazine. 
 

Combination therapy – chemosensitization versus chemoprotection 
There is an abundance of data demonstrating that phenothiazines are endowed with 
both chemosensitizing and chemoprotective activities (Tables 4, 5). Two general 
conclusions can be drawn from the available experimental evidence. First, 
phenothiazines are most active in combination with chemotherapeutic agents that 
induce DNA DSBs, while the effect of IR is not always potentiated. Second, cytotoxic 
agents that cause cellular injury without (markedly) damaging DNA, including heavy 
metals, non-steroidal anti-inflammatory drugs (in overdose) and microbial toxins, are 
generally antagonized by phenothiazines. With regards to their known targets, it is clear 
that phenothiazines should be able to affect cell viability both positively and negatively; 
the outcome depending on the overall result of the multitudes of individual targeted 
interactions. Yet this apparent dichotomy in activity is puzzling since exposure to either 
of the above-mentioned class of cytotoxic agents is associated with oxidative stress. 
One possibility is that phenothiazines can impede DNA repair while independently 
stabilizing mitochondria. An alternative but not mutually exclusive scenario is that 
phenothiazines may alter one or more cellular factors that per se are well tolerated by 
the targeted cells, but which becomes lethal only in the presence of DNA damage, a 
form of drug-induced contextual synthetic lethality.  
 
 
 
 
 
 



Table 4. Chemosensitizing potential of phenothiazines in cell lines. 
Cell line Phenothiazines Chemo Potentiation Reference 
A2780, A2780/CP8, 
A2780/CP30, 
A2780/CP70, 
OVCAR-3, OVCAR-4  

TFP cisplatin yes (2/6 cell lines) 563 

Hep-2  TFP IR, H2O2 yes (IR); no (H2O2) 
564 

U1810, H23  TFP bleomycin, cisplatin yes 503, 504 
SKOV3, A-253, 
normal human bone 
marrow cells  

CPZ bleomycin yes 565 

MCF7/TAMR-1  CPZ tamoxifen yes 566 
MCF7, MDA-MB-468 TFP tamoxifen yes 567 
U87  PPZ IR, TMZ, imatinib yes (imatinib); 

additive (TMZ); 
antagonistic (IR) 

568 

H1299  FPZ-N2-
chloroethane 

TRAIL yes 569 

Sk-ChA-1  TFP interferon-γ yes 570 
L1210  TFP, CPZ bleomycin IR yes (bleo) ; no (IR) 571, 572 
P388/ADM, 
P388/VCR  

TFP doxorubicin 
vincristine 

yes 458 

CHO  TFP bleomycin yes 528 
V79  CPZ X-ray yes 573 
Abbreviations: 5-FdUrd, 5-fluorodeoxyuridine; ADM, adriamycin; TMZ, temozolomide; VCR, 
vincristine. 
 

Rationales for combining phenothiazines with DNA damaging agents 
Although lacking a precise molecular mechanism, the ability of phenothiazines to 
modulate DNA repair makes a convincing case for their inclusion in combinatorial 
chemotherapy along with DNA damaging agents. However, despite generally favorable 
outcomes in cell-based studies and pre-clinical animal models (Tables 4, 6), several 
early clinical trials conducted in the 80s and 90s have yielded disappointing results 
(Table 7), which led to a dramatic loss of confidence in phenothiazines as 
chemosensitizers. It is important to point out that the initial premise on which these 
clinical trials were conducted was not therapeutic DNA repair modulation but rather 
pharmacologic reversal of efflux pump-mediated drug resistance, as phenothiazines 
have been shown to enhance intracellular accumulation of chemotherapeutic agents that 
are substrates of pgp 458, 465-468. Unfortunately, the majority of these clinical trials were 
single-armed studies enrolling relatively small numbers of patients who have invariably 
been heavily pre-treated and whose pgp expression status are not generally known, 
thereby precluding the possibility of comparing phenothiazine-containing regimen to 
conventional regimen. It is perhaps not surprising that phenothiazines failed to 
significantly improve the outcome of chemotherapy in these patients.  
 
 
Table 5. Chemoprotective potential of phenothiazines in pre-clinical animal models. 
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Human/animal/cell 
line 

Chemo Phenothiazine Toxicity 
combo v single 

Reference 

ddY mice CDDP CPZ decreased acute 
nephrotoxicity 

574 

B6D2F1/J mice, Fisher 
344 rats 

CDDP PCZ decreased 
nephrotoxicity 

575 

Swiss albino mice  DOX CPZ decreased toxicity 576 
Syrian hamsters  BLM TFP decreased acute 

inflammation and 
lymphocytes in 

BAL fluid 

577 

Syrian hamsters  DMBA CPZ decreased tumor 
formation 

578 

SKH-1 mice (hairless) UV CPZ decreased tumor 
formation 

579 

Sprague-Dawley rats NNM TFP decreased tumor 
formation 

580 

Albino mice APAP TFP decreased toxicity 581 
ddY mice APAP TFP decreased hepatic 

toxicity 

582 

CF-1 mice Cd CPZ, TFP decreased testicular 
damage 

583 

n.a. V. vulnificus 
cytolysin 

TFP increased survival 584 

Abbreviations: APAP, acetaminophen; BAL, bronchoaveolar lavage; BLM, bleomycin; C. 
albicans, Candida albicans; Cd, cadmium; CDDP, cisplatin; C. neoformans, Cryptococcus 
neoformans; DMBA, 9,10-dimethyl-1,2-benzanthrene; DOX, doxorubicin; MB, methylene blue; 
NM, nitrogen mustard; NNM, N-nitrosomorpholine; VBL, vinblastine; V. vulnificus, Vibrio 
vulnificus; n.a., not available.  
 
 
Our understanding on the molecular intricacies of DNA damage signaling and repair 
has greatly improved since the days when phenothiazines were first suggested as 
modulators of DNA repair. Conceptual and methodological advances now allow 
detailed characterization of the various DDR signaling pathways and sub-modules that 
may be sensitive to perturbation by phenothiazines. This may enable identification of 
cellular context as well as biomarkers that predict sensitivity to phenothiazines, 
allowing more rigorous patient selection for future trials. Given that phenothiazines 
were generally well-tolerated, further investigation into the clinical utility of 
phenothiazine-based chemosensitizers is clearly warranted.   
 
 
 
 
 
 
Table 6. Phenothiazines as chemosensitizers in pre-clinical animal models.  



Tumor type Recipient Chemo Pheno-
thiazine 

Tumor growth/survival 
combo v single 

Reference 

B16 melanoma C57BL6 
mice 

BLM CPZ decreased  growth 585 

B16a-Pt 
melanoma  

C56BL6 
mice 

CDDP TFP no difference 586 

Ehrlich ascites BALB/c mice MMC CPZ decreased growth 542 
P388D1 

leukemia 
CDF1 mice DOX CPZ increased growth 587 

sarcoma-180 
ascites 

ddN mice CTX PCZ, PMZ decreased growth 588 

L1210 leukemia BALB/c x 
DBA mice 

BCNU CPZ, PCZ, 
TFP, FPZ 

increased survival 589 

fibrosarcoma Swiss mice X-ray CPZ, PMZ, 
PPZ, TPZ 

decreased growth 590, 591 

Fortner’s 
melanoma 

Syrian 
hamsters 

X-ray CPZ, 7-OH 
CPZ 

decreased growth 592 

Abbreviations: BCNU, 1,3-bis(2-chloroethyl)-1-nitrosourea; CTX, cyclophosphamide; MMC, 
mitomycin C; PCZ, prochlorperazine; PZ, promazine; TPZ, trimeprazine 
 
 
Table 7. Clinical trials of phenothiazines as chemosensitizers. 
Study type Tumor type Chemo Pheno-

thiazine 
Response 

single v combo 
Reference 

phase II breast cancer VBL TFP 7% vs 6% 466 
phase II breast cancer DOX TFP 45% 465 
phase II renal cell carcinoma DV TFP 0% 467 
phase II pancreatic cancer EPI TFP 13% 468 
phase I/II various DOX TFP 19% 593 
phase I various DOX PCZ 27% 464 
phase II glioma BLM TFP 0% 594 
phase I various BLM TFP 23% 595 
phase II malignant melanoma BDV CPZ 22% 596 
phase II malignant melanoma MeCCNU CPZa 11% vs 12% 597 
phase I various CV PCZ b 0% 463 
phase II squamous cell 

carcinoma of the H&N 
IR CPZ c 31% vs 59% 598 

retrospective  various 5-FU various no difference 599 
Abbreviations. 5-FU, 5-fluorouracil; BDV, BCNU+decarbazine+vincristine; CV, 
carboplatin+VP16; CsA, cyclosporine A; DP, dipyridamole; DV, doxorubicin+vinblastine; 
EPI, epirubicin; H&N, head and neck; MeCCNU, 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-
nitrosourea; MMC, mitomycin C; MTD, maximum tolerated dose; RT, radiotherapy 
a CPZ + caffeine;  b PCZ + dipyridamole + cyclosporine A; c CPZ + bleomycin  + mitomycin C 
+ nicotinamide + dicoumarol 
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2 AIMS  
 
The overall aim of this thesis was to evaluate the feasibility of using phenothiazines to 
enhance the sensitivity of human tumor cells to DNA damaging chemotherapeutic 
agents. The specific aims of each project were: 
 

 To determine whether TFP suppresses DNA repair in general and DNA DSB 
repair in particular in bleomycin-treated NSCLC cells (Paper I). 

  
 To elucidate the downstream apoptotic pathways that account for 

phenothiazine-mediated chemosensitization in relation to the DNA damage 
response in NSCLC cells (Paper II). 

 
 To investigate in detail the impact of phenothiazines on DNA damage-induced 

chromatin-proximal signaling events and its potential importance to 
chemosensitization in tumor versus normal cells (Paper III).  

 
 To uncover putative molecular determinants that predict responsiveness to 

phenothiazine-mediated chemosensitization which can be tested experimentally 
(Paper III). 

 
 To characterize the transcriptional response of platinum-refractory NSCLC 

cells and to identify putative mechanisms of drug resistance as well as cellular 
processes that are targeted by TFP to impart chemosensitivity (Paper IV).  

 
 
 
 



3 MATERIALS AND METHODS 
As illustrated in Figure 16, a variety of molecular biological techniques were used in 
the current thesis work. This section provides basic information on the assays and the 
rationale for which they were chosen. 
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Figure 16. An overview of the experimental setup.
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3.1 Cell lines  
The human NSCLC cell line U1810 was used as the primary cell model system to 
study the effects of phenothiazines on chemo- and radiosensitivity 600. U1810 cells, 
which do not express functional p53, were reported to be highly resistant to apoptosis 
induction by IR and cisplatin 389. Where indicated, experimental data obtained for 
U1810 cells were verified in additional cell lines, including A549, H125, H23 
(NSCLC), MDA-MB-231, MCF-7, T47D, BT474 (breast cancer), A2780, SKOV3 
(ovarian cancer), WI-38 human normal lung fibroblasts, hTERT-RPE1 immortalized 
human retinal epithelial cells (non-cancerous). Of these, A549, MCF7, A2780, WI-38 
and hTERT-RPE1 express wild-type p53 while the remaining cell lines all harbor p53 
mutations. 
 

3.2 DNA damaging agents 
Bleomycin, an antibiotic compound isolated from Streptomyces verticillus 601, was used 
as a model substance to directly induce DNA DSBs. Where indicated, calicheamicin 
(an enediyne antibiotic derived from Micromonospora echinospora) and IR (Co60 
source) were used as additional direct-acting DNA DSB inducers. The relative 
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efficiency of with which these three agents generate DNA DSBs are not identical, with 
calicheamcin being the most proficient and IR being the least proficient 602, 603. 
Moreover, the chemical and structural complexities of the resultant DNA DSBs also 
differ, with IR and bleomycin causing more complex DNA DSBs than calicheamicin 
604-607. Thus, the cellular responses to IR, bleomycin and calicheamicin are not expected 
to be identical. In addition, cisplatin was used because ICLs generated by platinum 
compounds can be converted into DNA DSBs during DNA replication and/or ICL 
repair 608, 609. As a comparison, several indirect-acting DNA damaging agents 
(gemcitabine, etoposide, aphidicolin) as well as a non-DNA damaging agent 
(staurosporine) were also tested.   
 

