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Abstract  

Rituximab is a monoclonal antibody directed against the CD20 antigen on normal and 
neoplastic B-lymphocytes. It was originally developed for treatment of lymphomas as a 
targeted therapy against CD20 positive non-Hodgkin lymphomas (NHL). More recently, its 
use has expanded into patients with rheumatic diseases. Consistent with this trend, late 
adverse events of rituximab are appearing, one of these is rituximab induced neutropenia also 
called late-onset neutropenia (LON). It is defined as an unexplained absolute blood neutrophil 
count (ANC) < 1.5 x 109/L occurring 4 weeks after termination of rituximab therapy up to one 
year of the follow-up time. However, incidence, mechanism, predisposing factors and clinical 
consequences of LON are poorly defined. The aim of this study was to address these 
questions in rituximab treated patients for NHL and rheumatic disease. 
 
We studied the incidence of LON retrospectively in rituximab treated NHL patients. We 
found an incidence of 8% and a higher incidence was observed in autologous stem cell 
transplanted patients (Paper I). In this study we observed maturation arrest at the 
(pro)myelocyte stage of granulopoiesis in the bone marrow (BM) implying a selective 
depletion of granulocytes. There was no incidence report in rheumatic patients and hence we 
expanded our studies into this patient group (Paper II). We found similar incidence figure. 
However, the clinical course of LON was different and it was associated with a higher risk of 
infections. Moreover, flow cytometry studies on peripheral blood showed that LON patients 
had pronounced and longer B-lymphocyte depletion compared with non-LON matched 
controls. Lower IgM levels were evident in LON patients. Thus, the levels of B-lymphocyte 
depletion and IgM levels may identify patients at risk. Subsequently, we tried to define 
genetic factors for LON by analyzing polymorphisms affecting B-lymphocyte depletion and 
production (Paper III). Here, we studied the role of Fc gamma receptor (FCGR: FCGR2A 131 
H/R, FCGR2B 232 I/T and FCGR3A 176 V/F) and B-lymphocyte activating (BAFF: -871C/T) 
gene promoter polymorphisms for the development of LON. The FCGR3A 176V allele was 
correlated with the occurrence of LON and each V allele was associated with 4-fold increase 
of odds-ratio for LON. Moreover, patients with this genotype had a longer time to flare of 
rheumatic disease. Surprisingly, patients who developed LON had also a longer time to flare 
demonstrating a novel correlation between LON and clinical response. In Paper IV, we tried 
to elucidate mechanisms of LON. We included rituximab treated NHL patients prospectively. 
BM and blood samples were obtained at the detection of LON. A pronounced B-lymphocyte 
depletion in LON patients was also evident during the LON period and this coincided with 
significant raise in serum BAFF levels compared to non-LON matched controls. Furthermore, 
BM studies revealed a selective depletion of granulopoiesis (maturation arrest at the 
(pro)myelocyte stage) during complete B-lymphocyte depletion.  
 
In summary, our studies add to our understanding of LON as a distinct entity. The 
identification of risk factors such as levels of B-lymphocyte depletion and IgM, and 
possession of the high affinity FCGR3A 176 V allele might be helpful in future clinical 
practice. Moreover, this genotype as well as the presence of LON were also related to a better 
clinical outcome. It is, thus, tempting to suggest that LON is a good prognostic factor, but that 
remains to be proven in a larger prospective studies and lymphoma patients. Finally, our 
mechanistic studies highlight the interdependence of lymphopoiesis and granulopoiesis which 
might be orchestrated by BAFF.   
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LIST OF ABBREVIATIONS 
AAV              Anti-neutrophil cytoplasmic antibody associated vasculitis 
ADCC            Antibody-dependent cellular cytotoxicity           
ANC              Absolute neutrophil count                           
APRIL            A proliferation-inducing ligand                    
BM               Bone marrow  
B-CLL            Chronic lymphatic leukemia 
BAFF            B-cell activating factor                               
BLYS            B-lymphocyte stimulator                               
CBC              Complete blood count                                
CDC              Complement-dependent cytotoxicity           
CHOP           Cyclophosphamide, doxorubicin, vincristine and prednisolone  
CNS              Central nervous system  
DIAG             Drug-induced agranulocytosis 
DINP             Drug-induced neutropenia      
ELANE         Elastase associated neutrophil expressed protein  
FDA               Food and Drug administration                                        
GAT             Granulocyte agglutination test                    
GIFT            Granulocyte immunofluorescence test         
G-CSF           Granulocyte colony stimulating factor        
G/E                Granulopoiesis-erytropoiesis ratio              
GPA               Granulomatosis with polyangiitis 
FcγR               Fc gamma receptor  
FCGR              Fc gamma receptor gene 
HAX-1            Hematopoietic cell-specific associated protein x-1   
HBV                Hepatitis-B virus 
IL10               Interleukin 10 
IQR               Interquartile range 
LON              Late-onset neutropenia 
mAb               Monoclonal antibody 
MAIGA         mAb –specific immobilization of granulocyte antigen  
MPA               Microscopic polyangiit 
NCI-CTC        National Cancer Institute Common Toxicity Criteria 
NHL              Non-Hodgkin lymphoma 
NK                Natural killer 
PB                    Peripheral blood 
PML               Progressive multifocal leukoencephalopathy 
RA                Rheumatoid arthritis 
SCN                Severe congenital neutropenia 
SCT              Stem cell transplantation 
SD                 Standard deviation 
SDF-1           Stromal-derived factor-1 
SLE              Systemic lupus erythematosus 
SNP              Single nucleotide polymorphism 
T-LGL          Large granular T-lymphocytes 
TNF                Tumor necrosis factor 
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1. INTRODUCTION 
1.1 LATE-ONSET NEUTROPENIA 

1.1.1 HISTORY 

Drug-induced agranulocytosis (DIAG) or neutropenia (DINP) can occur as an adverse event 

to virtually any drug. Common for these events is that they develop during drug intake (or up 

to a week after cessation of the therapy), appear any time from the 1st treatment week up to (at 

least) one year, and typically have durations of 4 days to more than 3-4 weeks [1, 2]. 

Rituximab induced neutropenia also called late-onset neutropenia (LON) is a unique type of 

delayed drug-induced reaction, not known before the era of rituximab. LON occurs months 

after the cessation of rituximab therapy. LON was first reported in two pivotal prospective 

clinical trials evaluating efficacy of rituximab in relapsed low-grade non-Hodgkin lymphoma 

(NHL) [3, 4]. These authors demonstrated an unexplained isolated late-onset neutropenia 

occurring from 4 up to 10 months after the end of rituximab therapy. Surprisingly, most of the 

cases resolved with in a month without treatment with granulocyte colony stimulating factor 

(G-CSF). Another study, assessing the efficacy and safety of re-treatment with rituximab in 

relapsed low-grade or follicular lymphoma, reported similar isolated neutropenia 1 month 

after the termination of rituximab treatment [5]. Interestingly, one patient developed a similar 

pattern of LON upon re-exposure to rituximab. However, no defined criteria for LON were 

established in the aforementioned prospective trials and it was difficult to discern the clinical 

characteristics of LON. 

Since then, several case reports and few retrospective studies with specific aims to study LON 

have tried to define this clinically significant event in lymphoma patients [6-13]. The 

validation of LON as a distinct entity is also established by reevaluating data from 

randomized trials on NHL patients where no LON cases were reported in the historical group, 

consisting of patients who had been treated with non-rituximab-containing regimens [7, 10, 

11]. In addition, recent studies have reported the occurrence of LON in rituximab-treated 

patients with autoimmune and rheumatic disease [14-19]. However, prospective studies of 

LON are lacking. The aim of the studies comprised in this thesis has been to understand the 

incidence, mechanism, predisposing factors and clinical consequences of LON. 
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1.1.2 DEFINITION 

LON is defined here as an unexplained absolute blood neutrophil count (ANC) < 1.5 x 109/L 

(corresponding to neutropenia of grade 2-4 according to National Cancer Institute Common 

Toxicity Criteria (NCI-CTC) [20] starting from 4 weeks after termination of rituximab 

therapy, until the end of follow-up. The follow-up period for detection of LON is up to 12 

months. Thus, alternative causes of neutropenia should be ruled out by a medical history, 

physical examination and a thorough clinical investigation.  In addition, during these 4 weeks 

after rituximab treatment the patient must have recovered to normal ANC after previous 

chemotherapy. Moreover, during these 4 weeks the patient must not receive any other 

chemotherapy or neutropenia causing drugs. For stem cell transplanted (SCT) patients the 

same definition was used, but to qualify as LON the neutropenic episode could occur at 

earliest 4 weeks after transplantation. Inclusion criteria and definition of LON for each study 

are given in detail in the Papers included in this thesis. 

1.2 NEUTROPHILS AND IMMUNITY 

1.2.1 DEVELOPMENT  

Granulopoiesis starts with the differentiation of promyeloblast to promyelocyte (Figure 1). 

Promyelocytes are large cells with purple staining non-specific or primary azurophilic 

granules. Promyelocytes develop into myelocytes that are characterized by the presence of 

smaller specific or secondary granules. The cell loses its basophilic cytoplasma and granule 

production ceases at the end of the myelocyte stage. At the metamyelocyte stage, the cell size 

decreases and the nucleus becomes flattened and the chromatin condenses. This stage is 

followed by a horseshoe-shaped nucleus, called band cell. Then, the nucleus gets segmented 

into lobes and a mature neutrophil is formed.   

Developmental defects at specific stages of granulopoiesis are reported in patients with severe 

congenital neutropenia (SCN) and LON after rituximab treatment. Thus, maturation arrest at 

the (pro)myelocyte stage of granulopoiesis is a characteristic of SCN and it is related to 

mutations in HAX-1 and ELANE genes [21, 22]. This has been attributed to excessive 

apoptosis of neutrophil progenitors in patients with HAX-1 mutations [23]. Likewise, 

mutations in the ELANE gene results in the production of a mutant protein, neutrophil  
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elastase, with abnormal packaging in the neutrophils primary granules. This leads to apoptosis 

and unfolded protein response, resulting in the diminishing of neutrophil progenitors in the 

bone marrow (BM) [24].  

