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To Orhan Hilmi Cosan (1953-2003)

“Morality is herd instinct in the individual.”
Friedrich Wilhelm Nietzsche
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ABSTRACT

The main aims of the immune system are to protect the host from potential threats by
distinguishing self from non-self and altered-self. T cells and NK cells play a key role in
the identification and elimination of threats by scanning a repertoire of peptide
epitopes presented by major histocompatibility complex (MHC) molecules. Thus, MHC
molecules play a pivotal role in the initiation and/or modulation of both T and NK cell
effector functions, acting as ‘windows’ of the cells presenting their inner condition.
This thesis focuses on the molecular interactions between T cell receptors (TCRs), NK
cell receptors (NKR) and MHC class | molecules (MHC-I). The presented results
demonstrate that it is possible to efficiently manipulate T and NK cell responses
through MHC-restricted epitopes and altered peptide ligands (APL).

Primarily, our investigations of the potential impact of post-translationally modified
(PTM) peptides on immunosurveillance revealed the first structural and biochemical
evidence for how nitrotyrosinated neoantigens may enable viral escape from immune
recognition, as well as break immune tolerance by either impairing MHC/peptide
complex (pMHC) stability and/or altering interactions with the TCR surface.

Moreover, structural alterations can change the biochemistry of TCR-pMHC
interactions, which may affect the immunogenicity of altered peptide ligands (APLs).
We demonstrated that a TCR specific for an immunodominant epitope makes use of a
different thermodynamic strategy to cross-react with a weak agonist APL in order to
adapt to structural modifications in the pMHC. Thus, understanding the molecular
constraints of TCR interactions with MHC-restricted epitopes and APLs is essential to
develop novel approaches to modulate T cell responses and to achieve “T cell cross-
reactivity”, which is the main objective of designing APLs targeting viral- and tumor
associated antigens.

Additionally, we have demonstrated that it is possible to modulate T cell responses
through the use of an unconventional peptide modification strategy that systematically
targets evolutionarily conserved residues of the MHC in order to improve pMHC
stability and thus immunogenicity. Importantly, introduced modifications efficiently
improved the immunogenicity of a viral escape epitope and immunization with the
modified epitope generated distinct and focused cross-reactive T cell populations
against the original peptide. Thus, targeting evolutionarily conserved residues of MHC
provides a novel approach to optimize MHC-I restricted epitopes for future anti-viral or
-tumor vaccines.

Finally, our findings suggest that, in interactions between NK cells and normal cells,
MHC-I is in most cases expressed in excess ensuring self-tolerance and preventing
autoimmunity. More interestingly, we demonstrated that NK cell activation can be
modulated through the use of MHC-I restricted peptides. This may have future
implications in attempts to sensitize the immune system against previously inert
targets, which stands out as an important outcome in the frame of this thesis.
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KIR Killer-cell immunoglobulin-like receptor Th CD4" T helper cells

LCMV  Lymphocytic choriomeningitis virus Treg regulatory T cell

LFA-1  Lymphocyte function-associated antigen 1



1 INTRODUCTION

The immune system is a sophisticated ensemble of biological structures and
mechanisms aiming to protect the host from potential threat, which has evolutionarily
developed in order to distinguish self from non-self and, ultimately, maintain sexual
compatibility and sustain survival. Throughout evolution, the immune system
developed several different sensors and mechanisms to detect and eliminate
invasions. Components of the primordial innate immune system can be traced back to
unicellular organisms such as the amoebae as well as to multicellular organisms such
as sponges and invertebrates. Several innate-like immune structures (i.e. scavenger
receptor cysteine-rich domains, Toll-like receptors, cytokine-like molecules) are used
to recognize and eliminate potential threats'>. The basis of this ancestral innate
immune system has been largely preserved through the evolutionary transition from
invertebrate to vertebrate and was later complemented by the development of the
adaptive branch of immunity®.

The innate immune system of higher vertebrates comprises natural killer (NK) cells,
macrophages, neutrophils, dendritic cells (DC), epithelial barriers and the complement
system. In contrast, the eclectic antigen-specific adaptive immune system, which
includes T- and B-cells, could only be traced to vertebrates (jawed fish)s's. When or
how exactly the adaptive immune system evolved is still largely unknown. It is however
believed that it is a consequence of a long stepwise accumulation of alterations in cells,
molecules and organs, through gene duplications, chromosomal re-organization and
inter-domain exchanges of pre-existing structures that are found in eukaryotes or early
vertebrates that do not have functional adaptive immune systems’. Adaptive immunity
enables specific recognition of target molecules through sophisticated structures such
as the B cell receptor (BCR) and/or the major histocompatibility complex (MHC)-
restricted T cell receptor (TCR). Importantly, these recognition steps establish specific B
and T cell memory to the encountered pathogen. The complex cooperative
organization of the immune system is achieved in higher vertebrates through a
combination of the innate and adaptive branches. Overall, the immune system works
in a well-orchestrated manner, and every molecule and cell type has essential and
complementary roles in the protection of the host from potential threats.

For example, T and NK cells need to communicate with other cells in the organism in
order to coordinate the identification of self, non-self or altered self. Direct
communication between T cells and antigen presenting cells (APC) is achieved through
the interactions of specialized cell surface receptor molecules, such as major
histocompatibility complex class | and Il molecules (MHC-I and MHC-II, respectively),
with TCR. Thus, MHC molecules serve as windows into the cells, displaying at their
surface internally processed peptides and providing a basis for T cells to distinguish self
from non-self. On the other hand, NK cells, instead of using highly specialized TCRs, use
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a battery of activating and inhibitory receptors in order to distinguish self from non-
self. The balance in between signals transmitted through activating and inhibitory
receptors defines the fate of NK cells. Interestingly, MHC, which is an essential
molecule for T cell based immune defense, also plays a pivotal role in the modulation
of NK cell biology. MHC-I molecules are scanned by T and NK cell receptors, triggering
effector responses if the cells are infected and/or altered (i.e. cancerous). Identification
and elimination of infected and/or altered cells should be very rapid and tightly
controlled so that infected or cancerous cells do not evade detection, while healthy
cells are not eliminated. The significance of MHC and the use of MHC-I-restricted
peptides in the regulation of T and NK cell effector functions is the main focus of my
studies, which will be described and discussed in detail later in this thesis.

1.1 MAJOR HISTOCOMPATIBILITY COMPLEX (MHC)

MHC genes are located on chromosomes 6 and 17, in human and mouse, respectively.
The MHC locus is polygenic, encoding the MHC-I genes, human leukocyte antigen
(HLA)-A, -B and -C, as well as the MHC-II genes, HLA-DP, DQ, and DR in humans. The
corresponding MHC-I genes in the mouse are (H-2) K, -L, -D, and the MHC-II I-A and I-E.
In addition to these so-called classical MHC molecules, several proteins involved in
antigen processing and presentation, including the transporter associated with antigen
processing (TAP), non-classical MHC genes, several components of the complement
system and certain cytokines (such as TNF) are also encoded in the MHC locus. The
MHC genes are highly polymorphic and most of the polymorphisms are located in the
peptide-binding cleft of the MHC molecules. For example, in 2003 more than 200, 500
and 100 variants of HLA-A, HLA-B, and HLA-C genes, respectively, had already been
identified®®. As a consequence, polymorphism in the peptide-binding groove allows for
unique peptide-binding properties and requirements for each MHC allele. Moreover,
the polymorphic MHC structure enables the host to increase the possibility to generate
T cell responses against a wide array of antigens since each individual carries two
alleles of each MHC gene (one paternal and one maternal).

1.2 TLYMPHOCYTES

T lymphocytes (T cells) are a crucial part of the adaptive immunity. The central role of T
cells is due to their ability to recognize a very large number of antigens that are
presented in complex with MHC molecules on the surface of APCs™. Recognition of
MHC-1 or MHC-ll-restricted antigenic peptides is required for the generation and
maintenance of the T cell repertoire as well as to mount a coordinated immune
response. T cells scan the MHC/peptide (pMHC) population displayed on the cell
surface of APCs through their extremely diverse TCRs that form a multi-subunit
complex together with the CD3 signal transduction complex, that includes the CD3y,
CD36, CD3e and TCRZ molecules. All CD3 subunits contain immunoreceptor tyrosine-
based activation motifs (ITAM) in their cytoplasmic domains, which upon recognition
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of cognate pMHC get phosphorylated. This leads to the activation of various signaling
and gene expression pathways resulting in T cell activation and the initiation of
effector functions such as TCR downregulation, cytokine secretion, proliferation,
cytotoxicity, phenotypic differentiation, initiation of B cell help and/or apoptosis.
Following antigen clearance, the majority of the antigen-specific T cells undergo
apoptosis, while a small fraction of the cells survive to establish long-lived memory T
cells. Upon re-challenge with the same antigen, memory T cells provide extremely fast
and efficient antigen-specific immune responses compared to naive T cells. Therefore,
the generation of a large population of memory T cells is an appealing goal for modern
T cell-based vaccination strategies against a variety of human diseases™.

T cells can be classified into several different subgroups according to their TCR
composition, MHC specificity and effector functions. Major T cell subgroups comprise
the cytotoxic T lymphocytes (CTLs), T helper cells, regulatory T cells (Tregs), Natural
Killer-T (NKT) cells and yd T cells. The different T cell lineages occur during T cell
differentiation, development and thymic education.

1.2.1 T cell development

T cells primarily originate from hematopoietic stem cells in the bone marrow. T cell
progenitors differentiate in the thymus and go through several selection processes
before becoming mature T cells. T cells must first produce a TCR by somatic
recombination of the variable (V), diversity (D), and joining (J) segments of the Tcrb
locus and V and J segments of the Tcra locus. According to the type of TCR expressed, T
cell lineages diverge either into aff or yd T cells. T cells that successfully produce af§
TCR and express both co-receptors CD4 and CD8, are thus called double positive (DP)
thymocytes. DP thymocytes go through additional selection processes in the thymus,
called positive and negative selection, which maintain central immunological tolerance
and generate a T cell population potentially reactive against non-self antigens.

Positive selection occurs in the cortex of the thymus and allows for the maturation of
DP thymocytes bearing TCRs that recognize self-MHC in complex with self-peptides. In
other words, this process enriches the population of T cells specific to self-pMHCs. At
this stage of the selection the fate of T cells is defined according to their preferences
towards either pMHC-I or -1l and as a consequence DP thymocytes separate into single
positive (SP) thymocytes. Thymocytes reacting with self-MHC-I are directed towards
the cytotoxic T cell lineage and express the CD8 co-receptor on their cell surfaces.
Conversely, thymocytes specific to self-MHC-II preferentially express CD4 and diverge
to the T helper lineage. At this stage thymocytes that do not have enough affinity to
self-pMHC will be eliminated through “death by neglect”.

Negative selection is the following step of thymic education, which occurs in the
medulla of the thymus and results in the deletion of all SP thymocytes with high
reactivity to self-pMHCs, thus playing an essential role in prevention of autoimmunity.
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The majority of DP thymocytes (98%) are eliminated during positive and negative
selection and the cells that successfully pass these two selection stages become
mature naive T cells. The latter are released to the periphery with embedded
properties of low self- and potentially high foreign-antigen reactivity, thus establishing
simultaneously central tolerance and protection from pathogens and tumors.

The final selection of T cells encompasses peripheral T cell tolerance. Indeed, T cells
educated in the thymus can still escape central tolerance and become auto-reactive in
peripheral tissues. These potentially dangerous auto-reactive T cells can be eliminated
through interactions with dendritic cells (DC) and other T cells, in order to guarantee
self-tolerance in combination with continuous control by suppressive Tregs.

1.2.2 T cell triggering

Under steady state conditions self-pMHC/TCR interactions occur routinely where naive
T cells survey the surface of DCs in the periphery. This provides a tonic TCR signaling
that maintains the T cell pool and enhances responsiveness towards foreign antigens.
This process also increases the probability of triggering very rare antigen-specific naive
T cells through interactions with few DCs that present their cognate antigen in complex
with MHC molecules during the initial course of an infection.

T cell activation followed by clonal expansion and acquisition of effector functions
starts when a TCR encounters a cognate peptide in complex with self-MHC presented
by APCs. Complete activation of T cells depends on at least two signals. Signal 1 is
derived from the interaction between the pMHC/TCR complex, which is the
prerequisite for T cell triggering and following downstream events. Signal 2 is provided
by interactions with co-stimulatory molecules and amplifies the signaling events
resulting in essential gene transcription and ultimately, T cell activation. Signal 3 is
mediated by cytokines produced by APCs and drives CD4" and CD8" T cell
differentiation into effector cells.

Engagement of the pMHC/TCR complex leads to phosphorylation of its cytoplasmic
ITAMs by the tyrosine kinase LcK, allowing recruitment of the Syk family kinase ZAP-70,
which phosphorylates a number of downstream substrates. In addition, a number of
accessory molecules, including the co-receptors CD4 or CD8, the co-stimulatory
molecule CD28 and the adhesion molecules CD2 and LFA-1, are engaged by their
specific ligands during antigen recognition (Figure 1A). Additional signaling by these
receptors can modulate TCR signals, resulting in a finely calibrated biochemical relay
that encodes the strength of pMHC binding, thus allowing the T cell to make
appropriate context-specific responses.



Figure 1. The central role of the TCR/pMHC complex in T cell recognition and the formation of the
immunological synapse (IS). An illustration of a T cell and an antigen presenting cell (APC) interaction. A.
Additional interactions provided by the CD8 co-receptor and co-stimulatory molecules CD2, LFA,1 and
CD28 improve the T cell-APC interaction in order to achieve an effective immune response. B. Side view
of “bull’s eye shaped” T cell-APC IS displaying cSMAC in the central zone and pSMAC in the surrounding
peripheral zone. C. Top view of the “Bull’s eye shaped” IS looking down on the T cell.

The pMHC/TCR interaction and the following co-stimulatory signaling, trigger key
events for T cell activation, inducing a change in cell membrane topology and the
rearrangement of cell surface molecules, assembling into a unique molecular structure
at the T cell-APC contact interface termed the immunological synapse (1S)****. The
formation of IS promotes stability of the intercellular contact and allows for a more
orchestrated T cell signaling that results in optimal activation and effector

functions™*®3,

IS consists of two concentric rings of molecules, known as the central supramolecular
activation cluster (cSMAC) and the peripheral supramolecular activation cluster
(pSMAC), which form the bull’s eye shaped IS (Figure 1A and C). The central zone of
the IS (cSMAC), enriched with TCR and CD3 complexes, also consists of CD28, CD4 or
CD8 and the protein kinase C (PKC) molecules. Since many T cell activating receptors
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and signaling molecules are present in the ¢cSMAC, and since its formation strongly
correlates with the efficiency of T cell stimulation, this supramolecular domain was

initially thought to mediate T cell activation'**?