3.3 Assessment of cytotoxicity 

3.3.1 Short-term assay 

3.3.1.1 MTT assay 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) is a cell-
permeable compound that is reduced by mitochondrial metabolic enzymes into a purple 
colored formazan precipitate. The formazan crystals can be solubilized in SDS/HCl-
containing buffer and conveniently quantified by any spectrophotometer equipped with 
a 595 nm filter. In Paper III, the MTT assay was used to determine whether cell 
viability after DNA damaging treatment. A drawback for this assay is that it cannot 
easily distinguish terminally (or even transiently) arrested cells from actively cycling 
cells. This may explain why phenothiazine appeared to be weaker chemosensitizers in 
the MTT assay than in the long-term colony formation assay.  
 

3.3.1.2 Propidium iodide exclusion  
The plasma membrane of healthy mammalian cells has very limited permeability for 
propidium iodide (PI). Damage to the plasma membrane, which may be caused by 
mechanical force, disruption of membrane lipid organization (fluidization) or cell 
death, will typically lead to increases in the permeability of PI that can be conveniently 
detected by flow cytometry. This technique was used in Paper II as an alternative to 
the MTT assay to study DNA damage-induced cell death in the short-term. A major 
drawback for PI exclusion assay is that it cannot readily distinguish late stage apoptosis 
from necrosis because both are associated with loss of membrane integrity. Therefore, 
PI exclusion is useful for measuring cell viability but should not be used to study cell 
death modes.   
 

3.3.2 Long-term assay  
The colony formation assay provides a measure of the ability of single cells to produce 
colonies over time, typically 1-2 weeks 610. A colony is defined as an aggregate of at 
least 50 cells that are all progenies of the original single cell. It is the method of choice 
for assessing the long-term cytotoxic effects of a given drug treatment. This is because 
cells can die with very different kinetics (hours versus days) and by multiple modes 
(e.g. apoptosis, necrosis, mitotic catastrophe) 221, 611. Cells may also become senescent 
and lose clonogenic potential without actually dying 303. To obtain accurate results, it is 
imperative that single cells are plated homogeneously over the entire surface area of the 
culture dish. If necessary, culture dishes can be coated with biomolecules (e.g. 



fibronectin) to enhance the attachment of adherent cells. Anchorage-independent 
growth can be achieved by suspending non-adherent cells in soft agar. The colony 
formation assay can be performed in two ways. In one, cells are plated first as single 
cells, allowed to attach (usually overnight) and then exposed to the indicated drug(s) for 
a pre-determined amount of time. Thereafter, the drug is removed by washing cells 
gently but thoroughly with sterile PBS and fresh culture medium is added. In the other, 
cells are grown as monolayer at the desired confluency and exposed to the drug(s) for a 
pre-determined amount of time. Immediately after drug treatment, cells are harvested, 
washed and then plated as single cells for colony formation. Both of these approaches 
have their pros and cons. The first one necessitates the use of drug(s) at low doses due 
to the small number of sparsely seeded cells but allows the drug(s) to be rapidly 
removed making it particularly suitable for studying the effects of pulse treatment. 
Therefore, this approach was adopted throughout the current thesis work (Papers I-
IV). Conversely, the second approach permits the use of drug(s) at much higher doses 
but as plating cells after treatment takes some time to perform, it is more suited for 
assessing the effects of prolonged drug treatment. At the end of the experiment, 
colonies are fixed and stained with crystal violet for visualization. 
 

3.4 Analysis of DNA damage induction AND DNA repair 

3.4.1 Electrophoresis-based assays  
Single cell gel electrophoresis (aka comet assay) and pulsed-field gel electrophoresis 
(PFGE) are two commonly used methods for detecting the physical presence of DNA 
strand breaks 612, 613. They are based on similar principles and both measure the extent 
of migration of unwound DNA when it is subjected to an electric field, with fragmented 
DNA migrating further than intact DNA. For comet assay, the pH of lysis (and 
electrophoresis) buffer determines the type of DNA damage that can be unmasked; 
neutral pH allows detection of only DNA DSBs while alkaline pH enables detection of 
DNA SSBs as well as DSBs. In Paper I, the alkaline comet assay was used to study the 
general effect of TFP on DNA strand break repair and PFGE was then conducted to 
specifically address its impact on DNA DSB repair. One major difference between 
comet assay and PFGE is the directionality of the electric field during electrophoresis, 
being constant and uni-directional in comet assay whereas in PFGE the voltage is 
periodically switched among three directions (along the central axis as well as at 120 
degree angles on either side). Another significant difference is that the former is used to 
quantify DNA damage at the level of individual cells whereas the latter measures DNA 
damage in a population of cells.  
 
While comet assay and PFGE are suitable for the assessment of DNA repair in intact 
cells, plasmid-based assays are useful for studying DNA repair in vitro. To this end, the 
plasmid is first digested with a restriction endonuclease to produce dsDNA ends of the 
desired configuration. In Paper I, the plasmid pBR322 was used as a DNA substrate 
for PstI and PvuII, which generate 3’-staggering and blunt ends, respectively. The 
linearized plasmid substrate was then purified and added to a reaction mixture 
optimized for in vitro end joining, which contains nuclear extract, nucleotides (dNTPs) 
and ATP. After the completion of reaction, proteins were digested with proteinase K 
and the recovered plasmid is separate by standard agarose gel electrophoresis. The 
material on the gel was transferred onto a nitrocellulose membrane, hybridized to a 
radio-labeled complementary DNA probe and then visualized using autoradiography. 
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Alternatively, visualization of rejoined and non-rejoined plasmid can be achieved by 
direct staining of the gel with a DNA dye (e.g. ethidium bromide, SYBR Green).  
 

3.4.2 Antibody-based assays  
Phosphorylation of histone H2AX on serine-139 (called γH2AX) is one of the earliest 
molecular events that take place in response  to the induction of DNA DSBs 614. The 
PI-3K-related protein kinases (PIKKs) DNA-PK, ATM and ATR are all capable of 
phosphorylating H2AX 615-619; their relative contribution to γH2AX formation depends 
on complex and not yet fully defined parameters such as the cell cycle stage, the type of 
DNA DSB (direct versus enzymatically processed repair intermediates) and the relative 
expression levels of individual PIKKs. In general, DNA-PK, ATM and ATR can 
functionally compensate for each other with regard to H2AX phosphorylation 617, 619, 

620. Therefore, specific inhibitors of each of these PIKKs need to be included in the 
assay to query which of the PIKKs are primarily responsible for DSB-induced H2AX 
phosphorylation in a given cell line. The extent of H2AX phosphorylation is thought to 
provide a good estimate of the cellular level of unrepaired DNA DSBs 621. 
Consequently, detection of γH2AX with phospho-specific antibodies (immunoblotting, 
immunofluorescence and flow cytometry) was carried out in Papers II and III to study 
the formation and resolution of DNA DSBs in tumor cells. On a cautionary note, 
however, it should be pointed out that formation of γH2AX can also be triggered by 
non-DSB type aberrant DNA structures and during mitosis independent of DNA 
damage 622-624. Furthermore, apoptotic DNA fragmentation results in high levels of 
γH2AX in a manner that’s dependent on c-Jun N-terminal kinase (JNK) or DNA-PK 
625, 626. To distinguish exogenous drug-elicited DSBs from apoptosis-associated DSBs, 
dosage of DSB-inducing agents must be carefully titrated to ensure that apoptosis is not 
triggered within the duration of the experiment.  
 
DNA-PK is an important regulator of NHEJ in mammalian cells. Activation of DNA-
PK is associated with multiple autophosphorylation events 627. In Paper III, activation 
of DNA-PK kinase activity in intact cells was indirectly determined by its 
autophosphorylation status at serine-2056 using phospho-specific antibodies. 
 
ATM is a key regulator of DDR by promoting DNA DSB repair, chromatin remodeling 
and pro-survival signaling 11, 628. Activation of ATM is accompanied by its 
autophosphorylation on serine-1981 30, which was conveniently detected by 
immunoblotting using phospho-specific antibodies in Paper III. Similar procedures 
was used to determine the phosphorylation status of ATM substrates such as H2AX 
(serine-139), KAP-1 (serine-824), SMC1 (serine-966), NBS1 (serine-343) and Chk2 
(threonine-68) 54, 57, 58, 616, 629-632.  
 

3.4.3 In vitro kinase assays  
The central importance of DNA-PK kinase activity for NHEJ has prompted the 
development of techniques that enable quantification of DNA-PK kinase activity in 
vitro 153. As outlined in Paper III, the kinase activity of purified and endogenous 
DNA-PK were directly monitored by the SignaTECT® DNA-PK kinase assay, which 
measures the incorporation of radio-labeled phosphate into an optimized substrate 
peptide in the presence of activating calf thymus DNA (Molecular Probes). These 
results were later verified using a complementary assay whereby DNA-PK kinase 
activity was determined indirectly with the EasyLite® luminescence ATP detection 



system, which measures the amount of ATP remaining after DNA-dependent kinase 
activation (i.e. ATP consumption) (PerkinElmer). 
 

3.5 Assessment of chromatin accessibility 
The tight packing of chromatin potentially limits interaction between DNA and non-
chromatin DNA-binding proteins. The timely operation of various chromosome 
transactions depends on local as well as global modulation of the chromatin structure 
leading to increased or decreased access for certain regulatory factors. In Paper III, 
acridine orange (AO) was used as a probe to monitor chromatin accessibility. AO is a 
cell-permeable fluorescent cationic dye that binds DNA as well as RNA and also 
accumulates in acidic organelles such as endosomes and lysosomes. To ensure that only 
DNA-associated AO fluorescence is measured, we conducted the assays on RNase A-
treated cell nuclei 633, 634. In this manner, changes in chromatin accessibility would be 
reflected by changes in AO retention, which can be readily quantified by flow 
cytometry.    
 

3.6 Analysis of cell cycle progression  
Two general techniques can be used to monitor cell cycle progression. In one, single 
cells in suspension are sequentially fixed with cold 70% ethanol (overnight), washed 
free of ethanol, permeabilized and then labeled with DNA-binding dye (e.g. PI) 635. 
Since PI stains both DNA and RNA, it is important to remove RNA prior to or during 
the labeling process by an RNase, typically RNase A. As long as the concentration of 
PI is not limiting, its accumulation within cells is proportional to the DNA content, 
thereby allowing the different cell cycle phases to be distinguished. PI staining was 
used in Papers II and IV to analyze cell cycle distribution after DNA damage. 
However, PI staining does not provide a measure on how fast or slow a population (or 
sub-population) of cells undergo division. To obtain such information, cells need to be 
loaded with a tracking dye such as carboxyfluorescein diacetate succinimidyl ester 
(CFDA-SE) 636. CFDA-SE is non-fluorescent and highly cell-permeable. Following its 
uptake, proteolytic processing by cellular esterases generates a cleaved form called 
carboxyfluorescein succinimidyl ester (CFSE) which is fluorescent but much less cell-
permeable. CFSE is stably retained within cells by forming covalent linkages to 
intracellular biomolecules. Each time a pre-labeled cell divides, its associated CFSE 
fluorescence is halved. Therefore, CFSE labeling was used in Paper II to assess cell 
division/mitotic activity after DNA damage. This gives an indication on the 
reversibility of checkpoint arrest.     
 