 

 

 

1.2.2 FUNCTION 

Neutrophils are the essential part of the innate immune system, also called the first line of 

defense. They are immediately recruited to the site of inflammation. They have an average 

half-life of 5 days and survive for 1-2 days after they have migrated into tissues. They directly 

attack microbes through phagocytosis and release of soluble anti-microbial substances 

(granule proteins, e.g. neutrophil elastase).  Recently, Brinkmann and colleagues reported a 

new mechanism for killing of microbes by neutrophils. Activated neutrophils release web-like 

structure of DNA, called neutrophil extracellular traps consisting of web of fibers made of 

Myeloblast� Promyelocyte� Myelocyte� Metamyelocyte�

Neutrophil� Bandcell�

Figure�1.�Different�stages�of�granulopoiesis��
for�neutrophil�development.�Granulopoiesis�
begins�when�the�myeloblast�differen ate�
to�promyelocyte�that�is�irreversibly�
commited�to�the�neutrophilic�cell�line.�
Adopted�from�histology@yale.�
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chromatin and serine proteases that trap and kill microbes extracellular [25]. Moreover, 

neutrophils produce chemotactic signals that recruit monocytes and dendritic cells important 

for antigen presenting of adaptive immunity.  

Recently, neutrophils have been shown to play a major role in adaptive and cellular immunity. 

Briefly, activated neutrophils are major sources of B-cell activating factor (BAFF), also called 

B-lymphocyte stimulator (BLYS) [26]. BAFF is needed for proliferation and maturation of B-

lymphocytes [27]. In addition, neutrophils produce interferon-γ which helps to drive 

differentiation of T-cells and activation of macrophages [28]. Moreover, a recent report 

demonstrated that neutrophils stimulate immunoglobulin diversification and production [29]. 

Hence, neutrophils help not only in initiating of the immunological memory but also, assist in 

the process of the specific immunity. 

1.3 RITUXIMAB 

1.3.1 MECHANISM 

Rituximab is an IgG1 chimeric human/mouse monoclonal antibody (mAb) which targets the 

CD20 antigen, a transmembrane phosphorylated protein located on normal and neoplastic B-

lymphocytes. Rituximab consists of glycosylated human kappa and gamma-1 constant regions 

(Fc domain) and IgG1 kappa immunoglobulin with murine light- and heavy-chain variable 

regions (Fab domain) that recognizes the CD20 antigen.  

CD20 expression begins at the pre-B cell stage (before IgM expression) and is lost prior to 

differentiation into immunoglobulin-secreting plasma cells [30]. Thus, CD20 is not expressed 

on hematopoietic progenitor cells or on mature, antibody secreting plasma cells [31]. 

Although the exact physiological role remains unclear, it is believed play a role in Ca2+ influx 

across plasma membranes, maintaining intracellular Ca2+ concentrations and allowing B-

lymphocytes activation [32]. Mice lacking CD20 display no distinguishing phenotype [33]. 

The CD20 antigen has characteristics that render it a suitable target for treatment: CD20 does 

not circulate freely in the plasma, CD20 does not shed from the surface of B-cells after 

binding of anti- CD20 antibodies, and CD20 does not internalize or modulate upon antibody 

binding [34, 35]. 
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As a result, rituximab clusters densely and persistently close to the cell surface facilitating 

mechanisms for antibody and complement binding. After binding, its Fc part binds to Fc 

gamma receptors on natural killer, granulocytes or macrophages (the effector cells). This 

ligation induces cell activation, leads to the release of cytotoxic substances, proteases and 

reactive oxygen species, conferring cell death of targeted B-lymphocytes. This causes a rapid 

depletion of normal and malignant B-lymphocytes, making it attractive for treating diseases 

characterized by having overactive production or dysfunctional B-lymphocytes. However, 

mechanisms actions of rituximab are not fully understood [36]. 

Mechanisms of actions of rituximab may occur by antibody-dependent cellular cytotoxicity 

(ADCC), complement-dependent cytotoxicity (CDC) and direct signaling (apoptosis). All 

appear to play a role in rituximab efficacy and most agree on ADCC to be the most important 

one. However, studies of rituximab mechanisms of action have been challenging and they are 

derived mainly from studies in vivo and in vitro lymphocytes, and animal lymphoma models. 

Rituximab has long half-time life and is present at therapeutic levels in the circulation of 

patients for up to a month. Moreover, lymphocytes have short life in vivo. Therefore, most 

studies of rituximab mechanisms of action often utilize tumor cell lines that have been 

selected based on their ability to grow rapidly in vitro, and sometimes their relative sensitivity 

to therapy. Most in vitro assays involve incubation times of minutes (analysis of direct 

signaling effects of rituximab) to hours (cytotoxicity assays), but never weeks—the time 

frame of clinical response to rituximab. Thus, in vitro assays usually focus on one mechanism. 

Indeed, animal models reflect the clinical situation although they significantly differ from 

clinical lymphoma with respect to growth kinetics, phenotype, infiltrating benign cells, and 

heterogeneity. Hence, clinical trials and correlative studies have been valuable to understand 

mechanisms of actions of rituximab. 

Antibody-dependent cellular cytotoxicity antibody-coated lymphocytes may be killed by 

effector cells, including natural killer (NK) cells, granulocytes, and macrophages expressing 

Fc gamma receptors (FcγRs) through ADCC mechanism [36, 37]. These processes require 

that the Fc of the antibody bound to the target cell bind to FcγRs on the effector cells 

triggering immune cell activation and death of the target cell [38]. In vitro, animal model and 

correlative clinical studies suggest that interaction of antibody Fc with FCGR3A contributes 
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to the clinical anti-tumor activity of single-agent rituximab. Clynes and colleagues, 

demonstrated rituximab was effective in wild-type mice but not in mice lacking the common 

FcRγ chain [39]. Furthermore, the anti-tumor effect of mAb therapy was enhanced in mice 

lacking FcγRIIb, which is an inhibitory receptor, providing additional evidence that the 

interactions between the antibody and FcR is central to determining the efficacy of therapy 

[40]. There is also a strong evidence that ADCC is mechanistically involved in clinical 

response to rituximab therapy from correlative studies demonstrating an association between 

polymorphisms on FCGR3A and clinical response to rituximab in both NHL [41, 42] and 

autoimmune diseases [43]. FCGR3A homozygous for valine at 176 V/V (also called 158 V/V) 

has a higher affinity for IgG1 leading to a better binding of rituximab and more profound B-

lymphocyte depletion than does FCGR3A with phenylalanine at that position (V/F or F/F) 

[44-49]. These data highlight the importance of Fc–FcγR interactions in the anti-tumor effects 

of rituximab and suggest that ADCC is a major mechanism of action. 

Complement-Dependent Cytotoxicity (CDC) binding of rituximab to CD20 may activate the 

complement cascade through C1q, leading to cell death or deposition of complement proteins 

on the cell membrane, a phenomenon known as CDC. Several in vitro studies have 

demonstrated that rituximab is highly efficient at mediating CMC of various B-cell lines, as 

well as fresh malignant B-cell samples and in serum samples. The expression of complement 

inhibitory molecules (CD55 and CD59) on malignant B cells correlates with the extent of in 

vitro lysis [50-55]. A number of in vivo tumor models suggested that CDC plays a role in the 

anti-tumor effect of rituximab, e.g. depletion of complement through use of cobra venom 

factor abolished the therapeutic response [56, 57]. Recently, clinical studies have 

demonstrated lymphocytes that remain after rituximab treatment have a higher surface 

expression of the complement inhibitor CD59 when compared to pre-therapy expression of 

this marker [58, 59]. However, no correlation has been found between expression of 

complement inhibitors and clinical response to rituximab treatment [55]. 

Signaling-Induced Cell Death antibody binding to CD20 may have direct anti-proliferative 

effects or may actively induce cell death (apoptosis). In the absence of immune effector 

mechanisms, rituximab can induce death of malignant B cell lines in vitro. Thus, changes that 

have been identified in response to rituximab in vitro include inhibition of p38 mitogen-

activated protein kinase, nuclear factor-κB, extracellular signal-regulated kinase 1/2, and AKT 

anti-apoptotic survival pathways [60-63]. Interestingly, rituximab injected directly into the 

cerebrospinal fluid in patients with central nervous system (CNS) lymphoma has been 
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reported to have local anti-lymphoma effects [64]. Likewise, synergy between rituximab and 

cytotoxic chemotherapy has been demonstrated in vitro study [65]. Moreover, clinical data in 

a variety of B-cell malignancies provide strong evidence that rituximab and chemotherapy can 

work well together and are more effective.  

The discussion above addresses the major mechanisms of action of rituximab independently. 

However, different mechanisms may interact to each other synergistic (interacting 

mechanisms). Several studies point to more than one mechanism play a role for response of 

the therapy including a decrease in complement inhibitory molecules, enhanced expression of 

anti-apoptotic molecules and enhanced antibody binding by ADCC mechanism [66-67]. 

1.3.2 PHARMACOKINETICS AND PHARMACODYNAMICS 

The pharmacokinetics of rituximab is similar to that seen with human IgG [3]. Rituximab 

distributes slowly in both the intravascular and extravascular compartments, and it is present 

within the involved lymph nodes environment that include not only malignant B cells but also 

stromal cells, benign lymphocytes, extracellular matrix, vasculature, proteins in the 

extravascular fluid, and a complex mixture of cytokines and chemokines. As a single agent, 

rituximab is usually administered parenteral weekly for 4 weeks in lymphoma patients or once 

every two weeks or weekly in patients with autoimmune diseases. When used in combination 

with chemotherapy, it is often administered every 3 to 4 weeks. Oral administration is 

precluded by the molecular size, hydrophilicity and gastric degradation of rituximab. 

Distribution into tissue is slow because of the molecular size of rituximab, and volumes of 

distribution are generally low. Serum half-life time is 20 days [68, 69]. Then, it is metabolized 

to peptides and amino acids in several tissues, by circulating phagocytic cells or by their 

target antigen-containing cells.  