. However, recent studies suggested
additional alternative roles for ¢SMAC such as trapping the target pMHC and
enhancing serial engagement of TCRs, allowing termination of TCR signals, as well as
downregulation, absorption and degradation of TCR/pMHC complexes. This possibly
leads to “homotypic T cell-T cell interactions” and induces cross killing to limit the size
of clonal expansion or to facilitate directional CD4" T cell help required for optimal
CD8" T cell activation™®. Finally, integrin-rich outer ring of the IS (0SMAC) can serve as a
sealing ring to prevent the diffusion of perforins and granzymes, which can be

important for CTL activity in the frame of focused target cell killing"**>.

In resting naive T cells, the TCR complex, the activating and the inhibitory receptors
group in membrane structures called nanoclusters™. Initial T cell signaling starts at
these pre-existing nanoclusters upon antigen recognition and induces formation of
microclusters — also called protein islands - where 20 or more TCR complexes come
together resulting in enhanced and focused T cell signaling. Additionally, emerging
biological and biochemical evidence suggests that these pre-clustered TCRs may exist
on the cell surface particularly in previously activated T cells enabling a faster “ready-

to-go” response’®*®

. Generation of the bull’s eye shaped IS follows the formation of
TCR microclusters. This two-concentric ring shaped structure is not observed during
interactions between DCs and T cells, as DCs are excellent APCs with the ability to
induce strong T cell activation. Instead, T cells and DCs establish multifocal ISs where

TCRs cluster at multiple sites at the T cell-DC interface**?

. The clustering of several
TCRs on the cell surface can also provide an additional explanation for major T cell

triggering hypotheses, such as kinetic-proof reading™ and serial triggering®.

1.3 NATURAL KILLER (NK) CELLS

Natural Killer (NK) cells are members of the innate immune system with the ability to

kill virus-infected cells and tumor cells in the absence of prior stimulation or

21,22

immunization“”“*. Thus, they stand out as promising actors in the treatment of

infectious diseases and for cancer immunotherapyB'25

. Even though NK cells make use
of different modes of target recognition compared to T cells, both NK cells and T cells

use MHC-I molecules for the regulation of their effector functions®®.

NK cells interact with their potential target cells through various transmembrane
inhibitory and activating receptors. The balance between these inhibitory and

activating signals defines the action of the NK cells*”?

. Despite structural differences
between the inhibitory and activating receptors, signaling pathways seem largely
conserved®®>%. Activating and inhibitory receptors make use of ITAMs and

immunoreceptor tyrosine-based inhibition motifs (ITIMs), respectively, which are



T cells NK cells

Figure 2. The pivotal role of MHC-1 in T and NK cell responses. While T cells respond to non-self peptides
presented by APCs, NK cells are sensitive to the loss/absence of MHC A. Antigen presenting cell
displaying self-epitopes (blue) to T cells through MHC-I. B. Infected APC presenting viral peptides (yellow)
through MHC-I, resulting in T cell response. C. NK cells scanning the surface of a healthy APC. D. NK cells
responding due to the loss of MHC-I “missing self” resulting in target cell killing.

located on adaptor molecules that interact with the cytoplasmic tails of the receptors.
While major activating receptors comprise the natural cytotoxicity receptors, NCRs
(NKp30, NKp44 and NKp46)*?® and NK group 2D (NKG2D)*, the major inhibitory
receptors include NKG2A, the inhibitory killer cell immunoglobulin-like receptors (KIRs)
in human and the highly polymorphic C-type lectin-like Ly49 family of receptors in
mice”? .

Inhibitory receptors tightly control NK cell activity by negatively regulating NK cell
activation against healthy cells expressing normal amounts of self MHC-I on their
surface. This is possible through the action of KIRs and Ly49 receptors, which are

mainly specific for MHC-I, enabling recognition of target cells with down-regulated

38-40 fn41

surface MHC-I expression™ ", a phenomenon referred to as “missing-self””" (Figure 2).
A common characteristic of MHC-I-specific inhibitory receptors is the presence of ITIMs
in their cytoplasmic tail, which enables them to recruit and activate SHP1 and SHP2

29,42

phosphatases in order to switch off the activating signaling. Interestingly, the

importance of negative signaling has also been recently demonstrated in T cells™.

Both KIRs and Ly49 receptors are clonally expressed on NK cells in variable frequencies
and are also found on NKT cells as well as on some T cells. NK cells can express one or
multiple receptors, which are specific for one or a few MHC-I alleles, allowing for a
wide and complex repertoire of NK cells that is able to respond to the loss of a single
MHC allele®*’. Taken together, this information highlights the importance of MHC
molecules as a fundamental regulator of NK cell biology. Additionally, NK cells undergo
a process of education where the ability to be inhibited by self MHC-I confers full
functionality®. This topic will be expanded in section 1.3.1.



In contrast to T and B cells, NK cells lack clonally distributed receptors for activation.
Instead, NK cell activation is maintained through a complex network of various
activating receptors>°. Upon recognition of ligands on the surface of target cells by NK
activating receptors, various intracellular signaling pathways drive NK cells towards
cytotoxic action, ultimately resulting in target cell killing*. The activating receptors are
associated with ITAM-bearing signaling adaptors in their cytoplasmic tails such as
€D37* or DAP12*°, which further highlights the common characteristics of NK and T
cell signaling. The ITAM motif was initially recognized as a common sequence in the
cytoplasmic tails of the signaling chains associated with the TCR>. In T cells, the CD3{
part of the CD3 complex that is non-covalently associated with the TCR complex, plays
a central role in the transmission of signals via sequential tyrosine phosphorylation of
its ITAM region. Interestingly, it has also been demonstrated that T cells (which
generally lack DAP12), gene-engineered with DAP12, display NK-like effector
functions?, suggesting the significance of DAP12 in both NK and T cell signaling.

In summary, NK cell activation may occur depending on the net result of activating and
inhibitory signaling triggered by cell surface receptors. The balance between these
signals decides the fate of the interactions between NK cells and their targets. Just as
downregulation of MHC-I can diminish the inhibitory signaling, it has also been
demonstrated that, even in the presence of normal MHC-I levels on the target cells, NK
cells can still be triggered if a higher amount of activating signal is achieved as a result
of stress-induced upregulation of activating ligands, a phenomenon referred to as

“induced-self recognition”>*>>.

1.3.1 NK cell development

NK cells develop primarily in the bone marrow. Unlike T cells, NK cells do not go
through positive and negative selection in the thymus and exist in normal numbers in

56-58

athymic nude mice®™". Howeuver, it is also possible that some NK cells can originate

from the thymus>®, liver® and lymph nodes®.

During development NK cells go through several stages of differentiation that have
been defined based on the sequential acquisition of specific markers. The last stages of
NK cell development include acquisition of functional capabilities, such as cytokine
secretion and cytotoxicity®®. Unlike B and T cells, individual NK cells lack antigen-
specific receptors. Furthermore, NK receptors do not go through recombination
activation gene (RAG)-dependent rearrangements, although during NK cell
development low frequency of V(D)J recombination and transient expression of RAG

63-67
d

have been observe . Upon leaving the bone marrow NK cells can reside in the

blood, spleen, liver, lung and various other organs®, where they stand ready to rapidly
respond against pathogens. As for T cells, NK cells continue to maturate in the

periphery following exit from the thymus and the bone marrow, respectively®”*.



1.3.2 NK cell triggering

Similarly to T cells, functional activation of NK cells requires a number of activating
stimuli for efficient effector functions. Engagement of a single or several activating
receptors (Signal 1) can promote NK cell activation and clonal proliferation. On the
other hand CD28, which plays an essential role in T cell co-stimulation (Signal 2), is
expressed at lower levels in NK cells compared to naive T cells. While stimulation of
CD28 in NK cells is not required for cytotoxicity, it seems to be central for optimal
cytokine secretion and proliferation’®. Other similarities between the triggering of T
and NK cells comprise the use of pro-inflammatory cytokines IL-12 and type-l IFNs
)”>7®. It should also be noted that

even in the absence of signals 1 and 2, signal 3 alone could promote an innate-like
77,78

provided by DCs upon sensing viral infection (Signal 3

ability in memory CTLs to produce IFNy and proliferate

In conclusion, the mechanisms of integrating activation, co-stimulation and cytokine
signaling seem to be common to both NK and T cells.

1.4 ROLE OF MHC IN DEVELOPMENT AND REGULATION OF T AND NK
CELLS

MHC is a key molecule in several different stages of T cell biology. The importance of
MHC in thymic education, peripheral tolerance, T cell activation and effector functions
results in a bias of the TCR towards MHC. Non-self and self-peptide antigens are
continuously displayed on MHC to af} T cells acting as a window that exhibits the inner
status of the cell. In other words, MHC molecules form a platform for the docking and
scanning of various different TCRs during their quest to discover cognate peptide
antigens and in order to keep T cell-based adaptive immune responses alert and active.
Although their gene loci are localized on different chromosomes, TCR and MHC have
co-evolved since the creation of adaptive immune systems in vertebrates. It has been
recently hypothesized and partially proven that TCRs make use of germline encoded
evolutionarily conserved residues localized on the complementarity determining

regions, CDR1 and CDR2, to interact and recognize MHC molecules’®

81,82,83

. Despite the
emergence of recent challenging findings , it is generally considered that oy TCRs
cannot recognize antigens that are not presented by MHC. This is one of the major
indications for the essential role of MHC molecules in T cell recognition. Furthermore,
T cells that are only reactive to self-pMHC molecules are allowed to maturate during
thymic education. T cells educated in the absence of self-pMHC can still recognize MHC

molecules, although most frequently allogeneic®.

Finally, presence of MHCs and their ability to present antigenic peptides is one of the
requirements to initiate the signals that are necessary to trigger T cells. For example,
formation of the immunological synapse during T-cell and APC interactions is mediated
through MHC and TCR. Thus, in order to acquire a better understanding of the
relationship between MHC and TCR, and possibly develop novel T cell-based
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vaccination strategies, it is essential to enhance our understanding of their
interactions, and thus determine the three dimensional structure, the chemistry and
the biology of both MHC and TCR.

Similarly to T cells that undergo positive and negative selection in the thymus,
developing NK cells are educated or selected in the bone marrow through engagement
of their inhibitory receptors with various MHC-I ligands, which is an essential step for

establishing efficient missing-self recognition®®’"%

. Engagement of these receptors
with cognate MHC-I leads to the generation of functional NK cells in the periphery,
whereas failure to engage inhibitory receptors during development results in NK cell

hypo—responsivenessSG'90

. Unlike “death by neglect” seen in T cell selection, NK cells
that do not get stimulated by inhibitory ligands during development are still exported
to the periphery but remain anergic. This process where effector functions are
conferred upon those NK cells that have the ability to sense the presence of MHC-1 is
termed licensing™.

However, upon adoptive transfer, mature NK cells can undergo a re-education process

whereby functional competence is reset according to the new environment”>%. A

n
example of such a phenomenon is the acquisition of effector functions by previously
anergic NK cells transferred into an MHC-| sufficient environment, suggesting that
continuous engagement of inhibitory receptors with MHC-I is required for NK cell
responsiveness. Notably, NK cells that lack an inhibitory receptor for autologous MHC-I

88,94,95

can still respond normally in inflammatory settings and more robustly against

viral infections and leukemia than their counterparts that express self-specific

inhibitory receptors for MHC-1%,

Additionally, ligation of developing NK cells’ activating receptors with cognate viral or
self-ligands leads to anergy as well as a partial repertoire deletion resembling the

negative selection of developing thymocytes™ %,

1.5 THREE-DIMENSIONAL STRUCTURE OF MHC MOLECULES

MHC molecules are mainly represented by two distinct classes, | and I, in higher
vertebrates. MHC-I molecules, which form the main recognition platform for CTLs,
present on the cell surface endogenous antigens that result from the processing of
cytosolic proteins. In contrast to MHC-I that are expressed by all nucleated cells, MHC-
Il are only expressed by professional APCs such as DCs, macrophages and B cells.
Antigens derived from engulfed exogenous proteins are processed through an
endocytic pathway and presented on the cell surface of APCs on MHC-II, ultimately
targeting recognition by CD4" T helper cells. Although MHC-I and -Il are triggering
distinct subgroups of T lymphocytes, both molecule classes have similar overall
architectures (Figure 3). MHC can generally be described as heterodimeric proteins
that consist of a membrane spanning tail followed by two extracellular Ig-like domains
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Figure 3. Overall structure of the MHC-I molecule and peptide-binding cleft. A. Crystal structure of
MHC-I (PDB ID: 1S7U). MHC-I heavy chain in green, B,m in cyan, side view B. Electrostatic representation
of MHC-I, displaying the peptide binding cleft and six major pockets (A-F), top view.

(the latter important for CD8/4 engagement and/or recognition by specific NK
receptors such as Ly49), and a membrane-distal highly polymorphic super-domain that
forms the peptide binding groove. The peptide-binding cleft is formed by two anti-
parallel broken a-helices that are diagonally located over eight anti-parallel B-sheets
establishing a restrictive sandwich-like landscape for peptide binding and presentation.
The main differences between the two MHC classes result from alterations in domain
organizations that allow both classes to achieve discrete characteristics in three-

dimensional structures and thus presentation of peptide repertoire'®*'%,

More specifically, MHC-I is comprised of a single membrane spanning heavy chain
composed of three a-domains, which also establishes the peptide-binding groove. The
heavy chain binds non-covalently to a soluble Ig-like molecule called B,-microglobulin
(B2m) (Figure 3A). In contrast, MHC-Il is composed of two similarly sized heavy chains
called a and B, which contribute equally to the peptide-binding groove. MHC-I and -I|
present peptides of differing sizes and properties as a result of differentially built

104-106

architectures of their peptide binding grooves . It is generally considered that

MHC-I can accommodate 8-10 amino acid-long peptides since the peptide-binding cleft

103,104

is closed at both ends . Conversely, longer peptides can be presented by MHC-I|

since the ends of the peptide-binding cleft are open, allowing longer peptides to

extend out from both sides of the groove'®**

. Another consequence of these
structural differences is that peptides presented by MHC-II are held in long extended
conformations and reside slightly shallower in the peptide-binding groove, compared
to MHC-I restricted peptides. Thus, peptides accommodated by MHC-I are de facto
restricted to a relatively smaller peptide binding groove and most often bulge out
more or less in the middle depending on the size and the chemistry of the presented
103,104

peptides . More prominent conformations enable peptides to be more accessible
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for TCR scanning in the case of MHC-I-restricted epitopes. Additionally, longer peptides
can also bind to MHC-I with either an even more bulged structure or by extending out
and upwards from the peptide-binding groove at the N- or the C-terminus'®"'®%,
Finally it should be noted that several very long viral peptides and tumor-associated
antigens (TAAs) that bulge out from the peptide-binding groove, have been three-

dimensionally established and thoroughly functionally studied'®™**3.

1.5.1 Structural insights into peptide-MHC binding and restriction

MHC molecules make use of their peptide-binding sites in order to present antigens to
T cells. Pamela Bjorkman and Don Wiley provided the first insights into the structural
and biochemical features of MHC/peptide restriction when they determined the

114115 since then several structural and biochemical studies

crystal structure of HLA-A2
have provided and still provide additional important information, adding constantly to

our understanding of the molecular basis underlying MHC/peptide restriction.

