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ABSTRACT 
Protein tyrosine phosphatases (PTPs) are reversibly oxidized upon activation of platelet-derived 
growth factor receptor beta (PDGFβR). Dys-regulation of the PDGFβR signaling pathway is 
associated with several diseases, including cancers and cardiovascular disease, and is thus a 
known driver of disease progression. Ligand dependent PDGFβR phosphorylation stimulates 
cell proliferation and migration. The aim of this thesis was to elucidate redox-regulatory 
mechanisms of protein tyrosine phosphatases impacting on PDGFβR signaling. 
 
In Paper I, we analysed effects of mitochondria-derived ROS on PTP oxidation in models of 
hypoxia and hypoxia/re-oxygenation (H/R) in vitro and in vivo. We found an increase in PTP 
oxidation of multiple PTPs, including SHP-2, PTP1B and DEP-1, after exposure of NIH3T3 
fibroblasts to H/R. An increase in total PTP oxidation and SHP-2 was also seen in rat 
cardiomyoblasts after H/R. Furthermore, H/R induced a delay of PDGFR dephosphorylation 
and also an antioxidant sensitive activation of downstream effectors ERK1/2. In addition, H/R 
enhanced PDGF-dependent cytoskeletal re-arrangements, which could be abolished by 
antioxidant treatment. Finally, we found an increase in total PTP oxidation and SHP2 oxidation 
in tissue extracts from an ex-vivo model of rat heart ischemia-reperfusion. 
 
In paper II, we studied expression and activity of PDGFβR pathway components in human 
pulmonary artery smooth muscle cells (hPASMC) subjected to hypoxia. We show that hypoxia- 
induced HIF-1α in hPASMC, both in vivo and in vitro, negatively regulate expression of 
PDGFβR associated PTPs, including PTP1B, DEP-1, TC-PTP and SHP2. The negatively 
regulation of these PDGFβR-associated PTPs occurred together with an enhanced PDGF 
receptor activation and an increase in both proliferation and migration of hPASMC. 
 
In paper III, we found that p66Shc dependent mitochondrial derived ROS contribute to 
inactivation of the PDGFβR associated PTPs PTP1B and SHP-2 upon ligand stimulation. In 
addition, deletion of p66Shc reduced downstream intracellular signaling after PDGF-BB 
stimulation. Furthermore, p66Shc KO cells displayed a decrease in migratory response to 
PDGF-BB treatment. 
 
In the final study paper IV, we studied the reactivation of oxidized PTPs and its impact on 
PDGFβR signaling. We showed that cells lacking expression of thioredoxin reductase 1 
(TrxR1) displayed an increase in oxidation of PTP1B but not of SHP-2. Furthermore, in vivo 
oxidized PTP1B was re-activated by addition of Trx system components to cell lysates, 
whereas SHP-2 was not re-activated. Oxidized recombinant PTP1B was also re-activated by 
treatment with Trx system components while SHP-2 remained largely unaffected. Intriguingly, 
the Trx related protein TRP14 also reactivated PTP1B but not SHP-2. Furthermore, PDGFβR 
phosphorylation and signaling was enhanced in Txnrd1-/- fibroblasts leading to an enhanced 
proliferative response after PDGF-BB stimulation. 
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1.  Introduction 
Cellular processes such as proliferation, differentiation and migration are regulated 

through finely tuned mechanisms, which involve reversible phosphorylation of 

proteins. Net levels of tyrosine phosphorylation are determined by the balanced action 

of protein tyrosine kinases (PTKs) and PTPs. Ligand-induced receptor tyrosine kinase 

(RTK) activation is a well-described mechanism of regulation of tyrosine 

phosphorylation. However, increasing evidence suggests PTP activity as an important 

determinant of net tyrosine phosphorylation. Diseases like cancer and atherosclerosis 

are characterized by dys-regulated tyrosine kinase signaling. Therefore, detailed 

understanding of the regulatory network controlling tyrosine phosphorylation is of 

obvious medical interest. 

2. Tumor suppressors and oncogenes affect cell signalling 

2.1.1. PTKs 

PTKs activate proteins through phosphorylation by catalyzing the transfer of the 

gamma-phosphoryl groups from adenosine triphosphate (ATP) to tyrosine hydroxyls. 

There are 90 known genes in the human genome coding for PTKs of which 58 encode 

transmembrane RTK while 32 encode cytosolic non-receptor PTKs. PTKs are involved 

in regulating intracellular signal-transduction pathways mediating development, 

growth, differentiation, adhesion, motility and programmed cell death (1, 2). 

2.1.2. Phosphotyrosine signaling and cancer 

PTKs play a significant role in many diseases such as cancer and diabetes. Cellular 

oncogenes contribute to cell transformation and cancer progression when mutated or 

overexpressed. Of the oncogene group PTKs comprise a large fraction. Tumor 

suppressor genes on the other hand have, in general, repressive effects on cell growth 

and tumorigenesis.  

 

Oncogenic activation by tyrosine kinases in malignant cells occurs through three major 

mechanisms. One mechanism, chromosomal translocation, creates novel oncogenic 

fusion genes between e.g. tyrosine kinases and some other genes elsewhere in the 

genome. For example the fusion oncoprotein BCR-ABL is generated by fusion of the 

ABL1 PTK gene on chromosome 9 with the break point cluster region gene (BCR) on 

chromosome 22. The resulting protein is characterized by high constitutive kinase 
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activity and is a characteristic aberration associated with chronic myelogenous 

leukemia (3).  

 

Amplification is another mechanism whereby RTKs can be oncogenically activated. 

Transcription of multiple copies of a particular gene results in overproduction of the 

encoded protein. One such example is the HER2/ErbB2 receptor which is amplified in 

30% of all breast cancers (4). 

 

The third mechanism for oncogenic activation involves point mutations or small 

deletions resulting in increased kinase activity. For example the cellular proto-

oncogene c-KIT and PDGFRα are commonly mutated in gastrointestinal stromal 

tumors, and the epidermal growth factor (EGF) receptors are mutated in a subset of 

non-small cell lung cancer (5, 6). 

 

Most solid tumors depend on the formation of supportive tumor stroma composed of 

tumor vessels and fibroblasts (7). The vascular endothelial growth factor receptor-2 

(VEGFR2) which is expressed in endothelial cells is the most important tyrosine kinase 

involved in tumor angiogenesis (8). This receptor stimulates cell division, migration 

and differentiation of endothelial cells. Tumor vessels mature with the aid of pericytes 

which are mesenchymal cells lining the abluminal surface of capillaries, arterioles, and 

post-capillary venules (9). Pericytes are highly dependent on stimulation from 

PDGFRβ receptors (10). Fibroblasts are also important for tumor growth and are 

particularly dependent on stimulation of PDGF receptors (11). Besides stimulating the 

growth and migration of these cells, PDGF receptor stimulation of fibroblasts also 

affect their ability to induce an elevated interstitial fluid pressure, which is a 

characteristic of many solid tumors (12). 

2.1.3. Drugs against PTK signaling pathways 

Several therapeutic drugs against RTK have been developed and are now in use. 

Imitanib is a small molecule inhibitor targeting the fusion protein BCR-ABL in chronic 

myelogenous leukemia (CML) and activated c-KIT in gastrointestinal stromal tumor 

(GIST) (13). Trastuzumab, a monoclonal antibody, and erlotinib, a small molecule 

inhibitor, are two examples of drugs that target HER/ErbB2 receptor and EGFR, 

respectively (14). Although many patients respond to these treatments the majority will 

develop resistance to the drugs. 
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2.1.4. Phosphatases as modulators of PTK signaling. 

PTPs are a protein family that have the capacity to dephosphorylate phosphotyrosines 

in proteins. Their catalytic activity is extremely high compared to tyrosine kinases. 

Several studies where PTP expression or activity has been manipulated reveal the 

impact that PTPs have on tyrosine kinase signaling.  

 

Exposure of cells to the PTP inhibitor sodium orthovanadate, activate RTKs in a 

ligand-independent fashion (15). Also, inhibition of ligand activated RTKs with a 

kinase specific inhibitor rapidly leads to dephosphorylation of the receptor (16). 

 

PTP1B knockout mice display an increased sensitivity to insulin as shown by glucose 

uptake studies, suggesting modulation of the insulin receptor signaling (17). In fact, 

overexpression of PTP1B abrogates insulin receptor (IR) signaling whereas osmotic 

loading of neutralizing antibodies against PTP1B enhances signaling (18, 19).  

Naturally occurring inactivating mutations of the gene coding for Src-homology 2 

(SH2) PTP SHP-1 (murine motheaten, me, gene) has revealed functional interactions 

between SHP-1 and CSF-1 receptor signaling (20). Another study identified increased 

receptor activation of IR, EGFR and fibroblast – growth – factor receptor (FGFR) after 

antisense mediated down-regulation of RPTP-LAR (21, 22). 

 

PTPs can also modulate RTK signaling in a positive manner. The SH2 domain PTP 

SHP-2 has been shown to be a positive regulator of PDGFR signaling and other RTKs 

(23). Also PTP1B has been shown to act as a positive mediator of the ErbB2 tyrosine 

kinase (24, 25).  

 

In summary, the regulation of PTPs plays a significant role in determining net levels of 

tyrosine phosphorylation and downstream signaling. 
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3. PTPs 

3.1.1. The PTP family 

107 PTPs are found in the human genome (26). They can be divided into four different 

families based on the amino acid sequence in their catalytic domain. Three of these 

families, classical PTPs, dual-specificity PTPs and low-molecular-weight PTPs, have 

an active site based on a cysteine residue. The active site of the fourth family contains 

an asparagine residue. 

 

The classical PTPs constitute a sub-group of 38 tyrosine-specific PTPs which will be 

the focus in this thesis. They are hereafter referred to as PTPs and can be divided into 

receptor-like PTPs (RPTPs) and cytosolic PTPs. The RPTPs span the cellular 

membrane and the extracellular domains are characterized by large structural 

variability. In most RPTPs the intracellular part consists of two tandem PTP domains, 

where the catalytic domain resides in the first domain. The extracellular part and the 

second domain are thought to exert regulatory functions. The cytosolic PTPs consist of 

one catalytic domain and by sequences outside the catalytic domain which regulate 

activity and location (27). 

3.1.2. Catalytic mechanism 

The catalytic motif of PTPs consists of a highly conserved amino acid sequence 

HC(X5)R that contains the catalytically essential cysteine (Cys) and Arginine (Arg) 

residues (28). The low pKa is a characteristic of the active site cysteine is suggested to 

be caused by an imidazole group of the neighbouring histidine in combination with a 

network of hydrogen bonds with the backbone of the so called P-loop (29, 30).  

 

The positively charged pocket within the P-loop interacts with phosphotyrosine (pTyr) 

substrates that induce a conformational change from an open inactive cleft to a closed 

conformation containing bound substrate and a water molecule. The two step catalytic 

mechanism involves the formation of a cysteinyl-phosphate intermediate stabilized by 

the opposing Arg residue (31). A neighbouring Aspartic acid (Asp) residue function as 

an acid catalyst by protonating the leaving tyrosine residue of the substrate (32). In the 

final step of the mechanism, the same Asp residue mediates the release of inorganic 

phosphate through catalysis of a water molecule attack on the cysteinyl-phosphate 

intermediate (33, 34) (Figure 1). 