Population pharmacokinetic analyses have been applied in assessing covariates in the 

disposition of rituximab. Possible factors influencing elimination of rituximab include the 

amount of the target antigen, immune reactions to the antibody and patient demographics. 

Bodyweight and/or body surface area are generally related to clearance of rituximab, but 

clinical relevance is often low. However, dose-finding studies are limited and the actual 

choice of dosage/schedule is not based on optimal anti-tumor activity. Thus, the optimal dose 
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regimen is not established. Whether given weekly or monthly in all investigated dose regimen 

(375 mg/m2, 500 mg/m2, 1000 mg every two weeks and 500 mg or 100 mg weekly), rituximab 

is present at therapeutic levels in the circulation of patients for weeks. Although, the 

pharmacokinetic pattern is not well studied, dose dependent increases in serum concentration 

are reported [3]. The mean serum half-life of rituximab often increases when repeated cycles 

are given. This suggests that the reduction in CD20 positive tumor mass demands a lower 

dose rituximab [68]. 

Metabolic drug-drug interactions are rare. This was demonstrated by the achievement of a 

similar dose intensity and toxicity of the CHOP component in the CHOP arm and the R-

CHOP arm suggesting that rituximab exerts no influence on the pharmacokinetics of the 

CHOP drugs. Furthermore, rituximab does not affect any of the cytochrome P450 enzymes 

responsible for metabolizing cyclophosphamide, doxorubicin, or vincristine or their excretion 

pathways [69]. Whether the same holds true for rheumatic patients with concomitant 

immunosuppressive treatment remains to be determined.  

The immediate toxic side effects of rituximab are characterized by acute allergic and cytokine 

associated reactions. They are common and manageable. Complement activation was recently 

found to play a role in antibody-induced infusion toxicity in both animal models and patients. 

Use of antibodies modified to have a reduced ability to fix complement induced fewer 

infusion reactions. This reduction in infusion reaction had little effect on anti-tumor activity 

[70]. However, the immediate toxicity of rituximab still compares favourably with most 

cytostatic agents. There is a strong evidence for its efficacy in NHL patients. In an 

autoimmune setting, repeated doses are needed. Although few autoimmune patients achieve 

long-term remission, it has been favored compared to long-term corticosteroid and 

immunosuppressive treatments. 

1.3.3 RITUXIMAB USAGE 

Rituximab was originally developed for treatment of lymphomas as a targeted therapy against 

CD20 positive non-Hodgkin lymphomas (NHL) [3, 4]. Subsequently, because of the rapid 

depletion of autoantibody producing B-lymphocytes and following a resolution of joint 

inflammation in a patient with lymphoma treated with rituximab, its use was proposed in 

rheumatoid arthritis (RA) [71]. Since then rituximab has been successfully used in a variety of 
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autoimmune diseases [72], e.g. systemic lupus erythematosus (SLE) and anti-neutrophil 

cytoplasmic antibody associated vasculitis (AAV).  

Rituximab use in NHL Rituximab was the first antibody approved by the US Food and Drug 

Administration (FDA) for use in the treatment of lymphoma. In 1997, it was approved by 

FDA for the treatment of relapsed or refractory, low-grade or follicular lymphomas. The 

recognition that rituximab could have a substantial therapeutic effect in cases of relapsed, 

indolent NHL opened a new era of monoclonal antibody therapy for cancer [3, 4]. Since then, 

it has become a backbone in the therapy of NHL including diffuse large B-cell lymphoma, 

follicular lymphoma, mantel cell lymphoma, chronic lymphatic leukemia (B-CLL), marginal 

zone lymphoma and Mb Waldenström. It has been investigated as either a single agent or in 

combination with standard chemotherapy regimens for lymphoma, such as CHOP 

(immunochemotherapy). It is also used in vivo purging before SCT and for maintenance 

therapy after remission [4, 69, 73-78]. 

Rituximab use in rheumatic diseases Rituximab is FDA approved for the treatment of 

moderate to severe RA not responsive to TNF antagonists [79, 80]. Most recently, it is also 

approved for two forms of AAV, granulomatosis with polyangiitis (GPA) (formerly known as 

Wegners granulomatosis), and microscopc polyangiit (MPA) [16]. In patients with refractory 

SLE, randomized placebo-controlled trials [81-83] failed to show a significance response rate 

for the rituximab arm. However, open-label studies have shown benefit in the use of 

rituximab [84-86]. Rituximab is regarded as the rescue treatment for severe or refractory 

manifestations, but it is used mostly on empirical basis in the rheumatic diseases. And hence, 

the number of patients receiving rituximab is increasing largely. Rituximab is often used 

repeatedly in part due to the early negligible effects of rituximab on the hematological 

parameters. However, the indirect consequences of repeated B-lymphocyte depletion on the 

remaining humoral and cellular immunity are not well investigated. Moreover, reports of 

unexpected and unusual late complications are appearing, highlighting consequences of the 

disturbance of this balance [87-91]. 
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1.4 OTHER LATE-ADVERSE EFFECTS OF RITUXIMAB 

1.4.1 THE EFFECT OF RITUXIMAB ON IMMUNITY 

Rituximab has direct effects on CD20+ B-lymphocytes and depletes B-lymphocytes from the 

peripheral blood (PB), bone marrow and lymph nodes, killing tumor cells and presumably 

disrupting pathological production of autoantibodies. After depletion, B-lymphocytes return 

to the peripheral blood at a mean of 8 months [81]. The repopulation of the B-lymphocyte 

starts by the appearance of immature (CD38++, CD10+, CD24+), followed by naïve (CD27) 

B-lymphocytes, while CD27+ memory B-lymphocytes may remain reduced for up to 2 years 

[92-93]. CD20 expression begins in the late pre-B cell phase and rituximab interrupts the 

generation of plasmablasts from memory B cells [94] which may interfere with the survival of 

long-lived, CD20+ plasma cells in secondary lymphoid tissue [95]. Moreover, rituximab 

response in patients with multiple sclerosis (previously considered T-cell mediated 

autoimmune disease) and clinical response in immune thrombocytopenic purpura patients 

with out anti-platelet antibodies, suggest that B-lymphocytes may not be the only target of 

rituximab therapy. 

Several studies have also suggested that B-lymphocytes have indirect effects on cellular 

immunity by activating T-lymphocytes through antigen presentation. An animal model 

exploring the immunological consequences of B-lymphocyte depletion showed impairment in 

CD4 T-lymphocyte and clonal expansion in response to protein antigens or pathogens, but no 

direct effect on T-lymphocyte subsets or activation status, and CD8 T-lymphocyte activation. 

In this model the combination of B-lymphocytes and dendritic cells were required for optimal 

antigen-specific CD4 T cell priming [96]. Likewise, there are reports on T-lymphocyte 

changes, including increase in regulatory and activated T-lymphocytes, and large granular T-

lymphocytes (T-LGL) [97-98]. Moreover, removal of the CD20 B-lymphocyte pool in 

autoimmune diseases indirectly causes the normalization of T-helper cell type 1 and 2 ratio, 

and increase in regulatory T-lymphocytes [99]. In another animal study, one could 

demonstrate a regulatory role of B-lymphocytes by producing interleukin 10 and B-

lymphocyte depletion could prevent autoimmune relapse through the expansion of regulatory 

T and B-lymphocytes [100]. 
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Hypogammaglobulinaemia has been reported in several studies, mainly in patients who are 

treated with intensive chemotherapy, SCT or with increasing courses of rituximab needed in 

relapsing autoimmune patients, probably reflecting bone marrow depression and the depth of 

B-lymphocyte depletion [101-105]. In support of this notion, very few cases of 

hypogammaglobulinaemia have been reported in patients treated with one course of rituximab 

[106]. Most hypogammaglobulinaemia is contributed by a significant fall of IgM levels, in 

contrast to slight decrease in IgG and IgA [107]. Consequences of these alterations such as 

infections remain to be determined.  

Recent studies show an increase incidence of infections in rituximab treated patients. On the 

contrary, a systematic review of rituximab in cancer patients did not show an increased risk of 

infection [108]. However, an evaluation in a randomized trial in follicular lymphoma patients 

on rituximab maintenance showed a significant increase in rate of infections [109]. Likewise, 

in a randomized trial of patients with RA, more serious infections occurred in the rituximab 

group compared with controls [110-111]. Similarly, in patients with HIV-lymphoma, 

rituximab may be associated with an increased risk of bacterial and opportunistic infections 

[112]. Recently, progressive multifocal leukoencephalopathy (PML) a rare but potential life-

threatening side-effect of rituximab with 90% fatality rate has been reported. It is caused by a 

reactivation of a latent JC virus, present in 80% of adults which may disseminate during 

compromised cellular immunity [113]. However, casual relationship between rituximab and 

PL is not established. Hepatitis-B virus (HBV) reactivation is rather a well-known 

complication of rituximab therapy due to the disturbance of immune surveillance by B-

lymphocyte depletion [114]. However, the limiting susceptibility is not known yet. A recent 

report suggested that hypo-Ig-emia prior to rituximab treatment was a risk factor for the 

development of severe infections in RA patients [115]. Finally, infectious complications will 

require long-term follow up data to be determined. Nevertheless, vigilance is warranted.  

  

 

1.4.2 THE EFFECT OF RITUXIMAB ON HEMATOPOIESIS 

The early effects of rituximab on hematological parameters are often negligible. Anemia and 

thrombocytopenia are uncommon. Few cases with severe thrombocytopenia have been 
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reported in patients who developed infusion related toxicity, suggesting cytokine-associated 

mechanisms [116-117]. However, neutropenia following rituximab has been more extensively 

reported. It is frequently of late onset character (> 4 weeks after treatment). Although, LON 

can occur when rituximab is used alone, it is more common when rituximab is used in a 

combination with chemotherapy or SCT [7]. The phenomenon of maturation arrest at the 

(pro)myelocyte stage of granulopoiesis in the BM of LON patients [12] have highlighted that 

B-lymphocytes may not be the only target of rituximab therapy but also indirectly affect 

granulocytes. 