Although an oversimplification, it is considered that the peptide-binding cleft of MHC-I
consists of six major pockets that accommodate the presented peptides (Figure 3B).
Each of these pockets, named A to F, plays an important role in peptide binding.
Unidirectional binding of peptides to MHC is one of the important features of MHC
peptide-binding grooves. This directional binding is achieved through the unique
chemical environment created by conserved amino acids in the vicinity of these
pockets, orientating the N- and C-termini of the peptide towards the A- and the F-
pockets, respectively. In the case of MHC-I, the majority of the amino acids in the A-
and F-pockets are bulky aromatic residues that seal-off the ends of the peptide-binding
groove.

Additionally, the remaining four pockets (B-E) are located mainly in the most
polymorphic regions of MHC class |, defining one of the key characteristics of the
peptide binding-clefts, which is peptide specificity. This specificity is individually
designed through the polymorphic residues residing in the peptide-binding groove.
Indeed so-called binding motifs are characterized by the requirements of certain
pockets that strongly select for certain amino acids at specific peptide positions. It is
generally agreed today that most of the peptide binding to a specific MHC allele is
achieved through the use of these preferred residues called anchor residues. As each
MHC allele has individual preferred MHC anchor residues, each allele has the potential
to present a different peptide repertoire, which is mainly tuned by the highly
polymorphic nature of the MHC molecules. For example, the human HLA-A2 allele
mainly makes use of position 2 (p2) and the C terminus (pw) of the epitopes as main
anchoring peptide residues, generally preferring residues such as leucine (L) and
methionine (M) at p2, and valine (V), L and isoleucine (l) at pw. In comparison, mouse
MHC-I allele H-2D" prefers p2, p5 and pw as main anchoring residues, with alanine (A),
M, serine (S) at p2, asparagine (N) at p5 and I, L and M at pw of the peptides 16 The
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identification and characterization of the binding properties of each MHC molecule is
very important in order to design more immunogenic altered peptide ligands (APLs). It
should be noted that the remaining pockets, which are not occupied by main
anchoring residues, have so far been believed to play no or a minor role in both affinity
and specificity of the presented peptides to the MHC binding-cleft. However, they have
also been proven as vital for peptide binding since additional interactions between the
presented peptides and MHC residues that compose these pockets/regions may serve
as secondary anchors, providing significant additional overall binding strength and

117-120

MHC/peptide complex stability . The systematic targeting of such residues

represents an alternative approach for the design of APLs with higher

117,118,121

immunogenicity as described in paper IV. This topic represents one of the

main aims of my PhD thesis.

1.5.2 Antigen processing resulting in conventional and alternative peptide
repertoires

Antigen processing is one of the fundamental features of the T cell-dependent
adaptive immune system. The main role of antigen processing is to convert antigenic
proteins from the extracellular space or the cytosol to appropriate sizes that enables
MHC-restricted cell surface presentation of peptide antigens.

1.5.2.1 Generation of MHC class ll-restricted epitopes

The main role of the MHC-Il-restricted peptide presentation pathway is to recruit and
direct CD4" T cells against extracellular antigens that are internalized by professional
APCs such as DCs, B cells, monocytes and macrophages. The internalized proteins are
localized in endosomes and phagosomes that can later be fused to lysosomes. The
acidic environment in these vesicles enables acidic proteases, such as cathepsins, to
degrade captured proteins to peptide antigens that are 10 to 30 amino acids long. The
peptide-binding grooves of MHC-II, which is synthesized in the endoplasmic reticulum
(ER), are occupied by the invariant chains (li) throughout their transport to the
intracellular vesicles. In order to load the adequate repertoire of peptides in the
peptide-binding groove of MHC-II, li must be removed from the peptide-binding cleft.
This is achieved by the combined action of proteolytic enzymes and the MHC-II-like
non-polymorphic molecule HLA-DM. Cathepsin S cleaves and removes li, leaving the 24
amino acid-long class ll-associated invariant chain peptide (CLIP) in the peptide-binding
cleft. Finally, following the HLA-DM-regulated exchange of the CLIP peptide with an
appropriate antigen peptide, stable pMHC-Il complexes are transported to the cell
surface in order to present the bound peptide and communicate with CD4" T cells.

1.5.2.2 Antigen processing pathways for MHC class I-restricted epitopes

Unlike MHC-II, MHC-I is expressed by all nucleated cells with a potential to process and
present antigens to CD8" T cells. MHC-I-restricted antigenic peptides are generally
derived from cytosolic proteins and processed in the cytosol by the cylindrical (barrel-
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like) multi-subunit 26S proteasome. This enzyme complex, which plays a central role in
the ubiquitin proteasome system, generates 8-10 amino acid long peptides by
fragmenting ubiquitinated proteins. The 26S complex is formed by the main catalytic
20S proteasome and two 19S regulator complexes that first both bind and unfold
ubiquitinated proteins, and thereafter activate the catalytic 20S core.

The catalytic 20S proteasome is composed of two inner and two outer rings containing
seven a-subunits and seven B-subunits, respectively. Peptide fragmentation occurs in
the inner B-rings. The subunits B1, B2 and B5 are mainly responsible for the generation
of MHC-I restricted epitopes. The selective fragmentation of the epitopes can be
divided into three major classes; chymotrypsin like activity (B5), trypsin like activity
(B2) and peptidylglutamyl peptide hydrolyzing activity (B1) with preferred cleavage

sites after hydrophobic residues, basic residues and acidic residues, respectivelym.

Proteasome-generated peptides are thereafter transported to the ER by an adenosine
triphosphate (ATP)-dependent pathway through the protein complex called
transporter associated with antigen processing (TAP). The ER membrane-bound TAP is
formed by two subunits called TAPI and TAPII. It is frequently thought that hydrolysis
of ATP molecules leads to conformational changes of the TAP complex allowing for the
transfer of processed peptides to the ER. TAP molecules are capable of transporting 8-
30 amino acid long peptides into the ER with a preference for basic or hydrophobic
residues at the carboxyl termini of the peptides. This preference is one of the features
that modulate the MHC-I-restricted peptide repertoire. Peptides that are transported
into the ER are directed to the peptide-loading complex (PLC) where they are loaded
on MHC-I with the assistance of several aminopeptidases as well as the molecules
123124 "\While aminopeptidases additionally trim the N-
termini of peptides to appropriate sizes for efficient MHC-I binding, tapasin, ERp57 and

tapasin, ERp57 and calreticulin

calreticulin mediate successful formation of pMHC complexes'**.

The process through which MHC-I are expressed, folded and loaded with antigenic
peptides in the ER is tightly modulated by several chaperone proteins. First, the MHC-I
heavy chain binds to calnexin that stabilizes the newly synthesized heavy chain and
enables the engagement of the heavy chain with the B,m subunit. Upon binding to
Bom, calnexin dissociates from the heavy chain and is rapidly replaced by the PLC
proteins calreticulin and tapasin. Tapasin binds to both MHC-I and TAP bringing them
12> Calreticulin binds to the MHC-I
heavy chain and controls the quality of the formed pMHC complex. MHC-I successfully

together and thus enabling efficient peptide loading

loaded with peptide is finally released by the PLC in order to be transported to the cell
surface through the Golgi apparatus.

1.5.2.3 Immunoproteasome

Mammalian proteasomes can be constructed by a variable ensemble of subunits,
resulting in altered regulator affinities, substrate specificity and cleavage preferences
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126128 \While standard proteasomes are constitutively expressed in all cells of an

organism, immunoproteasomes are specifically expressed in immune relevant cells and
can be induced by IFN-y in all other cells. Both standard proteasomes and
immunoproteasomes can cleave ubiquitinated proteins and produce MHC-I-restricted
epitopes. However substrate specificity, cleavage preferences, cleavage efficiency and
eventually peptide repertoire can differ dramatically as a result of substitutions in the
catalytic B-subunits in the conventional proteasome with the B2i (MELC1) and the MHC
class Il gene loci-encoded PBli (LMP2) and PB5i (LMP7) subunits®®®° The
immunoproteasome cleaves antigens into 6 to 30 amino acids long peptides and
displays an enhanced level of antigen turnover with a selective preference for basic or
hydrophobic amino acids at the carboxyl terminal of the produced peptides. For
example, while antigen processing of the lymphocytic choriomeningitis virus (LCMV)-
derived immunodominant mouse MHC-I H-2D"-restricted epitope gp33 is regulated by
the immunoproteasome subunit B5i (LMP7), antigen processing of the subdominant H-
2D-restricted LCMV epitope gp276 is negatively affected by the presence of the
immunoproteasome™'. Similar differential antigen processing patterns can also be
detected for MHC-I-restricted TAAs. While antigen processing of the HLA-B40-
restricted  MAGE-3-derived epitope is principally mediated by the
immunoproteasomem, the HLA-A2-restricted Melan-A/Mart-1 epitope (Melan-Aze 3s)
is poorly cleaved by the immunoproteasome but successfully processed by the

proteasome™>

. Thus, the observed differential antigen processing and presentation of
MHC-I-restricted epitopes by different types of proteasomes underlines the
importance of epitope selection for future peptide vaccination strategies since absence
or presence of certain inflammatory cues, such as IFN-y, can strongly influence the

efficiency of the treatment.
1.5.2.4 Thymoproteasome

The recent discovery of the thymus-specific proteasomes unveiled that the B5 subunit
of the 20S proteasome is replaced by the thymus-specific subunit, B5t, which in
combination with Bil and Bi2 forms the thymoproteasome. Expression of B5t is
specific to thymic cortical epithelial cells (cTECs). In contrast to other proteasomes, the
B5t-proteasome exhibits low chymotrypsin-like activity™*, with a decreased preference
for cleavage after hydrophobic residues, resulting in the generation of an altered
repertoire of MHC class I-restricted peptides. B5t-dependent changes in the peptide
repertoire have an essential impact on optimal positive selection, and are required for
the generation of an immunocompetent CD8" T cell repertoire since CD8" T cells
generated in the absence of B5t displayed impaired alloreactivity and anti-viral
responses™°. Additionally, it is also very interesting to see that T cells that are specific
to a certain peptide repertoire shaped by B5t and self-MHC, can successfully proceed

through the positive selection’®*.
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1.5.2.5 Antigen cross-presentation

The majority of antigens presented by MHC-I are generated through proteasome-
dependent cleavage of ubiquitinated polypeptides originating from cytosolic proteins,

137

defective ribosomal products (DRiPs) ', alternative reading frames and untranscripted

regions of genes, providing a variable range of antigens to CD8" T cells'*®

. However, it
should also be noted that an alternative phenomenon known as antigen cross-
presentation can take place where exogenous antigens, in addition to constituting the
main source for the MHC-II pathway, are presented by MHC-I. Transfer of exogenous
peptide antigens to the cytosol allows such fragments to be transferred to the ER by
TAP. Aminopeptidases can then trim these exogenous epitopes to the appropriate
MHC-I binding sizes so that they can finally be presented on the cell surface by MHC-I
and induce CD8" T cell responses. Antigen cross-presentation mediated by professional
APCs, such as DCs, B cells and macrophages, plays an essential role in both the rapid
initiation of antigen-specific T cell responses and the control of central and peripheral
tolerance, a phenomenon known as ‘cross-tolerance’. Thus, antigen cross-presentation
plays a very important role in maintaining immunological defense against viruses,
bacteria and tumors. Some of the cross-presented antigens can also bind directly to
MHC-I in endosomes and skip the TAP-dependent cytosolic pathway. This feature
allows the host to generate and present an alternative repertoire of MHC-I-restricted
epitopes, overcoming immune evasion strategies used by certain viruses that inhibit or

suppress classical antigen processing™* %%,

1.5.2.6 TAP-independent processing of MHC-I-restricted epitopes

The classical pathway of MHC-I-restricted antigen presentation comprises cleavage of
cytosolic proteins by proteasomes followed by TAP complex-mediated transport of
peptide antigens to the ER where peptides are loaded on MHC-I at the PLC. However,
TAP-independent pathways for processing and presentation of MHC-I-restricted
peptides also exist. Antigen cross-presentation, described above, represents one
possible gateway for TAP-independent expression of exogenous epitopes that are

143,144 Moreover, MHC-I-restricted

directly loaded to MHC-I residing in endosomes
peptides can also be processed and presented independently from antigen cross-
presentation even though TAP levels are suppressed. Signal peptides derived from
membrane or secreted proteins can be cleaved by ER-located signal peptidases and
signal peptide peptidases that enable direct loading of peptides on MHC-I through
direct release into the ER**™*. For example, the HLA-A2-restricted TAA (MLLAVLYCL)
derived from the signal sequence of tyrosinase is presented on melanoma cells

through such a TAP-independent pathway™*.

Interestingly, a unique category of CTLs that can target alternative MHC-I-restricted
repertoires of self-peptide epitopes presented by cells with impaired TAP, tapasin or
proteasome functions has been recently identified***™!. T cell epitope associated with
impaired peptide processing (TEIPP) constitutes a group of immunogenic neo-antigens
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that are not presented by normal cells. Moreover, it has been clearly demonstrated
that TEIPP-specific CTL responses result in selective eradication of TAP-deficient
tumors in vivo. The existence of TEIPP and TAP-independent MHC-I-restricted epitope
repertoires highlights the existence of alternative defense mechanisms towards
pathogens and tumors, especially when TAP-mediated antigen processing is
diminished or inhibited. This repertoire of TAP-independent MHC-|-restricted peptides
may represent an excellent target for the design of novel altered peptides for peptide-
based therapeutic approaches.

1.5.3 Post-translational modifications

Post-translational modifications (PTMs) may result in the production of MHC-restricted
neo-antigens that can trigger novel/different T cell responses and can avoid the
constraints of immunological self-tolerance. Infection, inflammation, cellular

transformation, cell death or altered signaling pathways may affect the frequency of
PTMs that may result in changes in peptide repertoire presented by APCs™*™°.
Additionally, PTMs can also be used by bacterial and viral pathogens to compromise

157158 It has been

demonstrated that several kinds of PTMs such as deamidationlsg, cysteinylationlso’lsl,

162,163 164,165

critical immune responses and host factors against infection

glycosylation , phosphorylation or nitrotyrosination'® may affect T cell

immunoreactivity, resulting in  immune escape and/or initiation  of

autoimmunity15 2,167,168

. For example, Jason A. Tye-Din and Robert P. Anderson recently
analyzed 16.000 potentially toxic peptides derived from wheat, barley and rye in order
to identify immunogenic epitopes that may break tolerance and cause celiac disease.
This study demonstrated that most of the T cells were specific for only three of the
investigated peptides, providing a clear example for immunodominance and the
limited diversity of immunogenic epitopes. Additionally, Hardy et al recently
demonstrated that conversion of the tyrosine residue (p4Y) of LCMV-derived
immunodominant H-2D"-restricted epitope gp33 (KAVYNFATC) to a nitrotyrosine
significantly affected recognition of H—2Db/gp33 specific T cells*®®. We provide in PAPER
| the underlying biochemical and structural basis for these observed functional effects.
Similarly to TAP-independent and TEIPP epitopes, PTM epitopes can also play a key

152,168

role in immune surveillance . Since PTM epitopes may constitute a novel

repertoire of antigens, it might be possible to use these as novel candidates for future
attempts to target infected or altered cells.