3.7 Assessment of apoptosis and mitotic fidelity 
Apoptosis and mitosis are both associated with distinct changes in the appearance of 
chromatin. These morphological changes in the appearance of chromatin can be 
conveniently traced by a DNA-binding dye, such as 4',6-diamidino-2-phenylindole 
(DAPI), PI and Hoechst 33342. In particular, condensation of chromatin during both 
apoptosis and mitosis leads to the accumulation of large amounts of dye molecules in a 
relatively small space, causing the chromatin to fluoresce intensely bright. This increase 
in fluorescence signal along with the distinct morphology of the chromatin is very 
useful for the identification of apoptotic and mitotic cells using a fluorescent 
microscope.    
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During early apoptosis, the chromatin becomes markedly condensed and moves 
towards the periphery of the nucleus (marginalization). This is followed by large scale 
DNA fragmentation via caspase-dependent and caspase-independent mechanisms 268, 

637. The cytoplasm and nucleus may subsequently fragment into small membrane-
enclosed vesicles containing remnants of cellular components and highly condensed 
DNA. These vesicles, called apoptotic bodies, are normally rapidly cleared by 
professional phagocytes in vivo. For the purposes of quantifying apoptosis in Paper II, 
cells whose chromatin exhibited clear-cut signs of fragmentation as well as cells which 
have fragmented into apoptotic bodies were tallied. Cells with marginalized chromatin 
were not counted as apoptotic.  
 
From late prophase through to metaphase, sister chromatids become attached to mitotic 
spindles and align themselves at the metaphase plate. During anaphase and telophase, 
the sister chromatids are pulled towards the opposite poles of the spindle and segregate 
into two daughter cells. If a chromatid fails to properly attach to the mitotic spindle at 
its centromere, it might lag behind during anaphase due to a lack of pulling force. A 
lagging chromosome is most often excluded from the reformed nucleus of either 
daughter cells and becomes instead enclosed in a small cytoplasmic vesicle called a 
micronucleus 638, 639. Similarly, a chromosome that has two centromeres attached to 
microtubules emanating from opposite spindle poles or sister chromatids that are fused 
at their ends usually fail to completely segregate during anaphase, forming “string-like” 
connections (anaphase bridges) between the two separated daughter cells 640. For the 
purpose of assessing mitotic fidelity in Paper II, abnormal mitosis was defined as 
mitotic events that are associated with highly irregular metaphase (mitotic catastrophe), 
lagging chromosomes or anaphase bridges. Interphase cells containing one or more 
micronuclei were also counted as abnormal mitosis. 
 

3.8 Analysis of pro-apoptotic signaling  

3.8.1 Oxidative stress 
Intracellular ROS damages cellular components and macromolecules and its increased 
production leads to a condition called oxidative stress. In Paper II, 5-(and-6)-carboxy-
2’,7’-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA) was used to 
gauge ROS production in live cells. CM-H2DCFDA diffuses passively into cells, where 
its acetate groups are cleaved by intracellular esterases and becomes trapped. 
Subsequent oxidation generates a green fluorescent product that was readily detected 
by flow cytometry. 
  

3.8.2 Caspase activation and caspase activity 

Flow cytometry-based assays  
Enzymatic activation of caspases, which is usually required for apoptosis, can be 
detected by several techniques. There are at least two flow cytometry-based methods 
using different probes. In one, the probe, known as fluorescent labeled inhibitor of 
caspases (FLICA), is comprised of a fluorochrome (e.g. FAM) conjugated to a high 
affinity peptide substrate sequence that is linked to a fluoromethyl ketone (FMK) 
moiety. Binding of the peptide substrate to the active site of an activated caspase causes 
an irreversible covalent coupling of FMK to the active site cysteine residue, thereby 
labeling it with fluorescence. In the other, the probe is an antibody that specifically 



recognizes the active form of a caspase. This antibody can be conjugated to a 
fluorochrome (e.g. PE, FITC) to facilitate direct detection of activated caspases in fixed 
cells. Both FLICA and active caspase-specific antibodies were used in the current 
thesis (Papers II and III).    
 

Immunoblotting 
Full activation of pro-caspases requires proteolytic cleavage. In turn, active caspases 
cleave a variety of substrates including PARP 247. In Paper II, these apoptosis-
associated events were detected by immunoblotting with commercially available 
antibodies. Some of these antibodies recognize specifically the cleavage products 
(caspase-9) while others recognize the non-cleaved as well as the cleaved forms of 
proteins (caspase-8, PARP). 
 

3.8.3 Organelle dysfunction  

Vacuolation  
Cytoplasmic vacuolation is a frequently observed phenomenon in cells in response to a 
variety of stressful stimuli, such as pathogens, toxins and drugs 641. It is generally 
believed that vacuolation represents an adaptive response that cells mount to limit 
damage incursion. However, uncontrolled and irreversible vacuolation can cause cell 
death. In Paper II, two methods for measuring vacuolation in live cells were used. The 
first is direct detection by light microscopy, where vacuoles appear as discrete small 
membrane-enclosed translucent vesicles. The second approach is indirect detection by 
flow cytometry. Collision of the incident laser light with granular structures (e.g. 
vacuoles) within a cell causes it to deflect sideways at wide angles (side scatter) instead 
of passing straight through or deflect forward at low angles (forward scatter). 
Therefore, the extent of side scattering of a cell is roughly proportional to its 
granularity.  
      

Mitochondrial dysfunction  
Loss of mitochondrial function is an important step in apoptosis execution 249. In 
healthy cells, mitochondria maintain a negative electric potential across its inner 
membrane, which is mediated by extrusion of protons from the electron transport chain 
into the intermembrane space. This electrochemical gradient generates a proton motive 
force (PMF) that is used by the mitochondrial F0F1 ATP synthase to drive ATP 
synthesis. In response to pro-apoptotic stimuli, the mitochondrial transmembrane 
potential (ΔΨm) may increase initially as a result of an uncoupling of electron transport 
from ATP synthesis. If the harmful stimulus cannot be removed, persistent pro-
apoptotic signaling eventually leads to the activation of Bak and Bax which triggers 
MOMP 642. In turn, MOMP releases a number of apoptogenic factors (e.g. cytochrome 
c, Smac/Diablo) from the intermembrane space into the cytosol where they promote the 
activation of caspases 249, 263. MOMP can also cause dissipation of ΔΨm 
(depolarization) especially in conjunction with active caspases, which can cleave 
components of the electron transport chain 642, 643. In Paper II, tetramethylrhodamine 
ethyl ester (TMRE) was used to gauge ΔΨm in live cells. TMRE is a cell-permeable 
cationic fluorescent dye whose extent of accumulation in mitochondria is determined 
by ΔΨm. Therefore, mitochondrial hyper-polarization and depolarization will cause 
increased and decreased accumulation of TMRE, respectively. In addition, the 
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activation of Bak/Bax was assessed in fixed cells using conformation-sensitive 
antibodies that specifically recognize the active forms of Bak/Bax. For this purpose it is 
important to use a non-denaturing permeabilizing agent (e.g. digitonin) because some 
common detergents (e.g. Triton X-100) themselves can elicit conformational changes 
in Bak/Bax. Both of these events were recorded by flow cytometry. 
 

Lysosomal dysfunction  
Lysosomes are the primary organelles involved in the degradation of cellular waste 
material. The acidic intraluminal pH of lysosomes is maintained by the proton 
extruding activity of vacuolar ATPases. This is essential for lysosome functions 
because most of its complement of proteolytic enzymes attain optimal activities at low 
pH 644. Compounds that are weak bases tend to accumulate in acidic organelles 
(lysosomotropism) where they become protonated 494, 501. This frequently leads to a 
decrease in their membrane permeability due to the acquisition of an extra positive 
charge, which causes such compounds to be retained within the lumen 494. In Paper II, 
two fluorescent lysosomotropic probes, acridine orange (AO) and LysoTracker Green, 
were used to study lysosomal function 645. AO and LysoTracker Green accumulate in 
lysosomes as well as other acidic organelles such as late endosomes. Their fluorescence 
correlates with the pH as well as the size of the cellular acidic compartment. Staining 
with AO and LysoTracker Green was analyzed by flow cytometry and 
immunofluorescence microscopy, respectively.  
 

3.9 Assessment of gene expression  

3.9.1 DNA microarray 
DNA microarray is a convenient method for simultaneous measurement of cellular 
gene expression. A gene chip typically contains >10,000 immobilized probes each of 
which can recognize a complementary region unique to a transcribed RNA molecule. In 
Paper IV, the Affymetrix® whole transcript GeneChip® Human Gene 1.0 ST Arrays 
platform, which contains probes for 28,869 genes, was used. RNA was harvested from 
cells following different treatments, i.e. mock (DMSO), TFP alone, cisplatin alone and 
cisplatin+TFP. The RNA was reverse transcribed into cDNA and labeled with a 
fluorescent dye. The labeled cDNA samples were then added to the gene chips 
allowing complementary sequences to hybridize to the probes. Finally, the gene chips 
were scanned. The fluorescence signals for each probe was corrected for background 
and normalized with the median intensity across all chips.  
 

3.9.2 Real time quantitative PCR 
Real time quantitative polymerase chain reaction (RT-qPCR) is a technique that allows 
simultaneous amplification and quantification of a cDNA molecule. The procedure is 
similar to conventional reverse transcriptase PCR except that the amplified DNA is 
detected in real time as the reaction progresses. RT-qPCR can be conveniently used to 
measure mRNA levels in cells or tissues. To this end, mRNA is reverse transcribed into 
cDNA and then amplified in the presence of primers specific for the gene of interest, a 
DNA-dependent DNA polymerase (usually Taq polymerase), dNTPs and a fluorescent 
DNA-binding reporter dye (e.g. SYBR Green) in a PCR reaction mixture. Subsequent 
thermal cycling is similar to conventional PCR. Comparative expression of the gene of 



interest in relation to a reference housekeeping gene (e.g. GAPDH, TBP, 18S) can be 
calculated with the 2−ΔΔCt method. In Paper IV, RT-qPCR was used to measure the 
mRNA expression levels of selected DNA repair genes in residual clones that survived 
different treatments (i.e. mock, TFP alone, cisplatin alone, cisplatin+TFP). GAPDH 
was chosen as the reference gene to correct for unequal loading. 
 

3.9.3 Data mining and bioinformatics analysis 

Connectivity map  
The Connectivity Map (cmap) is a bioinformatics database developed by the Broad 
institute that collects microarray data generated from human cell lines treated with a 
vast array of small molecule compounds (perturbagens) 480. An instance is defined as 
the unique gene expression signature induced by a given perturbagen at a particular 
occasion. Because microarray data for certain perturbagens have been deposited more 
than once, there are currently 6100 instances corresponding to approximately 1000 
perturbagens in the cmap database (Build 01). The fundamental concept behind cmap is 
that perturbagens with similar mechanism(s) of action have a higher probability of 
eliciting similar gene expression signatures than perturbagens whose mechanisms of 
action are dissimilar. The utility of cmap for uncovering mechanism(s) of action of 
novel anti-cancer drugs and in the rational design of drugs that target signaling 
pathways specifically de-regulated in tumors have been clearly demonstrated by a 
number of recent publications 516, 518, 646-648. Specifically, cmap allows users to compare 
the gene expression signature induced by a perturbagen of interest (query) to all other 
instances 480, 649. The degree of gene expression concordance between the query and 
any given instance is provided by the up/down score. The up score shows the extent of 
similarity in terms of absolute enrichment and directionality of change for the up-
regulated genes between the query and the instance, while the down score does the 
same with down-regulated genes. A connectivity score is also provided for each 
instance. This score, which is between 1 and -1, is used to rank all instances with regard 
to their relative similarities to the query. It is also possible to compute a mean 
connectivity score and a permutation p-value for all instances corresponding to same 
perturbagen. This enables the comparison between the query and perturbagen taking 
into considerations possible confounding factors such as batch, cell line or lab. In 
Papers III and IV, cmap was used as a hypothesis generating tool to identify putative 
cellular targets of phenothiazines.  
 

3.9.4 Hierarchical clustering and principal component analysis  
The goal of a cluster analysis is to assign a set of objects or observations into groups 
such that objects/observations within a cluster are more similar to each other than those 
in other clusters. Hierarchical clustering is a form of cluster analysis which seeks to 
order clusters in a hierarchy. In Paper IV, hierarchical clustering was performed on the 
complete Affymetix gene expression datasets encompassing all four treatment 
conditions, i.e. mock (DMSO), TFP alone, cisplatin alone and cisplatin+TFP. This 
analysis enabled the comparison of gene expression as a function of treatment.  
 