A recent case report of LON patient treated with rituximab, showed extraordinary high-levels 

of serum BAFF during neutropenia period [118]. BAFF is, a member of TNF superfamily, 

produced and secreted mainly by myeloid cells (macrophages, monocytes and neutrophils) 

[27]. The biological role of BAFF is mediated by three specific receptors, two high affinity 

receptors, namely BAFF receptor (BAFF-R) and transmembrane activator-calcium interacting 

ligand, a low affinity receptor, B-cell maturation antigen. Binding to one the receptors gives 

BAFF different functions and they are found on B-lymphocytes, effector T-cells, plasma cells 

and plasmablasts [100].BAFF-R is expressed by all peripheral B-lymphocytes and it is a 

potent regulator of B-lymphocyte survival [119, 120]. BAFF-deficient mice exhibit defects in 

peripheral B-lymphocyte maturation and decreased levels of immunoglobulins [119]. Another 

animal model demonstrated that overexpression of BAFF leads to hyperplasia, 

lymphoproliferation, hyper-gammaglobulinemia and symptoms of autoimmunity [122]. 

Increased levels of BAFF have also been correlated with different types of autoimmune 

diseases [123]. On the other hand, lymphocytes produce numerous cytokines needed for 

granulocytes proliferation and differentiation suggesting the interdependence of each other. 

The intricate balance of lymphopoiesis and granulopoiesis governed by a complex cytokine 

balance in the BM environment may be hampered by rituximab [124]. Thus, causes and 

consequences of this disturbance such as late-onset neutropenia is the aim of our study and it 

will be discussed in detail in this thesis. 
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2. AIMS OF THE STUDY 

2.1 GENERAL AIMS 

To study incidence, mechanism, predisposing factors and clinical consequences of LON in 

lymphoma and rheumatic patients 

 

2.2 SPECIFIC AIMS 

-To study incidence, risk factors and clinical features of LON in lymphoma patients (Paper I) 

-To study incidence, risk factors and clinical features of LON in rheumatic patients (Paper II) 

-To elucidate the role of FCGR and BAFF promoter polymorphisms for the development of        

LON and clinical outcome in relation to genotypes and LON (Paper III) 

-To understand mechanisms of LON in relation to BAFF production in lymphopoiesis and 

granulopoiesis  (Paper IV) 
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3. PATIENTS AND METOHDS 

In this section materials and methods will be briefly summarized. Detailed descriptions are 

found in the “Materials and Methods” section of each paper. All studies were approved by the 

Ethics committee at Karolinska Institutet Stockholm, Sweden, and were performed in 

accordance with the Helsinki declaration. 

3.1 PATIENTS 
 
3.1.1 RETROSPECTIVE COHORT OF NHL PATIENTS (Paper I) 

We reviewed the medical records of all 113 consecutive lymphoma patients treated with 

rituximab alone or combined with chemotherapy or SCT during the period from July 2002 to 

June 2004 to identify periods of LON. All patients were treated at the Hematology Center at 

the Karolinska University Hospital, Huddinge. All patients with LON were detected at routine 

follow-up or emergency visit due to neutropenia. This cohort is used in Paper I. Details over 

NHL diagnoses and study design is given in this Paper.  

3.1.2 RETROSPECTIVE COHORT OF RHEUMATIC PATIENTS (Paper II and 

Paper III) 

The medical records of all 214 consecutive adult patients treated with rituximab for rheumatic 

diseases from June 2003 through March 2009 at the Department of Rheumatology at 

Karolinska University Hospital, Huddinge were reviewed to identify LON patients. Medical 

records were also reviewed for 2 years before start of rituximab treatment, in order to 

determine if the included patients had a previous history or other identifiable cause of 

neutropenia. Thus, patients with propensity for developing neutropenia as a consequence of 

autoimmune disease or prior therapy were excluded. This cohort is used in Paper II and III. 

Flow chart of the study population is given each Paper. For the purpose of this study, a control 

group was established after the detection of LON patients from the same rituximab cohort in 

order to control for confounding factors of neutropenia. Two control patients were chosen for 

each case of late-onset neutropenia (Paper II). Where as, in Paper III we expanded our control 

group to 50 patients i.e. 5 controls to 1 LON case (genotype and clinical outcome study).  
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3.1.3 PROSPECTIVE COHORT OF NHL PATIENTS (Paper IV) 

We included prospectively 174 consecutive NHL adult patients, treated with rituximab during 

the period of April 2009 until March 2011 at the Hematology Center, Karolinska University 

Hospital, Huddinge. Patients were treated and followed-up according to standard care 

protocol at the discretion of the treating physician. BM and blood samples were collected at 

the detection of LON. For the purpose of this mechanistic study, we have included LON 

patients with ANC ≤ 0.5 x 109/L, only. Flow chart of patients included and excluded from the 

study, and their diagnosis is given in Figure 1, Paper IV. A control group including 2 controls 

for each LON case was established from the same rituximab cohort at the time of detection of 

LON patients.  

3.2 METHODS 
 
3.2.1 MORPHOLOGICAL EVALAUATIONS 

Morphological evaluations were performed on BM and PB. Morphological evaluations 

included all hematopoietic series: erythrocytes, megakaryocytes, lymphocytes, plasma cells, 

monocytes and all stages of granulopoiesis (myeloblasts, promyelocytes, myelocytes/ 

metamyelocytes, band cells and segmented granulocytes).  Differential counts were 

performed on BM smears. And then, granulopoiesis and erythropoiesis (GE) ratio was 

calculated; the normal value is 2:1-5:1 (Paper I and IV).  

The maturation index (MI) of the granulopoiesis was also calculated according to the formula 

(myeloblasts + promyelocytes + myelocytes/ metamyelocytes + band cells and segmented 

granulocytes); the normal value is 1:3-1:5 (Paper I and IV).  

 

3.2.2 HAX-1 MUTATIONS  

Sequencing of HAX-1 gene was performed on DNA extracted from PB cells, according to the 

procedures reported by Klein and colleagues (Paper I) [125]. 

3.2.3 FLOW CYTOMETRY 

Flow cytometry were performed by using three-color fluorescence (Paper II) and by four or 

eight-color fluorescence (Paper IV) immunophenotyping. This was done according to 

standard procedures at the Departments of Pathology and of Laboratory Medicine, Division of 

Clinical Immunology and Transfusion Medicine, Karolinska University Hospital. Monoclonal 
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antibodies used for analysis of B-, T-, NK- and myeloid cells are given in Paper II and IV. 

Additional details are given in each Paper. All samples were analyzed by setting appropriate 

side and forward scatter gates. For the cell subpopulation analysis, a minimum of 10 000 

events were collected in the gate. Results were reported as the percentage of cells positive for 

each marker.  For PB flow cytometry analysis, the numbers of cells were calculated from the 

percent of these cells in the gate, the percent of specified cells and the complete blood counts. 

B-lymphocyte depletion is divided as follows: complete B-lymphocyte depletion is defined as 

B-lymphocyte count <0.01 x 109/L.  B-lymphocyte counts between 0.01 and 0.09 x 109/L 

were classified as “under depletion” and >0.09 x 109/L as “recovered”, respectively. 

 

3.2.4 ANTI-NEUTROPHIL ANTIBODIES 

Tests for anti-neutrophil antibodies were performed at the Department of Laboratory 

Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska University 

Hospital, Huddinge. The initial assay included granulocyte agglutination test (GAT) and 

granulocyte immunofluorescence test (GIFT). Complementary analysis by monoclonal 

antibody-specific immobilization of granulocyte antigen (MAIGA) was used in positive cases 

to characterize the specificity and to rule out false positivity. 

 

3.2.5 GENOTYPING 

Genomic DNA was isolated from peripheral blood mononuclear cells using QIAamp® DNA 

mini kit, according to the recommendations of the manufacturer (Qiagen, Hilden, Germany).  

FCGR genotyping of the single nucleotide polymorphisms (SNPs) in the FCGR3A 176 V/F 

and FCGR2A 131 H/R gene was performed with allelic discrimination using two Taqman 

assays.  FCGR2B 232 I/T genotyping was performed using oligonucleotide probing based on 

fluorescence resonance energy transfer technology. BAFF promoter genotyping was 

performed by restriction fragment length polymorphism analysis. Details are given in Paper 

III. All genotyping results were in consistent with Hardy-Weinberg equilibrium and 

genotyping efficiency were validated (Haploview v.4.1 software). All samples were run in du-

triplicates and non-working samples were also rerun in du-triplicates. 

 

 

 



 
 
 
 
 
 

25 
 

3.2.6 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)  

Serum levels of human BAFF, APRIL (a proliferation-inducing ligand) and G-CSF were 

determined by ELISA using Quantikine BAFF, APRIL and G-CSF immunoassay (R&D 

Systems Europe). Analysis were done according to the recommendations of the manufacturer. 

Plasma levels of human SDF-1 (stromal-derived factor-1) were determined by using 

Quantikine SDF-1 immunoassay (R&D Systems Europe) according to the recommendations 

of the manufacturer. All assays specificity and reproducibility were ascertained by the 

manufacturer. All samples were analyzed in duplicates. 

 

3.2.7 STATSTICAL ANALYSIS   

Values are given as mean ± SD (standard deviation) or median (and interquartile range, IQR) 

depending on value distributions. The chi-squared, 2-sided Fisher exact t-tests, Mann-

Whitney U-test and Spearmans correlation analysis were used for comparisons as suitable. 

Wilcoxon’s matched pairs/signed rank test was performed to test within-group changes at 

different time-points. Associations between gene polymorphisms, LON and clinical outcomes 

were analyzed by logistic binary or ordinal regression or Spearman’s correlation analysis. The 

Kaplan-Meier method were used to display the cumulative probability of remaining flare-free 

time at 12 months with log-rank test to assess between-group differences. 

All tests were 2-sided and P values less than 0.05 were considered significant. 
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4.  RESULTS AND DISCUSSIONS 

4.1 INCIDENCE (Papers I, II and IV) 

The incidence of LON is studied retrospectively in Paper I and Paper II. In Paper I, we 

reviewed the medical records of all 113 consecutive NHL patients treated with rituximab 

alone or combined with chemotherapy or SCT, described in details in methods and patients. 