1.6 MHC-I RESTRICTED EPITOPES

1.6.1 Epitope discovery

Initially MHC-I restricted epitopes were identified through peptide elution followed by
sequencing using mass spectrometric methods, leading to the identification of allele-
specific binding motifs for MHC-| restricted antigenslag. Based on this information,
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sequence-based computational peptide prediction algorithms emerged allowing for
the discovery of several additional MHC allele-specific peptide epitopes'*®%*"2,
However, although very successful in identifying large amounts of novel epitopes’®,
this approach also carries intrinsic biases since it only allows for the identification of
epitopes with optimal anchor residues. For example, murine MHC-I molecule H-2D"-
restricted epitopes generally make use of certain amino acids at positions 2, 5 and at
the C-terminal part of the peptide for optimal peptide binding. This profile of H-2D°
restricted epitopes leads the computational peptide prediction algorithms to search
for certain amino acids at specific positions such asparagine (N) at peptide position 5
(p5). As a result of this, such algorithms predict higher peptide binding scores for
peptide fragments containing conventional peptide binding motifs while the
identification of unconventional epitopes may be shadowed. Moreover, the presence
of this motif does not always guarantee efficient binding of the identified peptides to
MHC or their processing. Indeed a large range of the identified epitopes, predicted to
bind with high affinity to their cognate MHC, do not bind at all and/or are not
processed naturally. In line with this, our research group has demonstrated that the
melanoma-associated H-2D°-restricted epitope gp100,s33 (EGSRNQDWL) binds very
weakly to H-2D° despite the fact that it contains all the preferred anchor residues'®.
Taken together, these data indicate that identification of epitopes represents a multi-
faceted challenge that needs to take into account the whole range of potential
interactions between the peptide and the MHC. Moreover it is essential to extensively
make use of peptide elution and, more sensitive mass spectrometry approaches in
order to identify novel epitopes more precisely and to improve the efficiency of the
currently available peptide prediction tools.

1.6.2 Viral epitopes

Several virus proteins expressed during infections are processed by proteasomes,
immunoproteasomes and other alternative processing pathways, resulting in surface
presentation of MHC-I-restricted peptides with variable affinities. Virus-associated
MHC-I restricted immunogenic epitopes can display a relatively high affinity to their
cognate MHC molecules, efficiently stabilizing pMHCs. As these antigens are
theoretically not presented in the thymus and as T cells specific to MHC/viral peptide
complexes are not negatively selected during T cell development, it is highly possible
that a significant amount of T cells with high specificity to these foreign antigens are
available and can be efficiently activated. However, despite the intrinsic potential to
create a very broad T cell repertoire with the capacity to recognize a wide variety of
epitopes, large parts of the immune responses are particularly focused on the so-called
immunodominant epitopes, which usually represent only a very small fraction of the

173-175

entire epitope spectrum . This process gives rise to T cells clones that are highly

specific for MHC alleles in complex with immunodominant peptides.
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Immunodominant epitopes are generally able to elicit an entire range of cytotoxic T
lymphocyte (CTL) responses including cytokine production, proliferation and

7 However, selective T cell

cytotoxicity and are thus classified as agonist epitopes
pressure on these few agonist epitopes can result in the emergence of viral escape
mutations that abrogate CTL recognition and lead to escape from immune
surveillance'’®. Viral escape mutations can be classified as weak-agonists if the
intensity of T cell responses is reduced. Most importantly, if the mutations lead to
complete abrogation of all CTL responses, the mutated peptides are classified as viral
escape epitopes and if they interfere and diminish T cell responses to the agonist
peptide, they are classified as antagonist epitopes*’. Additionally, some viral escape
mutations can completely diminish the antigenicity of the epitope and convert them to
ghost peptides (null epitopes) where T cells specific to immunodominant pMHC can no

longer detect the existence of the mutated epitope’”’

. Successful CTL escape variants
both in immune surveillance and viral fitness that correlate with disease progression
have been reported in various infection models including human immunodeficiency
virus (HIV) and simian immunodeficiency virus (SIV)'’%, hepatitis C virus (HCV)'”,
Influenza'®® and LCMV™'. Importantly it should be noted that, up to now,
immunizations with antagonist or viral escape epitopes have failed to improve the

43,180,182,183 ' Tharefore,

efficiency of CTL responses towards to the escape mutations
developing a better way to engineer altered peptide ligands may have a very crucial
role in the design of future vaccine strategies. In line with this we used in PAPER Ill an
unconventional peptide modification in order to modulate the immunogenicity of the
LCMV-derived immunodominant peptide gp33 (KAVYNFATM) and several gp33-

derived APLs.

1.6.3 Tumor-associated antigens (TAAS)

In contrast to immunogenic viral epitopes, which most often bind with high affinity to
MHC-1, TAAs represent a peptide repertoire that is much more variable in terms of
proteomic diversity and MHC binding affinity. As TAAs are mainly derived from self-
proteins, it is likely that high affinity T cell populations specific to very stable MHC/TAA

complexes are either negatively selected during thymus development or eliminated

184,185

through peripheral tolerance by professional APCs . However, it should also be

noted that it is still possible to identify high affinity T cells depending on the antigen

source and on the existence of high affinity T cells that escaped negative selection'®®

188 Indeed, this is one of the features that broadens the MHC affinity of the peptide

repertoire since self-derived peptides with weak MHC affinity can be still
immunogenic, challenging the general features of immunodominance derived from
viral infection models.

TAAs can be classified into at least four conventional classes that comprise cancer

191-193

testis antigens'®>'®°, differentiation antigens , mutated antigens'* and antigens

that are over-expressed in tumors™®>*%,
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Cancer-testis antigens are a category of TAAs which are normally expressed on male
germline cells, and whose expression is upregulated due to dysregulation of gene-
programs in a variety of tumors. Since male germline cells do not display MHC-I
molecules on their surface'®’, the antigenic peptides derived from these cancer-
germline genes are strictly tumor-specific and are therefore targets of choice for

cancer immunotherapy. Examples of cancer-testis antigens are NY-ESO-I and MAGE-
A198—200.

Despite the fact that tissue/cell type specific differentiation antigens are not
exclusively expressed on tumors, but also on the corresponding normal tissues from
which the tumors arose, these epitopes can still be immunogenic and provide
attractive targets for T cell-based immunotherapy. For example, the melanoma-
associated antigen MC1R and the multiple myeloma-associated Framework region
derived antigen FR20 are also expressed in their respective non-malignant tissues or
cell types. Additional identified differentiation antigens include peptides derived from
gp100/pmel17°°%% Melan-A/MART-1"*' and TRP2°%.

TAAs can also arise from point mutations in genes controlling natural cellular
processes such as cell division and proliferation. In the incidence of such a mutation
the role of the affected gene can be altered and a tumor promoting function may be
> that is
potentially involved in melanoma progression, has been shown to stabilize the protein,

conferred. For example, a mutation identified in the PB-catenin genezo

forming constitutive complexes between B-catenin and the transcription factor Lef-Tcf

that results in persistent transactivation®®.

Finally, regarding one of the most well established examples of antigenic peptides
identified from an over-expressed gene is an epitope derived from the protooncogene

HER—2/Neu2°7, which is often overexpressed in breast and ovarian cancers®%?%,

1.7 of T CELL RECEPTOR AND MHC/PEPTIDE INTERACTIONS

af T cell receptors are cell surface heterodimeric proteins that enable MHC-restricted
antigen-specific T cell responses. The overall structure of the TCR is similar to antibody
Fab fragments and TCRs are thus considered as members of the immunoglobulin

10421021 4B T cell receptors are formed by a and B subunits each

superfamily
composed of variable and constant Ig-like domains that are linked by disulphide bonds,
followed by a transmembrane domain and a short cytoplasmic tail which is responsible
for interactions with the TCR complex and ultimately T cell signaling. The TCR variable
regions have three hypervariable regions similar to the complementarity determining
regions (CDR) of the immunoglobulin light and heavy chains. Each TCR subunit is
composed of two invariant germline-encoded CDR1 and CDR2 regions, and a highly

variable region formed by CDR3. These CDRs form the pMHC binding site (Figure 4).
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Figure 4. Structural overview of TCR-pMHC interactions. A. Overall side view of TCR-pMHC complex
(PDB ID: 2CKB). TCRa (magenta), TCRB (blue), MHC heavy chain (green) and §,m (cyan) B. Top view of
pMHC and TCR CDR loops, coloring is same as in A. C. Top view of pMHC representing “TCR footprints”
on MHC. MHC surface is grey, TCR contact residues are colored either red or blue. TCR contact residues
negatively effecting TCR recognition upon mutagenesis are colored as red”> Adapted from>'>>216,
Note: TCR footprints and TCR contact residues can vary among different TCR-pMHC complexes.

The TCRa chain is located on chromosome 14 both in humans and mice. The TCRa
gene consists of several functional segments formed by the variable (V), joining (J) and
constant (C) regions. Successful rearrangement of these segments forms a functional
TCRa chain which then couples with the TCRB chain. The TCRB chain is located on
chromosome 6 of the mouse and chromosome 7 of the human genome. The TCRpB
gene is formed by variable, joining and constant regions with an additional diversity (D)
segment located between the variable and joining segments specifically forming the
CDR3 of the TCRB gene. Combinatorial joining of the VJ and VDJ segments generates a
large number of random gene combinations for the TCR chains resembling over a
million of aTCR combinations. Additional diversity is achieved through nucleotide
additions while combining VJ and VDJ segments. As CDR1 and CDR2 are only encoded
in the V segment of the TCR loci, the variability of CDR1 and CDR2 is germline-encoded.
On the other hand, the CDR3 regions of the TCR genes are generated through VJ and
VDJ recombination with a potential for nucleotide addition, finally resulting in
formation of the most variable regions of the TCR.
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Recognition of pMHC by TCRs is mediated through interactions between the variable
TCR regions and the composite surface established by the MHC a-helices and the
antigenic peptide (Figure 4). Most of the MHC-I specific TCRs concentrate their pMHC
interactions towards the central regions of the al and a2 helices, binding to the pMHC

in a diagonal and polarized manner, across the MHC al and a2 helices'®

. In general,
the TCR a-chain contacts the N-terminal part of the peptide and docks on the MHC a2
helix. Conversely, the TCRpB chain interacts with the C-terminal part of the peptide and
the MHC al helix. The focus of the most variable CDR3 loops of aBTCRs is
concentrated on the peptide amino acids where the pivot point of the TCR on MHC is
centered®. However, most of the TCR-MHC interactions are mediated through
germline-encoded CDR1 and CDR2 loops establishing a gasket-like shape that
surrounds the central CDR3-peptide interface’””. TCRs usually directly contact 2-5
peptide-side chains, which bulge out of the peptide-binding groove, establishing
functional hotspots where single subtle amino acid modifications can dramatically alter
217-219

TCR specificity

T cells scan cell surface MHC molecules in order to discover the best possible pMHC
candidate that leads to appropriate TCR-pMHC interactions and successful T cell
signaling79. It has been proposed that germline-encoded TCR CDR1 and CDR2 regions
focus on the MHC, and this plays an essential role in TCR-mediated scanning of MHC

molecules??%%*!

. Structural analysis of TCR-pMHC complexes also revealed that it is
quite possible that TCRs are evolutionarily biased for recognition of MHC through the
germline-encoded CDR1 and CDR2 regions’*®°. Even though TCR and MHC genes are
located on different chromosomes, it has been demonstrated that specific CDR1 and
CDR2 amino acid residues, such as Y29 of Va CDR1 and Y48 VB CDR2, have a crucial

importance in TCR-MHC interactions’>"*

. These residues generally contact/pair in the
direct vicinity of other specific residues located on MHC a-helices and which are thus
proposed to act as “TCR footprints on MHC”*2. In general, tyrosine residues form van
der Waals interactions with residues on MHC a-helices and flanking evolutionarily
conserved CDR1 and CDR2 residues®®**2. The formed interactions do not require a
precise geometry, enabling the TCRs to be more flexible while docking on the pMHC
and slide over the MHC a-helices allowing for different binding combinations during
their quest for the optimal cognate peptide. This built-in flexibility of evolutionarily
selected interactions results in a variation of TCR docking angles and pitches onto
PMHC complexes that may compensate for differences in peptide and CDR3
sequences®. These features of evolutionarily conserved CDR residues ensure that
every TCR has a residual affinity for most MHC molecules, which is important for
positive selection and peripheral tolerance’. On the other hand, the peptide is
important for selecting the most energetically and/or functionally optimal TCR-pMHC
interactions. It also contributes to the final docking geometry of the TCR”. Initial
contacts with MHC a-helices followed by a more meticulous scanning of the peptide-
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binding groove by the CDR3 region suggests a two-step mechanism for TCR-pMHC

interactions'%?%%,

It is also important to note that most of the TCR-pMHC structures that have been
determined until now belong to either VB8 in the mouse or VB13 in human and some

109,110,216,222-268 * gince these two VB families provide

more related variable regions
higher chances for success in crystallographic studies, most of the general conclusions
about TCR/MHC interactions have been derived from these structural analyses.
However it should be noted that evolutionarily selected interactions might be different
for other TCR VB families. Furthermore, several other examples have been published in

which the CDR1 and/or CDR2 loops directly contact the peptide®*”***
269-271

or in which the
CDR3 loop plays a significant role in contacting MHC molecules

1.7.1 Kinetics and thermodynamics of TCR and MHC/peptide interactions

When compared to antibody-antigen interactions, the affinity of TCR-pMHC

272274 The extreme

interactions can be considered low, ranging from 1 to 200 uM
specificity of T cells equips them with the ability to detect very low numbers of
antigenic pMHC complexes, so that even one pMHC complex can be efficiently
recognized and trigger a T cell response®”>. Our understanding of the kinetic and
thermodynamic properties of TCR-pMHC interactions has improved dramatically
following technical advances in recombinant expression of soluble TCR and pMHC
molecules. In the next two sections, | will summarize the general principles regarding
the biochemical basis of T cell biology, as well as the kinetics and thermodynamics

underlying TCR-pMHC interactions.
1.7.1.1 Kinetics of T cell interactions

Surface Plasmon Resonance (SPR) enables kinetic measurements of TCR-pMHC
interactions using soluble TCR-pMHC complexes. Initial observations led to the general
conclusion that TCRs bind to pMHCs within a low affinity range and with very fast
association rates that are difficult to estimate directly compared to the much slower
disassociation rates. Concurrently, several hypothetical models have been proposed in
attempts to explain the biology of pMHC-specific T cells, highlighting either the

importance of affinity’’® or of the disassociation rates'”?”.