A large set of observations may be composed of multiple variables, some of which are 
likely to be redundant because they are correlated with one another. Principal 
component analysis (PCA) is a mathematical procedure that can be used to remove 
such redundancy by transforming the original set of variables into a new set of artificial 
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variables called principal components. By definition, the first component has the largest 
possible variance and accounts for most of the variance in the original variables. 
Although the number of principal components is always less than or equal to the 
number of original variables, in practice, two or three principal components are usually 
calculated. This is because of two reasons. One, a maximum of three dimensions can be 
depicted graphically. Two, the first three principal components usually account for the 
majority of the observed variance. In Paper IV, PCA analysis was performed (in three 
dimensions) on the complete Affymetrix gene expression datasets encompassing all 
four treatment conditions, i.e. mock (DMSO), TFP alone, cisplatin alone and 
cisplatin+TFP. This analysis permitted the visualization of gene expression similarities 
as a function of treatment.     
   

3.9.5 Ingenuity pathway analysis  
The Ingenuity pathway analysis (IPA) software (www.ingenuity.com) is a systems 
biology tool that can be used to analyze and model complex biological data (e.g. gene 
expression). IPA uses the Ingenuity Knowledge Base, which contains a vast amount of 
manually curated annotations on biological, chemical and functional relationships 
between genes, proteins, cells, tissues, drugs and diseases. The IPA core analysis can be 
conveniently used to identify which signaling pathways, molecular networks and 
biological processes are most significantly altered in a dataset, usually a list of up- and 
down-regulated genes. It can also be used to build custom networks from hubs 
specified by the user. IPA provides probable biological contexts for the observed 
changes in gene expression and predicts their possible downstream effects. This 
information is useful for generating testable hypothesis as well as for experimental 
design. In Paper III, publicly available gene expression data was used to perform in 
silico IPA analysis. In Paper IV, expression data generated from to the aforementioned 
microarray experiments were uploaded into IPA. These analyses enabled the 
identification of candidate cellular and biological processes that are preferentially 
modulated by phenothiazines (in silico, Paper III), cisplatin alone (Paper IV) or 
cisplatin+TFP (Paper IV), respectively. 
 

3.9.6 Gene ontology terms  
The Gene Ontology (GO) project is a collaborative effort aimed at standardizing the 
nomenclature and description of gene products (i.e. annotations). GO terms are used to 
systematically organize all available information on gene products into a multi-tier 
matrix comprising of three main categories (biological processes, cellular components, 
molecular functions) and numerous progressively narrower sub-categories. In Paper 
IV, the GeneTrail software was used to identify sub-categories of biological processes 
showing enrichment of genes that were found to be differentially expressed by 
microarray analysis. This facilitated the identification of candidate biological processes 
that are preferentially targeted by cisplatin alone or cisplatin+TFP. 
 

3.9.7 Gene set enrichment analysis 
A DNA microarray experiment typically identifies a large number of differentially 
regulated genes. Frequently, a few genes showing the greatest magnitude of expression 
changes are selected as candidates for further analysis. However, this approach does not 
take into consideration potential interactions between sets of genes within a given 
signaling pathway. Moreover, as alterations in cellular processes often affect sets of 



genes acting in concert, it is usually more informative to analyze the behavior of gene 
sets rather than single genes. Gene set enrichment analysis (GSEA) is a statistical 
method that can be used to evaluate gene expression data at the level of gene sets 650. 
The gene sets themselves are defined based on a priori knowledge, e.g. database 
annotations, and usually corresponds to cellular processes. The goal of GSEA is to 
determine whether members of a given gene set show a high degree of concordance in 
terms of expression changes. If the answer is yes, then that particular gene set, and by 
extension the cellular process it regulates, is considered to be enriched. In Paper IV, 
the GeneTrail software was used to perform GSEA on genes that were found to be 
differentially expressed in the microarray analysis. This allowed the identification of 
cellular processes that are putatively regulated by cisplatin alone or cisplatin+TFP.  
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4 RESULTS AND DISCUSSION 

4.1 Paper I 
The antipsychotic drug trifluoperazine inhibits DNA repair and 
sensitizes non small cell lung carcinoma cells to DNA double-strand 
break induced cell death 
 
The primary aim of this study was to determine the impact of TFP on DNA repair in 
general and DSB repair in particular. A previous study by Chafouleas et al showed that 
both TFP and the naphthalene sulfonamide CaM antagonist W13 significantly 
suppressed the ability of CHO cells to recover from bleomycin-induced potentially 
lethal damage 528. They found that bleomycin-induced DNA damage caused relaxation 
of supercoiled DNA in nucleoids prepared from CHO cells which reduced its migration 
during sucrose gradient centrifugation as a result of decreased buoyant density. 
Subsequent incubation of cells in drug-free culture medium allowed DNA repair and 
restored DNA supercoiling, but this effect was largely abolished in the presence of 
W13, suggesting that CaM antagonists might inhibit DNA repair. However, this study 
did not assess the effect of TFP on restoration of repair-associated DNA supercoiling. 
Therefore, we decided to investigate the impact of TFP on DNA repair by directly 
measuring DNA strand break induction and resolution.  
 
We used a colony formation assay to verify that TFP could indeed impart bleomycin 
sensitivity in the human NSCLC cell line U1810. In this case, a non-toxic concentration 
of TFP (10 µM) was given concurrently with bleomycin as a one hour pulse treatment. 
Since TFP was not present during recovery, the results indicated that rapid inhibition of 
DNA repair by TFP during the one hour when cells were exposed to bleomycin might 
be enough to markedly suppress clonogenic potential. Consistent with this notion, 
alkaline comet assay showed that bleomycin-treated U1810 cells accumulated 
significantly higher levels of DNA strand breaks in the presence of TFP. Notably, when 
TFP was present also during recovery, differences in the level of DNA strand breaks 
became even more pronounced. Since the cytotoxicity of bleomycin is thought to be 
mostly dependent on its ability to generate DNA DSBs, we then employed PFGE to 
specifically address the effect of TFP on DSB repair. In line with our alkaline comet 
assay data, we found that TFP significantly impeded the repair of DNA DSBs. Unlike 
DNA SSBs, however, TFP did not affect the initial level of DNA DSBs immediately 
after bleomycin. These data suggest that TFP might interfere with SSB as well as DSB 
repair. The difference in the initial levels of DNA SSB and DSB could be explained by 
the fact that SSB repair likely proceed with faster kinetics than DSB repair because the 
latter may require enzymatic end processing before ligation can occur 604, 607. 
Consequently, TFP preferentially inhibited SSB repair at early time points while its 
effects on DSB repair only became apparent at later time points. Significantly, TFP-
mediated inhibition of DSB repair was observed long after TFP itself was removed 
from the culture medium. These data suggest two non-mutually exclusive possibilities. 
One, intracellular TFP might be able to remain active in cells following its uptake for 
prolonged periods of time, or two, TFP might perturb an early response to DNA 
damage that is not easily reversed. In the latter case, one can envision a scenario 
whereby TFP might bind DNA and alter the chromatin response to DNA damage. 
Regardless, the inhibitory effect TFP exerted on DNA DSB rejoining indicated a 
possible block in NHEJ since mammalian cells deficient in Ku-dependent NHEJ are 
known to be hypersensitive to bleomycin 651-653. In line with this, TFP (100 µM) 



significantly reduced the ability of crude U1810 nuclear extract to support end-to-end 
joining of restriction endonuclease-linearized plasmids in vitro. Importantly, TFP did 
not affect plasmid cleavage by bleomycin, suggesting that its effect on the 
accumulation of DNA strand breaks was a result of repair inhibition and not enhanced 
DNA damage induction. Collectively, our data clearly demonstrated that TFP could 
inhibit DNA strand break repair and provided a plausible mechanism to account for its 
chemosensitizing activity.    
 
 

4.2 Paper II 
 
Chemosensitization by phenothiazines in human lung cancer cells: 
impaired resolution of γH2AX and increased oxidative stress elicit 
apoptosis associated with lysosomal expansion and intense vacuolation 
 
The primary aim of this paper was to determine the consequences of TFP-mediated 
DNA repair modulation on cell fate after DNA damaging treatment. We conducted our 
studies on two human NSCLC cell lines, the chemo-/radioresistant U1810 and the 
inherently more chemo-/radiosensitive H23. This enabled us to explore whether TFP 
may differentially affect tumor cells based on their relative chemo-/radiosensitivities. 
Although bleomycin was used the primary DNA DSB inducing agent, we also tested 
TFP in combination with cisplatin, a drug commonly used in the clinical regimen for 
NSCLC. Moreover, we extended our work on TFP by analyzing whether its 
chemosensitizing potential might be shared with other structurally related 
phenothiazine compounds (e.g. FPZ, triflupromazine, TFPZ). The scheduling of TFP 
was also modified so that TFP was given 1 h before DNA damaging treatment and was 
allowed to remain for up to 24 h afterwards, even though the length of exposure to 
bleomycin or cisplatin was still limited to one hour. This adjustment in scheduling was 
done in order to ascertain whether the chemosensitizing (and DNA repair inhibitory) 
activity of TFP can be improved by increasing the length of exposure. Indeed, the 
modified schedule imparted stronger bleomycin sensitization than the previous one, 
albeit the gain was relatively modest. 
 
Using colony formation assay, we first confirmed that TFP was active in combination 
with either bleomycin or cisplatin against both NSCLC cell lines. As our previous work 
implicated NHEJ and possibly DNA-PK as a putative target of TFP 503, 654, we included 
in the analyses a commercially available DNA-PK kinase inhibitor, NU7026 432.  Our 
data showed that at an equivalent concentration (10 μM) TFP performed better than 
NU7026 in terms of chemosensitization in U1810 cells. Importantly, we found that 
both FPZ and TFPZ imparted platinum sensitivity in NSCLC cells, indicating that 
chemosensitization was a property shared amongst phenothiazines with different side 
chain structures. Moreover, both TFP and TFPZ impaired cellular recovery from 
bleomycin exposure as their presence significantly delayed the resolution of γH2AX, a 
surrogate marker of unrepaired DNA DSBs 655. TFP also impeded γH2AX resolution 
after cisplatin treatment. The patterns of γH2AX formation and clearance in U1810 
cells was consistent with the notion that bleomycin rapidly induced DNA DSBs 
independent of the cell cycle phase whereas cisplatin-induced γH2AX peaked at 6-12 h 
post-treatment, which coincided with S phase accumulation. TFP enhanced the arrest of 
bleomycin-treated U1810 cells in G2-M and cisplatin-treated cells in S phase. In the 
absence of TFP, bleomycin-induced initial G2-M arrest lasted for about 12 h, after 
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which cells began to divide again. After exposure to cisplatin, the initial S phase arrest 
began at somewhere between 6-12 h post-treatment and lasted until 18 h post-
treatment, after which cells entered G2-M. TFP significantly delayed the resumption of 
cell cycle progression in U1810 cells following the initial checkpoint arrest. These cells 
could still recover, albeit more slowly, as evidenced by the decrease in CFSE 
fluorescence after 24 h. Over the next 72 h, the proliferation rates of cells treated with 
mock, TFP alone or bleomycin alone were comparable, suggesting that bleomycin at 
the dose used (2.5 µg/ml) had no lasting effect on cell cycle competency. In striking 
contrast, U1810 cells co-treated with bleomycin and TFP (or TFPZ) showed a delayed 
drop in proliferation, with a subset of cells displaying signs consistent with secondary 
arrest. Notably, the frequency of abnormal mitosis increased significantly among TFP 
co-treated cells, which might be a cause for the delayed activation of checkpoint 
mechanisms. In agreement with this notion, we observed that TFP co-treatment was 
associated with a delayed activation of the G2 checkpoint effectors p21Cip1/Waf1 and 
p38MAPK in U1810 cells.  
 