 

 5 

 

 
Figure 1. Catalytic mechanism of PTPs. 

3.1.3. Substrate specificity 

Although sharing a common catalytic domain, PTPs are highly selective towards 

protein substrates in different cellular contexts. The catalytic domain contains residues 

that determine substrate specificity. PTPs have been shown to have intrinsic differences 

with regard to catalytic efficiency and also display distinct specificity profiles (35).  

 

The crystal structure of PTP1B in complex with a peptide derived from a 

phosphorylation site of the EGFR have revealed some mechanisms explaining PTP 

specificity and substrate recognition (33). The pTyr in the peptide is the main 

contributor to substrate recognition. Specifically, nonpolar side chains in close 

proximity to the active site cleft form hydrophobic interactions with the phenyl group 

of the pTyr of the peptide. Specificity is also achieved through flanking amino acids 

surrounding the catalytic site such as interactions between basic residues of the PTP 

and substrate peptide side chains (33). Also, another study of the PTP1B crystal 

structure highlights its ability to recognise several structurally different substrates due 

to conformation flexibility of Arg47. Depending on NH2-terminal amino acids of the 
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substrate, Arg47 of PTP1B can adopt two different conformations (36). In addition, the 

presence of tandem pTyr residues on the substrate has been shown to increase affinity 

(37). Thus, the catalytic active site milieu determines the PTP affinity for its substrate 

(38). 

 

Comparison between a set of PTPs toward their optimal substrate revealed differential 

intrinsic catalytic efficiency. PTP1B, SHP-1 and SHP-2 all shared similar kcat/Km 

values in contrast to RPTPα, which had a 2-3 order of magnitude lower efficiency. In 

addition, RPTPα had the broadest substrate specificity among the four PTPs. PTP1B 

also showed a broad specificity but still more restrictive than RPTPα. SHP-1 and SHP-

2 showed a narrower specificity with a restriction towards positively charged residue 

and instead a preference for acidic residues surrounding the phosphorylated tyrosine 

(35). 

 

In vivo studies have also been performed analysing the site-selective preferences of 

different phosphatases for different sites in multiply phosphorylated substrates. For 

example, TC-PTP depletion results in hyper-phosphorylation of tyrosine residues 

Y1021 of the PDGFβ receptor. The increased Y1021 phosphorylation was associated 

with an increased migratory phenotype (39). In contrast depletion of PTP1B mainly 

increased phosphorylation at the Y579 site and corresponded to an increased 

proliferative response (39). Thus, although closely related in structure PTP1B and TC-

PTP display differential site-specific preferences. These properties suggest that PTPs 

can modulate RTK signaling and determine the cellular response to growth factor 

stimulation. 

 

Other studies have revealed a preference of DEP-1 for the PDGFβR pY1021 but not 

pY857 (40, 41). Intriguingly, phospho-peptides of Y1021 and Y857 displayed similar 

kcat values. In contrast the pY1021 peptide showed a higher affinity (Km value) 

compared to the pY857 peptide. Furthermore, substitution of key amino acids in both 

peptides could increase or decrease the affinity to DEP-1.  

 

In addition to the catalytic domain, PTPs contain domains that bind to specific motifs in 

proteins or to sub-cellular structures. The cytosolic PTPs all contain one single catalytic 

domain with additional regulatory domains mediating PTP substrate interactions and 

subcellular localization (42). SHP-1 and SHP-2 both have a SH2 domain that directs 
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the phosphatase to its specific location (43). Several RTKs are dephosphorylated by 

SHP-1 that is recruited to the receptors by SH2 domains (23). The SH2 domain of 

SHP-2 and SHP-1 also regulate the active site by blocking the active site when not 

bond to its pY-partner (43, 44).  

 

Substrate specificity can also be directed by sub-cellular localization, as exemplified by 

the C-terminal localization signal of PTP-1B mediating targeting to the endoplasmatic 

reticulum (ER) (45).  

3.2. Regulation of PTPs 

Several mechanisms regulate PTP-activity, and PTPs are subject to multiple types of 

modifications, leading to either impaired or increased PTP activity.  

 

Differential expression of PTPs is one obvious mechanism for regulation of PTP 

activities in the cell. Up-regulation of DEP-1 is achieved in cells reaching high 

densities (46). Promotor methylation leading to downregulation of PTPs has been 

shown in cancer cells (47).  

 

Subcellular localization is also important for regulation of PTP activity. PTPs 

accumulate at the plasma membrane and form complexes with RTKs and thereby 

regulate those (48). The SH2-domain containing PTPs (SHP-1 and SHP-2) can also 

accumulate at the plasma membrane through SH2 domain/phosphotyrosine interactions 

(23, 49). Studies have also identified a targeting signal in the C-terminus of SHP-1, 

with high affinity for acidic phospholipids (50). This targeting signal is important for 

localization of SHP-1 to lipid rafts in T lymphocytes where SHP-1 regulate T-cell 

receptor signaling (51).  

 

Alternative splicing is a mechanism that might change the domain structure of PTPs 

leading to functionally different splice variants. The receptor like PTPs are frequently 

undergoing alternative splicing resulting in structural variants of extracellular domains 

(52, 53). Alternative splicing can also change regulatory domains in PTPs affecting 

protein/protein interactions. For example alternative splicing alters the PDZ domain in 

PTP-BAS and thereby affects its binding affinity to its substrate APC (54). 
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Regulated proteolysis can also control PTP activity. PTP-PEST undergoes limited 

proteolysis in a manner related to apoptotic signaling (55). Furthermore, ultra violet 

(UV) irradiation-induced PTP oxidation has been shown to result in calpain-mediated 

degradation of oxidized PTPs (56). Furthermore, in vitro studies of oxidized PTP1B 

revealed a calpain-dependent inactivating cleavage (57). 

 

Concerning receptor-like PTPs, dimerization of the catalytic domains has been 

proposed to function as an inhibitory mechanism. Two dimers of RPTPα, consisting of 

a helix-loop-helix wedge like structure, block each other’s catalytic cleft leading to 

inhibition (58). Also ligand binding to extracellular domains of RPTPs can either 

activate or inactivate the catalytic domain. Pleiotrophins inactivate the catalytic activity 

of RPTP β/ζ and thereby increase phosphorylation of several substrates such as β-

adductin, β-catenin, p190Rho-GAP and ALK (59-62). Ligand activation and 

inactivation of PTP-LAR has been shown to be critical during synaptic development in 

Drosophila. The two heparan-sulfate proteoglycans syndecan and dallylike modulate 

the activity of PTP-LAR and thereby also the phosphorylation state of its substrate Ena 

(63, 64). In another study, the extracellular-matrix preparation “matrigel” was shown to 

increase the activity of DEP-1 by interacting with extracellular domains of the PTP 

(65). 

 

Covalent post-translational modifications of PTP can also regulate their activity. 

Phosphorylation of specific serine, threonine or tyrosine residues, affecting affinity, has 

been shown for CD45, PTP1B and PTP-PEST (66-69). Another example is the 

phosphorylation of two serine residues on the juxtamembrane domain of RPTPα that 

leads to an increased activity (70). These phosphorylation sites are located in the 

wedge-like helix-loop-helix structure that is essential for dimer formation. Both SHP-1 

and SHP-2 are also phosphorylated on serine residues upon protein kinase C activation. 

SHP-2 activity was shown to be unaffected, whereas SHP-1 activity was decreased, 

after these phosphorylations (71, 72). 

 

Recently, reversible oxidation has emerged as an additional regulatory mechanism (see 

detailed description in chapter 4 below). 
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3.3. PTPs and cancer 

3.3.1. PTPs as tumor suppressors 

PTPs are potential tumor suppressors due to their antagonistic effect on oncogenic RTK 

signaling. Experimental support for this notion was provided through early studies 

showing that overexpression of PTPs in vitro reverses tyrosine kinase-dependent 

transformation (73). Furthermore, DEP-1 has been described to inhibit the RAS 

pathway by dephosphorylating ERK1/2 kinases and to induce G1 arrest through 

stabilization of cyclin-dependent-kinase-inhibitor p27 (74). Overexpression of the 

inactive DEP1-K1017N mutant impairs the interaction between DEP-1 and ERK, 

leading to increased tyrosine kinase signaling (75). Furthermore, re-constitution of 

DEP-1 expression in cultured breast cancer cell lines was shown to reduce growth (76), 

and over-expression of DEP-1 in cultured breast cancer, pancreatic thyroid and colon 

cancer cells reduced cell growth (74, 77, 78). These initial findings in cancer cell lines 

have also been substantiated with analysis of tumors with regard to inactivating 

aberrations in PTP genes. 

 

Inactivation through point mutations has been shown in a large study, by Wang et al, 

involving sequencing of PTPs in colorectal cancer (CRC) where mutations were found 

in both cytosolic and receptor-like PTPs (79). Examples of mutated PTPs are PTP-

BAS, PTPD2 and PTPγ. These mutations commonly altered the amino acid sequence 

arguing for a functional relevance. A subset of the mutations were functionally tested 

and shown to have a loss of biological function (79). Furthermore, Korff et al have 

analyzed another set of CRC samples and found many frame-shift mutations in PTP 

genes. The highest number of mutations occurred in HDPTP (26%) and PTPBAS 

(22%) whereas the most frequently mutated PTPs were PTPD1 (17%), PTPRS (12%) 

and STEP (6%) (80). In this study the authors selected CRCs with microsatellite 

instability, in contrast to the Wang study where the CRCs where unselected. 

Interestingly the two studies reveal different subsets of affected PTP genes.  

 

Loss of heterozygosity is also a mechanism that has been reported to affect PTPs. 

Allelic loss has been found for PTPRJ, encoding PTP DEP-1, in carcinoma of colon 

(49%), lung (50%) and breast (78%) (81). PTPN2 (TC-PTP), was found to be deleted 

in t-cell lymphoblastic leukemia (T-ALL). Furthermore, knock down of PTPN2 in T-

ALL cells increased proliferation and sensitivity to cytokines (82). 
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Epigenetic changes, such as methylation of the promoter region of SHP-1, have been 

shown to occur frequently in lymphoma and leukemia (83). The gene coding for 

PTPRD is inactivated by epigenetic hypermethylation, genetic deletion and point 

mutation in over 50% of glioblastoma multiforme (GBM) tumors.  (84). 

3.3.2. PTPs as oncogenes  

SHP-2 is a PTP with oncogenic properties. It activates mitogenic and pro- migratory 

signals from different RTKs (23). Examples of receptors dependent on SHP-2 activity 

are the EGFR and FGFR3 (85). Also transformation by ErbB2 and BCR-ABL seem to 

depend on SHP-2 activity (47).  Dominant autosomal mutations in the PTPN11 (gene 

encoding SHP-2) is the cause of Noonan Syndrome in 50% of cases (86). Noonan 

Syndrome patients develop facial abnormalities and heart failure and they also have an 

increased risk of developing several different myelomonocytic leukemias. Also somatic 

mutations in SHP-2 have been shown to be involved in various types of leukemias (87). 