LON was diagnosed in 8 (7%) of the patients. LON was defined here in as an unexplained 

ANC < 1.5 x 109/L corresponding to neutropenia of grade 2-4 according to NCICT criteria 

starting from 4 weeks after end of rituximab therapy. The follow-up period for detection of 

LON is 9 months. Thus, alternative causes of neutropenia were ruled out by a thorough 

review of medical history including concurrent drug intake. The characteristics and diagnoses 

of these patients are given in Table 1-Paper I. All LON patients presented at routine follow-up 

or at emergency visit. Although, this study was not powered enough to identify incidence 

differences between diagnoses and treatments, we observed a higher incidence of LON (20%) 

among patients who underwent SCT compared to those treated with standard chemotherapy 

alone.  

The occurrence of LON in rituximab treated autoimmune patients was suggested only in a 

few case reports when we performed the study of LON rheumatic patients (Paper II). In this 

paper, we evaluated the medical records of all 214 consecutive patients treated with rituximab 

for rheumatic diseases; details are given in Methods and Patients. Here, we have used the 

same definition of LON as in Paper I but we extended the follow-up period to 12 months 

since the reported mean B-lymphocyte recovery times was reported to range up to 12 months 

[126]. Indeed, we have observed a case of LON with a neutropenia episode at 295 days after 

rituximab treatment in Paper I-Table 1. Alternative causes of neutropenia were ruled out by a 

thorough medical review. For instance, tests were performed also of for the presence of anti-

neutrophil antibodies. Moreover, medical records were reviewed for 2 years before the start of 

rituximab in order to determine if the included patients had a previous history of neutropenia 

as a consequence of the autoimmune disorder or prior concomitant immune suppressive 

treatment. Thus, 5 patients were excluded from the analysis due to possible alternative causes 

of neutropenia (Figure 1-Paper II). In the end, 209 patients remained for LON analysis. LON 

was diagnosed in 11 (5%) of the patients depending on diagnosis (3-23%). A higher incidence 

of LON was observed in SLE and GPA patients (23% and 20%, respectively) than RA 

patients (3%). 
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For the purpose of this study (Paper II), the cohort was divided in to 2 consecutive groups 

(group A and B), according to frequency of blood sample collection and flow cytometry 

follow-up. In group A (N=99), complete blood cell counts (CBCs) were performed once a 

month and flow cytometry of PB was done every 3 months (June 2003-December 2007). In 

group B (N=110), only CBCs were performed (at most) every 3 months (January 2008-March 

2009). A higher incidence of LON was evident in group A (n=9) (9%) than group B (n=2) 

(2%). However, higher numbers of SLE and GPA patients were included in group A than in 

group B. The observation that GPA and SLE patients appeared to have a higher incidence of 

LON was intriguing. However, the numbers of SLE and GPA patients were too low to draw a 

conclusion as to a specific disease-drug relationship. Nevertheless, the more often the CBCs 

were obtained, the higher was the LON incidence. 

In Paper IV, a prospective mechanistic study of 174 consecutive NHL adult patients 

(described in detail in Methods and Patients), we included only patients with ANC < 0.5 x 

109/L as it was not aimed to study the incidence of LON. All patients were included at start of 

rituximab treatment and followed-up at least 12 months. Nevertheless, we found 14 (8%) of 

LON with agranulocytosis after we ruled out alternative causes of neutropenia by a medical 

history, physical examination and a thorough clinical investigation. A higher incidence of 

LON was also observed in patients after SCT (57%) compared to those treated with standard 

chemotherapy, confirming our previous result of a higher LON incidence in SCT group. 

Finally, our incidence reports are probably an underestimation, as CBCs were not collected on 

regular basis and patients with a shorter period of neutropenia might be missed. 

4.2 TIME TO ONSET AND DURATION (Papers I, II and IV) 

The median duration of LON was 54 days (range, 10-120 days) in our retrospective 

lymphoma study (Paper I, Table 1). On the contrary, we noted a shorter duration of LON in 

our prospective NHL analyses (Paper IV, Table 2), i.e. 15 days (range, 7-33 days). However, 

we included only patients with severe neutropenia for this mechanistic study and majority of 

patients needed G-CSF treatment. Likewise, the median duration of neutropenia in Paper II 

was 9 days (range, 4-20) (Paper II, Table 1). Similarly, the majority of LON cases in this 

rituximab treated rheumatic patients were also treated with G-CSF. Thus, sustained 

neutropenia was observed in patients who were not receiving G-CSF. It is not known how 
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much G-CSF treatment shortens the period of agranulocytosis in this set of patients, who 

otherwise, due to more profound neutropenia, is expected to have a longer duration of 

neutropenia than those with mild neutropenia. 

The median time to onset of LON in our studies after the termination of rituximab treatment 

was 88 days (Paper I), 102 days (Paper II) and 96 days (Paper IV). Some LON cases had a 

recurrence of LON during the follow-up period or with retreatment of rituximab. However, 

they had similar clinical features as in the first LON episode. The cumulative incidence of 

late-onset neutropenia in relation to follow-up time is given in Figure 2A, Paper II. 

Interestingly, this coincides with the period of B-lymphocyte depletion, implying that LON 

occurs before B-lymphocyte recovery after rituximab therapy. The relationship between B-

lymphocyte depletion and neutropenia is given in Figure 2D, Paper II. 

4.3    RISK FACTORS AND CAUSES OF LON 

4.3.1 TREATMENT RELATED FACTORS (Paper I, II and IV) 

We observed a higher incidence of LON in lymphoma patients after SCT (Paper I and IV) 

implying that high cumulative doses of myelotoxic agents, such as those used in SCT, might 

be a risk factor for LON development. Likewise, we found a higher incidence of LON in GPA 

and SLE patients compared to RA patients (Paper III) and those patients had received more 

myelotoxic and immunosuppressive treatment compared to RA patients (Supplementary 

Table, Paper II). This is suggestive of that higher doses of myelotoxic agents could be a risk 

factor. But, we did not find a correlation to a single agent cumulative dose, e.g. the cumulative 

doses of methotrexate and rituximab (Papers II and IV).  

4.3.2 B-LYMPHOCYTE DEPLETION (Paper II and IV) 

LON occurred during the period of B-lymphocyte depletion and therefore we studied the 

course of B-lymphocyte depletion and recovery in detail in Paper II. This was a cohort and 

case-controlled retrospective study in rituximab-treated rheumatic patients. For this patient 

group under concomitant immune modulating treatment a matched control group with similar 

treatment pattern is used in order to control for confounding factors of neutropenia. Flow 

cytometry follow-up were performed on PB at baseline and 3, 6 and 12 months after 

rituximab treatment. We compared the levels of B-lymphocyte depletion between LON 

patients and non-LON matched controls. There was no significant difference in B-lymphocyte 

counts between LON and control non-LON patients at base line. All patients showed 
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complete depletion at 3 months after treatment (except for 2 non-LON matched controls). At 

6 months, complete B-lymphocyte depletion persisted in all LON patients where as only 2 

control patients exhibited complete depletion (p=0.002) (Figure 2B, Paper II). Interestingly, 

all LON cases with available complete flow cytometry results presented with neutropenia 

during the period of B-lymphocyte depletion. The relationship between LON and B-

lymphocyte depletion over time is depicted in Figure 2D. Thus, the levels of B-lymphocyte 

depletion may help in identifying patients at risk for LON development. 

In Paper IV, flow cytometry tests were performed in the BM. BM aspirates were collected 

during LON for LON patients and at the corresponding time of LON for non-LON matched 

controls. Ninety two% of LON patients developed LON during complete depletion. However, 

only 30% of controls displayed a complete depletion. Thus, there was a significant difference 

in the numbers of CD19+CD20+ B-lymphocytes between LON and non-LON controls 

(p=0.002). Similar to results in Paper II, we did not find significant differences in the numbers 

of subpopulations of T-cells. A direct relationship between B-lymphocyte depletion and LON 

could not be described in Paper II, since blood samples were not available during LON 

period. Here, in a cohort of NHL patients, we confirmed the observation holds true even 

during the LON period (Paper IV). 

4.3.3 T-CELL SUBPOPULATIONS (Paper II and IV) 

The numbers of T-cells (CD3+) and NK cells (CD56+, CD3-) did not differ significantly 

between the LON or control groups (Paper II and IV). There were no significant differences 

in the numbers of subpopulations of T-cells (i.e. CD4+ T-cells, CD8+ T-cells) or for CD4+ and 

CD8+ ratios. Moreover, we did not observe significant differences in the numbers of T-LGL 

cells (CD3+, CD56+) between LON and control groups (Paper II and IV). In addition, none of 

the cases, LON or non-LON controls, exhibited a proliferation of T-LGL, as assessed 

morphologically (Paper IV). 
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4.3.4 GENOTYPES (Paper III) 

We analyzed FCGR single nucleotide polymorphisms (FCGR2A 131H/R, FCGR2B 232I/T 

and FCGR3A 176V/F) and BAFF gene promoter polymorphism -871C/T, in Paper III, since 

the binding of rituximab to Fc gamma receptors (FcγR) bearing macrophages and natural 

killer cells is postulated to be an important step in the ADCC mechanism of a rapid depletion 

of CD20+ B-lymphocytes. Certain single nucleotide polymorphisms (SNP) in the FCGR gene, 

particularly the FCGR3A 176 V/V genotype, enhance the ligation of rituximab to this receptor 

[127-128]. Moreover, Serum BAFF level raises before the return of B-lymphocytes to the PB 

after rituximab therapy and an enhanced generation of BAFF has been associated with the 

presence of a certain SNP of BAFF gene promoter (the -871 T/C genotype) [129-130].  

Genotyping was performed on 11 LON patients and 50 non-LON controls, matched regarding 

diagnosis, and had similar age, gender and treatments. The FCGR3A 176V allele was 

significantly more often associated with LON compared to the FCGR3A 176 F allele 

(comparison in V/V vs V/F or F/F groups) (p=0.03) (Figure 2a, Paper III). The number of V 

alleles was significantly correlated to LON (r=0.42; p=0.01). We, then, determined how much 

each V allele affected the risk for LON development by logistic regression, and found that 

each additional V allele was associated with 4-fold increase in the odds of ratio for LON 

(p=0.017). 