In addition to its impact on mitotic fidelity, TFP co-treatment led to marked increases in 
apoptosis. This effect was time-dependent and became apparent 48 and 72 h after 
exposure to bleomycin and cisplatin, respectively. Consequently, it appears that DNA 
damage-induced apoptosis in U1810 cells was linked to cell cycle progression after 
initial checkpoint adaptation. Apoptosis in these cells was mediated by multiple 
caspases, including the initiator caspases-8 and -9 as well as the effector caspase-3. 
Notably, increased caspase-3 activation after TFP co-treatment was mostly observed in 
U1810 cells with 4n DNA content, suggesting that mitotic defects and/or secondary 
checkpoint arrest might trigger apoptosis. At approximately 18 h post bleomycin 
treatment when TFP co-treated cells were still locked in G2-M arrest, a subset 
apparently underwent LMP, as shown by their diminished accumulation of AO. This 
was not observed in U1810 cells exposed to bleomycin alone, which had just begun to 
recommence cell cycle progression following the initial checkpoint arrest. Since LMP 
occurred prior to the onset of apoptosis, it is tempting to speculate that it might 
contribute to caspase activation 255. However, this early wave of LMP after TFP co-
treatment was followed by a progressive vacuolation phase that was readily discernible 
by light microscopy as well as flow cytometry (i.e. increased side scattering). Over 
time, TFP co-treated U1810 cells retained significantly higher amounts of AO, which 
accumulates preferentially in acidic organelles such as endosomes or lysosomes. In line 
with this, TFP co-treated cells fluoresced more brightly when labeled with LysoTracker 
Green, indicating an expansion of the lysosomal compartment. Notably, abrogation of 
this process by bafilomycin A1, an inhibitor of vacuolar ATPases, markedly reduced 
caspase-3 activation in these cells, suggesting that early LMP might trigger 
compensatory lysosomal expansion which ultimately leads to caspase activation. 
 
We found that TFP co-treatment was associated with an early induction of oxidative 
stress whose onset at 12-16 h post bleomycin treatment slightly preceded that of LMP. 
Therefore, it is possible that LMP was caused by increased oxidative damage to the 
lysosomal membrane. In this case, the most likely site of ROS production was 
mitochondria, which were markedly hyper-polarized in TFP co-treated U1810 cells. 
Moreover, mitochondrial depolarization occurred coincidently with the induction of 
oxidative stress and both became progressively more severe over time with similar 
kinetics. Enhanced conformation-driven activation of Bak/Bax was observed in TFP 
co-treated cells within the same time frame as caspase activation, suggesting that 
oxidative stress and LMP might cooperate to trigger the intrinsic apoptotic pathway. In 
line with this, the antioxidant compound N-acetylcysteine (NAC) was able to partially 



rescue both the short-tem viability and the long-term clonogenicity of TFP co-treated 
cells. Collectively, these data support a scenario whereby inhibition of DNA DSB 
repair by TFP leads to oxidative stress and organelle dysfunction which is exacerbated 
upon checkpoint adaptation leading to caspase-mediated apoptosis. 
 
 

4.3 Paper III:  
 
Identification of phenothiazines as putative regulators of the 
chromatin response to DNA damage provides a rationale for context-
dependent chemosensitization 
 
The primary aim of this paper was to uncover the molecular mechanism(s) by which 
TFP and related phenothiazines affect DNA repair. Our previous works showed that 
TFP could antagonize the repair of DNA SSBs, DSBs as well as ICLs. Moreover, our 
data indicated that the effect TFP exerted on DNA repair was very rapid and was not 
easily reversed upon drug wash-out. Therefore, we hypothesized that TFP might 
modulate an early component of the DDR, such as damage-induced chromatin 
remodeling, rather than directly inhibiting a repair enzyme.  
 
A compound’s mechanism of action is likely to be reflected by changes in the pattern 
of gene expression in treated cells. This is simply because any extraneous stimulus that 
disturbs cellular homeostasis would elicit a reaction that attempts to restore status quo. 
We downloaded two publicly available gene signatures (i.e. up- and down-regulated 
genes) associated with phenothiazine treatment and used them as queries to search for 
similarities against 6100 unique gene expression signatures corresponding to >1000 
small molecule compounds that were deposited in the cmap database (build 01) 480, 656. 
The signature taken from Lamb et al was derived from cell lines after short-term drug 
exposure (4 h), while the signature taken from Choi et al was derived from deceased 
patients that have presumably been exposed to the drugs for longer time. Interestingly, 
our analysis revealed gene expression similarities between phenothiazines and several 
HDAC inhibitors, such as trichostatin A and vorinostat. To confirm this finding, we 
reciprocated the analysis using two publicly available gene signatures associated with 
HDAC treatment as queries. The signature taken from Glaser et al was a composite 
derived from cell lines after 24 h drug exposure. By contrast, the signature taken from 
Ellis et al was agent-specific and derived from patients suffering from cutaneous T-cell 
lymphoma who were undergoing treatment with panobinostat 657, 658. Despite these 
differences, both query signatures were able to identify a number of phenothiazines, 
including thioridazine (TRDZ) and TFP. Thus, phenothiazines and HDAC inhibitors 
appear to induce similar gene expression changes in cells and tissues suggesting that 
phenothiazines might be chromatin-active compounds. In line with this, exposure of 
U1810 cells to 10 µM TFP or the HDAC inhibitor valproic acid (VPA, 5 mM) for 24 h 
resulted in increased nuclear DNA intercalation by AO, indicating that TFP might 
enhance chromatin accessibility. However, when the length of exposure was shortened 
to 5 h, TFP treatment had only a modest effect on AO intercalation. While this short-
term exposure to TFP was sufficient to enhance bleomycin-induced caspase-3 
activation, it did not cause any discernible changes in the acetylation status of histone 
H4. These data suggest that TFP treatment might alter chromatin compaction without 
affecting histone acetylation. 
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We tested the hypothesis that TFP may interfere with chromatin-proximal DDR 
signaling. Notably, when U1810 cells were exposed to bleomycin in the presence of 
TFP, significantly increased DNA-PKcs autophosphorylation (S2056) was observed. 
Similarly, TFP enhanced the DNA damage-induced phosphorylation of several 
chromatin-proximal ATM substrates, such as H2AX (S139), NBS1 (S343), KAP-1 
(S824), SMC1 (S966) and to a lesser extent ATM itself (S1981). By contrast, 
phosphorylation of the ATM substrate Chk2 (T68), which does not accumulate at DNA 
DSB sites and whose function is not thought to involve DNA damage-associated 
chromatin remodeling, was not affected by TFP. To establish the generality of our 
findings, we compared the impact of TFP on bleomycin-induced DDR signaling in two 
tumor (U1810, MDA-MB-231) and two non-transformed (hTERT-RPE1, WI-38) cell 
lines. We found that TFP augmented DNA-PK/ATM signaling in both tumor cell lines 
as well as in the immortalized hTERT-RPE1 cells. However, this effect was not 
observed in the non-immortalized WI-38 cells. These data suggest that the process of 
immortalization, which represents the first step towards malignant transformation, 
might induce chromatin re-organization in a manner that renders cells more susceptible 
to perturbations by TFP. Several structurally related phenothiazines also augmented 
bleomycin-induced DDR signaling in U1810 cells. Furthermore, TFP enhanced DNA-
PK/ATM signaling in response to calicheamicin and cisplatin. These results raise the 
interesting prospect that such combinations might be used to potentiate the therapeutic 
efficacy of platinum and calicheamicin in lung cancer and AML (in the context of 
gemtuzumab ozogamicin), respectively 659, 660. On the other hand, TFP did not augment 
DNA-PK/ATM signaling in response to IR, etoposide or aphidicolin nor did it increase 
their cytotoxicity. Therefore, our data suggest that DNA damaging agents which are 
thought to produce similar types of lesions might in fact trigger very different DDR 
responses. 
 
Given that TFP delayed cell cycle recovery after DNA damaging treatment, we next 
assessed whether TFP might affect the resolution of DDR signaling. To this end, 
U1810 cells were pulse-treated with bleomycin in the presence of TFP and then 
allowed to recover either in drug-free medium or medium containing TFP for various 
lengths of time. Notably, TFP co-treated cells had consistently higher levels of 
phosphorylated DNA-PKcs, KAP-1 and H2AX than counterparts that were treated with 
bleomycin alone. This difference was evident for at least 18 h after removal of 
bleomycin, indicating that TFP co-treatment was associated with prolonged DDR 
signaling. Moreover, TFP largely abrogated the DNA damage-induced up-regulation in 
WRN and FANCD2 in U1810 cells over time. This response was specific since TFP 
did not overtly affect the expression of several other DNA repair proteins (e.g. Ku70, 
Ku80, XRCC4, DNA Ligase IV, Rad51, PARP-1), suggesting that TFP might also 
interfere with transcriptional response to DNA damage. Regardless of the mechanism, 
TFP-mediated augmentation of DNA-PK autophosphorylation was observed over a 
wide range of bleomycin concentrations and was recapitulated in all of the tumor cell 
lines that we tested (e.g. H23, H125, MCF7, MDA-MB-231, T47D, BT474, SKOV3). 
Once again, TFP did not affect the level of DNA-PK autophosphorylation in the non-
cancerous hTERT-RPE1 and WI-38 cells. These data indicated that TFP may 
selectively inhibit DNA DSB repair in tumor cells without affecting the response of 
normal cells to chemotherapy. In line with this notion, TFP delayed the re-acetylation 
of H3K56 in U1810 and MDA-MB-231 cells after exposure to bleomycin and cisplatin, 
respectively, suggesting that chromatin reassembly which normally accompany DNA 
repair was compromised in the presence of TFP.        
 



As not all clinically used chemotherapeutic agents act directly on chromatin to induce 
DNA damage, we next examined the ability of TFP to perturb DNA-PK/ATM 
signaling in response to the indirect-acting DNA damaging agents etoposide, 
gemcitabine and aphidicolin. We found that these agents induced DNA-PK 
autophosphorylation poorly unless used at very high concentrations. Furthermore, TFP 
did not affect the phosphorylation of DNA-PK or KAP-1 even after prolonged 
exposure to these indirect-acting DNA damaging agents. This was in stark contrast to 
the rapid and overt augmentation of DNA-PK/ATM signaling observed when TFP was 
used in combination with the direct-acting DNA damaging agents bleomycin, 
calicheamicin and cisplatin. A possible interpretation of this data is that direct-acting 
DNA damaging agents may activate DNA-PK/ATM signaling in a TFP-sensitive 
manner that is different from DNA-PK/ATM activation in response to indirect-acting 
DNA damaging agents. To determine the functional relevance of this differential 
modulation of DDR signaling by TFP, we compared the chemosensitizing potential of 
TFP in a panel of tumor and non-cancerous cell lines treated with direct-acting or 
indirect-acting DNA damaging agents. Three general conclusions could be drawn from 
this analysis. First, TFP significant sensitized all p53-deficient tumor cells to at least 
one direct-acting DNA damaging agent, while it had no such effect in p53 wild-type 
tumor or non-cancerous cells. Second, none of the test cell lines were sensitized by TFP 
to any of the indirect-acting DNA damaging agents, regardless of the p53 status. Third, 
TFP might confer protection against the non-DNA damaging agent staurosporine as 
well as the indirect-acting DNA damaging agent aphidicolin. There were two apparent 
exceptions to this generalization. One, TFP was able to sensitize MCF7 cells to direct-
acting DNA damaging agents, although these cells expression wild-type p53. Two, TFP 
did not confer radiosensitization in any of the cell lines despite IR being a direct-acting 
DNA damaging agent. With respect to the function of p53 in MCF7 cells, a study 
recently reported subtle defects in the DNA damage-induced p53 transcriptional 
response of MCF7, including the inability to maintain p21Cip1/Waf1 expression. It is 
therefore possible that the wild-type p53 in MCF7 cells is deficient in some aspects of 
DDR signaling which might explain why MCF7 cells were responsive to TFP-mediated 
chemosensitization. The second discrepancy is more puzzling because bleomycin is 
considered to be a radiomimetic 604. We found that TFP did not affect IR-induced 
DNA-PK/ATM signaling but the reason for this is not clear at the moment. Taken 
together, our data suggest the combination of two parameters determines whether a 
particular cell line would respond to TFP-mediated chemosensitization; the optimal 
context appears to be a direct-acting DNA damaging agent that elicits TFP-amplifiable 
DNA-PK/ATM signaling in a tumor cell line with deficient p53 function.    
 