The “kinetic proofreading model” proposed by McKeithan, suggested that T cell
activation was only possible if the amount of TCR-pMHC interactions reached a certain
threshold™. More importantly, slower disassociation rates correlated with improved T
cell activation. Later, Kalergis and Nathenson proposed that the correlation of T cell
activation with the half-life of TCR-pMHC interactions may not always be linear*’?, and
that in some cases, longer TCR/pMHC half-lives could impair T cell responses. An
optimal half-life is required for efficient T cell activation, whereas both too short or too

279

long TCR-pMHC engagements would lead to T cell unresponsiveness”’”. This was also

well in line with the serial engagement concept proposed by Lanzavecchia, where
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serial engagement of TCRs to cognate pMHC can boost the internal signaling in T
cells®®. However, such boosting would be sustainable only if the half-life of a single
interaction is not too prolonged. Thus, it seems important that while TCR-pMHC
interactions must be long enough to fulfill the requirements of activation, they should
also be short enough to avoid inhibition of serial engagement. Likewise, the affinity
model suggested that T cell activation correlates with the number of receptors
engaged. This was later confirmed by the observation that high affinity pMHC
molecules can occupy a large number of TCRs and therefore trigger stronger
responses”’®?%?% |t should be noted that, the hypothetical models introduced in this
section are derived from various studies analyzing different TCR-pMHC pairs as well as
different experimental setups and techniques. Therefore, a variety of experimental

data support the different proposed models™?"%?7,

Furthermore, the discrepancy regarding whether the off-rate or the affinity correlates

with the potency of T cell activation was recently addressed in a study®®’

, Where a large
group of pMHC ligands for a tumor-reactive CD8" TCR were categorically analyzed. The
authors conclude that while affinity is the better predictor of T cell activation potency
for pMHC ligands with faster association rates, those with slower association rates rely
more on the off-rate of the interaction. This novel hypothetical model called
“confinement time” also holds true in various cases of CD4" and CD8" TCR-pMHC
interactions, including those compromised in previously incongruent studies ***. The
bottom line seems to be that among the multitude of various TCR-pMHC pairs that
occur in nature, the variance in the biochemistry of interactions might reflect
differences in biochemical and thermodynamic parameters>®.

Also, one should keep in mind that the juxtaposition of T cell and APC membranes

286288 Thus, the evaluation of these

most probably influences TCR-pMHC binding
interactions according to any single parameter, such as affinity or dissociation rate, is
likely to be limited, although not wrong. The importance of the influence exerted by
membrane interactions is further underlined by fluorescence resonance energy
transfer (FRET) measurements of membrane-bound TCR-pMHC interactions, where
dissociation rates in the context of cellular membranes were much faster compared to
SPR measurements and the affinity was much higher when compared to
measurements with molecules in solution®®®. Further support for this phenomenon is
provided by mechanical assays showing a correlation between the kinetic parameters
of membrane-bound TCR with T cell activation potency, while such correlation was

lacking when measurements from assays with soluble molecules were used®®°.

1.7.1.2 Thermodynamics of T cell interactions

Additional insights into TCR-pMHC interactions and their impact on T cell activation
were gained by analyzing the thermodynamics of TCR engagement to cognate pMHC
molecules. Initial measurements of TCR binding thermodynamics using JM22 (human
TCR) and F5 (murine TCR) revealed that the binding of these two TCRs to cognate
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PMHC molecules resulted in a combination of favorable enthalpy and unfavorable
entropy changes®®*. Evaluation of kinetic and structural data also suggested, in these
two examples, that rather than simple conformational adjustments upon binding, the
CDR loops of the TCR were relatively flexible in the unbound state. This flexibility
stands out as a key feature in TCR biology as it probably allows the TCR binding site to
adapt slightly to different MHC ligands. Similar favorable enthalpy and unfavorable
entropy changes were later demonstrated for the binding of the 2B4 TCR to its cognate
PMHC ligand®?. Although early thermodynamics data indicated a need for folding of
TCR CDR loops upon recognition of pMHCs, the accumulation of more thermodynamic
and structural data provided a more refined and revised view which still encompassed
CDR loop adjustments but of different magnitude and seemed to consist of well
defined structural shifts rather than the ordering of highly flexible backbones®®.
Overall, it was believed that CDR loop adjustments required to bind to pMHC complex
is one of the major contributors to the observed unfavorable binding entropy.

The heat capacity change (ACp) measured during TCR-pMHC interactions probes the
conformational changes. Davis and colleagues were first to assess ACp using the 2B4
TCR/MCC/HLA-E* complex*®. Since the heat capacity change is strongly influenced by
changes in solvation®?® and since burial of hydrophobic surfaces contributes positively
to Acp294,295
alter solvent exposed surface areas>® and thus conformational changes. A negative

, such measurements provide important insights into differences that may

heat capacity is consistent with burial of hydrophobic surfaces®’, as well as
entrapment of waters>*® and has also been connected to T-cell activation®®. Although
certain methodological caveats do exist, principally concerning the accuracy of Van't
Hoff determined heat capacity changes, the occurrence of conformational changes
between free and pMHC-bound TCRs seems to be a common event. Several structural
studies have demonstrated conformational differences between free and pMHC-
bound TCRs, as well as differences between the same TCR bound to different pMHC
ligands, which established the grounds for the unfavorable binding entropy that

reflects the loss of TCR conformational flexibility?*”-2°%2%%-3%%,

While this suggested thermodynamic signature presented very interesting implications
for T cell biology, it was recently questioned when favorable entropy changes were
demonstrated in the binding of A6 TCR Tax to HLA-A2>%%. Favorable entropy changes in
protein-protein interactions commonly arise from desolvation, whereby ordered

waters are expulsed from apolar surfaces upon binding, leading to an increase in total

303

entropy of the system™". The release of water molecules upon TCR-pMHC binding can

thus promote an entropic pathway of recognition, as clearly demonstrated in a

270

previous study“’". Following repeated confirmation of various similar favorable entropy

216,231,257,304
cases

, the notion that the biochemistry of each TCR-pMHC interaction is
different has gained more momentum, concluding that unfavorable binding entropies

are not necessarily a signature of these interactions.

25



On the other hand, poor shape complementarity between TCRs and pMHC interfaces
may result in the formation of cavities that can trap waters, as observed in several
TCR/PMHC crystal structures”®/%3%
bonds, thus contributing positively to the binding enthalpy of TCR interactions. In

. Trapped water molecules can form hydrogen

general, enthalpy changes are all favorable in correlation with the majority of protein-
protein interactions>®, but there are several TCR-pMHC interactions with enthalpy
changes that are very close to zero. In conclusion, it is becoming more and more clear
that TCR-pMHC interactions are far from having a unique enthalpic/entropic signature.
As Armstrong and Baker elegantly put it in a recent review: “It matters not how you

7307

form the TCR-pMHC complex, just that you do

While there is still a need for direct assays for the determination of interaction
dynamics, especially regarding the flexibility of CDR loops, comparative
thermodynamic analysis of free and pMHC-bound TCRs may still provide important
insights, especially if the conformational changes occur due to a pre-existing
conformational equilibrium in the unbound receptor, as hypothesized by Holler and

Kranz’® and recently observed by James and Tawfik using the SPE7 antibody>®.

Interestingly, the conformational changes that take place during TCR-pMHC binding
are not limited to those of the TCR. Several studies have shown that conformational
changes occur in the peptide between the free and bound forms of the pMHC
complex. While two studies demonstrate rather small conformational change524°’310, a
third study reported the flattening of the extremely bulged HLA-A35-restricted EBV-
derived peptide upon TCR binding™*°. Similarly, other studies have shown that peptides
may adopt multiple conformations in the peptide binding groove of MHC or that

disordered side chains may become ordered upon TCR engagement'****318,

1.7.2 TCR cross-reactivity

Even though TCR must be highly pMHC-specific, T cells display dual specificity to self
and non-self. Thus, T cells are also highly promiscuous with the ability to recognize
MHC-restricted self-peptides and actually benefit from this feature to distinguish self
and non-self. More specifically, T cells seem to be pon—specificlO. Indeed, it has been
suggested that a single TCR may react productively with approximately 10° different
MHC-associated minimal peptide epitopes®™® and that different peptides can act as
agonists for a given T cell, while a considerably larger number of peptide ligands induce
weaker signals™®. Several studies have demonstrated such TCR cross-reactivity to a

variety of human and murine T cells®**?%,

Cross-reactivity roots from the
developmental phases of T cells, where during thymic selection, only those expressing
TCRs that optimally recognize self-pMHC complexes are allowed to maturate.
Compared to the activation of mature T cells, weaker TCR signals are required for
positive selection in the thymus, which is also peptide-dependent and can be

influenced by both the density of the pMHC complex, as well as the affinity of the TCR
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to that specific pMHC. Similarly, it has been observed in thymic organ cultures that low
densities of agonist peptides, as well as normal densities of peptides deemed as weak
agonists or antagonists for mature T cells, could drive positive selection®**?*.
Therefore, circulating mature T cells that have a vital role in detecting non-self pMHC

complexes are already specific for one or several self-pMHC complexes.

TCR cross-reactivity can have a profound effect on the outcome of responses against
invading pathogens, as demonstrated in murine models where CD8" T cells cross-

reacted with peptides from two different viruses, LCMV and Pichinde virus (PV)***

331 Such examples put forward TCR cross-reactivity as a common phenomenon that
maintains a functional significance by adding extra diversity to T cell responses. The
maintenance of a fine balance between specificity and cross-reactivity is likely to
contribute to a system where a sufficient number of T cells in a given individual is able
to respond to a completely novel pathogen®*’. Studies have also shown that a
relatively diverse TCR repertoire, even in the presence of only one MHC-II-restricted
peptide can be generated and that these TCRs may have the capacity to react to

333 This constitutes a

peptides with no sequence identity to the selecting peptide
proof-of-principle for T cell activation by peptides that are unrelated in sequence to
the original selecting peptide, which also provides an additional insight into positive

selection and TCR cross-reactivity.

A major mechanism underlying the phenomenon of cross-reactivity is the plasticity of
the interactions between TCRs and pMHCs. Although this encounter might be
described as a lock-and-key interaction, it is presently thought to be a more dynamic
event where both the lock and the key may undergo minor rearrangements in order to
establish an optimum fit. Several examples of TCR-pMHC complexes have provided
clues regarding the importance of the plasticity of CDR loops on TCR

recognition?*%2%03%

. Structural rearrangements taking place during TCR engagement to
PMHC seem to be of key importance for the stabilization of the interaction®’".
Moreover, this plasticity''® allows the TCR to scan the surface of the pMHC in order to
establish a favorable binding position, thereby increasing the chances for cross-

reactivity towards another novel epitope or pMHC.

A prominent example of TCR plasticity was observed for the mouse TCR BM3.3 bound
to three different pMHC ligands H-2K°/VSV8, H-2K°/pBM1 and H-2K"™/pBM8%%3",
Comparative structural analysis of BM.3.3 in complex with all three pMHCs suggested
the conformational fine-tuning of TCR CDR loops*®**®*. More specifically, during the
docking of the BM3.3 TCR to the three different pMHCs, the CDR3a loop was
significantly remodeled although the BM3.3 TCR bound to all pMHCs with very similar

overall docking angles.

The first determined crystal structure of a ternary TCR-pMHC complex was the human
A6 TCR and its human T-cell lymphotropic virus (HTLV-1)-derived cognate peptide Tax

in complex with HLA-A2**. The same TCR cross-reacts with HLA-A2 in complex with
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the Saccharomyces cerevisiae-derived Tellp peptide that shares only five residues with
the Tax peptide. Comparative structural analysis of HLA-A2/Tellp and HLA-A2/Tax with
or without the A6 TCR revealed that the plasticity of the Tax peptide played an
important role in the observed cross-reactivity between the two pMHCs*®.
Interestingly, the conformation of the peptide in the A6 TCR/HLA-A2/Tax complex
perfectly mimicked Tellp in complex with HLA-A2 before TCR engagement. These
results highlight the significant role of peptide plasticity in TCR cross-reactivity, where
alternating peptide conformations can provide a similar antigenic landscape for a given
TCR. Additionally, a similar form of plasticity was also seen at the MHC level, in the
frame of TCR allorecognition, where cross-recognition of structurally similar
polymorphic MHCs could be derived through both structural alterations and molecular

mimicrym.

Molecular mimicry has been defined as similar structures shared by molecules
encoded by dissimilar genes>”, where shared key chemical and structural features of
different pMHCs result in TCR cross-reactivity>>”. In principle, molecular mimicry allows
a single TCR to engage cross-reactive ligands similarly. The role of molecular mimicry-
based TCR cross-reactivity in transplantation and autoimmune diseases has been

discussed elsewhere®3¢33°

. For example, T-cells specific for foreign peptides can also
recognize structurally similar self pMHCs and initial triggering of T cells specific for
foreign peptides can result in recognition of self peptides in complex with MHC in the

periphery, potentially triggering autoimmune responses®?>33//34034¢,

The murine P14 TCR recognizes the LCMV-derived H-2D°-restricted immunodominant
epitope gp33. The same TCR can also recognize a self-epitope derived from an enzyme
expressed in the adrenal medulla called dopamine B-mono-oxygenase (DBM)****%.
The sequence identity between the gp33 epitope (KAVYNFATC) and the mDBM
epitope (KALYDYAPI) is restricted to only four residues. The P14 TCR can also recognize
the rat homologue of DBM (rDBM), which has an additional identical residue at H-2D°
anchoring residue p5 (KALYNYAPI). However, although almost half of the residues of
the gp33 and rDBM epitopes are not identical, both peptides in complex with H-2D°
displayed a perfect molecular mimicry explaining the basis of cross-recognition of gp33
and rDBM by P14 TCR**.

1.8 ALTERED PEPTIDE LIGANDS (APL) AND PEPTIDE DESIGN

A promising strategy to improve T cell responses against MHC-restricted viral escape
mutations and TAAs with low immunogenicity is the use of optimized peptides or
altered peptide ligands (APL), whose amino acid sequences have been slightly modified
in order to improve binding to HLA molecules or to increase efficiency of interaction
with TCRs. The term APL was initially proposed by Brian Evavold “to describe analogues
of immunogenic peptides in which the TCR contact residues have been

d"349

manipulate . Since then, APLs have been used in several studies to assess and
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43,217,297,350,351. It should also

possibly to improve TCR interactions with cognate pMHCs
be noted that the term APL was later broadened to include peptide analogues with

modifications at MHC interacting positions.