 

Some studies in mouse breast cancer models have also indicated that PTP1B is an 

important positive regulator of ErbB2 signaling and that inhibition of its function 

attenuates mammary tumorigenesis and malignancy. Inhibiton of PTP1B in NDL2 

transgenic mice either by cross-breeding with Ptpn1 deficient mice or by treatment with 

a specific PTP1B inhibitor results in significant mammary tumor latency and resistance 

to lung metastasis (24, 25). Furthermore, overexpression of PTP1B in the mammary 

glands leads to spontaneous breast cancer development (73). 

4. Redox regulation of PTP activity 

4.1.1. ROS and antioxidants 

4.1.1.1. ROS introduction 

Reactive oxygen species (ROS) are formed by the incomplete reduction of oxygen 

(reduction can be defined as a gain of electrons by an atom) forming reactive molecules 

such as superoxide anion (O2
•-), hydrogen peroxide (H2O2) and the hydroxyl radical 

(•OH). Free radicals can be described as reactive molecules or molecular fragments 

with one or more unpaired electrons. The hydroxyl radical reacts with any biological 

molecule due to its high reactivity whereas O2
•- and H2O2 each have preferred 

molecular targets such as iron-sulphur clusters and cysteine/methionine residues, 
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respectively. H2O2 can be converted to •OH by a metal-catalysed fenton-reaction (Fe(II) 

+ H2O2 → Fe(III) + •OH + OH-) (88).  

 

ROS have for a long time been considered as a harmful by-product of metabolism. The 

elevation of ROS levels can lead to damage of cellular lipids, proteins and DNA with a 

disturbed function as a consequence. Many human diseases such as cardiovascular 

disease, cancer and ischemia/reperfusion involve oxidative stress (89, 90). Net levels of 

ROS in cells are a consequence both of ROS production and ROS scavenging. 

4.1.1.2. Sources of ROS: 
ROS can be produced by various sources such as the mitochondria, NADPH oxidase 

(NOX), xanthine oxidase (XO), cyclooxygenases (COX) and lipoxygenases (LOX). 

 

The bulk amount of ROS is generated by the electron transport chain within the 

mitochondria that produces O2
•- through non-enzymatically redox-reactive compounds 

such as semiquinone. Complex I (NADPH/ubiquinone oxidoreductase) and complex III 

(ubiquinol/cytochrome c oxidoreductase) are the major site for O2
•- production (91). 

The produced O2
•- will rapidly be dismutated into H2O2 by MnSOD (92). Nowadays 

eight sites of O2
•- generation are known in mitochondria (93).  

 

The NOX enzyme was discovered in phagocytes and found responsible for the 

generation of local bursts of free radicals in so-called “respiratory burst”. By 

consuming high amounts of oxygen, the NOX enzymes generate O2
•- through one 

electron-reduction. The phagocyte production of free radicals is part of the host defence 

system against invading microbes. NOX enzymes have also been found as ROS 

producers in non-phagocytic cells. Specifically, activation of membrane bound RTKs 

generates a NADPH dependent localized burst of ROS.  

 

NOX enzymes 1-4 all share the flavoprotein domain as well as the NOX 

flavocytochrome domain, common for all NOX enzymes. NOX5 is the single NOX 

enzyme containing an amino-terminal calmodulin-like domain that contains four 

calcium-binding EF hand structures. Another O2
•- -forming group of enzymes are the 

dual oxidases (DUOX), that also generate O2
•- through reduction of molecular oxygen 

(94). The DUOX enzymes contain, in addition to the NADPH oxidase domain, also a 
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domain homologous to heme-containing peroxidases. One example of this is the 

myeloperoxidase present in neutrofils (95). 

 

Xanthine oxidase is another oxygen-free radical producing enzyme widely distributed 

within various tissues. It catalyses hydroxylation of purines where reduction of 

molecular oxygen generates both O2 •- and H2O2. Transition metals such as Fe2+ and 

Cu+ can break down H2O2 to the highly reactive •OH trough the Fenton reaction (96). 

ROS are also produced during metabolism of arachidonic acid metabolism by COX and 

LOX (97). 

4.1.2. Antioxidants introduction 

ROS levels are kept low by several different free-radical scavengers. There are two 

main categories, enzymatic and non-enzymatic antioxidant systems.  

 

Both glutathione and thioredoxin (Trx) belong to the thiol- redox buffer in the cell. 

Glutathione, a non-enzymatic antioxidant, is present at mM concentration in contrast to 

thioredoxin which is present at 1000- fold lower concentrations. Oxidized glutathione 

(GSSG) and (Trx) are reduced by glutathione reductase (GR) and thioredoxin reductase 

(TrxR), respectively, utilizing NADPH as cofactor. These two main antioxidant nodes 

reduce target proteins such as peroxiredoxins (Prx) and glutathione peroxidase (Gpx) 

family members. 

 

Superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) all belong to 

the enzymatic antioxidants and are also the most efficient in quenching the free 

radicals. SOD catalyses reduction of O2
•- through the dismutation reaction 2O2

•- + 2H+ 

→ H2O2 + O2 and exists in three different isoforms with location in the mitochondria, 

cytosol and extracellularly (96). Catalase is located in the peroxisomes and converts 

H2O2 to oxygen and water with great efficiency (96). Five out of a total of eight 

glutathione peroxidases are selenium-dependent antioxidant enzymes with a major task 

to protect against low levels of oxidative stress. GPxs catalyse the reduction of H2O2 to 

water and lipid hydroperoxides (98). 
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4.1.2.1. Thioredoxin system 
The Trx system in mammalian cells consists of Trx, TrxR and NADPH (99). One 

isoform is located in the cytosol (Trx1/TrxR1) and the other in mitochondria 

(Trx2/TrxR2). A third testis-specific TrxR3, also named Thioredoxin glutathione 

reductase TGR, is expressed in germ cells (100, 101). Cytosolic Trx1 and 

mitochondrial Trx2 are highly conserved small proteins with a size of 10-12 kDa, that 

are present either in a reduced dithiol form or as an oxidized disulphide form. Reduced 

Trx functions as a potent electron donor for disulfide substrates that when reduced 

generate oxidized Trx.  Oxidized Trx can in turn be reduced back utilizing NADPH and 

the flavin adenine dinucleotide (FAD)-containing enzyme TrxR (99). These three 

components comprise the Trx system and are responsible for maintaining a reduced 

redox balance in the cell. Interestingly, knock-down of individual components of the 

Trx system results in embryonic lethality (102-104). 

4.1.2.2. Glutathione system 

Reduced glutathione (GSH) is a highly abundant low molecular weight protein, present 

in all living cells with the major function to protect cells from oxidative stress, together 

with the GPx family of proteins, (105). The glutathione dependent enzyme glutaredoxin 

(Grx) reduces disulfide substrates or glutathionylated proteins. Both GPx and Grx 

utilize GSH in the ROS detoxification process and increase the pool of oxidized 

glutathione (GSSG) as a result.  

 

Glutathione reductase (GR) re-reduces GSSG using NADPH as an electron donor 

(106). The availability of NADPH is maintained by the glucose-6-phosphate 

dehydrogenase (G6PD) enzyme in the pentose phosphate pathway (107). 

 

Reactive cysteines in proteins can in their deprotonated thiolate form react with GSSG 

and form glutathionylated adducts.  

 

4.1.2.3. GPx 

GPxs are a family of enzymes that catalyse the reduction of H2O2, organic 

hydroperoxides and lipid hydroperoxide (98). There are five main mammalian 

selenium dependent GPx enzymes expressed in various tissues and with different 

subcellular localization (98, 108). GPx1 is expressed in red blood cells, liver, lung and 
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kidney and localize in the cytosol, nucleus and mitochondria within the cell. GPx2 is 

found in the gastrointestinal tract and localizes in the cytosol and nucleus. GPx3 is 

located in the cytosol and expressed in several different organs such as lung and 

kidney. Phospholipid hydroperoxide glutathione peroxidase (GPx4) is present in most 

tissues and localizes and binds to the membranes of the mitochondria, cytosol and 

nucleus (98). GPx5 is present in epididymis and lacks the active site selenocysteine and 

instead utilizes a cysteine. The recently found GPx6 is located in the epithelial of the 

olfactory system in humans (109). GPx1-3 utilizes GSH for regeneration in contrast to 

GPx4 that can be regenerated by thioredoxin (105). 

 

The substrate specificity of GPx4 is much broader compared to the other members of 

the GPx family. In addition to hydroperoxides and lipid hydroperoxide, a common 

substrate for all GPx, GPx4 also reduces phospholipid-associated hydroperoxides in 

biological membranes to alcohols (110). GPx4 is emerging to be one of the most 

important GPx as it controls non-apoptotic cell death (111). Its deletion leads to 

embryonic lethality (112). 

4.1.2.4. Peroxiredoxins 
The protein family of six peroxiredoxins (Prx) is an abundantly expressed group of 

enzymes that catalyses the reduction of H2O2, organic hydroperoxides and peroxynitrite 

(113). Oxidized Prx1, 2, 3 and 5 are reduced by the Trx system and Prx4 can be 

reduced by both Trx and GSH as an electron donor. Prx6 only uses GSH for its 

reduction.  

The conserved peroxidatic cysteine exists in a thiolate anion, which makes it highly 

susceptible towards H2O2-induced oxidation to a sulfenic acid form (114). All six Prx 

enzymes share this first step of cysteine oxidation. The second part of the catalytic 

mechanism, where a sulfenic acid cysteine is reduced back to a thiol, involves a 

resolving cysteine attack on the sulfenic acid cysteine and formation of a disulfide bond 

subsequently reduced by Trx. This second part of the mechanism divides the different 

isoforms into three subclasses. The cytosolic 2-Cys Prx, which comprise Prx1-4 are 

homodimers whereas atypical 2-Cys Prx5 is monomeric and 1-Cys Prx are 

homodimeric that do not contain a resolving cysteine but instead use GSH as a 

reductant (115-117). 
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4.1.2.5. Catalase 
In addition to Prx and GPx, catalase is another main enzyme responsible for removal of 

H2O2 in the cell (118). It is located in the peroxisomes in almost all aerobic cells and 

the reaction mechanism involves complete reduction of H2O2 into H2O. The active site 

Fe3+ ion mediates the two-electron transfer with high efficiency due to lack of need for 

cellular reductants such as GSH or NADPH (118). 

 

4.1.2.6. Superoxide dismutase 

CuZnSOD (SOD1) exists in all eukaryotes and prokaryotes.  The localization of SOD1 

is mainly in the cytosol but it is also present in nucleus and in the inner membrane 

space of mitochondria. Manganese containing SOD (SOD2) is localized in the matrix 

of mitochondria. The SOD enzyme function is to accelerate the dismutation of O2
•- into 

H2O2 and O2 (119). Superoxide can react with nitric oxide (NO.) to form peroxynitrite, 

and also react with different transition metals to take part in the Fenton reaction and 

form hydroxyl radicals. Therefore fast clearance by SOD is of great importance for 

protection against formation of reactive compounds (119). 