To further explore the consequence of DDR hyper-activation, we utilized specific small 
molecule inhibitors to forcibly abolish DNA-PK/ATM signaling in TFP co-treated 
U1810 cells. To our surprise, suppression of DNA-PK or ATM activity by NU7026 
and KU55993, respectively, resulted in further chemosensitization, suggesting that the 
hyper-activation of DNA-PK/ATM signaling was likely an adaptive response to TFP 
co-treatment. Consistent with this notion, at concentrations below 100 µM TFP per se 
had no effect on DNA-PK kinase activity in vitro. Similarly, augmentation of 
bleomycin-induced DNA-PKcs autophosphorylation by TFP did not appear to involve 
a direct effect of TFP on cellular protein phosphatases. Moreover, saponin-
permeabilization of U1810 and MDA-MB-231 cells did not affect TFP-mediated 
chemosensitization, indicating that the membrane perturbing activity of TFP could not 
account for its ability to confer chemosensitization. Collectively, our data suggest that 
the most likely cause of TFP-mediated chemosensitization is DNA repair inhibition as 
a result of disturbed chromatin responses. We propose that cancer types for which 
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bleomycin, cisplatin or calicheamicin-containing regimen is routinely used, such as 
NSCLC, breast cancer, ovarian cancer, melanoma, glioblastoma and AML, should be 
considered for future clinical trials to evaluate the clinical efficacy of phenothiazine-
based chemosensitizers.  
 
 

4.4 Paper IV 
 
Gene expression analysis reveals DNA repair pathway modulation as 
a potential mechanism for phenothiazine-mediated long term cisplatin 
sensitization in NSCLC 
 
Platinum doublets, usually in combination with gemcitabine, are commonly used for 
the treatment of NSCLC but their therapeutic efficacies are limited by intrinsic or 
acquired drug resistance 661. The primary aim of this paper was to explore possible 
mechanism(s) of platinum resistance in NSCLC and ascertain whether TFP could 
confer long term chemosensitization by antagonizing such processes. To this end, we 
pulse-treated NSCLC U1810 cells with a therapeutically relevant dose of cisplatin (10 
µM) either alone or in combination with 10 µM TFP and then allowed them to form 
colonies. In the absence of TFP, U1810 cells were relatively insensitive to treatment 
with cisplatin at this concentration (<20% suppression of clonogenic capacity). 
Notably, while TFP alone did not affect clonogenic capacity (<5% suppression of 
clonogenic capacity), it significantly increased the sensitivity of U1810 cells to 
cisplatin. After nine days, the surviving colonies (residual clones) were harvested from 
which RNA was extracted. The RNA samples were used to obtain gene expression 
profiles of the residual clones in response to each treatment, i.e. mock, TFP alone, 
cisplatin alone, cisplatin/TFP.  

 
We found that the highest number of differentially regulated genes (1141 up, 1290 
down) was observed in residual clones that survived cisplatin treatment, followed by 
residual clones that survived cisplatin/TFP co-treatment (882 up, 491 down) and finally 
residual clones that survived TFP treatment (139 up, 351 down). Analysis of the gene 
expression data by PCA and hierarchical clustering indicated that the gene expression 
profile of residual clones that survived cisplatin/TFP co-treatment showed features 
intermediate to the gene expression profiles induced by either TFP or cisplatin. In line 
with this, functional analysis by GSEA showed that while cisplatin treatment led to the 
enrichment in residual clones of genes involved DNA-dependent DNA 
replication/replication initiation and DNA metabolic processes, no such enrichment of 
was found in residual clones that survived cisplatin/TFP co-treatment. These data 
suggest that TFP may fundamentally affect the ability of cells to modulate certain 
cellular signaling pathways in response to cisplatin. Intriguingly, we have shown in 
Paper III using a publicly available gene expression data set 480 that short-term exposure 
of MCF7 cells to phenothiazines resulted in down-regulation of a number of genes 
implicated in mRNA metabolism. Therefore, it seems plausible that TFP might broadly 
counteract the transcriptional response to cisplatin by modulating the mRNA synthesis 
and translation.  Interestingly, when we performed IPA analysis on genes that were up-
regulated in residual clones that survived cisplatin treatment, the top scored networks 
were found to contain components of several DNA repair pathways, including NER 



(TFIIH), MMR (MSH2), FA-ICL repair (FANCD2, FANCI), HRR (MRE11A) and 
NHEJ (MRE11A, PRKDC), suggesting that survival from cisplatin may require 
parallel de-regulation of multiple repair modules. Consistent with this notion, Nojima et 
al reported that tolerance to cross-linking agents (e.g. cisplatin) in avian DT40 cells is 
mediated by multiple DNA repair pathways, including translesion synthesis (TLS), FA-
ICL repair, HRR and to a lesser extent NER 416. Notably, the top scored networks of 
genes up-regulated residual clones that survived cisplatin/TFP co-treatment did not 
contain any of the above-mentioned DNA repair genes, suggesting that TFP-mediated 
chemosensitization might be related to disruption of cisplatin-induced compensatory 
up-regulation of tumor DNA repair capacity. 
 
To validate our findings from gene expression analysis, we determined the mRNA and 
protein expression for a number of DNA repair genes identified as up-regulated in 
cisplatin-resistant residual clones. Some of these (PRKDC, FANCI, FANCD2, 
MRE11A) were found in the top scored networks while others (RRM1, RRM2, 
RAD51) were not but have nevertheless been implicated in the clinical responsiveness 
of platinum-based therapy. Our preliminary data demonstrated that DNA-PKcs 
(encoded by PRKDC) also increased in protein expression. The other five candidates 
showed discrepant mRNA-protein expression and a possible explanation is that a 
significant proportion of mRNAs in cisplatin-surviving residual clones may not be 
translated. A recent report showed that the development of treatment-induced platinum 
resistance in ovarian carcinoma is accompanied by an increased activity of the DNA-
PK/Akt pathway 662. Similarly, we have previously shown that acquired resistance to 
radiotherapy in cervical carcinoma was associated with increased expression of all 
three components of the DNA-PK complex in residual tumors 361. Therefore, it seems 
that enhanced DNA repair capacity is a major contributor of acquired platinum 
resistance although it might not necessarily be involved in the maintenance of intrinsic 
platinum resistance. When U1810 residual clones were replated and subjected to a 
second round of cisplatin treatment, we found that residual clones which survived the 
first round of cisplatin treatment were also resistant in response to a second round of 
cisplatin treatment. However, the relative platinum sensitivity of parental U1810 cells 
and cisplatin-surviving residual clones were similar (70% versus 73%), suggesting that 
while U1810 cells were intrinsically resistant to cisplatin, residual clones that survived 
the first round of cisplatin treatment did not acquire additional resistance. These data 
might explain the paucity of over-expressed DNA repair proteins in residual clones that 
survived cisplatin treatment. However, it is also possible that a single round of cisplatin 
treatment was not sufficient to elicit acquired resistance. We found that CDK12 was 
up-regulated in cisplatin-surviving residual clones. A CDK12/cyclin K complex was 
recently shown to promote RNA polymerase II-dependent transcription of many genes 
involved in the maintenance of genomic stability, such as ATR, FANCD2 and FANCI 
663, all of which were concurrently up-regulated in cisplatin-resistant residual clones. It 
is therefore conceivable that de-regulation of DNA repair proteins other than or in 
addition to the ones tested might progressively induce the development of acquired 
platinum resistance upon repeated (two or more) drug exposure. More studies are 
needed to determine the functional relevance of de-regulated expression of DNA repair 
genes with regard to intrinsic as well as acquired platinum resistance.   

 

In agreement with our findings that TFP may antagonize the adaptive transcriptional 
response to cisplatin treatment, residual clones that survived an initial round of 
cispatin/TFP co-treatment exhibited greater relative platinum sensitivity than cisplatin-
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surviving residual clones when re-exposed to cisplatin for a second treatment round 
(60% versus 73%). Moreover, we found that U1810 cells exposed to an initial round of 
cisplatin/TFP co-treatment had reduced clonogenic capacity in the absence of a second 
round of treatment, suggesting that TFP may induce a long-lasting state of cellular 
stress. We reasoned that this effect might be reflected in their pattern of gene 
expression. Indeed, residual clones that survived cisplatin/TFP co-treatment showed a 
preferential up-regulation of stress-inducible genes involved in chromatin remodeling 
(e.g. ASF1A, ASF1B, KAT2A/GCN5) and replication (e.g. MCM2, MCM5, MCM6), 
suggesting that TFP may interfere with chromatin-related processes that normally 
operate in response to cisplatin-induced DNA damage. In addition, these residual 
clones contained increased transcripts of genes implicated in ribosome/RNA 
metabolism (e.g. RAE1, RPL32, RPL27L, SSB, UPF3B, NPM3). Since CPZ treatment 
was previously shown to trigger a rapid shutdown of translation in yeast and 
mammalian cells, it is plausible that this late increase in the expression of genes 
involved in RNA biosynthesis may represent a compensatory response to an earlier 
translational stress 485. As mentioned earlier, the top scored networks of differentially 
regulated genes in residual clones that survived cisplatin/TFP co-treatment contained 
few DNA repair components, although it is not clear whether this effect was caused by 
the disturbance in RNA metabolism. Notably, the mRNA and protein expression of 
PRKDC were also elevated in residual clones that survived cisplatin/TFP co-treatment, 
albeit not to the same extent as in cisplatin-surviving residual clones. Moreover, the 
transcript levels of several predicted interaction partners of PRKDC were also elevated 
in residual clones that survived cisplatin/TFP co-treatment, including KAT2A (GCN5) 
and USF1. DNA-PK has been shown to phosphorylate the protein products of these 
two genes, which resulted in transcriptional repression and activation, respectively 664, 

665. It is therefore possible that the transcriptional response of cisplatin-surviving 
residual clones might be partly driven by the up-regulation of DNA-PK. Interestingly, 
we found that TFP augmented DNA-PKcs autophosphorylation in response to cisplatin. 
It remains to be determined whether TFP could also modulate DNA-PK-mediated 
phosphorylation of GCN5 or USF1 and whether this might contribute to the increased 
platinum sensitivity of TFP co-treated cells. 
 
In summary, we present evidence that global genomic profiling of residual clones that 
survived cisplatin treatment can be used in tandem with pathway analysis to identify 
putative mechanism(s) driving platinum resistance. Collectively, our data showed that 
concurrently transcriptional de-regulation of multiple DNA repair genes in cisplatin-
survivng NSCLC residual clones might facilitate the development of acquired 
resistance upon additional drug exposure. Finally, we found that alterations in the 
cisplatin-induced adaptive transcriptional responses by TFP might account for its 
ability to confer platinum sensitization. Our data raise the possibility that TFP may be 
useful for sensitizing intrinsically platinum-resistant tumors as well as for 
circumventing the development of acquired platinum resistance in initially sensitive 
tumors. 
 



5 CONCLUSIONS & FUTURE PERSPECTIVE FUTURE PERSPECTIVE 

5.1 Our main conclusions  5.1 Our main conclusions  
In Paper I, we demonstrate that TFP-mediated augmentation of bleomycin sensitivity 
in human NSCLC cells is associated with its ability to inhibit DNA strand break repair 
in vitro and in situ. In Paper II, we show that TFP and related phenothiazines impair 
γH2AX resolution in human NSCLC cells leading to prolonged checkpoint arrest and 
delayed check proliferative recovery after exposure to bleomycin or cisplatin. We 
further demonstrate that defective DNA DSB repair in TFP co-treated cells is 
associated with abnormal mitosis, secondary arrest and caspase-mediated apoptosis 
initiating from the G2-M phase. We provide evidence that severe oxidative stress in 
conjunction with extensive lysosomal/mitochondrial dysfunction elicit caspase-3 
activation and loss of cell viability. In Paper III, we provide evidence based on in 
silico predictions that phenothiazines are putative chromatin-active agents. Our 
analyses indicate that TFP selectively sensitize cancer cells to direct-acting DNA 
damaging agents. We show that TFP disrupts DDR signaling and its resolution by 
inducing hyper-activation of DNA-PK and ATM preferentially in cancer cells. We 
demonstrate that TFP-induced hyper-activation of DNA damage-induced DDR 
signaling represents an adaptive response that can be targeted with DNA-PK or ATM 
inhibitors to further enhance tumor killing. Finally, in Paper IV, we demonstrate that 
TFP profoundly alters the cisplatin-induced transcriptional survival responses leading 
to sustained suppression of clonogenicity. Based on these data, a tentative model for 
phenothiazine-mediated chemosensitization is constructed (Figure 17). 