There were no significant associations between LON and the FCGR2A 131 H/R, FCGR2B 

232 I/T and BAFF 871 I/T genotypes. However, there was a reciprocal relationship for LON 

versus non-LON groups in the distribution of the FCGR2B and the FCGR3A genotypes 

(Figure 2a and 2c, Paper III). Forty-five per cent of LON patients exhibited the BAFF 871 T/T 

genotype compared to 24% in the non-LON group (P=0.1) (Figure 2d, Paper III). 

 

4.3.5 SERUM IMMUNOGLOBULIN LEVELS (Paper II and III) 
 
Immunoglobulin levels were measured after rituximab treatment and compared between LON 

and non-LON group in Paper II and III. There were no significant differences in serum IgG, 

IgA and IgM levels at baseline. None of the patients had hypogammaglobulinemia at baseline. 

All patients showed a decrease in IgM levels after rituximab treatment. However, a significant 

difference in IgM levels between the LON and non-LON controls was detected at 6 months 

(P=0.027) (Paper II), probably, reflecting differences in the depth of B-lymphocyte depletion. 

Likewise, we found that LON patients had a more pronounced decrease in IgM levels during 
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the first follow-up year by using an extended non-LON control material in Paper III. 

However, there were no significant differences in the decreases of IgG and IgA levels 

between LON and controls. Thus, the levels of IgM may helpful in identifying patients at risk. 

We related serum IgM changes to FCGR and BAFF genotypes since an enhanced binding of 

rituximab to FcγRs might confer more pronounced and/or prolonged IgM reduction and 

recovery of immunoglobulin production is partly governed by BAFF [27]. There was no 

significant difference for IgM levels in the FCGR3A V/V and V/F or F/F groups at baseline. 

However, patients with V/V genotype, compared to V/F or F/F, had a more pronounced 

decrease in IgM levels the first year, measured between the baseline and the lowest value. 

Thus, patients homozygous for high-affinity V-allele of FCGR3A had lower IgM levels over 

time than those with the low-affinity F-allele, independently of gender and previous treatment 

(p=0.016). There was no significant association between serum IgM and other tested FCGR 

and BAFF promoter polymorphisms. Moreover, there was no association between serum IgG 

levels at baseline or over time and LON occurrence or the gene polymorphisms studied here. 

Thus, high-affinity V-allele of FCGR3A, leading to an enhanced binding of rituximab to 

FcγRs, might confer more pronounced or prolonged IgM reductions as a result of deeper and 

sustained B-lymphocyte depletion.  

 
4.3.6 ANTI-NEUTROPHIL ANTIBODIES (Paper II and IV) 
 
We studied the role of anti-neutrophil antibodies for the development of LON in Paper II and 

IV by comparing LON and non-LON matched controls. Although few LON and non-LON 

rheumatic controls displayed positive agglutination and granulocyte immunofluorescence test, 

none of the patients with LON or matched controls displayed positivity on MAIGA test for 

specific antineutrophil antibodies. Moreover, there was no significance difference regarding 

the number of patients between these groups (Paper II). Furthermore, we did not find anti-

neutrophil antibodies in LON or non-LON matched controls in our prospective lymphoma 

study (Paper IV). Thus, the development of LON in our studies was not associated with 

production of anti-neutrophil antibodies. 
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4.4 CLINICAL FEATURES AND IMPACT OF LON 

 
4.4.1 INFECTIONS (Paper I, II and IV) 
 
In the majority of cases of lymphoma patients in our studies, LON was self-limited and did 

not have serious infectious complications (Paper I and Paper IV). Patients with severe 

neutropenia needed G-CSF treatment and a few received antibiotics (Table 1, Paper I and 

Table 2, Paper IV). However, in our study of rheumatic patients (Table 1, Paper III), the 

majority of LON patients developed severe infections and received G-CSF. Thus, 7 of 11 

patients were hospitalized because of infections, 6 of them with sepsis and 1 with febrile 

neutropenia, and all required intravenous antibiotics; 6 also received G-CSF. The majority of 

cases had concomitant immunosuppressive treatment. This was suggestive of an increased 

vulnerability in rheumatic patients to develop infections during LON period. Hence, the 

clinical course of LON in patients with concomitant immunosuppressive treatment seems to 

differ from that of lymphoma patients.  

4.4.2 CLINICAL OUTCOME (Paper III) 

Although LON was associated with considerable direct morbidity in rheumatic patients (Paper 

II) we asked if LON might confer later benefits with regard to disease remission duration, 

based on the assumption that LON might be a sign of a more pronounced rituximab effect i.e. 

a more pronounced B-lymphocyte depletion. We defined the time to flare of the rheumatic 

disease as the time period between the day of rituximab initiation and the recurrence of 

symptoms that warranted therapy escalation beyond a temporary increase in the 

glucocorticoid dosage. LON occurrence was positively correlated to a longer time to flare at 

12 month assessment (r= 0.27, p=0.043). Also in logistic regression analyses, the presence of 

LON was associated with longer time to flare independently of gender and previous treatment 

at 12 month assessment (OR 0.10, P=0.028), but not at later time points. Thus, LON was 

associated with a short-term reduction in flares shown by Kaplan-Meier curve in Figure 4b, 

Paper III.  

Having shown a relation between the FCGR3A V/V genotype and occurrence of LON, we 

asked if the here assessed FCGR and BAFF genotypes related to the time to flare after 

rituximab therapy. The results are presented in Figure 4c, Paper III. There was a significant 

positive correlation between the FCGR3A 176 V/V (vs. V/F or F/F), and a longer time to flare 

(r=0.29, P=0.039). Also in logistic regression, possession of the V-allele was negatively 
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associated with flare at 12-month assessment, OR 0.10, p=0.034, but not at later time-points. 

This relation is also represented by the Kaplan-Meier curve in Figure 4c, Paper III. The 

presence of LON and the possession of the FCGR3A 176 V allele were together stronger 

predictive factors for longer time to flare independently of gender and previous treatment, OR 

0.20, p=0.021.  

 

No association was found between other tested FCGR and BAFF promoter polymorphisms 

and clinical outcomes (Figure 4d, Paper III). Thus, the high affinity FCGR3A 176 V/V 

genotype, as well as the presence of LON, was related to a longer time to flare of the 

rheumatic disease. 

 

4.4.3 MATURATION ARREST (Paper I and IV) 

Maturation arrest at (pro)myelocyte stages of granulopoiesis is an interesting clinical feature 

of LON (Paper I and IV). Four additional LON patients with severe neutropenia in Paper I, 

where the morphology was evaluated during LON, showed a selective depletion of 

granulopoiesis with an inverted granulopoiesis-erytropoiesis (G/E) ratio. They exhibited 

maturation arrest at (pro)myelocyte stages of granulopoiesis (Figure 1, Paper I).  We were 

intrigued by the similarity of this maturation arrest often seen in patients with SCN. We 

assumed these to be heterozygous carriers of e.g. HAX-1 mutations as they had normal ANC 

values prior to lymphoma treatment and might be at risk of developing neutropenia as an 

idiosyncratic drug-reaction. And hence, we performed HAX-1 mutation analysis. However, all 

four cases were homozygous for wild-type HAX-1. Moreover, BMs were performed upon 

neutrophil recovery and did not show any residual abnormalities. 

 

We performed BM in all LON patients during LON period in case-controlled prospective 

NHL study (Paper IV). Likewise, maturation arrest at (pro)myelocyte stages of granulopoiesis 

was evident. All non-LON controls showed normal granulopoiesis and normal GE ratio 

except in 3 cases showing a tendency to GE inversion but this with consistent with a slight 

granulopoiesis suppression. Confirmatory flow cytometric comparisons between LON and 

controls was also done showing significant differences regarding numbers of myeloblasts and 

promyelocytes, (p=0.018) between LON and non-LON controls. Interestingly, the only 
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rheumatic LON patient with BM available showed also maturation arrest at (pro)myelocyte 

stages of granulopoiesis (Paper III). Thus, maturation arrest could be demonstrated in all LON 

patients depending on when BM examination was done. The occurrence of a maturation arrest 

is reminiscent of the findings in SCN, but the underlying molecular mechanism of this arrest 

in LON patients is unknown. Nonetheless, this observation suggests that profound B-

lymphocyte depletion may affect selectively granulopoiesis. 

4.5 B-CELL ACTIVATING FACTOR (BAFF) AND LON 

4.5.1 BAFF AND B-LYMPHOCYTE DEPLETION (III and IV) 

The pronounced B-lymphocyte depletion in LON patients during neutropenia and as well as 

regeneration of B-lymphocytes following a normalized ANC suggested that LON may be 

related to factors involved in the proliferation of B-lymphocytes, such as BAFF. BAFF, a 

cytokine mainly expressed by neutrophils and monocytes, plays a central role in the 

stimulation of B-lymphocyte proliferation, differentiation, immunoglobulin production and 

survival (Moore et al). Serum BAFF level increases following B-lymphocyte depletion after 

rituximab treatment and this rise precedes the return of B-lymphocytes to the PB [131].  

Likewise, LON and non-LON controls showed increases of serum BAFF levels at 3 months 

and a decrease thereafter (Figure 3a, Paper III). However, few blood samples were available 

at baseline and at 3, 6 and 12 months follow-up. Nevertheless, since an association has been 

described previously between the BAFF -871 promotor T/T genotype and higher serum BAFF 

levels [129, 130], we analyzed such relationships. There was no significant association 

between serum BAFF levels (or changes in the levels from baseline) and the BAFF gene 

promoter -871 T/C polymorphism when LON and non-LON groups were compared. 

However, in the LON and non-LON group, we observed a trend-wise positive association 

between the T-allele (compared to C) and an increase of serum BAFF levels between 0 and 3 

months (r=0.27; p=0.073). Blood samples were not available during LON period in this study 

for a correlative study of LON and BAFF. 