The molecular characterization of TAAs that are recognized by T cells opens up for new
possibilities for the design of well-defined and targeted therapeutic vaccines against
cancer. Immunological eradication of tumors is often associated with a robust
cytotoxic T cell response against TAAs. Since many TAAs are self-proteins or are closely
related to self-proteins, they tend to be poorly immunogenic. Most T cells with high
affinity and specificity to self-peptides are eliminated during T cell development. As a
consequence of thymic selection, in which high affinity auto-reactive T cell clones are
negatively selected®**>?, T cells specific for TAAs are generally low affinity cells, tightly
controlled by peripheral tolerance®>® and are exposed to immunosuppressive pressure
by the tumor milieu®*.

The conventional approach to design tumor-derived APLs is to optimize MHC anchor
residues. The primary goal of this approach is to achieve high affinity peptides that
would stabilize MHC complexes over a longer period of time to enable more efficient
interactions between TCR and MHC/APL complexes, possibly resulting in the activation
of T cells that would cross-react with wild-type pMHC complexes and hopefully
eliminate tumor cells. Another way of designing APLs is to modify the peptide residues
that contact TCRs. Two well-described examples are the pllL-variant analogue of the
Mart127-35 epitope®>> and the p6D analogue of the carcinoembryonic antigen (CEA)
CAP peptide®**’,

The extensive use of APLs in several studies and TCR models has provided a significant
improvement in the understanding of the potential immunomodulatory role of
peptide-MHC affinity, TCR-pMHC affinity and the efficacy of immune responses

43,191,272,325,326

triggered by TCR-pMHC interactions . However, despite the promising

results achieved in pre-clinical studies, peptide-based tumor vaccines have not yet

358,359

fulfilled the expected clinical efficacy . Therefore, it is essential to define the

reasons for the partial inefficiency of previous peptide vaccination trials, such as the
suppressive tumor milieu and immune escape strategies at the tumor cell level****%.
Additionally, one of the potential reasons that could lie behind the failure of APLs as
effective cancer vaccines so far is that the T cells primed by APLs can not efficiently and
productively cross-react with wild-type epitopes. Introduction of amino acid
substitutions in order to enhance immunogenicity of peptides has the inherent risk of
producing diverse and unpredictable changes to the TCR-pMHC interactions that could
also lead to the expansion of a TCR repertoire, which may not cross-react with the

native epitope351.

The structural properties of TAAs are also still poorly understood and only few crystal
structures of human MHC/TAA complexes have been reported. Several research
groups have designed peptides with enhanced MHC binding by substituting anchor
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residues to the most preferred residues of the MHC allele. Unfortunately, this
approach does not fit well to most of the peptides since as mentioned before, many
TAAs that are eluted or predicted to bind to the MHC allele using a specific algorithm
already contain the preferred MHC anchoring residues. Additionally, a recent study
from the group of Brian M. Baker elegantly demonstrated that an anchor residue
modified variant of the Mart-1 epitope failed to improve the antigenicity of the
peptide despite significantly improving the peptide-MHC affinity. The introduced
modification enhanced the flexibility of the pMHC in which the modified peptide
adopts two different conformations, thus negatively effecting TCR binding*®.

In contrast, the research presented in this thesis uses alternative ideas to design a new
family of APLs, based on the comparative analysis of a large number of crystal
structures of infection-associated and TAA peptides in complex with different MHC-
molecules'*® (Papers Il and Ill). Here we aimed to achieve improved binding affinity
and stabilization capacity of such modified peptides to MHC molecules through
increased van der Waals and CH-mt interactions with specific MHC heavy chain residues
that are conserved among most known MHC-| (e.g. tyrosine residue Y159 and
tryptophan residue 167), while keeping the conformation of the MHC/APL as similar as
possible to the parent pMHC (Figure 5).

Taken together, the current knowledge about engineering TCR-pMHC interactions
highlights four fundamental rules of APL design®’
peptide-MHC affinity and pMHC stability. Second, APL should trigger potent and rapid
T cell responses. Third, expanded APL specific T cells should efficiently cross-react with

. First, it is important to improve

the original peptide. Finally, APL-specific T cells should efficiently recognize and
eliminate infected cells or tumor cells, which are naturally processing and presenting
the WT epitope.
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Figure 5. Targeting evolutionarily conserved residues in order to improve pMHC stability and
immunogenicity. Introducing Y at p1 and P at p3 of the peptide (yellow) can increase van der Waals and
CH-mtinteractions with MHC (grey) residues W167 and Y159, respectively.
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2 GENERAL AIMS OF THIS THESIS

The overall aim of my PhD studies was to enhance our understanding of the molecular
and functional basis underlying the potential modulation of CD8" T cell and NK cell
responses by MHC-I-restricted altered peptide ligands (APLs). Using a combination of
functional immunological assays, biochemistry and structural biology, | aimed to
understand how specific peptide modifications could affect the recognition of
MHC/peptide complexes and alter the functional outcomes. The results of these
studies are important for the future design of novel peptide-based vaccines.

My specific aims were to develop a rational approach in order to design novel altered
peptide ligands by:

1) Improving the peptide binding affinity and peptide-MHC stability of viral-derived
and tumor-associated antigens to their cognate MHC-I molecules through localized
molecular modifications.

2) Visualizing and understanding, by X-ray crystallography, how the introduced
substitutions improved binding affinity and pMHC stability of the modified peptides
without affecting their conformation (molecular mimicry).

3) Enhancing cytotoxic T cell responses to the modified epitopes in complex with their
cognate MHC-I molecules and triggering a T cell population that efficiently cross-reacts
with the original wild-type epitopes.
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3 RESULTS AND DISCUSSION

Inflammation-associated nitrotyrosination affects TCR recognition through reduced
stability and alteration of the molecular surface of the MHC complex (PAPER )

The results of this study indicate that conversion of a specific peptide residue from
tyrosine to nitrotyrosine may have very important implications for T cell recognition
either through direct TCR contacts, or indirectly by MHC contact residues.

PTMs provide an elegant potential mechanism for the triggering of novel/different T
cell responses and for avoiding the constraints of immunological self-tolerance, as well
as for evading immunosurveillance through the presentation of MHC-restricted neo-
antigens. PTMs are common during inflammation including viral infections and
potentially compromise host defense mechanisms. Several others have highlighted the
importance of PTMs as novel antigenic agents that can be used in the development of

novel immunotherapy and vaccine design approaches'>**"/1%®

. For example, MUC1, a
mucin type glycoprotein, is an over-expressed and abnormally glycosylated protein in
cancer cells. MUC1-derived glycosylated epitopes have been used to break tolerance in

order to target cancer cells more efficiently***>®

. Recent crystal structures of pMHC
complexes with phosphorylated epitopes demonstrated that PTM residues could
interact directly with the TCR and affect pMHC stability**®**®

studies have demonstrated that PTMs can break tolerance and influence the progress

. Moreover, several

of autoimmune diseases including arthritis, lupus erythematosus, multiple sclerosis

and type 1 diabetes®®**%®378

. For example, deamidated epitopes derived through the
digestion of wheat gluten bind with high affinity to the predisposed HLA-DQ2 and/or
HLA-DQ8 MHC alleles, eliciting strong T cell responses against the gastrointestinal

lining in celiac disease®**".

Several studies have demonstrated that LCMV infection of C57BL/6 mice generates
strong CTL responses towards H-2K® and H-2D" in complex with the immunodominant
epitopes gp34-41 (AVYNFATM) and gp33-41 (KAVYNFATM), respectively®’®*®.
Introduction of PTMs in these epitopes generates neoepitopes, which when presented
by H-2D° and H-2K" may lead to altered CD8" T cell responses during LCMV infection®®®.
More specifically, conversion of the tyrosine residue at positions 3 and 4 of the
immunodominant peptide gp34 and gp33, respectively, to a nitrotyrosine (NY) greatly
affected recognition of the immunodominant gp34 and gp33 epitopes by CD8" T cells,

providing potential additional means for immune escape'®.

In this study, we investigated the structural and biochemical effects of such a
modification on altered T cell recognition following nitrotyrosination of gp34.
Comparison of the crystal structures of H—2Kb/gp34 and nitrotyrosinated H-2K°/NY-
gp34 provided a structural explanation for the observed differential TCR recognition.
Hydrogen bond interactions between p3Y and the H-2K® residue E152 were abolished
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following the post-translational modification of p3Y to p3NY, resulting in a different
conformation for E152 that indirectly altered TCR recognition (Paper | Figure 3).
Furthermore, significant negative effects of nitrotyrosination on MHC/peptide binding
efficiency and stabilization capacity were observed (Paper |, Figure 4). Importantly,
although additional interactions were formed between the PTM peptide and H-2K",
the conformation of a large amount of surrounding residues was strained, significantly
reducing the overall stability of the MHC complex. Even though such strained
interactions have not yet been reported for MHC-I complexes (besides our study),
strained conformations are commonly observed in crystal structures of other proteins
including spectrin SH3 core-domains, native serine protease inhibitors and thymidylate

synthase®®3%,

Our research group has previously demonstrated that subtle
modifications in MHC-restricted peptides can result in significant alterations of MHC
stabilization’®, a phenomenon that should be taken into account and measured upon

118,362

trying to design APLs for modulation of T cell responses . Likewise, several other

amino acid modifications caused by oxidative stress could result in similar effects on

TCR recognitiong’m’385

. Taken together, the results of this study could provide additional
structural and biochemical explanations to the underlying mechanisms through which
PTMs may be used by viruses or other pathogens to evade immune surveillance. Most
importantly, this study demonstrates that nitrotyrosination can directly affect TCR
recognition by modifying the properties of key TCR-interacting residues on the
presented peptide (Paper |, Figure 5) or by altering the conformations of other MHC
residues that are of importance for TCR recognition. Furthermore, nitrotyrosination

can also indirectly affect TCR recognition by severely destabilizing the MHC complex.

The fundamental basis that the above-mentioned mechanisms provide for MHC-
dependent recognition, highlights the imminent dual impact of post-translational
modifications, possibly allowing viral immune escape from TCR recognition but also
potentially inducing the expansion of a subset of T cells that could induce

autoreactivity15 2,167,168

. Similar mechanisms are applied on self-peptides in the case of
inflammation or oxidative stress, which could also lead to the formation of neo-
epitopes leading to escape from central tolerance. Little is known about the impact of
these modified de novo MHC complexes on the initiation of unwanted T cell responses
that may result in autoreactivity. Future identification of disease-associated PTMs that

break tolerance may improve both diagnosis and treatment of autoimmune diseases.

In conclusion, our study provides a novel structural platform explaining the functional
effects of peptide nitrotyrosination on initiation of TCR responses and provides useful
insight into the complexity of factors governing MHC-dependent immune surveillance.
Besides answering basic questions regarding the effects of subtle changes in the
peptide presented by the MHC molecule, the insight gained by this study might help to
improve the arsenal of tools used to fine-tune T cell responses in vivo or ex vivo.
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The unexpected T-cell recognition of an altered peptide ligand is driven by reversed
thermodynamics (PAPER I1)

This study investigates the molecular basis underlying the variable recognition by the
same TCR of the MHC-I molecule H-2D" in complex with four different APLs. In my
opinion, the results contribute to understanding the molecular basis for TCR
discrimination of MHC-restricted APLs and provide additional insights into the design
of novel APLs for future peptide vaccine approaches. The TCR P14, specific for H-2D" in
complex with the immunodominant LCMV-derived peptide gp33 (KAVYNFATM), is
highly sensitive to subtle modifications at the protruding peptide position 4. The
naturally occurring escape mutation of the tyrosine residue at position 4 of gp33 to a
phenylalanine (Y4F), completely abolishes recognition of the MHC complex by
p14'07176,181,182,386387 Th ;5 the removal of only a hydroxyl group is enough to abolish
TCR down-regulation, P14 CD8" T cell proliferation, activation, maturation and effector
functions. Furthermore, substitution of the tyrosine residue at position 4 to a serine
(Y4S) abrogated P14 T cell responses similar to YAF. Additionally, this APL antagonized
the recognition of H—2Db/gp33 by P14%73% |n contrast, P14 still recognizes H-2D" in
complex with Y4A, where an entire aromatic ring was substituted to an alanine. Thus
the main question addressed by this study was why the same TCR, with such a high
sensitivity to subtle changes as in Y4F, can retain the capacity to recognize other APLs
with more dramatic modifications such as Y4A.

In order to address this phenomenon we utilized functional immunological assays, as
well as several structural and biochemical techniques. The thermal stability of the four
PMHCs included in the study, were analyzed by circular dichroism (CD) in order to
assess if the immunogenic hierarchy was due to pMHC interactions. Additionally, the
crystal structures of H—2Db/Y4A and H—2Db/Y4S were determined and compared to the
previously published structures of H-2D°/gp33 and H-2D°/Y4F. Finally, the affinity of
P14 TCR to each pMHC was measured using SPR and the thermodynamic
characteristics of P14 TCR ligation to both gp33 and Y4A were also determined.

All functional assays, including Cr’' release cytotoxicity, TCR down-regulation, IFNy
production, T cell proliferation and CD107a degranulation, demonstrated that the four
peptides followed the immunogenic hierarchy that can be described as
gp33>Y4A>YAS=YAF (Paper Il, Figure 1). Furthermore, MHC-peptide affinities were
measured for all APLs using the TAP-deficient H-2D° positive cell line T2-DP. All APLs
displayed similar strong peptide binding affinities and capacity to stabilize cell surface
MHC levels. In order to exclude the possibility that differences in pMHC stability were
the main contributing factor for the immunogenic hierarchy, we also measured the
melting temperatures of the different pMHC complexes using CD. Our results
demonstrated that the observed immunogenic hierarchy could not be explained by
differences in peptide MHC affinity and MHC stabilization capacity (Paper Il, Figure 2
and Supplementary Figure 1).
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As a positive correlation between affinities of TCR/pMHC interactions and T cell
responses has been previously demonstrated, we also assessed the affinity of soluble
P14 to H-2D" in complex with each peptide using SPR (Paper Il, Table | and supporting
information Figure 2). The Kp values for the interaction of P14 with gp33 and Y4A were
measured at 8.6uM and 58.6uM, respectively, displaying good correlation with the
immunogenic hierarchy. The affinities of P14 to Y4F and Y4S were too low, impairing
the possibility to derive an exact Kp value for these interactions with P14 TCR. Even
though accurate values could not be achieved, it was clear that the binding affinities of
these modified peptides were dramatically lower compared to both gp33 and Y4A,
which is also in line with the observed immunological hierarchy.

Detailed comparison of the crystal structures of H-2D" in complex with Y4A and Y4S
with the previously published crystal structures of H-2D°/gp33 and H-2D°/Y4F'’®
revealed that all peptides displayed similar conformations. However, subtle structural
alterations were observed in H-2D°and peptides (Paper Il, Figure 4). More specifically
the side chains of peptide position 1 (p1K) and MHC residues E58 and R62 in H-
2D°/Y4A were different compared to other peptides in complex with H-2D°. This
conformational change at p1K and its surrounding has previously been described in the
crystal structure of another semi agonist APL of gp33 (F6L) in complex with H-2D° €.
Additionally, this region of the pMHC has also been previously suggested as a
secondary hotspot for P14 TCR recognition®®’. As position 1 of the peptide plays an
important role in TCR recognition for several MHC alleles including H-2D° 3% HLA-
A2 H-2K® 3! and HLA-B27°%93%03%2 plK was replaced in both gp33 and Y4A to a
serine or a leucine in order to investigate the functional impact of this subtle
conformational difference. p1S and plL-substituted gp33 and Y4A could not trigger
TCR down-regulation and almost abrogated T cell recognition (Paper Il Figure 5). Thus,
in the frame of P14 TCR recognition peptide position 1 and MHC residues in its vicinity
can act as a secondary hotspot that can compensate for the loss of main TCR
protruding residues, providing a potential answer as to the observed recognition of
Y4A by P14 but not Y4F and Y4S.