 

4.2. Effects of ROS on proteins and signaling 

Recently the production of ROS has emerged as an important signaling mechanism 

involved in both extracellular and intracellular signal transduction pathways. Redox-

regulation involves oxidation of reactive cysteines in proteins. There are over 200 000 

cysteine residues encoded in proteins in the human genome and around 20-40 000 of 

these are suggested to be sensitive to oxidation (120). Previous work has suggested a 

correlation between number of cysteines in proteins and organism complexity.  

Proteins that contain redox-sensitive thiols can react with free radicals, such as O2
•-, or 

nonradical oxidants H2O2. Reversible oxidation of thiols can regulate biological 

functions by several different mechanisms.  

 

Macro-molecular interactions may be altered by oxidation. For example actin filaments 

have been shown to be glutathionylated during oxidative stress leading to impaired 

microfilament organization (121). Oxidation of cysteines within proteins may also 

induce conformational changes mediating allosteric regulation. One example is the S-

nitrosylation of an specific cysteine residue in p21RAS which induces guanine 
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nucleotide exchange and downstream signaling (122). Also, reversible s-

glutathionylation of caspase-3 mediated by Grx, modulates Tumor Necrosis Factor-α 

(TNFα) induced apoptosis (123). Recently, the EGFR has been shown to be oxidized at 

an active site cysteine resulting in a enhanced RTK activity (124). In addition, the 

transcription factor nuclear factor erythoid 2-related factor 2 (Nrf2) is targeted for 

ubiquitin-mediated degradation by kelch-like ECH-associated protein 1 (Keap-1) under 

non-stressed conditions. This involves elevated ROS levels which oxidize specific 

cysteines in Keap-1 that promote dissociation of the Nrf2-Keap-1 complex. Nrf2 can 

upon release translocate to the nucleus and activated ARE response elements (125, 

126). 

 

Finally redox-regulation of the active site cysteine in PTPs has emerged as a regulatory 

mechanism and will be discussed in the following section (127). 

4.3. Oxidation of PTPs 

The active site cysteine of almost all classical PTPs exists as a thiolate (RS-) form due 

to its low pKa value (4-6). Its nucleophilic property makes the cysteine more 

susceptible to oxidation in comparison to most cysteines with display pKa values of 8-9 

(29, 128).  

 

Oxidants involved in PTP oxidation: Several different types of oxidants have been 

analysed in vitro with regard to their ability to oxidize PTPs. Due to the relative stable 

properties of H2O2 it has for long been considered to be the most likely candidate to 

oxidize thiols in proteins. Several studies have investigated H2O2 effects on PTPs and 

showed oxidative inactivation. Examples of these PTPs are PTP1B (129-131), SHP-1 

(132, 133), SHP-2 (132, 133), PTP-LAR (130), RPTPµ (130), RPTPα (134), VHR 

(129), PTEN (135), MKP3 (136), LMW-PTP (137) and Cdc25 (138).  

 

Nitric oxide (NO.) is another oxidant involved in PTP oxidation. S-nitrosylation has 

been shown for several PTPs such as PTP1B, SHP-1, SHP-2 and PTEN (131, 139-

142). Peroxynitrite, formed by O2
•- and NO., has been shown to irreversibly oxidize 

PTP1B, LAR and CD45 (143). 

 

Other oxidants which have been described to oxidize PTPs, directly or by induction in 

cell systems, include superoxide (144), GSSG (144-147), hydrogen sulfide (131), lipid 
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peroxides (148, 149), hydroperoxides (150), peroxymonophosphate (151), 

hypothiocyanous acid (152), arcenic trioxide (153), pyrroloquinoline (154), 

polyaromatic quinones (155, 156) and peroxymonocarbonate (157).   

 

Oxidation variants of active site cysteine of PTPs: Several different oxidative forms of 

the active site cysteine of PTPs have been reported depending on the oxidant involved 

and structural features of the particular PTP.  

 

Upon exposure to ROS the active site cysteine forms an initial sulfenic acid (-SOH). 

Exposure to higher levels of ROS leads to irreversibly oxidized sulfinic (-SO2) or 

sulfonic (-SO3) forms (158). 

 

Two separate studies identified a sulphenyl-amide form of PTP1B that functions as a 

protective intermediate against irreversible forms (129, 159, 160). The mechanism 

involves conversion of the sulphenic acid intermediate into a sulphenyl-amide where 

the sulphur atom of the catalytic cysteine is covalently linked to the main chain 

nitrogen of an adjacent residue. In addition to PTP1B the sulphenylamide form has also 

been shown for the D2 domain of RPTPα (161).  

 

Other oxidative forms described for PTPs are intramolecular disulfides. Upon oxidation 

PTEN forms a disulfide between cysteine 71 and 124 (135). Furthermore, analysis of 

SHP-1 and SHP-2 treated with oxidants showed formation of a disulfide involving a 

nearby “backdoor cysteine” with an adjacent amino acid (135).  PTP Lyp has also been 

described to form intramolecular disulfides (162). Oxidized versions of non-classical 

PTPs, including LMW-PTP and MKP3, containing disulfides have also been described 

(138, 163-166) (136). 

 

Inter-molecular disulfides involving the catalytic site cysteine have been described for 

RPTPα D2 domain (167). Interestingly, the dimer formation was still maintained after 

reduction of the disulfide indicating other stabilizing interactions. In the same study, 

disulfide-mediated dimerization was shown for PTP-LAR although the specific 

cysteines involved were not determined (167). Furthermore reductant-sensitive 

dimerization was also found to inactivate PTPRO although the exact mechanism was 

not determined (168). Regarding cytosolic PTPs, SHP-2 has been described to be 
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regulated by inter-molecular dimerization though the specific mechanism is yet to be 

determined (169). 

 

Nitrosylation of PTPs has been described both in vitro and in cell-based systems. This 

has been seen after treatment with S-nitrosothiols or NO.- releasing compounds (139, 

170). Analysis of PTP1B using quantitative MS demonstrated that the active site 

cysteine was the cysteine most susceptible to S-nitrosylation. Interestingly, the S-NO 

form of the active site cysteine seems to protect from further irreversible oxidation 

(171). Also SHP-1 and SHP-2 were shown to be S-nitrosylated by oxidative stress as 

indicated by regained PTP activity after reduction of with ascorbate (139). 

 

PTPs can also be modified through glutathionylation of the active site cysteine (172). 

Glutathionylation have been shown in vitro for a panel of PTPs, such as PTP1B, SHP-

1, PTPL1 and PTEN (146, 147).  

 

Sulfhydration has been described in a recent publication. Hydrogen sulfide was found 

to oxidize PTP1B through sulfhydration with same efficiency as H2O2 and NO.. 

Production of hydrogen sulfide (H2S) was induced by endoplasmatic reticulum (ER) 

stress resulting in PTP1B oxidation (131).  

 

Reductants involved in PTP oxidation: Growth factor-induced oxidative inactivation of 

PTPs has been shown to be a reversible process. Re-activation of oxidized PTPs is 

dependent on the two major cellular reducing systems, the Trx system and GSH system 

(173-175). Until now most studies have been done in vitro, exposing different PTPs to 

cellular reductants. Several PTPs (PTP1B (131, 176), PTEN (147), SHP-1 (132), SHP-

2 (132), Cdc25A (177) and Cdc25B  (178)) have been shown to be affected by Trx 

mediated reactivation. With regard to the glutathione system, GSH mediated reduction 

has been shown for PTP1B (131, 176) , PTEN (147), SHP-1 (132) and SHP-2 (132) . In 

addition, Grx has also been shown to reduce PTP1B (176) and LMW-PTP (137). A 

more detailed description of potential differential sensitivity of different PTPs to the 

two major reducing systems is provided below (see 4.3.2). 
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4.3.1. Methods detecting oxidation of PTPs 

Different methods have been developed to monitor the redox state of PTPs. The 

majority of methods rely on blocking the reduced pool of PTPs and restoration of 

oxidized PTPs followed by subsequent analysis. In more detail, after stimulation of 

cells, PTPs are oxidized into a sulfenic acid form or a sulfenylamide intermediate. This 

will create one pool of catalytically inactive oxidized PTPs and another pool of reduced 

and catalytically active PTPs. By use of alkylating agents, such as iodoacetic acid 

(IAA), it is possible to block the reduced fraction of PTPs. Different technical 

approaches enable analysis of an increase in the oxidized fraction of PTPs as described 

below (See also Figure 2). To minimize experimentally induced oxidation all 

procedures are performed under anaerobic condition. Also all solutions are degassed 

prior to use to eliminate the majority of soluble oxygen in the solutions. 

4.3.1.1. Modified phosphatase in-gel assay 
Originally the in-gel assay was developed to monitor PTP expression by denaturing 

proteins from total cell lysate on a SDS/PAGE gel containing radioactive PTP 

substrates (179). In the modified in-gel assay, developed by Meng et al. (127), reduced 

PTPs are irreversibly alkylated for selection of oxidized PTPs. PTPs of total cell lysate, 

or immunoprecipitated PTPs, are subsequently recovered by refolding on a SDS-

polyacrylamide gel under reducing conditions. The gel is contains a radioactively 

labeled substrate (p32-labeled poly (GluTyr)) allowing reaction with re-activated PTPs. 

The modified in-gel assay works well with cytosolic PTPs but many receptor-like PTPs 

fail to fully renature. Furthermore, identification of the phosphatase of interest can be 

done by immuno-depletion experiments or by size estimates (127). 

4.3.1.2. Antibody-based OxPTP assay 
The OxPTP assay utilizes an antibody developed to recognize the conserved PTP 

signature motif (VHCSAG) and the hyperoxidized sulfonic acid form (SO3) of the 

active site cysteine. In this method stimulated cells are lysed under presence of an 

alkylating agent such as IAA to block the reduced pool of PTPs. PTPs are immobilized 

using immuno-precipitation followed by hyper-oxidation to stable sulfonic acid forms 

by pervanadate. Visualization of oxidized PTPs is performed using immunoblotting 

with the designated OxPTP antibody. With good performing immunoprecipitating 

antibodies this assay is able to recognize endogenous oxidized PTPs (180). 
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4.3.1.3. PTP activity assay 
In this assay PTP activity is determined using a radioactive labeled phosphotyrosine 

containing peptide as a substrate (AEEEIpYGEFEAKKK). The activity of total cell 

lysates or immunoprecipitated PTPs is measured with or without reducing agent (DTT). 

The oxidized fraction is deduced from the two different activity assays (181).  

 

 
Figure 2. Schematic overview of methods for detection of reversible oxidized PTPs. 