In Paper IV, analysis was done on samples taken during and after the LON period for LON 

patients. Samples were analyzed from all 14 LON and 26 corresponding matched controls on 

PB. However, for non-LON matched controls, a sample was taken at the corresponding time 

of LON. Non-LON controls do not show any abnormalities in granulopoiesis and have normal 

granulocyte numbers, and we therefore assumed that cytokine levels should be comparable to 
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values seen after the LON period i.e. when LON patients normalized in ANC. In addition to 

BAFF, we have also analyzed other cytokines (APRIL, SDF-1 and G-CSF) involved in 

proliferation and hemostasis of lymphopoiesis and granulopoiesis (Paper IV). Serum BAFF 

values increased significantly in all LON patients (except one) during the LON period 

(p=0.006) and decreased after the LON period and reached the values measured for non-LON 

matched controls at a corresponding time for LON. Thus, serum values after the LON period 

and in matched controls were similar (p=0.096). However, there was significant difference 

between BAFF values during the LON period and controls (NHL patients with no LON) 

(p=0.023), as shown in Figure 2, Paper IV. 

We did not observe significance differences regarding serum values for APRIL, SDF-1 and 

G- CSF between LON and controls or between values during and after LON for LON 

patients.  

 4.5.2 BAFF IN RELATION TO NEUTROPENIA 

Our observation of a correlation between an increase in serum BAFF levels and neutropenia 

suggested that the reduction in granulocyte counts might be related to the levels of BAFF in 

serum. BAFF is produced by monocytes and neutrophils [26, 27] but our LON patients 

experienced severe neutropenia and a lack of granulopoiesis and we therefore turned our 

attention to other BAFF producing cells. Interestingly, we noted a significant increase in the 

number of monocytes in LON patients coinciding with neutropenia supporting the notion that 

this is a compensatory mechanism to fulfill the need of increased BAFF production to 

promote the proliferation of B-lymphocytes (Paper IV). Hence, we compared changes (Δ) in 

serum BAFF levels between the levels measured during and after the LON period and the 

lowest ANC reached during the LON period. We found that (Δ) BAFF levels, i.e. the increase 

in BAFF levels, were inversely correlated to the lowest ANC during the LON period (R=-

0.818, P=0.01). 
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5. GENERAL DISCUSSIONS 

5.1 INCIDENCE, TIME TO ONSET AND DURATION 

It is difficult to determine the true incidence of LON. Most incidence reports are derived from 

studies on rituximab treated lymphoma patients and there are few reports from an 

autoimmune setting. Incidence reports are confounded by differences in inclusion criteria, i.e. 

time to neutropenia after rituximab treatment (varies from 1 to 2 months), grades of 

neutropenia (ranges from grade II to grade IV, i.e, ANC between 0.1 and 1.5 x 109/L), and 

follow-up after rituximab treatment (varying from 6 to 12 months). Moreover, most studies 

are of retrospective nature without appropriate controls. Thus, the incidence reports of LON in 

lymphoma patients range from 5.6% to 27.3% [6-13]. This is summarized in Table 1. Indeed, 

other studies have reported a much higher incidence of LON, but these studies lacked a clear 

definition of LON and included few patients for incidence calculation, 14 and 10, respectively 

[132, 133]. Furthermore, LON cases were detected at routine follow-up at most once a month 

and, hence the reported incidence data are probably underestimation since patients with a 

shorter period of neutropenia, being asymptomatic, could have been missed. Nevertheless, the 

incidence figures are the highest ever noted for idiosyncratic drug-induced neutropenia [1, 2]. 

Moreover, DIAG reports never revealed neutropenia >7 days after cessation of drug 

treatment. 

The median duration of LON reported ranged from 6 to 77 days depending on the ANC 

inclusion criteria, Table 1. Although, the reported median onset of LON after the termination 

of rituximab treatment varied between 56 and 175 days, all except one occurred 

approximately before 4 months, i.e. before B-lymphocyte recovery. This is in consistent with 

our studies. The reported incidence of LON in relation to median duration and time to onset of 

neutropenia is given in Figure 2. The median duration and time to onset of LON calculated 

from these studies is approximately 20 days and 120, respectively.  
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Table 1. Incidence of LON after rituximab treatment in lymphoma patients 

 

LON=late-onset neutropenia, ANC=absolute neutrophil count, grade IV=ANC < 0.5 x 109/L, grad III=ANC < 1.0 x 109/L, grad II=ANC <1.5 

x 109/L, DLBCL=diffuse large B-cells lymphoma, R=rituximab, ASCT= autologous stem cell transplantation. 

 

 

 

 

Study  No. of 
pts. 

Patient 
charac-
teristics 

Treatment ANC 
inclusion 

Media
n time 
to 
LON 
(days) 

Median 
duration 
of LON 
(days) 

Incidence of 
LON % 

Cattaneo et al 

 

77 Mixed Mixed Grade II 70 77 27.3 

Nitta et al 

 

107 Mixed Mixed Grade III 124 28 24.9 

Liemeux et al 

 

39 DLBCL Chemotherapy 
+  R + ASCT 

Grade IV 114 9 15 

Lai et al 

 

121 DLBCL Chemotherapy 
+ R 

Grade III 129 69 13.2 

Chawatantorn 
et al 

53 Mixed Mixed Grade IV 122 9 13 

Dunleavy et al 

 

76 Mixed Chemotherapy 
+ R 

Grade IV 175 14 8 

Tesfa et al 

 

113 Mixed Mixed Grade III 88 54 7 

Fukuno et al 

 

54 Mixed Mixed Grade IV 56 6 5.6 



38 
 

Figure 2. Incidence in relation to median duration and time to LON in lymphoma 

patients 

 

 

 

 

 

 

 

 

 

 

 

 

Reports on LON incidence in rituximab treated autoimmune-patients were scarce, except for a 

few case reports in patients with autoimmune diseases [14-17]. Hence, we performed a case-

control analysis of retrospective cohort of 209 patients treated with rituximab for well-defined 

rheumatic diseases. We found 5% incidence of LON which is comparable to the reports in 

lymphoma patients, Paper II. The duration and time to onset of LON were similar too. Since 

then, a recent report showed an incidence of 6% in this patient group with similar clinical 

characteristics [18]. This emphasizes that LON is not unique for rituximab-treated 

hematology patients.    

5.2 PREDISPOSING FACTORS 

The risk factors for the development of LON are not fully understood. Higher rates are 

reported in NHL patients after SCT [7, 9, 13, 132, 133]. We reported similar results in our 

studies (Paper I and IV). In our recent study of LON on rheumatic patients, the incidence of 

LON appeared to vary with the autoimmune disease type (Paper II). In that, we found a higher 

rate in GPA and SLE patients compared to RA patients. However, GPA and SLE were 

heavily treated with myelotoxic and immunosuppressive drugs which could have resulted in 
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this observation. Moreover, higher rates are reported in lymphoma patients receiving previous 

chemotherapy, a high cumulative dose of rituximab, previous use of purine analogues or high-

dose methotrexate containing regimens [6, 7]. However, we could not find a correlation 

between LON and cumulative doses of rituximab and methotrexate (Paper II and Paper IV). 

Nevertheless, the evidence points to myelotoxic treatments as a risk factor for LON 

development.  

 

One of the difficulties in characterizing LON is that heterogeneous populations assessed in 

most studies, i.e. different diagnosis, disease stage, treatment intensity and history. In 

addition, most of the studies are of retrospective nature and lack matched control groups. Still, 

a recent study on a homogenous population of patients with DLBCL, treated according to R-

CHOP protocol, could not identify any significant predisposing factor by analyzing patient 

age and performance status, disease stage, serum lactate dehydrogenase, BM lymphoma 

involvement, international prognostic index, blood counts and albumin levels [9]. 

 

The absence of a clearly discernible common risk factor profile in these studies may indicate 

that host genetics traits may also play a role in LON development. The impact of 

polymorphisms of immunoglobulin (Ig) G or FcγR genes on drug induced 

neutropenia/agranulocytosis have been described previously [134]. Two recent studies in 

rituximab treated lymphoma patients have reported a correlation between a higher rate of 

LON and a specific polymorphism in the IgG Fc receptor FCGR3A 176 V/F [135, 136]. We 

found also that this genotype was correlated to LON development in rheumatic patients 

(Paper III). Interestingly, we could demonstrate that each additional V allele was associated 

with a 4-fold increase in the odds ratio of neutropenia, identifying a risk factor for LON 

development in rheumatic patients.  

 

The FCGR3A 176 V/V genotype enhances the ligation of rituximab to FcγRs. This suggested 

that patients with high affinity FCGR3A 176 V allele might develop maximum B-lymphocyte 

depletion. Indeed, we recently reported a more pronounced and sustained B-lymphocyte 

depletion and lower levels of IgM in LON patients compared to rituximab treated matched 

controls with rheumatic diseases (Paper II). Thus, the levels of B-lymphocyte depletion and 
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IgM, as well as the possession of FCGR3A 176 V/V genotype may help in identifying patients 

at risk for LON development.  

 

5.3 POSSIBLE MECHANISMS OF LON 
The mechanism of LON after rituximab treatment is still under investigation, and many 

theories have emerged. However, two major approaches are frequently advocated, i.e 

disordered immunological status and disturbance of hematopoiesis following rituximab 

treatment (Figure 3). Mechanisms of LON after rituximab therapy seem to differ from 

mechanisms of other DIAG/DINP. This is reviewed in the relevant publication added to this 

thesis, Idiosyncratic drug-induced agranulocytosis: possible mechanisms and 

management.  Tesfa et al, Am J Hematol. 2009 jul;84(7):428-34. Review  

 

Direct cytotoxicity of rituximab is highly unlikely. First, CD 20 is not expressed on 

neutrophils or stem or progenitor cells. Secondly, there are no correlations either to rituximab 

pharmacokinetics and pharmacodynamics, since LON occurs long after disappearance of the 

rituximab. An infectious etiology, e.g. parvovirus B 19, has been purposed in a few case 

reports [137, 138], but this could not be confirmed by other studies [Paper IV, 6-13]. The 

early reports on LON have hypothesized the B-cell reconstitution of immune repertoire after 

rituximab induced B-lymphocyte depletion may favor the production of autoantibodies 

against neutrophils and their precursor [10, 139]. However, this finding has not been 

consistently demonstrated in further studies [Paper II, Paper IV, 6-9, 11-13].   