In Paper I, we demonstrate that TFP-mediated augmentation of bleomycin sensitivity 
in human NSCLC cells is associated with its ability to inhibit DNA strand break repair 
in vitro and in situ. In Paper II, we show that TFP and related phenothiazines impair 
γH2AX resolution in human NSCLC cells leading to prolonged checkpoint arrest and 
delayed check proliferative recovery after exposure to bleomycin or cisplatin. We 
further demonstrate that defective DNA DSB repair in TFP co-treated cells is 
associated with abnormal mitosis, secondary arrest and caspase-mediated apoptosis 
initiating from the G2-M phase. We provide evidence that severe oxidative stress in 
conjunction with extensive lysosomal/mitochondrial dysfunction elicit caspase-3 
activation and loss of cell viability. In Paper III, we provide evidence based on in 
silico predictions that phenothiazines are putative chromatin-active agents. Our 
analyses indicate that TFP selectively sensitize cancer cells to direct-acting DNA 
damaging agents. We show that TFP disrupts DDR signaling and its resolution by 
inducing hyper-activation of DNA-PK and ATM preferentially in cancer cells. We 
demonstrate that TFP-induced hyper-activation of DNA damage-induced DDR 
signaling represents an adaptive response that can be targeted with DNA-PK or ATM 
inhibitors to further enhance tumor killing. Finally, in Paper IV, we demonstrate that 
TFP profoundly alters the cisplatin-induced transcriptional survival responses leading 
to sustained suppression of clonogenicity. Based on these data, a tentative model for 
phenothiazine-mediated chemosensitization is constructed (Figure 17). 
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Figure 17. A tentative model of phenothiazine-mediated chemosensitization
based on results presented in this thesis.
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Figure 17. A tentative model of phenothiazine-mediated chemosensitization
based on results presented in this thesis.
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5.2 Unresolved questions and future perspectives 

5.2.1 Intracellular localization of phenothiazines 
The pharmacologic activity of a compound is determined by its localization. The 
chance for it to interact with multiple targets increases if the compound accumulates in 
different subcellular compartments. Conversely, confinement to a single location 
increases the likelihood that it would interact with high specificity with a single target. 
The precise cellular localization of phenothiazines is not known. Ultrastructural studies 
using electron microscopy have revealed diffuse phenothiazine immunopositivity 
associated with many subcellular structures, including chromatin, nuclear matrix, 
cytosol, ER, ribosomes and mitochondria 536. Moreover, phenothiazines have also been 
shown to partition into model membranes whose lipid composition resembles that of 
the plasma membrane. Consequently, phenothiazines have many potential interaction 
partners throughout the cell. However, it is not known whether phenothiazines would 
accumulate at the different sites with the same relative ratio or if there might be a 
preference for one or more cellular compartment. In this thesis we have shown that TFP 
can modulate DNA damage-induced DNA-PK/ATM signaling, suggesting that it can 
localize to chromatin, but whether TFP localized elsewhere in the cell contribute 
significantly to chemosensitization is still an open question. Conjugating 
phenothiazines with a fluorescence tag may help resolve this issue if the tag does not 
appreciably alter the chemical and pharmacological properties of its host molecule. 
This can be nevertheless be tricky due to the low molecular weight (e.g. TFP, MW 480) 
of phenothiazines because and the relatively large sizes of most conventional 
fluorescent tags (e.g. FITC, MW 389). Furthermore, most clinically used phenothiazine 
anti-psychotics lack an amine functional group that needed for chemical conjugation, 
which requires the use of specialized derivatives (e.g. 10-[2-(aminooxy)ethyl]-10H-
phenothiazine) whose activities must first be rigorous tested and confirmed to resemble 
that of traditional phenothiazines. As an alternative strategy, it is possible to 
radioactively label phenothiazines. However, it is not possible to detect radiolabeled 
phenothiazines in situ and fractionation is a labor-intensive and crude way of separating 
subcellular compartments which is prone to cross-contamination.  A third strategy is to 
generate antibodies that specifically recognize phenothiazines. In this respect, it is 
important that the antibodies should bind to its target in the context of free 
phenothiazines as well as phenothiazines that exist in complex with other biomolecules. 
Although this does not permit real time tracking, it would allow detection of 
phenothiazines in situ. Regardless of the strategy, elucidating the subcellular 
localization(s) of phenothiazines may go a long way to help defining their molecular 
targets. 

 

5.2.2 Analysis of TFP-interacting partners 
Given that phenothiazines are likely to have multiple cellular targets, which of these are 
most relevant for chemosensitization? Our data suggest one or more chromatin-
localized proteins. To answer this question fully, however, we need to first establish the 
identities of all the proteins that bind to phenothiazines (i.e. the interactome). To this 
end, two different approaches may be applied. In one, phenothiazines with suitable 
amine group would be conjugated onto a sepharose column. Total cell lysates or 
fractions thereof can then be passed through the column. After extensive washing, any 
proteins that were bound to the immobilized phenothiazine can be eluted by disrupting 
the binding with high concentrations of salt and their identities determined by mass 
spectrometry. Alternatively, if a high affinity monoclonal antibody can be raised 



against a particular phenothiazine, it may be used to immunoprecipate phenothiazine-
binding proteins. A potential pitfall here is that the antibody may not be able to 
recognize phenothiazine-binding protein that have deep substrate binding pockets or 
that the interactions are weak and/or transient. Once the phenothiazine-interactome is 
established, one can then systematically study the most likely candidates and their 
relative contribution to chemosensitization. This issue needs to be urgently addressed 
before structure-activity relationship (SAR) which is required for the development of a 
clinically optimized compound that can be used for chemotherapy sensitizing purposes.  
 

5.2.3 TFP in combination chemotherapy 

Drug combinations 
A survey amongst published reports showed that phenothiazines were always active in 
combination with bleomycin in tumor cells whose p53 status were either null (C6 rat 
glioma 666) or mutant (L1210 mouse leukemia 571, 572, 667, SKOV3 human ovarian cancer 
565). The chemosensitizing activity of phenothiazines in p53 wild-type cells was more 
ambiguous, with CPZ shown to potentiate bleomycin in B16 mouse melanoma 585 
while TFP was largely ineffective in EMT6 mouse breast cancer 668. These data 
corroborate our own results which showed that TFP conferred bleomycin sensitization 
in p53-deficient (U1810, H23, MDA-MB-231) but not p53 wild-type (A549, hTERT-
RPE1) cells. As mentioned previously, MCF7 cells exhibited a subtle defect in p53 
signaling despite being wild-type for p53, which might explain its responsiveness to 
TFP-mediated chemosensitization 669. The proficiency of wild-type p53 in B16 
melanoma cells have not been thoroughly assessed, although it is tempting to speculate 
that it may also be functionally sub-optimal. Importantly, we and others have shown 
that phenothiazines did not increase bleomycin sensitivity in non-cancerous cells (Paper 
III) 670. Taken together, the available data suggest that bleomycin should be an excellent 
candidate chemotherapeutic agent for use in combination with phenothiazine-based 
chemosensitizers.  

 
The few studies that examined the efficacy of phenothiazines as cisplatin sensitizers 
yielded results that were not entirely consistent with our own data. Onoda et al found 
that TFP did not affect the growth of p53 wild-type B16 melanoma cells 586, which was 
in line with our findings that TFP lacked effect in A549, A2780 and hTERT-RPE1 
cells. On the contrary, Perez et al reported that TFP did impart cisplatin sensitization in 
A2780 parental cells as well as two of its platinum-resistant sub-clones 563. Moreover, 
they showed that TFP was ineffective against OVCAR-3 which is mutant for p53, 
while our data (Paper III) showed that TFP sensitized all of the three p53-mutant cell 
lines that we have tested so far (U1810, H125, MDA-MB-231). The reason for this 
discrepancy is not clear. As Perez et al did not provide an outline of their drug 
treatment scheme it is not possible to determine whether TFP scheduling could be the 
cause of these contrasting results. More studies are needed to fully establish the utility 
of phenothiazines as cisplatin sensitizers. Notably, there is a substantial amount of data 
supporting a potential protective effect of phenothiazines on cisplatin-induced 
nephrotoxicity and ototoxicity, two major dose-limiting side effects of cisplatin 
encountered in the clinical setting 574, 575. Therefore, phenothiazines might be useful for 
increasing the therapeutic indices of platinum-based regimens. 
 
Based on our works, it appears that TFP has little or no effect in combination with 
chemotherapeutic drugs which do not directly damage DNA, such as etoposide or 
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doxorubicin. There is no consensus on this subject in the literature where seemingly 
conflicting reports have been published. Nevertheless, we discovered upon closer 
scrutiny that phenothiazines selectively re-sensitized a variety of doxorubicin-resistant 
cancer cells in vitro as well as in vivo but had no effect in any of the parental cell lines 
except MCG101-AA, a chemically-induced mouse sarcoma whose relative sensitivity 
to anthracyclines was not known 469, 587, 671-676. Strikingly, while adding TFP to 
doxorubicin-based regimen failed to demonstrate any extra benefit amongst unselected 
patient populations 465, 467, 468, in a phase I/II trial, the combination of doxorubicin and 
TFP produced clinical responses in 7 of 36 patients (19%) with acquired drug 
resistance (previous response followed by relapse) but in none of the 21 patients with 
intrinsic drug resistance (no previous response) 593. Similarly, TFP was found to cross-
sensitize doxorubicin-resistant sub-clones but not parental cells to etoposide 572, 677, 678. 
Several potential mechanisms have been proposed, including but limited to enhanced 
drug retention, increased induction of DNA damage and down-regulation of pgp 
expression. On a cautionary note, however, phenothiazine-mediated sensitization to 
anthracyclines was also observed in non-cancerous V79-379A hamster lung fibroblasts, 
LLC-PK1/MDR1 porcine kidney cells and primary human kidney cells that express 
pgp 470, 670, 679. In addition, prolonged exposure of doxorubicin-sensitive parental L1210 
cells to TFP in combination with low doses of doxorubicin was associated with 
compensatory up-regulation of pgp expression and development of cross resistance to 
other drugs (e.g. etoposide, amsacrine, vincristine) 680. Moreover, when mice bearing 
MDR P388 leukemia were treated with drugs that are substrates of pgp, such as 
vincristine, taxol or the TFP-related compound trans-flupenthixol, it led to metastasis, 
faster tumor progression and decreased survival 681. There are also uncertainties as to 
what impact phenothiazines might have on the acute toxicity of anthracyclines, with 
one study showing a protective effect in C57/BL6 mice and another study showing 
exacerbated toxicity in ddY mice 673, 682. Collectively, these data suggest that 
phenothiazines might be useful as resistance modifiers in the second line for a subset of 
patients whose tumors show acquired resistance to anthracyclines or etoposide. Due to 
the high risk of collateral damage to normal tissues and inadvertent exacerbation of 
disease progression, we propose that any use of phenothiazines as general sensitizers 
for doxorubicin should be avoided.  
 