4.3.1.4. Cysteine-labeling assay 
The modified cysteine-labeling assay involves detection of oxidized PTPs using a 

biotin-tagged alkylating agent IAP-biotin (182). Cells are lysed under alkylating 

conditions using IAA that block the reduced pool of PTPs. Next step involves a buffer 

exchange for removal of IAA. Subsequently, oxidized PTPs are reduced by 

dithiothreitiol (DTT) followed by labeling with IAP-biotin that alkylates previously 

oxidized PTPs. Labeled PTPs can be purified using streptavidin-Sepharose beads and 
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visualized using immuno-blot analysis. The assay is performed under mildly acidic 

conditions (pH 5.5) to limit labeling of cystein containing-proteins. At low pH 

conditions most cysteines in proteins will be in their protonated thiol (SH) state as 

opposed to the catalytic cysteine of PTPs that have a low pKa and therefore remain as a 

thiolate (S-).  

4.3.2. Specificity of PTP oxidation 

Inactivation of PTPs by oxidation is an intrinsic component of signaling following 

activation of many types of cell surface receptors. It is therefore crucial that PTP 

oxidation is spatially and temporally regulated. Several distinct mechanisms have been 

shown to contribute to specificity of PTP oxidation:  

 

• An intrinsic differential sensitivity between different PTPs, and PTP domains 

in RPTPs, with regard to susceptibility to oxidation and to the activity of 

reducing systems. 

 

• Temporally and spatially controlled productions of ROS, and modulated 

activity of ROS scavenging enzymes, which lead to inactivation of a restricted 

key fraction of PTPs. 

 

Differential sensitivity to oxidation of different PTPs and PTP domains: Several studies 

have compared PTPs and PTP domains with regard to sensitivity to oxidation. Some of 

these studies have compared the PTP domains of receptor-like PTPs, which commonly 

have two tandem domains where the catalytic activity resides in the first domain (D1) 

(183, 184). The second domain (D2) has been proposed to have regulatory functions 

(185).  

 

Intriguingly, in vitro and in vivo studies of RPTPα have revealed differential sensitivity 

of the two domains towards oxidation. Utilizing the OxPTP antibody method, 

described above, higher sensitivity to oxidation was observed of the membrane distal 

domain D2 when compared to D1 upon UV-irradiation in vivo, and in vitro treatment 

with H2O2 (185, 186). In addition, it is well recognized that catalytic activity is pH 

dependent (134). Susceptibility to oxidation has also been found to be highly dependent 

on pH (130). Moreover, in vitro analyses using an activity-based assay, and H2O2 as 
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oxidant, found PTEN and Sac-1 to be highly sensitive, PTPL1/FAP-1 to be moderately 

sensitive and the myotubularin phosphatase to be almost resistant to inactivation (147). 

 

Domains outside of the PTP domain have also been shown to affect sensitivity to 

oxidation. Studies utilizing the OxPTP antibody method investigated differential 

sensitivity towards oxidation between SHP-1 and SHP-2. The two structurally 

homologous PTPs containing tandem SH2 domains were not readily oxidized 

compared to other PTPs. Interestingly, the SH2 domain seemed to protect from 

oxidative inactivation as determined from analyses comparing the full length proteins 

with catalytic domains only. This effect was particularly prominent for SHP-1 (133). 

 

Intrinsic differences in sensitivity to reductants: Some initial work has also been done 

to characterize potential differences in sensitivity of PTPs to different reductants.  

 

Early work investigated the reducing effects of the Trx system, the Grx system, DTT 

and GSH alone on recombinant PTP1B (176). The Trx system, used at a concentration 

of Trx (3.8µM), TR (0.2 µM), NADPH (200 µM), was almost as efficient in reducing 

recombinant PTP1B as 4mM DTT. On the contrary, the Grx system showed less 

capacity to reduce PTP1B, and treatment of GSH alone had least effect (176). Another 

study compared reactivation of recombinant PTP1B inactivated by H2O2, H2S or NO. 

Strikingly, the Trx system was 190-fold faster in reactivating PTP1B inactivated with 

H2S, compared to DTT, while oxidized or nitrosylated PTP1B showed a similar rate of 

reactivation. GSH showed much lesser effect on reactivation, as compared to Trx and 

DTT, irrespectively of the oxidant used (131).  

 

SHP-2 and SHP-1 has also been characterized with regard to reactivation by various 

reducing systems. Using a set-up where recombinant protein was inactivated until only 

5% remained, both SHP-1 and SHP-2 was able to be re-activated to 80% with DTT and 

GSH. The Trx system had no ability to reactivate either SHP-1 or SHP-2. Interestingly, 

in variants lacking the SH2 domains, ΔSHP-2 was sensitive to Trx system but not 

ΔSHP-1 (132).  
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Localized production of oxidants at the plasma membrane enable inactivation of PTPs: 

Several types of stimuli, such as growth factor receptor stimulation, activation of GPCR 

and UV-irradiation, results in a local production of ROS at the plasma membrane. 

These free radicals are short-lived entities, and a localized concentrated accumulation 

of ROS is thus occurring allowing a spatially restricted oxidative inactivation of 

specific PTPs.  

 

Induction of migration in endothelial cells has been shown to induce a localized 

accumulation of ROS that leads to inactivation of PTP-PEST. In this system, the 

scaffold protein Hic-5 and the adaptor protein TRAF4 bind to the NADPH oxidase 

subunit p47phox that mediates ROS production responsible for oxidation and 

inactivation of PTP-PEST (187).  

 

Early work by Tonks and co-workers showed PDGF induced oxidation of SHP-2 in 

Rat-1 cells. Intriguingly, only the recruited fraction of SHP-2 was inactivated by 

oxidation suggesting a localized ROS accumulation in close proximity to the receptor 

(127). Furthermore, PDGF-stimulation of cells has been shown to induce inactivation 

of membranous associated PTPs, but not cytosolic PTPs (188).  

 

Localized inactivation of a ROS scavenger upon growth factor activation: Recent work 

has identified a localized redox-dependent inactivation of the ROS scavenger Prx1. 

Stimulation of various receptors such as PDGF, EGFR, B-cell receptor (BCR) and T-

cell receptor (TCR) in different cells types induced a time-dependent inhibitory 

phosphorylation of Prx1 at Tyr194 (189). NOX1 deficient cells reduced the Prx1 

specific phosphorylation suggesting a ROS dependent regulation. Only Prx1 present at 

the membrane was found to be inactivated where Src family kinases contributed to 

phosphorylation. In cells with downregulated c-Src expression a partial decrease in 

PDGF-induced Prx1 phosphorylation was seen. Furthermore, Prx1 was found to be 

phosphorylated at Tyr194 during wound healing of a cutaneous injury in mice. Finally, 

Prx2 was shown to display a different and distinct mode of regulation including 

hyperoxidation in cells exposed to global stress (189). 
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4.3.3. PTP oxidation in cell signaling 

It is now well established that stimulation of a wide variety of cell surface receptors 

lead to a ROS mediated increase in PTP oxidation (127, 176, 190) (Figure 3). A 

number of different cell surface receptor-controlled mechanisms for modulation of 

ROS have been identified. 

 

Most analysis has addressed the RTK-mediated activation of NOX enzymes 

responsible for ROS production in close proximity to the RTKs. ROS production 

induced by NOX enzymes has been connected to PDGF, EGF and insulin-receptor (IR) 

signaling (191, 192). However, other sources such as mitochondrial produced ROS 

have been shown to impact on PTP oxidation. Mitochondrial-derived ROS have been 

shown to inactive PTPs during ischemia/reperfusion (181). In addition, p66Shc 

dependent mitochondrial-derived ROS have been shown to oxidize PTEN upon insulin 

signaling (193). A connection between growth factor-induced p66Shc dependent ROS 

production and PTP oxidation have also been suggested from analyses of PDGF 

signaling in p66Shc deficient fibroblasts which revealed decreased PTP oxidation in the 

knock-out cells (Paper III). ROS production through mitochondria and 5-lipoxygenase 

(5-LOX) enzyme, leading to inactivation of SHP-2, has been shown following 

engagement of integrin receptors (194). Furthermore, studies have implicated 

arachidonic acid release by phospholipase A as a source of oxidants leading to PTP 

oxidation (195, 196). As outlined above, activation of cell-surface receptors can also 

modulate ROS production through inhibitory effects on ROS scavengers, such as Prx1 

(189).  

 

The following paragraphs give some examples of studies which have demonstrated that 

PTP oxidation is an intrinsic component of signaling leading to cell proliferation and 

migration.  Most of these studies have been performed using cell based model systems. 

It should be noted however, that some studies have also showed cell signaling-relevant 

PTP oxidation in vivo (181).  
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Figure 3. Schematic overview of receptor tyrosine kinase (RTK) mediated ROS production and 

subsequent PTP oxidation. 

 

Reversible PTP oxidation and its impact on cell proliferation: The first and most 

important studies linking PTP oxidation to mitogenic growth factor signaling analyzed 

PDGF signaling in vascular smooth muscle cells (VSMCs) and EGF responses in A431 

cells. 

 

The study by Sundaresan at al. demonstrated that treatment of vascular smooth muscle 

cells (VSMCs) with PDGF ligand transiently increased the intracellular concentrations 

of H2O2. The cellular effects, such as tyrosine phosphorylation, proliferation and 

chemotaxis could be abrogated by treatment with antioxidants N-acetylcysteine (NAC) 

or catalase (197). Furthermore, exogenous H2O2 treatment of human fibroblasts 

(NIH3T3) cells increased activation of the mitogenic ERK signaling pathway, which 

also could be reverted by antioxidant treatment (198). 

 

Rhee and co-workers showed the first evidence of PTP oxidation. Stimulation of 

human epidermoid carcinoma cells (A431) with EGF ligand was shown to reversibly 

inactivate PTP1B as shown by radiolabelled alkylation of the reduced fraction (176).  

 

A contribution of PTP oxidation to the signaling leading to transactivation of EGFR by 

GPCRs was demonstrated in analyses of cardiomyocytes (199). Upon U-II treatment, 

activating the AT1R receptor, oxidation of SHP-2 but not PTP1B was demonstrated. 

Importantly, transactivation of the EGF receptor could be abrogated by NAC treatment. 
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It was thus suggested that U-II mediated ROS induction is responsible for ligand 

independent EGFR activation (199) 

 

Since the original study by Sundaresan et al, additional studies have confirmed the role 

of PTP oxidation in mitogenic PDGF signaling. PDGF induces reversible oxidation of 

SHP-2 upon activation of PDGF receptors in Rat-1 cells (127). In these cells, 

recruitment of GAD and the p85 subunit of the PI3 kinase, to the receptor seemed 

dependent on oxidative inactivation of SHP-2. Induction of PDGFR also led to 

increased activation of downstream effectors ERK MAP kinases. Furthermore, 

inactivation was critical for a ROS-induced proliferative response. In another study, 

antioxidant treatment decreased PDGF-dependent proliferation of VSMCs in an in vivo 

restenosis model. The antioxidants NAC or tempol decreased PDGF induced 

proliferation of VSMCs in rat carotid arteries (200). 