 

Some authors have postulated the proliferation of T-LGL due the lymphocyte subpopulation 

imbalance following rituximab therapy may lead to LON [140, 141]. They proposed T-LGL 

proliferation might lead to the secretion of FAS and FAS ligand, leading to apoptosis of 

mature neutrophils. However, this could not explain observations of development of excess T-

LGL without neutropenia, seen in patients after non-myeloablative SCT and fludarabine 

treated B-CLL [142]. We and others did not find a proliferation of T-LGL in PB or BM 

[Paper I, Paper IV, 6-13]. 

 

Maturation arrest at the pro(myelocytes) stages of granulopoiesis in the BM of LON patients, 

a finding seen in patients with SCN such as Kostmann disease, is reported by our group and 

others [Paper I, Paper IV, 13, 140]. Maturation arrest at pro(myelocytes) stages of 
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granulopoiesis is a characterstic, but rarely well defined, morphological feature of  SCN due 

to mutations in HAX-1 and ELANE genes [21, 22], but it is not found in many other severe 

chronic neutropenia states. It has been attributed to an excessive apoptosis of neutrophil 

progenitors in SCN patients [23, 24]. As stated above, we could not show such mutations in 

our LON patients (Paper I). Thus, the mechanism behind maturation arrest in LON patients is 

not understood yet. Nevertheless, this finding implies that a profound B-lymphocyte depletion 

selectively hampers granulopoiesis. 

  

The median time to onset of LON coincided with the period of B-lymphocyte depletion. 

Hence, we turned our attention to the course of B-lymphocyte depletion in search for possible 

mechanism of LON. In deed, a recent study proposed that perturbations of SDF-1 during B-

lymphocyte recovery retards neutrophil egress from the BM [11]. However, the median time 

to onset of LON is too early for B-lymphocyte recovery (Paper II and IV). Moreover, our 

LON patients presented with LON during complete B-lymphocyte depletion and, we found a 

pronounced and prolonged B-lymphocyte depletion in LON patients compared to non-LON 

rheumatic patients (Paper II). We confirmed this observation in a prospective study of 

lymphoma patients (Paper IV). The majority of our LON patients harbor FCGR3A V 

polymorphism (Paper III). This is in consistence with a previous report that B-lymphocyte 

depletion was better in patients with FCGR3A V polymorphism [49].  Hence, the depth of B-

lymphocyte depletion might play an important role for mechanisms of LON. 
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Figure 3. Possible mechanisms for late-onset neutropenia 

 
APRIL: a proliferation-inducing ligand; BAFF: B-cell activating factor; CMV: cytomegalovirus; 

HSCT: hematopoietic stem-cell transplantation; G-CSF: granulocyte colony stimulating factor; LON: 

late-onset neutropenia; SDF-1: stromal-derived factor; SNPs: single nucleotide polymorphisms; T-

LGL: T-cell large granular lymphocyte leukemia/disorder 

 

The pronounced B-lymphocyte depletion in LON patients coinciding with neutropenia and on 

the other hand regenerated B-lymphocytes showing a normalized ANC suggested that LON 

may be related to factors involved in the proliferation of B-lymphocytes, such as BAFF. In 

addition to BAFF, which plays a central role in B-lymphocyte proliferation, we have also 

analyzed other cytokines (APRIL, SDF-1 and G-CSF) involved in proliferation and 

hemostasis of lymphopoiesis and granulopoiesis. We did not observe significance differences 

regarding serum values for APRIL, SDF-1 and G- CSF. However, we found that serum BAFF 

levels increased significantly during the LON period and this increase differed significantly to 

BAFF levels measured in non-LON matched controls. This is in agreement with a previous 

report of extraordinary BAFF levels during LON in a lymphoma patient [118]. Since, we 
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found a correlation between an increase in serum BAFF levels and neutropenia, we 

hypothesized that the decrease in granulocyte counts might be related to the levels of serum 

BAFF. Interestingly, the granulocyte count was inversely correlated to the increase in serum 

BAFF levels. There was a corresponding significant increase in the number of monocytes 

during neutropenia, implying a compensating monocytosis to meet the need of increased 

BAFF production.  Our results are suggestive of relation between perturbations of 

neutropoiesis, B-lymphocyte depletion and BAFF production. 
 

5.4 CLINICAL IMPACT OF LON 

Recent report indicates that LON posed serious, but not life-threatening, infections in the 

setting after autologous SCT [143].  Indeed, the majority of lymphoma patients treated with 

standard chemotherapy, including ours (Paper I and IV), did not develop serious infectious 

complications and LON was self-limited in most of the cases. Only few cases have been 

reported with concurrent drop in hemoglobin and platelets [6]. Few LON patients, with severe 

neutropenia, needed G-CSF and antibiotics. Most patients responded promptly with G-CSF 

treatment. However, the clinical course of LON in rheumatic patients with concomitant 

immunosuppressive treatment seems to differ (Paper II). However, more studies are needed 

before operational guidelines for LON can be suggested. Thus, although evidence is pointing 

towards infectious complications in patients with LON, it is still unclear which patients 

develop infections during the LON period. Nevertheless, an increased vigilance might be 

necessary.  

A close clinical follow-up or CBC monitoring is good enough in most LON cases. BM 

evaluations should be carried in selected cases for information on neutrophil hypoplasia and 

maturation arrest, prior to treatment with G-CSF, as well as to detect a possible lymphoma 

relapse or myelodysplastic features.  

A very important question is re-challenging patients who developed LON. This may affect 

treatment strategy and clinical outcome as retreatment with rituximab is a part of lymphoma 

and autoimmune protocols. Moreover, disease control by maintenance therapy with rituximab 

is used in low-grade lymphomas, e.g. follicular lymphoma. Recurrence of LON episodes have 

been reported upon repeated treatment with rituximab [Paper II, 144]. In addition, two large 



44 
 

prospective trials reported an increase in the incidence of neutropenia during maintenance 

therapy [145, 146] implying a recurrence of neutropenia. However, the current data does not 

differentiate between patients at risk during de novo or relapse treatments. Frequent 

monitoring of CBC after rituximab treatment may not be feasible. Furthermore, the risk of 

LON during retreatment for patients who developed LON at first exposition is not known 

either. There are no studies with regular CBCs monitoring to address the issue of shorter 

median duration of LON, as asymptomatic LONs could have been missed. Thus, vigilance for 

LON patients is advisable. 

Although LON is associated with increased infections in rheumatic patients  (Paper II), it 

conferred a later clinical benefit with regard to disease remission duration (Paper III). We 

found that LON was correlated to the possession of FCG3RA 176V/V genotype. Indeed, we 

also observed that the FCG3RA 176V/V genotype, as well as the presence of LON, has an 

unexpected positive clinical impact, leading to a longer time to flare of the rheumatic disease. 

This is in agreement with a previous report that patients with more prolonged B cell depletion 

were more likely to respond than those in whom B cell return was early [147]. Likewise, a 

previous report in rheumatic patient showed a short-lived alleviation of rheumatic symptoms 

during neutropenia after DIAG [148]. However, we could not show a significance positive 

effect of LON at a later point time i.e. one year after cessation of rituximab treatment. 

Nevertheless, the effect described herein was of a different nature since it postponed the need 

for renewed treatment. Finally, our observation, LON as a prognostic factor in rheumatic 

patients could have a clinical consequence. However, this conclusion needs to be confirmed in 

lymphoma patients and larger prospective studies.  
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6.  CONCLUSIONS 

LON is a clinical significant late-adverse event occurring both in lymphoma and rheumatic 

patients. It is unique since it appears long time after the cessation of rituximab therapy.  

 

The incidence of LON in rheumatic patients is comparable to reports on lymphoma patients. 

However, patients treated with a highly myelotoxic regimen seem to have a higher incidence 

of LON. 

 

Maturation arrest at the (pro)myelocyte stage of granulopoiesis during LON is a clinical 

feature implying a selective depletion of granulopoiesis. 

 

The clinical course of LON in patients with immunosuppressive treatment seems to differ 

from lymphoma patients i. e. higher infection rates compared to those treated with standard 

cytoreductive treatment. 

 

The level of B-lymphocyte depletion as well as IgM reductions may be risk factors for LON 

development. 

 

LON patients do often display FCGR3A 176 V/V genotype which is also correlated with a 

profound B-lymphocyte depletion. 

 

LON patients with rheumatic disease may have a better clinical outcome, that may be related 

to the FCGR3A genotype and as well as LON. 

 

The perturbations of granulopoiesis in LON patients might be related to the profound B-

lymphocyte depletion and the excessive BAFF production. 
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7. FUTURE DIRECTIONS 

 

Rituximab and other anti-CD 20 mAbs usage is expanding into the fields of autoimmune 

disease and new indications are added every year. New mAbs, with enhanced affinity to the 

CD 20 antigen, have now been introduced in clinical practice. Hence, LON is anticipated to 

be a clinical problem encountered in many disciplines and probably with increased incidence 

compared to rituximab. Frequent monitoring of CBC after rituximab treatment may not be 

feasible. However, the correlation between LON and FCGR polymorphisms may be helpful in 

identifying patients at risk. Moreover, the relation between B-lymphocyte depletion and IgM 

levels can be additional accessible risk markers in a daily clinical setting. Although LON is 

associated with a higher rate of infection in patients with concomitant immunesuppressive 

treatment, we have found that LON patients may have a clinical advantage compared to non-

LON patients. This is an important observation which has to be confirmed in future studies.  

Finally, the mechanisms of rituximab, leading to unexpected late-adverse effects, have 

highlighted the interdependence of lymphopoiesis and granulopoiesis. Thus, vigilance is 

advisable when introducing a drug with the ability of a long-term manipulation of 

hematopoiesis.  
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