While the results above mainly support the immunogenic hierarchy rather than
provide detailed information regarding the discrepant P14 TCR behavior against the
peptides used in this study, further analysis was performed to understand how the
interactions of P14 with H-2D"/gp33 and H-2D°/Y4A were thermodynamically
different. As previously elegantly reviewed by Armstrong and Baker, the same TCR can
recognize different pMHC complexes with altered thermodynamic signatures,
indicating the potential importance of conformational changes and water release upon
TCR binding®”’.

Different thermodynamic signatures were clearly established for the recognition of the
agonist H—2Db/gp33 and the weak agonist H-2D°/Y4A by P14 TCR. In contrast to the
recognition of H—2Db/gp33 that was strictly enthalpy-driven, recognition of H-2D°/Y4A
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by P14 was characterized by favorable entropy combined with a large reduction in the
favorable enthalpy term (Paper Il, Figure 3). In protein-protein interactions, the
resulting change in enthalpy can be described as the sum of favorable enthalpy that is
derived from all inter- and intra-molecular interactions formed, and unfavorable
enthalpy that results from e.g. the displacement of water molecules from the binding
interface®®. It is highly possible that the favorable AH measured for the P14/H-
2Db/gp33 interaction reflects the formation of several intermolecular contacts.
Conversely, fewer intermolecular contacts following the mutation of tyrosine to
alanine at p4 of gp33 may underline the observed drastic reduction in favorable AH for
the P14/H—2Db/Y4A interaction®’. It is likely that the interactions formed between the
CDR(s) of P14 and MHC regions such as around pi1K in H-2D°/Y4A may partially
compensate for the loss of interactions between P14 and the region surrounding p4A.
Such a phenomenon would also be well in line with previous data that demonstrated
the adaptive capacity of TCRs to certain pMHC ligands through distinct conformations

of the inherently flexible CDR3 loops, resulting in TCR cross-recognition?®*%3%.

Water molecules play an important role in both protein folding and protein-protein
interactions. Prominently, the phenomenon of desolvation, where upon binding, the
ordered water molecules are expulsed from apolar surfaces, leads to an increase of
entropy and commonly gives rise to favorable entropy changes®®. The expulsion of
water molecules upon TCR binding to pMHC can result in favorable entropy for the

270

recognition event”". On the other hand, poor shape complementarity between TCR

and pMHC, may result in the formation of cavities that trap water molecules as

238270 These trapped water molecules

frequently observed in several crystal structures
might form hydrogen bonds and contribute positively to the binding enthalpy of pMHC
recognition by TCR. In the case of H—2Db/gp33 and H-2D°/Y4A, we have observed an
equivalent amount of water molecules with a similar degree of coordination (Paper II,
Supporting information Figure 4). Thus, the unfavorable entropy measured for P14/H-
2Db/gp33 likely reflects an inherent loss of flexibility consistent with the ordering of
CDR loops and pMHC residues upon binding®®’. Conversely, the favorable entropy for
recognition of H-2D°/Y4A by P14 could be a result of the possible increase in
desolvation entropy in combination with a reduction of entropic cost upon ordering

the CDR loops which is also well in line with the reduced AH for this interaction.

Burial of hydrophobic surfaces®®’ as well as entrapment of waters>*® might also reflect
as negative heat capacity change and display a connection to T cell activation. Negative
ACp-values were measured for both H—2Db/gp33 and H-2D°/Y4A interactions within

the range of previously reported TCR-pMHC interactions®®’

. However, the ACp-value
for the ternary P14/H—2Db/gp33 interaction was four times more negative compared to
the P14/H-2D®/Y4A interaction (Paper I, Table 1). This can possibly be explained by the

increased water molecule displacement during the interaction of P14 with H-2D°/Y4A
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that also corresponded well with the favorable entropy change observed for this
interaction.

Even though it is still not completely clear why H-2D°/Y4S was not recognized by P14,
our study might provide some potential explanations. First, in contrast to H-2D°/Y4A,
we have not observed any conformational change at p1K and the surrounding MHC
residues, which may introduce a penalty for TCR docking and adaptation upon binding.
Secondly, water molecules are more coordinated in the crystal structure of H—2Db/Y4S,
specifically around the hydroxyl tip of p4S (Supporting information Figure 4). Thus, it is
possible that amino acid substitutions in the peptide, which interfere with the release
of coordinated water molecules upon TCR binding, leading to an increase in the
enthalpy price for this interaction’”*. Therefore one may speculate that entrapped
water molecules within the H-2D°/Y4S complex represent one of the negative factors
that affect P14 TCR recognition.

In conclusion, our study clearly demonstrates that the same TCR has the ability to
respond to both the agonist H—2Db/gp33 and the semi-agonist H-2D°/Y4A through the
use of different thermodynamic strategies. In the absence of main TCR hotspot
residues, interaction with the first peptide position may take over serving as a
secondary/alternative hotspot. Additionally, tightly coordinated water molecules may
interfere with TCR recognition. Finally, in the frame of designing optimal peptide
vaccines including amino acid modifications, we believe that one should take into
consideration the conclusions derived from this study and keep in mind that several
biochemical aspects can affect the efficiency of designed peptides, besides improving
peptide binding affinity.

Induction of efficient CTL responses against a viral escape mutant through an
unconventional peptide optimization (PAPER IIl)

The Achour research group has previously demonstrated that substitution at peptide
positions 2 and 3 of the H-2D -restricted melanoma-associated epitope gpl00
(EGSRNQDWL) to a glycine and proline, respectively, improved both the stability and
the immunogenicity of H-2D" in complex with the EGP peptide (EGPSRNQDWL)*®.
Most importantly, although activation with the wild-type EGS peptide did not result in
any response against the EGS epitope, CD8" T cells activated using EGP cross-reacted to
EGS and displayed a remarkable improvement of response against the H-2D°/EGS
complex. Comparative structural analysis of H-2D" in complex with the two peptides
indicated that the binding affinity of EGP to H-2D° was increased through the
formation of a combination of van der Waals and CH-mt interactions with the side chain
of the tyrosine residue 159 in H-2D". Importantly, analysis of the crystal structures also
demonstrated that the introduction of glycine and proline in the non-anchoring

peptide positions 2 and 3, respectively, did not affect the conformation of the modified
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peptide EGP when compared to the initial wild-type peptide EGS, keeping a strict
molecular mimicry between the two MHC complexes. This identical conformation
probably lies at the heart of the efficient cross-reactivity of T cells activated by EGP
towards EGS.

In the follow-up study presented in this paper, we applied the same p3P modification
to the H-2D"-restricted viral epitopes presented in paper Il (gp33, Y4A and Y4F). An
interesting aspect of the study was to analyze whether the introduced substitutions
could revert the effects presented by the viral escape mutation Y4F. It is important to
note that, in contrast to the EGS/EGP study, the gp33 peptide and its APLs bind
efficiently to H-2D". Proline-substituted versions of gp33, Y4A and Y4F are annotated
as V3P, PA and PF, respectively.

We used CD to determine the effect of p3P on the thermal stability of the pMHC
complexes and SPR to assess the affinity of P14 to all the p3P modified pMHCs.
Comparative analysis of the stabilization capacity of all the studied peptides using CD
demonstrated that all the p3P-modified peptides displayed significantly increased
thermal pMHC stability (Paper Ill, Figure 1). Moreover, the affinity (Kp) of P14 to H-2D°
in complex with WT epitopes and p3P-modified variants was assessed demonstrating
that pMHC complexes with the p3P-modified peptides exhibited consistently improved
affinity to the P14 TCR (Paper lll, Figure 1). Similar results were obtained by measuring
TCR downregulation, which is one of the first markers of T cell activation. Target cells
presenting p3P-modified peptides significantly improved the P14 TCR down-regulation
(Paper lll, Figure 1). Furthermore, all performed functional assays including crt
release cytotoxicity, TCR downregulation, intracellular IFNy and TNF production, T cell
proliferation and CD107a degranulation demonstrated a clear improvement of
immune responses to all proline-substituted APLs resulting in the following novel
hierarchical order V3P>gp33> PA>Y4A>PF>Y4F (Paper lll, Figure 3).

The crystal structures of all proline-modified peptides were determined (Paper llI,
Figure 2 and supplementary Figure 2). Comparative structural analyses demonstrated
a conserved peptide conformation and overall molecular mimicry between p3P-
modified peptides and their wild-type counterparts.

Finally, in vivo investigation of the effects of the p3P modifications was performed
using C57BL/6 mice, analyzing T cell responses against the viral escape epitope Y4F
following immunization of the animals with gp33, the viral escape variant Y4F or PF.
More importantly, vaccination with PF resulted in a significantly more focused CTL
response towards Y4F, as demonstrated by the significantly enhanced ratio of
Y4F/gp33-specific T cell responses (Paper lll, Figure 4). Interestingly, it has been
previously demonstrated that a CTL clone specific to H-2D°/Y4F could only partially
cross-react with H—2Db/gp33, by killing target cells loaded with gp33 but failing to

% Additionally, several studies demonstrated that such

400 401,402

proliferate and secrete IFNy
viral escape variants induced anergy in cross-reactive T cells
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diminished T cell activation*®

. Thus it is essential to develop novel approaches in
designing peptide vaccines that specifically target viral escape mutants. Such vaccines
should efficiently elicit distinct and more specific T cell responses against viral escape
mutants (Paper lll, Figure 4 and 5) in order to avoid negative impacts of immune
interference, T cell antagonism, and T cell anergy. Therefore, the use of PF, which
enabled the generation of a robust T cell response, highlights the potential use of such
modifications in future vaccination attempts. In my opinion, the same kind of
unconventional approaches targeting evolutionarily conserved MHC residues, can be
adapted to other alleles. Indeed, these promising results could be adapted to immune
evading tumor-associated antigens and/or to other viral escape mutants in several viral
infection models such as HIV. Design of such modifications that increase pMHC
stability and affinity, while preserving molecular mimicry in order to ensure cross-
reactivity between the modified APL and the wild-type peptide stands out as a key
point if such approaches are to be evaluated.

Natural killer cell tolerance persists despite significant reduction of self MHC class |
on normal target cells in mice (PAPER IV)

As previously mentioned, MHC-I serves as a window into the cell, providing a basis for
T cells to distinguish self from non-self by displaying internally processed peptides. This
communication is mediated through specific interactions between MHC-I and TCR. This
window of communication is reflective of the general status inside the cell and
provides T cells with qualitative information that is used to determine their actions.
Instead, NK cells are tuned to recognize and react to the presence or absence of this
communicative window™. In this sense, NK and T cells play complementary roles
regarding MHC-l recognition and thus immunosurveillance. Cell surface MHC-I
expression can be downregulated during viral infections or malignant transformation

in order to avoid T cell recognition'*#%+4%

. While this ensures escape from T cell-
mediated immunosurveillance, reduced amount of surface MHC-I can result in NK cell
triggering. This role of NK cells is maintained in mice through interactions between
MHC-1 and the inhibitory Ly49 molecules that belong to the C-type lectin like receptor

.1.,38,39,41,407
family .

In this study, MHC-deficient, MHC-homozygote, MHC-hemizygote and multiple MHC-
expressing mouse models were used to investigate the extent of MHC-I
downregulation required for normal cells to trigger NK cell effector functions. C57/BL6
mice normally express the H-2K® and H-2D° MHC-I alleles (K°D**/*

homozygote since both parental alleles are transcribed. Additionally, single MHC-I
b+/+
,D

) and are considered
homozygote mice (K ®*/* and D*'*), as well as hemizygote mice that have only one
copy of the MHC-I gene were used. While MHC-deficient mice lack MHC-I expression,
TAP-deficient mice display reduced levels of MHC-I expression. Finally, multiple MHC-I-
expressing mice were also used in functional assays. The specific genotypes of these
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mice are reported in Table 1 of paper IV. These systems with well defined MHC-I
expression provide a useful platform to study NK effector functions in vivo and in vitro,
where the principles for NK cell sensitivity and triggering were assessed by in vivo
cytotoxicity assays as well as by examining the modulatory role of peptide-regulated
MHC-I levels. Additionally, Ly49 receptor expression levels in each mouse model were
determined in order to understand the effects of MHC-I expression levels on receptor
down-modulation on cells expressing multiple Ly49 receptors.

The results of this study indicate that, when interacting with normal cells, NK cells are
presented with an abundance of MHC-I molecules, which are much more than what is
needed for establishing self-tolerance and to induce maximal Ly49 down-modulation.
When homozygous mice expressing normal levels of MHC-I were injected with
hemizygous splenocytes expressing approximately 50% less MHC-I of the same allele/s,
naive NK cells did not reject the cells over a period of four days (Paper IV, Figure 2A-
C). Moreover, even though the transferred cells expressed 50% lower levels of MHC-,
they were not rejected by pre-activated NK cells which were still tolerant (Paper IV,
Figure 2D). This clearly indicates that NK cell tolerance is robust since in vivo missing-
self rejection of normal healthy cells requires more than a 50% reduction in MHC-I
expression levels to occur. Interestingly, this effect was still maintained despite pre-
activation of NK cells in vivo.

In order to determine the threshold for MHC-I-dependent NK cell activation,
splenocytes from TAP-deficient mice, expressing low levels of MHC-I were used. MHC-I
levels can be artificially increased through addition of exogenous peptides in vitro. We
incubated these cells with the H-2K"-restricted Moloney murine leukemia virus (MuLV)
peptide (SSWDFITV)*®, which stabilized 10-80% of H-2K® surface expression.

Surprisingly, when adoptively transferred into KP*/* mice, only cells with less than 20%
H-2K® expression were rejected while all other cells were tolerated (Figure 6 and Paper

IV, Figure 3).

The modulatory effect of cell surface MHC-I expression levels on NK cell effector
functions helps to fine-tune the activation status of the NK cell repertoire to avoid
autoimmunity while keeping their ability to respond to viral infection or malignant
transformation. Interestingly, NK cells seem to lack mechanisms for sensing an MHC-I
downregulation of more than 50% when engaged upon normal cells or resting cells, at
least in the case of Ly49 down-modulation. Therefore, it is possible that NK cells are
relatively unresponsive to fluctuations in MHC-I expression of normal target cells.