 

Interestingly, different studies have revealed a regulatory effect of ROS scavengers on 

PDGFR signaling. Prx2 was shown to modulate PDGFR activation and the specific 

activity of membrane associated PTPs.  Overexpression of the ROS scavenging enzyme 

suppressed both phosphorylation of the receptor and PLC-γ in human aortic VSMCs. In 

addition, neointimal thickening in injured carotid arteries was decreased in Prx2 KO 

mice compared to WT (188). In another study, overexpression of Grx decreased PDGF 

dependent proliferation of myocardiac H9c2 cells by modulating activity of LMW-PTP 

(137). Additionally, PTEN oxidation has been analysed upon stimulation of cells with 

various growth factors. PDGF and EGF receptor activation induced PTEN oxidation 

which, increased PI3 Kinase activity and downstream effectors AKT. These pro-

proliferative signals could be abrogated by overexpression of Prx2 or increased by 

overexpression of NOX1 (192). 
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Reversible PTP oxidation and its impact on cell migration and adhesion: Several 

studies have identified reversible oxidation of PTPs as a central component of cell 

signaling also in the context of adhesion and migration.  

 

Early work identified PTP oxidation as a central component of integrin signaling and 

cell adhesion (201). Activation of integrin receptors in fibroblasts induced a Rac-1 

dependent ROS where both NOX but mainly LOX enzymes were identified as sources. 

Inactivation of LMW-PTP and tyrosine phosphorylation of FAK was crucial for cell 

spreading and cell attachment. Reactivation of PTP activity by antioxidant treatment 

abrogated the cell phenotype. 

 

A subsequent study from the same group revealed the importance for mitochondrial- 

induced ROS at an early stage of cell attachment (194). Later stages of the cell 

spreading process specifically depended on LOX-induced ROS production. 

Furthermore, SHP-2 oxidation increased FAK and SHPS-1 phosphorylation (194) 

(Figure 4). Studies have identified the 5-LOX metabolite LTB4 to be responsible for 

stimulation of NOX to produce ROS (97).  

 
Figure 4. Overview of integrin-mediated ROS production.  
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PDGF is known to be a potent chemotactic factor targeting fibroblasts. Several studies 

have linked PTP oxidation and PDGF receptor signaling to “membrane-ruffling” which 

is a migration related phenotype. Lipid peroxides were identified as strong inducers of 

TC-PTP- and SHP-2- oxidation in GPx4 deficient cells exposed to PDGF ligand (148). 

“Membrane-ruffling” was significantly increased in GPx4 deficient cells induced by 

PDGF ligand. Another study also demonstrated a PDGF dependent induction of 

“membrane-ruffling” after subjecting fibroblasts to H/R. H/R induced oxidation of 

multiple PDGFR-associated PTPs including SHP-2, DEP-1and PTP1B (181). 

 

In endothelial cells VEGF is a known regulator of migration and cell adhesion. In a 

recent study oxidation of VEGF-induced ROS were linked to LMW-PTP oxidation 

important for FAK phosphorylation and endothelial cell migration. Intriguingly, the 

LMW-PTP oxidative form was identified as a S-glutathione and peroxynitrite was 

suggested as main oxidant (145). Another study has shown that extracellular SOD-

derived ROS increases phosphorylation of the VEGFR leading to an induced migration 

by oxidizing PTPs (PTP1B and DEP-1) (202).  

 

Adhesion of T-cells is partially regulated by a cross-talk between T-cell receptors and 

integrins. SHP-2 oxidation after T-cell receptor activation is a crucial component for 

activation of this signaling pathway. The two SHP-2 substrates involved, ADAP and 

Vav1, are important for T-cell receptor-induced adhesion (203).  

 

Growth factor receptor independent redox environment is regulated by both ROS 

producing enzymes and major antioxidant nodes such as Trx and GSH system. Several 

studies have identified ROS modulators such as Prx and GPx to impact on PTP 

oxidation (204). Inactivation of GPx4 induces an increase in cellular lipid peroxides 

oxidizing PTPs (148). Intriguingly, in vitro analysis revealed lipid peroxides more 

potent in inactivating PTPs as compared to H2O2. 
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4.3.4. PTP oxidation and disease 

Several different pathological diseases such as reperfusion injury, inflammation and 

cancer have been associated with deregulated levels of free radicals and antioxidant 

defences. For example, proliferating cancer cells have been shown to display an 

increased production of free radicals (205). Other reports have described a 

compensatory up-regulation of antioxidant enzymes through the Nrf2 system (206). 

ROS-sensitive signaling pathways have been described to be elevated in many different 

types of cancers such as mitogen-activated (MAP) kinase/ERK cascade, PI3K/AKT 

and NF-κB. Other studies have linked NOX1-mediated ROS production to a 

transforming phenotype (207). Furthermore, NOX1 has been shown be crucial for Ras 

dependent transformation (208).   

 

Several studies thus implicate imbalances between ROS production and antioxidant 

defences in pathological settings. Some studies have addressed to what extent these 

imbalances impact on PTP oxidation. Previous work has shown oxidative inactivation 

of the tumor suppressor PTEN upon mitogenic stimulation (192). Mitochondria-derived 

ROS in cancer cells increase Akt activation and also leads to oxidative inactivation of 

the PTEN phosphatase (209). Higher levels of ROS and oxidative inactivation of PTEN 

has been documented in T-ALL. Treatment with reductants increased T-ALL cell 

death, suggesting an apoptosis-protective role of the constitutively high ROS levels 

(210). 

 

The carcinoma cell lines A431 and HepG2 also showed a constitutively oxidative 

inactivation of PTP1B. Interestingly, inhibition of ROS levels in HepG2 cells decreased 

anchorage-independent growth indicating an involvement of ROS and PTP oxidation in 

maintaining the transformed phenotype (158). 

 

As outlined above the receptor-like PTP DEP-1 has been suggested to have tumor 

suppressor properties. DEP-1 has also been characterized as a negative regulator of WT 

FLT3 autophosphorylation and signaling (211). An important study established that 

oncogenic signaling through the ITD-FLT3 onco-protein requires oxidative inaction of 

DEP-1 (212). This study showed that AML-related mutant version of FLT3 ITD-

expressing cells produces higher levels of ROS than WT FLT3. In these cells, DEP-1 
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was found to be partially inactivated by oxidation. Inhibition of ROS production 

reactivated DEP-1and attenuated transformation both in vivo and in vitro (212).  

 

Finally, PTP oxidation has also been implicated in monocytes of metabolic disorder 

such as obesity and diabetes. The chronic inflammation state of these disorders 

involves release of chemoattractant MCP-1 that primes monocytes and recruits 

macrophages into vascular lesions where transformation of these cells into a hyper-

migratory and pro-inflammatory phenotype takes place. The priming of monocytes 

involves induction of ROS production by activation of the NOX4 enzyme. The 

increased ROS levels were shown to inactivate MKP-1 and thereby promote monocyte 

migration and adhesion. These findings indicate a connection between redox regulation 

of MKP-1 and a monocyte-dependent induction of chronic inflammation (213). 
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5. Aim of studies 
• To investigate if hypoxia followed by reoxygenation is associated with an 

increase in oxidation of PTPs both in cell culture and tissue model. 

• To investigate if long term hypoxia (24h) affects PTP expression and protein 

level. 

• To investigate if mitochondrial produced ROS modulate growth factor 

signaling by oxidation of PTPs. 

• To evaluate potential differential antioxidant effects of the thioredoxin system 

on PTP1B and SHP-2. 
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6. Results 

6.1. Paper I 

Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases 

Previous work has shown that hypoxia followed by re-oxygenation/reperfusion (H/R) is 

associated with an increase in levels of ROS molecules such as H2O2, O2
.- and . OH (90, 

214, 215). H/R studies on cardiomyoblasts have revealed mitochondria as the major 

site for H2O2 and O2
.- production (216). Furthermore, it is well established that PTPs are 

negatively regulated by reversible oxidation upon several different stimuli. Still the 

impact of elevated ROS levels on PTPs after H/R has yet not been explored. 

 

Here we investigate whether H/R-induced mitochondrial ROS results in increased PTP 

oxidation. 

 

We show that NIH3T3 cells subjected to H/R increase oxidation of two classical 

tyrosine phosphatases, the cytosolic SHP-2 and receptor-like DEP-1. Oxidation was 

detected using the OxPTP assay that utilizes a monoclonal antibody recognizing the 

sulfonic acid forms of the active site cysteine. In addition, PTP activity assays on total 

cell lysate and immuno-precipitated PTP1B showed a decrease in the fraction of 

reduced total PTPs, as well as PTP1B. To substantiate these findings we performed 

activity assays in cardiomyoblasts. Cardiomyoblasts subjected to H/R show an increase 

in total PTP oxidation as well as in the oxidation of immuno-precipitaed SHP-2. Since 

PTPs regulate phosphorylation state of tyrosine kinase signaling, we analyzed the 

effects of H/R on the downstream targets Erk1/2. NIH3T3 cells treated with H/R 

indeed showed an increase in Erk1/2 phosphorylation. Pretreatment of cells with the 

antioxidant NAC abrogated Erk1/2 activation. This indicates a link between H/R 

mediated Erk1/2 activation and ROS-induced inactivation of PTPs.  

 

Several PTPs have been shown to modulate PDGFR signaling by dephosphorylating 

tyrosine residues located outside the kinase domain. When these specific tyrosine sites 

on the PDGFβR are activated, SH2 domain containing signal transduction molecules 

can dock and propagate downstream signaling. Previous studies have shown 

inactivation of PTPs upon growth factor signaling. We therefore investigated if cells 

subjected to H/R displayed an enhanced response following PDGF stimulation. Indeed, 
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PDGF-induced formation of membrane ruffles was increased in NIH3T3 cells 

subjected to H/R. The enhanced signaling upon H/R could be abolished by pretreatment 

of cells with the antioxidant NAC supporting the hypothesis of oxidative inactivation of 

PTPs. To further consolidate these findings we specifically analysed the activity of 

PDGFβR associated PTPs. H/R-induced NIH3T3 cells were stimulated with PDGF in 

the presence of a PDGFR tyrosine kinase inhibitor AG1296. The activity of receptor 

associated PTPs was determined through measurement of the decrease in PDGFβR 

phosphorylation. Cells exposed to hypoxia displayed a significant decrease in PDGFβR 

dephosphorylation compared to control-treated cells.  

 

We conclude from these cell-based studies that hypoxia-induced ROS production 

results in increased PTP oxidation and increased PDGFβR growth factor signaling. 

 

Finally, we tested if the H/R induced PTP oxidation found in cell culture also could be 

reproduced in an ex-vivo tissue model; the Langendorf model of perfused heart. 

Ischemia followed by reperfusion (I/R) of ex-vivo hearts has previously been shown to 

induce transient ROS production (90). PTP activity measurements were performed on 

total cell lysates from control hearts, and hearts treated with I/R. A significant increase 

in PTP oxidation was shown in tissue extracts of hearts subjected to I/R. In addition 

immuno-precipitated SHP-2 from I/R subjected heart extracts displayed a significant 

increase in oxidation.  