Tumor types 
The works described in this thesis provide a partial answer to this issue. Thus, we 
demonstrated that TFP is an effective chemosensitizer in tumor cell lines with deficient 
p53 functions but it has little or no effect in p53-proficient cells. Notably, the particular 
cause of p53 deficiency did not seem to impact on TFP responsiveness, be it non-sense 
mutation (U1810), missense mutations (e.g. H23, MDA-MB-231) or even subtle 
functional deficiency of the wild type protein (MCF7) 669. These data suggest that a 
fully functional p53-dependent transcriptional program might be required to counteract 
the actions of TFP. This is unlikely to involve p53-mediated checkpoint maintenance, 
given that cell cycle arrest was longer in TFP co-treated U1810 and MDA-MB-231 
cells. Rather, TFP may be selectively active when cells are unable to activate p53-
mediated processes that promote DNA repair, survival or checkpoint recovery 683-685. 
Regardless of the exact mechanism, our results indicate that p53-mutant tumors should 
be considered for phenothiazine-mediated chemosensitization. Tumors that are wild 
type for p53 but which are functionally deficient due to over-expression of its negative 
regulators (e.g. MDM2) may also be sensitive to TFP. Additional experiments are 
needed to test this hypothesis. 
 



In this thesis, we showed that TFP and structurally related phenothiazines are potent 
sensitizers of direct-acting DNA damaging agents in multiple cell lines derived from 
different solid tumors, including NSCLC, breast cancer and ovarian cancer. Are there 
any tumor types that may be responsive to phenothiazine-based chemosensitization? 
Because phenothiazines have a demonstrable affinity for melanin, we propose that 
malignant melanomas can be a good candidate for testing the efficacy of phenothiazine 
as chemosensitizers. There are three main arguments for choosing melanomas. First, 
CPZ clearly accumulated in rodent melanocytes in vivo 686, 687; depending on the 
experimental system, CPZ was either cytotoxic per se or conferred sensitization 
towards chemotherapy and radiation 585, 592, 688-694. Second, p53 mutations are very 
common in human melanomas 695, 696. Finally, bleomycin and cisplatin are both 
routinely used in melanoma treatment as part of multi-drug chemotherapy regimens 
(CVD, cisplatin-vinblastine-dacarbazine; BOLD, bleomycin-vincristine-lomustine-
dacarbazine) and their toxicity profiles are known in these settings. Moreover, previous 
clinical trials have demonstrated that phenothiazines cand be given safely in 
combination with bleomycin 594. Since our analyses showed that TFP significantly 
sensitized p53-deficient tumor cells towards bleomycin and cisplatin, it might be 
worthwhile to evaluate the efficacy of such combination chemotherapy in human 
melanomas. 
 
Another group of patients that might benefit from TFP-mediated chemosensitization 
are those that have CNS tumors. This is due to two properties of phenothiazines. One, 
phenothiazines are amphiphilic at physiologic pH and this allows them to freely cross 
the BBB. Two, phenothiazines could potentially disrupt the barrier function of the BBB 
by virtue of its ability to inhibit ABC transporters, which are highly expressed in 
endothelial cells. This phenomenon has been demonstrated in mice and rats where TFP 
enhanced the CNS accumulation of etoposide and ivermectin but not vinblastine 460-462. 
Neither bleomycin nor cisplatin is particularly active against gliomas and it is not 
known whether phenothiazines could increase their CNS penetration. In this regard, 
both electrochemotherapy (ECT) and direct intracranial injection have been tested for 
their abilities to enhance bleomycin accumulation in the CNS. These studies concluded 
that high dose bleomycin can be given safely. Exposure of human and rat glioma cell 
lines to diverse phenothiazines in vitro resulted in either growth arrest or cell death 521, 

557, 697 and there is also some evidence for phenothiazine-mediated sensitization towards 
bleomycin and nitrosoureas 666, 698. By contrast, the effect of phenothiazines in 
combination with temozolomide or IR, which are the mainstay of treatment for glioma, 
was additive and sub-additive, respectively 568. These data are consistent with our own 
results showing that TFP preferentially sensitized tumor cells to direct-acting DNA 
damaging agents. The particular combination of bleomycin and TFP has been tested in 
a phase II clinical trial previously and was not associated with any objective responses 
594. However, that study was conducted in patients with high grade gliomas who had 
been heavily pre-treated, making it uncertain that they would have responded to any 
type of treatment. Moreover, the study was single-armed making it impossible to assess 
any potential advantage from the combination treatment. We therefore propose that 
phenothiazines should be re-evaluated for their efficacy as chemosensitizers in a more 
selected patient population whose tumors are of lower grade and harbor defined p53 
mutations. In light of our findings that TFP could enhance the cytotoxicity of 
calicheamicin and the ICL-inducing agent cisplatin, it is tempting to speculate that 
phenothiazines may be useful in combination with gemtuzumab ozogamicin (GO, an 
antibody-conjugate of calicheamicin) or melphalan (an ICL-inducing agent) for the 
treatment of AML and multiple myeloma, respectively. 
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Scheduling of TFP  
To obtain a thorough overview on the temporal patterns of TFP-mediated 
chemosensitization, we expanded our TFP scheduling schemes and tested various 
combinations of pre- and/or post-incubation for their ability to augment caspase-3 
activation in U1810 cells after a pulse treatment with bleomycin or cisplatin. We found 
that when the duration of TFP post-incubation was kept constant, cells that were also 
pre-incubated or received TFP concurrently with a DNA damaging agent had 
significantly higher levels of active caspase-3 than counterparts that were only post-
incubated. Similarly, when TFP pre-incubation was applied, caspase-3 activation 
increased with the lengths of post-incubation. These data suggest that TFP-mediated 
chemosensitization has two temporal components. The early component is likely to be 
related to its ability to perturb DDR signaling. In line with this, we showed that if cells 
were first exposed to bleomycin and then post-incubated with TFP upon bleomycin 
removal, TFP could no longer augment DNA-PKcs autophosphorylation. Our data is 
also corroborated by the findings of Kwok and Twentyman, who reported that if TFP 
was given after bleomycin exposure, it had no effect on the survival of EMT6 cells 699. 
It is not yet clear which process or processes might be involved in the late component 
of TFP-mediated chemosensitization. One possibility is that it could be related to 
inhibition of mitotic kinesins by TFP 525, 526. Collectively, the available data suggest 
that in order to maximum efficacy, TFP needs be given prior to or concurrently with a 
direct-acting DNA damaging agent and should remain for at least as long as the latter is 
present. Future studies with animal models will be required to test the validity of this 
hypothesis.  
 

Concentration of TFP in vivo 
The minimal concentration of TFP that produces a discernible effect on DDR signaling 
in bleomycin-treated U1810 cells was 5 μM (our unpublished data), while 10 μM was 
required to significantly suppress their clonogenic potential. Are these concentrations 
achievable in vivo? There are no simple answers to this question. Previous studies have 
established the maximum tolerated doses (MTD) of TFP and prochloperazine (PCZ) as 
60 mg/d (orally 15 mg four time per day) and 180 mg/m2 (intravenously 2 h infusion), 
respectively 464, 593. Based on these schedules, the maximum plasma level of TFP was 
approximately 130 ng/ml, which corresponds to about 0.32 μM (MW 407.5) 593. The 
peak plasma levels of PCZ varied greatly between patients (91-3215 ng/ml), which 
corresponds to a range of 0.24-8.6 μM (MW 373.9) 464. Hence, the plasma 
concentrations of TFP are well below the 10 μM needed for chemosensitization in vitro 
while for PCZ it might be achievable in some patients. However, phenothiazines 
generally have very large volumes of distribution (e.g. 350.1 ± 183.8 L/m2 for PCZ) 
due to their high lipophilicity 464. Moreover, phenothiazines may exhibit tissue tropism. 
An example of this is CPZ, which has affinity for melanin. In hamsters and mice 
bearing transplantable melanomas, CPZ showed >100 fold greater accumulation in 
melanoma than in muscle or blood 686. Therefore, the plasma level of phenothiazines 
might not adequately reflect their concentration in tissues. It is possible that 
concentrations of phenothiazines sufficiently high to confer therapeutic 
chemosensitization can be achieved in at least some tumors. More studies are required 
to determine if this is the case.     
 
 
 



5.3 A unified view of phenothiazine-mediated chemosensitization 
Due to a large number of potential target sites and molecular interaction partners, it is 
rather difficult to obtain a unified view of phenothiazine-mediated chemosensitization. 
To this end, we propose a tentative ranking system where each known target site or 
interaction partner acts as an independent molecular checkpoint and the sum total of all 
interactions determine whether phenothiazine-mediated chemosensitization is likely to 
be observed or not (Table 8). This analysis suggests that colon cancer Caco-2 cells are 
likely to be sensitized to cisplatin by phenothiazines. Additional experiments are 
needed to verify the validity of this prediction.  
 
Table 8. A tentative ranking system for predicting phenothiazine-mediated chemosensitization.  
Cell line  U1810 U1810 U1810 MB-231 A2780 Caco-2 

Treatment  BLM  VP16  STS CDDP CDDP CDDP 

p53 a  mutant 3p 3 3 3 3  3 
 wild-type 0p     0  

DSB 2p 2      
ICL 2p    2 2 2 
SSB 0.5p 0.5 0.5  0.5 0.5 0.5 
oxidative 
damage 0.5p 

0.5      

replication 
lesions 0.5p 

 0.5  0.5 0.5 0.5 

Type of DNA 
lesion  

none 0p   0    

direct 2p 2   2 2 2 
indirect 0.5p  0.5     

Mode of damage 
induction 

none 0p   0    

yes 1p b      1 Transport by 
efflux pumps no 0p 0 0 0 0 0  

yes 1p      1 Expression of 
efflux pumps  no 0p 0 0 0 0 0  

Total  8 5 0 8.5 4.5 10.5 
Sensitization   yes no no yes no n.d. 

Abbreviations: STS, staurosporine; MB-231, MDA-MB-231; n.d., not determined. 
a functional proficiency or deficiency; b The point is given on if the cell also expresses ATP-
dependent efflux pumps. 
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5.4 CONCLUDING REMARKS 
Phenothiazines have demonstrable cytotoxic and/or chemosensitizing activities against 
a wide range of human tumor cells. Their apparent failure to recapitulate these effects 
in a series of earlier clinical trials is likely due a scarcity of knowledge about the 
molecular determinants of phenothiazine-mediated chemosensitization. As described in 
this thesis work, such parameters are beginning to be elucidated and this will allow a 
more refined definition of patients who are most likely to benefit from phenothiazine-
containing regimen. Moreover, the ability of phenothiazines to allviate disease-related 
anxiety, suppress chemotherapy-induced emesis and potentially limit collateral damage 
to normal tissues can all be harnessed to improve the quality of life of cancer patients. It 
is time give this class of “old” drugs a second chance what show us what they are really 
capable of.    
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Ismael “Iso” Gritli & Mayu, the other model couple. Congrats on becoming parents. 
Iso, who could have thought a few years back that you’ll be a Japanese dad!!! Makes 
me think back about all those good old waterpipe-sharing times. I’m so happy for you 
and wish you the best of luck with your PhD studies. 
 
Priya Mathews, my special American friend! You came here as Dara’s best friend but 
ended up being my closest ally. I guess we owe you one… When the time comes, I 
promise I will return the favor ☺. In the meantime, good luck with your studies.  
 
 
♥ ♥ ♥ ♥ ♥ ♥ ♥ 
 
And my family 
My dear parents Zong Weiyong and Liu Yuping, for all those years of patient 
nurturing and unwavering love when I’m at my rebellious worst. And for the personal 
sacrifice you endured just to create the best conditions for me. You taught me the 
importance of hard work and humility and encouraged me to set myself on a path I 
enjoy. I’m truly indebted… 
 
My dear parents-in-law Damrong Wangsa & Premchit Wangsa, for their love and for 
making me feel instantly that I belong to the family. And for fostering such a wonderful 
daughter. I’m sorry I had to steal her from you… 
 
And finally my sweet and beautiful wifey Darawalee Wangsa Zong, for being the star 
of my life. Your patient support and unconditional love helped me through my darkest 
hours, not to mention all the practical things you did for me throughout the years. 
Although you’re far away across the ocean, I feel your cheerful spirit and vibrant 
energy so up close it is as if you’re right next to me urging me on. You truly bring the 
best out of me. I love you…      
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