This phenomenon can be explained by a model in which a certain threshold for NK cell
activation can effectively be calibrated in order to maintain tolerance to varying levels
of MHC-I expression on target cells. It is possible that tumor cells or virally infected
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Figure 6. NK cell activation threshold requires at least 80% MHC-I downregulation A. Normal MHC-I
expression inhibits NK cell activation B. 50% reduction of MHC-I does not activate NK cells C. NK cells get
activated upon loss of more than 80% MHC-I D. Complete loss of MHC-I expression activates NK cells,
“Missing-Self”

cells that display stress signals in the form of NK cell activating ligands would trigger NK
cell activation more efficiently than normal splenocytes. Such mechanisms would act
as a preventive system against autoimmune reactions and imply the necessity of other
signals including the upregulation of activating ligands and/or the downregulation of
other inhibitory ligands in order to ensure efficient NK cell responses. A more
detailed*® analysis of the role of MHC in NK cell education and tolerance is provided in

the PhD thesis of Petter Brodin*'® and in other publications*******2,

Study IV shows that the NK cell activation status can be modulated through the use of
MHC-I-restricted peptides. Moreover, It has been demonstrated in other studies that

MHC-I-bound peptides can modulate NK cell responses during interaction with KIRs*"*"

7 Recently, Lena Fadda and Salim I. Khakoo demonstrated that MHC-I-restricted
antagonist peptides that inhibited KIR signaling enhanced recognition of target cells by
NK cells **®. MHC-I-restricted peptide-mediated modulation of NK cells can have future
implications in attempts to sensitize the immune system against previously inert
targets. Moreover, quantitative use of MHC-I-restricted peptides can provide an
additional tool to further investigate NK cell biology and regulate allele-specific NK cell
responses. For example such an approach could be used to optimize ex vivo expansion
and activation of NK cells with an increased capacity to target tumor cells. More
specifically, this could be performed through the use of HLA-E-restricted peptides, in
order to recruit activating receptor NKG2C" NK cell populations, which are primed to
target tumor cells that have increased levels of HLA-E expression. Since evolutionarily
conserved MHC-I residues including W167 and Y159 also exists in HLA-E** and the

peptide binding motif of HLA-E-restricted epitopes are similar to HLA-A2**°

, combining
the design of novel MHC-restricted APLs that are optimized with a similar approach

used in study Il with peptides that are more prone to attract the attention of NKG2C
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than the inhibitory molecule NKG2A, could potentially maximize the efficiency for the
generation of an optimal NK cell repertoire against a specific tumor target.
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Figure 7. Sulphur-aromatic interactions mediate binding of TrH4 peptide to H-2D° A. The electron
density map shown around the Trh4 epitope (MCLRMTAVM) (generated with |2Fo|-|Fc| Fourier
coefficients and contoured at 1 o) as seen from the side of the a2 helix. B. Overview of sulphur-aromatic
interactions. H-2Db/Trh4 complex is seen from top. H-2D in light grey, peptide in cyan. C. Removal of
sulphur at position 2 and 5 of Trh4 diminishes MHC/peptide affinity. NLE represents norleucine and
20aNB represents a-Aminobutric acid D. Removal of sulphur at position 2 and 5 of Trh4 diminishes
MHC/peptide stability.

3.1 ADDITIONAL RESULTS AND FUTURE IMPLICATIONS

The crystal structure of H-2D® in complex with the neo-epitope Trh4 associated with
impaired peptide processing reveals a non-canonical binding

A unique category of CTLs that can prevent the escape of tumors from recognition has
been recently identified"". These CTLs target a specific alternative peptide repertoire
that is not normally presented on the surface of healthy cells, and that is only
presented on MHC-I at the surface of cells with impaired antigen processing such as
impaired TAP, tapasin or proteasomal functions, often associated with tumor evasion.
In this study, the crystal structure of the first example of such an immunogenic TEIPP
neoantigen, was determined (Figure 7A and B). In contrast to most H-2D°-restricted
peptides that make use of a binding motif composed of an asparagine and a
hydrophobic residue at positions 5 and 9, respectively (p5Np9L), the TEIPP epitope
Trh4 (MCLRMTAVM), binds to H-2D® using an unusual binding motif, with a
preponderance of sulphur-containing residues and SH-mt interactions. Besides the
cysteine residue at position 2 that protrudes towards the B-pocket of H-2D°, two
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methionine residues occupy the main anchor positions 5 and 9. Furthermore, the side
chain of a third methionine residue, localized at position 1 of the peptide, interacts
mainly with the side chains of the H-2D° residue W167. Peptide binding and
stabilization assays were performed to analyze the respective importance of each
peptide position. We hypothesized that, similarly to the CH-nt interactions that are
formed between p3P and Y159 (Paper lll), the side chains of p1M, p2C, p5M and p9M
could be important for the interaction of Trh4 with H-2D". Substitutions of p5M to
norleucine or of p2C to a-amino-N-butyric acid clearly impaired the peptide binding
capacity and cell surface MHC stability, suggesting the importance of SH-mt interactions
for the binding of Trh4 to H-2D" (Figure 7C and D). Thus, besides providing the first
crystal structure of a TEIPP epitope, H-2D°/Trh4, this study provides novel insights into
the possible use of naturally occurring and/or modified sulphur-containing residues in
order to increase binding affinity and possibly immunogenicity of targeted peptides.
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Figure 8. p3P modification increases pMHC stability and T cell cross-reactivity. A. p3P modification
increases cell surface stability of MHC molecules. Black dashed line is mDBM. Black line is mDBM 3P and
grey line is control peptide gp33. B. Target cells loaded with control peptide gp33 and mDBM 3P are
efficiently killed by P14 T cells. C. P14 T cell proliferation increases upon stimulation with mDBM 3P. ASN
(ASNENMETM) is influenza derived H-2D"-restiricted epitope. Target cells without any peptide is NO.

Structural and biochemical studies of P14 cross-reactivity between gp33/H-2D" and
H-2D" in complex with the mimotope of a self-peptide

It has been previously demonstrated that P14 slightly cross-reacts with H-2D" in
complex with the self-peptide mDBM (KALYDYAPI) derived from dopamine mono-
oxygenase, as well as with its rat homolog rDBM (KALYNYAPI)*?. Although both mDBM
and rDBM share less than 50% sequence identity with gp33, the crystal structure of H-
2D°/rDBM revealed a striking conserved molecular mimicry between the surfaces of H-
2Db/gp33 and H-2D°/rDBM*?X. The aim of the present study was to determine if we
could increase the previously observed cross-reactivity of P14 to H-2D°/mDBM by
introducing a proline at peptide position 3 of the mDBM peptide. Our analysis reveals
that, in contrast to mDBM, the proline substituted altered mDBM(3P) displayed
significant capacity to bind and stabilize H-2D° (Figure 8A). Using P14 transgenic mice,
TCR down-regulation, P14 T cell proliferation, TNF production and Cr’' release
cytotoxicity assays demonstrated that recognition of mDBM(3P)-targets was
significantly increased (Figure 8B and C).
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The obtained results should provide us with a better understanding of the rules
steering enhanced recognition of MHC-I complexes by TCRs. As molecular mimicry is a
(non-excluding) strong candidate for initiation of infection-mediated autoimmunity,
this study could also provide some further insights into the levels of cross-reactivity
required for potential initiation of disease. Currently, further immunological
characterization of the p3P modification is ongoing in parallel with structural studies.

Enhancement of immunogenicity through structural modifications of the melanoma-
associated HLA-A2-restricted peptide MC1R

Melanocortin receptor 1 (MC1R) is one of the receptor proteins for melanocyte-
stimulating hormone (MSH) and is a genetic risk factor for melanoma and non-
melanoma skin cancer. It has been previously demonstrated that an epitope derived
from the MCIR protein, MC1R,9; (AIIDPLIYA), is recognized by human melanoma-
specific HLA-A2 restricted CTLs*?. MC1Rys; is classified as a tumor associated antigen
and is a potential target for melanoma immunotherapy. In this study we aimed to
increase MHC/peptide interactions and thus, T cell responses towards the MC1R;9;
epitope through targeted peptide modifications. As the MC1R,9; epitope lacks the
optimum HLA-A2 anchor residue at position 9 of the peptide, alanine was substituted
with a preferred amino acid, valine (9V). Additionally, in order to improve
MHC/peptide interactions through evolutionarily conserved MHC-I residue, W167, we
have introduced a tyrosine at position 1 of MC1R,9; (1Y) as well as combined this
approach with conventional anchor fixing modification (1Y9V). All designed MCR1,9;
APLs had increased MHC binding affinity and pMHC cell-surface stability (Figure 9A).
Furthermore, MC1R,9; APLs were used to stimulate MC1Ry9:-specific CTLs from
peripheral blood mononuclear cells (PBMC) of HLA-A2" healthy donors. T cells
stimulated with APLs could expand more efficiently than those stimulated with the
wild-type peptide; however, activation and expansion of MC1R,9; CTLs were
surprisingly donor-specific as different donors had distinct preferences for one or more
of the modified peptide(s). Importantly, CTLs stimulated with preferred modified
peptide efficiently cross-reacted with the weakly immunogenic wild-type MC1R;9;
epitope (Figure 9B-D).

In conclusion, we have designed altered peptide ligands of a TAA, which could improve
CTL responses towards cells presenting the tumor-associated wild-type peptide.
Additionally, observed differential peptide preferences of donors could provide a
potential explanation for the failure of previous vaccination trials with modified
peptides. Since, MHC allelic diversity of donors/patients as well as history of infectious
diseases could affect the T cell repertoire and thus T cell responses, | think it is
essential to test a diverse array of APLs in order to optimize personalized treatment of
cancer or viral infections.

44



>
w

S 60+
= 1004
] -
@ 80 2
2 8 404
g g
o 607 -4 1YoV 2
‘i:’ 1Y S
S 40- -© § 204
g 204 - 9V )
s -o- WT 1
Q
m c ) 1 ) 1 ] L c L L ) IIﬁi
0 2 4 6 8 12 WT 1Y 9V Yv
Time (h) T cell stimulations with peptide
C D.
150+
3004
2 2
[}
s S 1004
g 2001 g
S 1 <
= =
o 50
S1001 ﬂ i 8 I}IL
c L L) Ij ) c L) L L) ) ]
WT 1Y 9V YV WT 1Y 9V YV
T cell stimulations with peptide T cell stimulations with peptide

Figure 9. Anchor fixing and/or targeting evolutionarily conserved MHC residue W167, results in
improved pMHC stability and donor-specific immunogenicity. A. Cell surface HLA-A2 levels are
stabilized with modified peptides. WT: MC1R291 (AIIDPLIYA), 9V: A9V anchor fixing modification. 1Y: A1Y
modification. 1Y9V: combination of 1Y and 9V modifications. B, C, D. T cell expansions from three
different HLA-A2 positive donors with modified peptides resulted in donor-specific MC1R WT epitope
cross-reactive IFNy secreting T cell populations (IFNy ELISpot). Against WT (grey), modified (white).

Design and analysis of structural modifications in HLA-A2-restricted multiple-
myeloma-associated peptides; Implications for increased binding stability and
immunogenicity

A set of HLA-A2-restricted multiple myeloma-associated tumor antigens (MM-TAAs)
were selected, including the well-known cancer-associated peptides such as NY-ESO1
and MUC7g.g7, MUC167.175, MUCy64.272 but also a large array of other peptides such as
FR3, FR4, FR11, FR16, FR20, PRAMEq9, PRAME14;, PRAME3q, PRAMEss, WT1q56,
WT1187, WT1,35, HER2/NEU E75, ETV6-AML1 PR1160, and DKKy0.129 “2>**°. The first aim
of this study was to determine the crystal structures of HLA-A2 in complex with MM-
TAAs in order to establish a first structural library that can be used as a template for
future design of modifications in the targeted MM-TAAs. The second aim was to
introduce modifications that could increase their capacity to stabilize HLA-A2
complexes while conserving the molecular mimicry when compared to wild-type MM-
TAAs. The ultimate target is to increase immunogenicity of specific CTLs towards these
cancer-associated targets. In collaboration with the research group of Prof. Ton
Schumacher (Netherlands Cancer Institute, Amsterdam), we made use of in crystallo
peptide substitution®”’ to achieve these structural objectives. Using this method, the
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crystal structure of HLA-A2/FR20 was determined. The unusual binding mode of FR20
provided important indications regarding the positions to be modified in order to
potentially enhance its immunogenicity. The capacity of APLs of several MM-TAAs to
bind and stabilize HLA-A2 complexes were analyzed, providing important individual
information and displaying some important differences between how MM-TAAs
should be approached. T cell response characterization of the effects of these
introduced modifications will be performed by the Achour group in the future.
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4 CONCLUDING REMARKS

This thesis focuses on the importance of MHC-I molecules in the regulation of T cell
and NK cell responses, aiming to identify molecular mechanisms behind this
phenomenon and possible interventions for optimizing these interactions.

In Paper | provides a structural platform explaining the functional effects of post-
translational peptide modifications on initiation of T cell responses. Analysis of these
effects presents useful insights into the complexity of factors governing MHC-
dependent immune surveillance and could contribute to the improvement of the
arsenal of tools used to fine-tune T cell responses in vivo or ex vivo.

In order to better understand the mechanisms of peptide discrimination by TCRs, in
Paper Il, we demonstrated that the same TCR has the ability to respond to both agonist
and semi-agonist peptides through the use of different thermodynamic strategies. In
the absence of main TCR hotspot residues, secondary/alternative hotspots may take
over the responsibility. Additionally, tightly coordinated water molecules can interfere
with TCR recognition and higher enthalpic prices may be an inevitable compromise for
allowing the interaction to occur.

Moreover, in Paper lll, we used altered peptide ligands modified at secondary
anchoring residues as tools to increase the immunogenicity of peptides with already
optimal MHC/peptide affinity. Importantly, a naturally occurring antagonist escape
peptide variant of an LCMV-derived immunodominant MHC-I-restricted epitope was
converted to an agonist through peptide modification, resulting in increased pMHC
stability and TCR affinity, as well as conserved molecular mimicry which allowed T-cell
cross-recognition.

Finally, in Paper IV, we analyzed the importance of MHC-I engagement in the activation
of NK cells, using both differentially MHC expressing mouse models and peptide-
mediated fine tuning of MHC presence on the cell surface. Our results indicate a
certain threshold for NK cell activation, which is effectively calibrated to maintain
tolerance to varying levels of MHC-I expression on target cells and draws attention to
the necessity of other signals, such as upregulation of activating ligands or
downregulation of inhibitory receptors for NK cell activation.

Conclusively, the studies included in this thesis provide important novel insights that
can be used in alternative approaches for vaccine design. Modulation of NK cell
responses through peptide-mediated tuning of MHC on target cells, as well as
activation of T cells with APLs that conserve molecular mimicry to the wild-type
peptides and result in cross-reaction, stand out as important findings that both
elucidate important aspects of MHC-I biology and provide new strategies for the
optimization of the design of novel anti-viral or anti-tumor peptide-based vaccines.
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