 

Thus, these experiments demonstrate for the first time that ex vivo ischemia followed 

by reperfusion is associated with an increased oxidation of classical PTPs. 
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6.2. Paper II 

Hypoxia enhances platelet-derived growth factor signaling in the pulmonary 

vasculature by down-regulation of protein tyrosine phosphatases 

The pulmonary arterial wall is composed of an outer adventitial fibroblast layer, 

intervening vascular smooth muscle cells (VSMCs), and an inner endothelial cell wall. 

Pulmonary hypertension (PH) is a disease of the pulmonary arteries that is 

characterized by increased vascular resistance and sustained elevation of pulmonary 

arterial pressure leading to right heart failure.  PH is associated with structural damage 

in the vascular architecture, including increased proliferation and migration of VSMC 

and adventitial fibroblasts as well as injury of endothelial cells (ECs) (217-219). The 

combination of these vascular insults results in hypoxia. PDGFβR signaling plays an 

important role in vascular development and remodelling (220, 221). 

 

In this paper we investigate if hypoxia modulates PDGFβR signaling in pulmonary 

vasculature. Treatment of cultured human pulmonary smooth muscle cells (hPSMCs) 

with PDGF induced a dose-dependent increase in proliferation and migration of 

hPSMCs under normoxic and hypoxic condition. Cells subjected to 24h hypoxia 

showed a significant increase in both proliferation and migration as compared to 

normoxic cells. Previous work has identified PI3K and PLCγ as critical mediators of 

both proliferation and migration of VSMCs (222). Therefore we investigated if 

treatment of hPSMCs with the inhibitors of PI3K (Ly294002) and PLC-gamma 

(U73122) would block hypoxia induced proliferation and migration. Indeed, both 

inhibitors attenuated proliferation and migration in both normoxic and hypoxic cells. 

Expression levels of the PDGFβR displayed no significant difference between 

normoxic and hypoxic condition. In addition, total phosphorylation levels of the 

receptor were not affected by hypoxia treatment. Intriguingly, when cells were treated 

with PDGF, a marked increase in total receptor phosphorylation was seen in cells 

subjected to hypoxia as compared to normoxia. To further elucidate the specific 

mechanism involved, the specific phosphotyrosine sites of PI3K and PLCγ were 

analyzed. Indeed, the PDGFβR binding sites of PI3K and PLCγ (Y751 and Y1021) 

demonstrated a marked increase in phosphorylation under hypoxic condition and 

treatment with PDGF. In addition, hypoxia was also associated with an increased 

PDGF-induced activation of downstream effectors AKT and ERK1/2.  
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The observed increase in hypoxia-induced PDGFβR phosphorylation could be due to 

the downregulation of PTP expression and activity. To test this, we performed 

qRTPCR analysis on hypoxia treated hPSMCs.  Analysis of PTPs antagonizing the 

PDGFβR showed a significant decrease in mRNA levels of PTP1B, DEP-1 and TC-

PTP, but not SHP-2. In addition, the total PTP activity and the activity of PTP1B, SHP-

2 and DEP-1 were significantly decreased upon treatment with hypoxia. Thus, the 

increase in tyrosine phosphorylation of the PDGFβR was accompanied by a decrease in 

antagonizing PTP activity. 

 

To further understand the molecular mechanism, the expression level of HIF-1α was 

determined. In culture, hPSMCs subjected to hypoxia showed a time-dependent 

increase of hypoxia-inducible factor 1- α (HIF-1α) expression peaking between 4 and 6 

hours. Most interestingly, silencing of HIF-1α by RNA interference resulted in loss of 

hypoxia-induced PDGFβR phosphorylation. Importantly the effects were decreased to 

the levels of normoxic cells. In line with these observations, the hypoxia-induced 

down-regulation of PTP1B, SHP-2, TC-PTP and DEP-1 was blocked. Strikingly, 

down-regulation of HIF-1α with siRNA resulted in a marked up-regulation of DEP-1 

expression under hypoxic treatment. In an independent set of experiments, a 

pharmacological inhibitor of HIF-1α (2ME2) was applied to hypoxia-induced hPSMCs. 

Indeed, the enhanced PDGF-dependent proliferation and migration was reversed by 

treatment of 2ME2.  

 

To determine whether hypoxia regulates PTP expression in vivo, a previously 

established mouse model of PH was used. C57B1/6J mice were subjected to chronic 

hypoxia (10% O2) for 3 weeks, which increased their ventricular systolic pressure and 

right ventricular hypertrophy. Mice treated with chronic hypoxia displayed an increase 

in muscularization of pulmonary arterioles indicating ventricular hypertrophy. 

Consistent with the in vitro findings, hypoxia-induced vascular pulmonary re-

modelling induced an increased PDGFβR phosphorylation in the vascular wall. 

Additionally, expression levels of PTP1B, TC-PTP and DEP-1 were significantly 

decreased.  

 

Our results suggest that hypoxia-induced PH results in the down-regulation of PTPs 

and concomitant increase in PDGFβR phosphorylation levels. 
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6.3. Paper III 

Mithochondial Reactive Oxygen Species produced by p66Shc regulated PDGF 

signaling through Protein Tyrosine Phosphatase Oxidation 

Growth factor receptor signaling trigger NOX enzyme dependent ROS production at 

the plasma membrane (191). p66Shc is a redox enzyme that generates mitochondrial 

ROS utilizing electrons from the respiratory transport chain for reduction of O2 to H2O2 

(223). Mitochondrial-derived ROS production upon p66Shc activation has been shown 

to be critical for stress-induced apoptosis. Previous studies have described growth 

factor induced, oxidative inactivation of PTPs where NOX enzymes at the plasma 

membrane are identified as the source of ROS production. It is possible that growth 

factor induced signaling also induces mitochondrial ROS production, but this remains 

to be shown. 

 

The aim of this study is to investigate if growth factor induced signaling is modulated 

by oxidative inactivation of PTPs by mitochondrial ROS dependent on p66Shc. For 

these studies p66Shc knockout MEFs (p66Shc KO) were used. 

  

Activation of the p66Shc enzyme is mediated by phosphorylation at serine-36 (S36P) 

and subsequent translocation of p66Shc to the mitochondria where ROS production is 

induced. To investigate possible involvement of p66Shc in PDGFβR signaling, 

NIH3T3 cells were stimulated with PDGF-BB for analysis of S36P phosphorylation. 

Activation of PDGFβR with ligand induced activation of p66Shc by phosphorylation of 

S36. After stimulation with ligand, total PDGFβR phosphorylation was reduced in 

p66Shc KO cells as compared to WT. PDGF-BB stimulation of WT cells induced site-

specific phosphorylation of the PDGFβR on tyrosine pY771 and pY1021. In contrast, a 

smaller increase in phosphorylation was seen upon ligand stimulation of p66Shc KO 

cells indicating that p66Shc-derived ROS is required for PDGFβR phosphorylation. To 

further investigate if these effects were dependent on p66Shc induced ROS production, 

analysis was performed in presence of the antioxidant NAC. Results revealed a clear 

decrease in phosphorylation of the PDGFβR in WT cells but not in p66Shc KO cells. 

NAC treatment had no effects on the phosphorylation status of individual 

phosphotyrosine sites in p66Shc KO cells. From these results, we concluded that 

PDGFβR phosphorylation is dependent upon p66Shc activation and mitochondrial 

ROS production. 
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Ligand stimulation of the PDGFβR leads to phosphorylation and activation of 

downstream effectors AKT, ERK1/2 and PLCγ-1. Interestingly, p66Shc KO cells 

showed reduced phosphorylation of these three downstream effectors after ligand 

stimulation strengthening the role of p66Shc ROS production in growth factor 

signaling. Thus, these experiments identify a connection between the reduced 

phosphorylation of the PDGFβR in p66Shc KO cells and decreased activation of 

known downstream targets, AKT, ERK1/2 and PLCγ-1. 

 

Previous studies have shown inactivation of PTPs by reversible oxidation upon growth 

factor stimulation. Plasma membrane-localized NOX enzymes have been hypothesized 

to be the main source of ROS production. Little is known if mitochondrial ROS 

contributes to growth factor induced inactivation of PTPs. To elucidate the possible 

contribution of mitochondrial-derived ROS on PTP oxidation, PTP oxidation was 

directly assessed in WT and p66Shc KO MEFs using different assays. Stimulation with 

increasing concentrations of PDGF increased oxidation of a panel of soluble PTPs. 

Specific PTP oxidation after PDGF stimulation was seen for PTP1B and SHP-2. 

However, PDGF induced PTP oxidation was less prominent in p66Shc KO cells 

indicating a role of p66Shc induced mitochondrial ROS on PTP oxidation. These 

results led us to conclude that mitochondrially-derived ROS contribute to oxidative 

inactivation of PTPs during PDGFβR signaling. 

 

Ligand stimulation of the PDGFRβ is linked to an increase in proliferation and 

migration where activation PLCγ-1 is known to induce migration. Since PDGFβR 

pY1021 phosphorylation, and PLCγ-1 activation, is reduced in p66Shc KO cells we 

performed analysis of ligand-induced migration. Indeed, KO cells showed no migratory 

response after PDGF stimulation. In contrast, WT cells responded with a 2-fold 

increase. Effects seen in WT cells were abrogated with antioxidant treatment whereas 

KO cells showed no response to anti-oxidant treatment. 

In summary, this study identifies a previously unrecognised role for p66Shc-derived 

mitochondral ROS in regulating PDGF signaling through oxidation of PTPs.  
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6.4. Paper IV 

Thioredoxin-mediated selective activation of oxidized PTP1B modulates PDGFβ-

receptor tyrosine kinase signaling 

There are two main NADPH dependent antioxidant systems, Trx and GSH, responsible 

for re-activating oxidized proteins in cells. The detailed processes of re-activating 

oxidized PTPs are still largely unknown. Here we investigate the role of the Trx system 

on reactivating two different PTPs and its possible role on PDGF signaling. 

 

We analyzed the oxidation status of PTP1B and SHP-2 in wild-type (WT) or Txnrd1-/- 

mouse embryonic fibroblasts (MEFs). Activity measurements of immunoprecipitated 

PTP1B showed a decrease in activity in Txnrd1-/- MEFs compared to WT. In agreement 

with reduced PTP1B activity, direct measurement of oxidation using cysteinyl-labeling 

assay revealed an increase in oxidation of PTP1B in Txnrd1-/- compared to WT MEFs. 

On the other hand, no significant difference was seen in SHP-2 oxidation between 

Txnrd1-/- MEFs and WT. The glutathione reduction system is upregulated in Txnrd1-/- 

MEFs to compensate for redox imbalance (224). In agreement with these findings no 

significant difference in ROS levels was found between Txnrd1-/- and control cell lines 

using CellROX redox assay.  

 

To further explore above described findings NIH3T3 cells were treated with H2O2 and 

subsequent lysis. Exogenous Trx system components (Trx1, TrxR1 and NADPH) were 

added to cell lysates where after PTP activity was assayed. As a control, the strong 

reducing agent DTT was added to cell lysates to completely restore PTP activity. 

Results revealed a strong potency of the Trx system to reduce oxidized PTP1B but not 

SHP-2.  

 

As an additional way to measure the effects of Trx on PTP redox state, we analysed the 

effects of Trx system components on oxidized PTP1B and SHP-2 in vitro. Activity 

measurements of PTP1B in combination with Trx, TrxR1 and NADPH showed a 

dephosphorylation equal to that seen with DTT. In addition, Trx1 re-activated PTP1B 

in a dose-dependent manner. A combination of NADPH and TrxR1 had a modest 

ability to reactivate PTP1B. The Trx system had no effects on the redox state of 

recombinant SHP-2.  
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Two major conclusions were derived from these experiments. First, we found that 

PTP1B oxidation is reversible by the Trx system.  Secondly, these experiments reveal 

that different PTPs are differentially sensitive to Trx system components. 

  

PDGFβR signaling is regulated by several different phosphatases including PTP1B and 

SHP-2. Analysis of total PDGFβR phosphorylation and PTP1B specific tyrosine 

(pY579-581) upon PDGF-BB stimulation showed an increase in phosphorylation in 

Txnrd1-/- MEFs compared to WT. The enhanced receptor activation in Txnrd1-/- MEFs 

correlated with an increase in ligand dependent proliferation.  

 

We further explored if the enhanced phosphorylation of the PTP1B specific tyrosine 

(pY579-581) was due to an increase in PTP1B oxidation. Comparison of PTP1B 

deficient MEFs (Ptpn1-/-) and PTP1B-reconstituted Ptpn1-/- cells revealed an increase in 

pY579-581 tyrosine phosphorylation of the PDGFβR in MEFs lacking PTP1B as 

previously described (39). Treatment with the TrxR1 inhibitor auranofin increased the 

phosphorylation of the PTP1B site in PTP1B reconstituted cells but to a lesser extent in 

Ptpn1-/- MEFs. Thus, these data support the hypothesis of a TrxR1 dependent redox 

regulation of PTP1B and PDGFβR signaling. 

 

The above-described in vitro data identifies Trx1 as a potent reductant of oxidized 

PTP1B in combination with TrxR1 and NADPH. It is possible though that other 

substrates of TrxR1 can contribute to the effects seen in Txnrd1-/- MEFs. Recently, a 

thioredoxin-related protein TRP14 was identified and characterized (225). We 

performed in vitro experiments with oxidized PTP1B treated with a combination of 

TRP14 and TrxR1 and NADPH. Most interestingly, TRP14 reduced oxidized PTP1B 

in a dose-dependent manner. This experiment identifies TRP14 as an additional 

reductant of possible in vivo relevance for oxidized PTP1B. 
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7. Discussion 
This discussion will be limited to some speculation on the potential roles of regulated 

and specific PTP oxidation in tumor biology. The discussion is integrating the fact that 

PTPs have been implied both as tumor suppressors and as oncogenes. It is also 

considering the notion, emphasized in this thesis, that individual PTPs display distinct 

and specific profiles with regard to their sensitivity to various oxidants and reducing 

agents. 

 

The first part of the discussion is based on the assumption that oxidative inhibition of 

PTPs with tumor suppressor characteristics contributes to the tumor-supportive effects 

of hypoxia, whereas the second part will discuss the possibility that tumor cell-

dependency of the Nrf2-anti-oxidant-system involves maintenance of oncogenic PTPs 

in a reduced and active state. 

 

Hypoxia and hypoxia/re-oxygenation have been associated with an increase in ROS 

production (90). Tumor cells are exposed to intermittent hypoxia and largely exist in a 

microenvironment with irregular blood flow creating a hypoxic/re-oxygenated 

condition which act as a stimulus for development of a more aggressive phenotype 

(226). Furthermore, treatment of tumors with anti-vascular endothelial growth factor 

therapy has been associated with development of a pro-invasive/metastatic phenotype 

of the remaining tumor cells (227). Finally, pericyte depletion has been shown to 

enhance metastasis through mechanisms involving increased hypoxia (228). In all these 

above settings the responses to hypoxia are believed to involve transcription regulated 

by HIF-1α.  

 

In this thesis we present a series of findings which demonstrate that hypoxia negatively 

regulates PTP activity in a manner that facilitates receptor tyrosine kinase signaling. 

Firstly, hypoxia/reperfusion was shown to increase PTP oxidation (paper 1); secondly, 

hypoxia was shown to reduce transcription of multiple PTPs (paper 2); and thirdly, 

mitochondria-derived ROS, which is believed to be increased in hypoxia and 

hypoxia/reperfusion, was shown to also increase PTP oxidation (paper 3). In all these 

cases the increased PTP oxidation, and decreased PTP transcription, was shown to be 

associated with an enhanced response to growth factor signaling. 
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Collectively these findings suggest that the hypoxic microenvironment of tumors 

should be associated with a reduction in activity and expression of PTPs that would 

normally act as antagonists of growth factor signaling. It would therefore be highly 

interesting to profile PTP oxidation and expression in hypoxic tumor tissue to 

experimentally validate this notion. Positive findings from such studies would also 

suggest re-activation of oxidized PTP, with tumor-suppressor activity, as a novel 

candidate approach for anti-cancer therapy. 

 

Independent from the studies discussed above there is emerging evidence that 

overexpression of oncogenes such as Kras, Braf and Myc, known to increase ROS 

production, also induce an antioxidant response program through activation of the 

transcription factor Nrf2 (206). Interestingly, depletion of Nrf2 was shown to revert the 

transformed phenotype, and to prevent tumor growth in a ras-dependent mouse model 

of pancreatic cancer (206).  

 

Based on our findings in paper 4, which demonstrate the differential sensitivity of two 

different PTPs (PTP1B and SHP-2) to the reducing activity of the Trx system, it is 

legitimate to speculate that the particular redox phenotype of oncogene-transformed 

cells, characterized both by an enhanced ROS production, and an up-regulation of a 

certain set of anti-oxidants, will generate a special profile of PTP oxidation which is 

overall favourable for tumor growth. This profile is predicted, in general terms, to be 

characterized by an oxidative inactivation of tumor suppressor PTPs and a reduced 

active state of the oncogenic PTPs. This concept is possible to experimentally test by 

performing global analyses of PTP oxidation in e.g. ras-transformed cells with or 

without Nrf2-depletion. 

 

 The discussion above suggests full characterization of redox regulation of PTP 

oxidation would enable new treatment strategies where targeted reactivation or 

oxidation of a distinct set of PTPs would abrogate tumor development. A promising 

exemple of this approach has been provided though the generation of a conformation-

specific antibody that stabilizes PTP1B in its oxidized state (229). Interestingly, this 

antibody was shown to block PTP1B reactivation in a manner that also enhanced 

insulin signaling. 
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9. Populärvetenskaplig sammanfattning 
Vår kropp är uppbyggd av olika typer av celler med unika egenskaper. Exempel på 

celltyper är muskel-, immun-, lever- och hjärnceller. Kommunikation celler emellan är 

en viktig strategi för att bibehålla organfunktion samt reglera cellers tillväxt och livstid. 

Celler kommunicerar med varandra via utsöndring av olika signalsubstanser, till 

exempel tillväxtfaktorer. PDGF är en tillväxtfaktor som när den binder till sin specifika 

PDGF receptor på cellens yta, ger signal till cellkärnan vilket kan leda till att cellen 

delar sig eller förflyttar sig. PDGF receptorn tillhör en proteinfamilj som heter 

tyrosinkinaser (TKs). TKs är enzymer som genom kemisk modifiering (fosforylering) 

av andra proteiner inuti cellen fortplantar signalen från cellytan vidare in mot 

cellkärnan. En annan proteinfamilj, tyrosinfosfataser (PTPs) gör det omvända och tar 

bort fosforgrupper på proteiner. Tyrosinkinaser och tyrosinfosfataser avgörsålunda 

tillsammans om en signal utifrån fortplantas inuti cellen eller inte, och avgör därmed 

om man får en effekt av t.ex. en tillväxtfaktor.  

 

I denna avhandling har jag på närmare håll studerat hur aktiviten av PTPs kan regleras 

inuti celler. Mer specifikt har jag studerat samspelet mellan PTPs, fria radikaler, 

antioxidanter och tillväxtfaktorsignalering. Man vet sedan tidigare att PTPs kan 

modifieras (oxideras) av fria radikaler vilket hämmar aktiviteten av PTPs. Fria radikaler 

bildas bl.a. i syrefattiga (hypoxiska) miljöer i kroppen, t.ex. i hjärtmuskeln i samband 

med hjärtinfarkt samt i tumörer. Fria radikaler neutraliseras av s.k. antioxidanter.  

 

I arbete 1 har vi simulerat hjärtinfarkt i en djurmodell. För att simulera hjärtinfarkt 

skapades tillfällig syrebrist (hypoxi) i hjärtmuskeln. Vi kunde visa att hypoxin 

resulterade i ökad oxidering av tyrosinefosfataser (PTPs) och ökad 

tillväxtfaktorsignalering via PDGF-receptorn.  

 

I arbete 2 var syftet att studera PTP aktivitet och tillväxtfaktorsignalering vid långvarig 

hypoxi i samband med pulmonell hypertension (förhöjt blodtryck i lungkretsloppet). 

Vid denna kroniska sjukdom ses syrebrist och ökad celldelning i lungans kärl. Vi kunde 

visa att långvarig syrebrist i celler från lungartärer resulterade i minskad mängd och 

lägre aktivitet av PTPs Vidare visade vi att minskad PTP aktivitet resulterade i ökad 

tillväxtfaktorsignalering via PDGF-receptorn samt ökad celldelning och cellmigration. 
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I arbete 3 har vi närmare studerat mekanismer som reglerar frisättning av fria radikaler 

inuti celler i samband med tillväxtfaktor (PDGF) signalering. Vi har kunnat visa att 

tillväxtfaktor stimulering leder till frisättning av fria radikaler från mitokondrien. 

Dessutom visade vi att denna mitokondriella frisättning var beroende av proteinet 

p66Shc. 

 

I arbete 4 var syftet att studera hur kroppens egna system för att ta hand om fria 

radikaler, s.k. antioxidantsystem, kan reglera specifika PTPs och därmed påverka 

tillväxtfaktor (PDGF) signalering.  Resultaten visade att antioxidantsystemet 

thioredoxin, selektivt motverkar oxidering av vissa PTPs (PTP1B) och därigenom har 

möjlighet att reglera tillväxtfaktorsignalering via PDGF receptorn. 

 

Sammantaget har resultaten i denna avhandling ökat kunskapen kring hur aktiviteten av 

intracellulära PTPs regleras av fria radikaler och antioxidanter. Detta kan i sin tur 

påverka kommunikationen mellan celler, och specifikt tillväxtfaktorsignalering via 

PDGF-receptorn. Dessa mekanismer kan i ett större perspektiv ha betydelse för olika 

sjukdomstillstånd som hjärtinfarkt och cancer där syrebrist är en viktig komponent. 
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