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ABSTRACT 

Important aims of cancer proteomics include gaining better understanding of cancer 

biology and identifying cancer biomarkers. Mass spectrometry (MS) based shotgun 

proteomics allow for identification and quantification of thousands of proteins in 

complex human samples. However, proteomics discovery research in clinical material 

faces many challenges. The biological differences between groups are often expected 

to be rather small, at the same time the human proteome is highly complex and there 

is large biological variation between clinical samples. To be able to extract 

meaningful results from proteomics data derived from biological and clinical 

material, care has to be taken to all the critical steps in the data analysis workflow. 

First of all we need to have robust methods to extract good quality data. A proper 

statistical analysis is then of outmost importance, taking into account risks of over-

fitting and false positives. In addition, we also need system based approaches to relate 

the data to clinical and biological questions.  

 

The main goal of this thesis was to generate robust methods for selection of key 

proteins, networks and pathways relevant for answering biological and clinical 

questions. The work includes development and evaluation of workflows for 

quantitative analysis of proteomics data. 

 

In paper I, a multivariate meta-analysis workflow was developed to link existing 

proteomics data from human colon and prostate tumours. The aim was to identify 

proteins distinguishing between normal and tumour samples independent of tissue 

origin, as well as to find unique markers. The bioinformatics workflow for meta-

analysis developed in this study enabled the finding of a common protein profile for 

the two malign tumour types, which was not possible when analysing the data sets 

separately. The purpose of paper II was to generate a basis for the decision of what 

protein quantities are reliable and find a way for accurate and precise protein 

quantification. We developed a methodology for improved protein quantification in 

shotgun proteomics and introduced a way to assess quantification for proteins with 

few peptides. The experimental design and developed algorithms decreased the 

relative protein quantification error in the analysis of complex biological samples. In 

paper III, we presented SpliceVista, a tool for splice variant identification and 

visualization based on MS proteomics data. SpliceVista identifies splice variant 

specific peptides and provides the possibility to perform splice variant specific 

quantitative analysis. SpliceVista was applied in two experimental datasets to 

exemplify its capability of detecting differentially expressed splice variants at the 

protein level. The aim of paper IV was to develop a network based analysis 

workflow for proteomics data to identify protein subnetworks with different activity 

between groups of samples. The methodology, which is based on a multivariate 

model directed by the network, was applied to several of our clinical mass 

spectrometry datasets. The output from the subnetwork analysis was functional 

subunits of proteins, rather than a collection of sparse proteins, which were shown to 

more readily provide a model of the biological mechanisms studied, and thus aid in 

the biological interpretation. 
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1 BACKGROUND 

1.1 PROTEOMICS 

The proteome is the entire set of proteins expressed by a genome, cell, tissue or 

organism at a certain time, under certain conditions [1, 2]. The term proteomics 

describes the large-scale study of the proteome; including protein composition, 

protein structure, expression, function and interactions. The Human Genome Project 

[3, 4] provided a blueprint for the gene-encoded proteins potentially active in human 

cells, but there is still limited knowledge on the majority of the around 20 000 

protein-coding genes. The Human Proteome Project [5, 6] was launched in 2010 with 

the goal of mapping the entire human proteome. Doing this is a formidable task, the 

total number of different proteins in the human proteome is estimated to be around 1 

million [7, 8] (Figure 1). Further, in contrast to the genome, the proteome is much 

more dynamic and in constant change. Proteins are expressed at distinct times, in 

distinct cell types and only under certain conditions, as well as undergo differential 

splicing and post-translational modifications. This means that even the basic set of 

proteins that are produced in a cell needs to be determined. 
 

 
Figure 1. The DNA to RNA to protein complexity. Each gene can give rise to multiple mRNA 

transcripts by using alternative promoters, alternative transcription termination sites, alternative splicing 

and mRNA editing. The number of different protein variants from one gene is further increased by the 

various protein post-translational modifications.  

 

The mRNA level is often measured as a proxy for the protein levels. Studies of 

differential mRNA expression are informative, but the mRNA level has been found to 

have limited correlation with the protein level [9, 10]. It is now known that mRNA is 

not always translated into protein, and the amount of protein produced for a given 

amount of mRNA depends both on the individual gene and on the current 

physiological state of the cell. Differences in protein synthesis and degradation also 

complicate the comparison, as mRNA and protein levels result from the coupled 

processes of synthesis and degradation. In addition, studies of RNA levels have 

limitations regarding information on protein function and interaction, and lacks 

information on post-translational modifications. Proteomics experiments confirm the 

presence of the specific protein and provide a direct measure of the protein quantity in 

a cell at a given time and condition. Another advantage of proteomics is that often the 

identified protein is the biological executive unit.  
 

1.1.1 Cancer proteomics 

Cancer proteomics is the study of protein changes related to cancer. For revealing 

signalling pathways causing cancer or other diseases, protein level measurements are 

particularly informative since protein mediated signalling controls the majority of 



 

2 

cellular events. The importance of proteins in human diseases can further be 

illustrated by the fact that a majority of all drugs are targeted to have an effect on 

proteins [11]. 
 

Tumorigenesis in humans is a multi-step process; the steps reflect genetic alterations 

that drive the transformation of a normal cell into a cancer cell. The hallmarks of 

cancer comprise six biological capabilities, essential for the development of 

malignant cancer: sustaining proliferative signalling, evading growth suppressors, 

resisting cell death, enabling replicative immortality, inducing angiogenesis, and 

activating invasion and metastasis [12]. Two additional emerging hallmarks have 

been proposed: reprogramming of energy metabolism and evading immune 

destruction [13]. During the transformation of a normal cell into a malignant cell, 

several changes occur at the protein level, including altered expression, differential 

protein modification, as well as changes in activity and localization. Identifying and 

understanding these changes is the main goal in cancer proteomics [14, 15]. Despite 

major progresses in detection and therapy, cancer remains a major public health 

challenge. Cancer is a leading cause of death worldwide, about 12.7 million cancer 

cases and 7.6 million cancer deaths were estimated for year 2008 [16]. A better 

understanding of the development of drug resistance, as well as development of 

biomarkers for the early detection and selection of the most effective therapeutic 

strategies, are urgently needed [17, 18]. 
  

1.1.2 Clinical and Biological discovery research 

The purposes of studying the proteome in relation to cancer can be several, but there 

are two main starting points: to gain better understanding of the cancer biology or to 

identify cancer biomarkers. Biological studies are often performed in model systems 

such as cell lines or animal models, while biomarker studies are preferably performed 

in clinical materials. Biomarkers are biological molecules that are indicators of a 

biological state. A biomarker can be used to provide an early indication or detection 

of the disease (diagnostic marker), to monitor disease progression and tell something 

about the disease outcome (prognostic marker) and to tell how a patient will respond 

to a treatment (predictive marker) [18]. Biomarkers based on the individual genetic 

make-up of patients can be used to design tailored treatment, an approach called 

personalized medicine. Personalized medicine is very important for cancer treatment, 

since population based medicine has not been successful for many cancer types [19]. 

Currently, it is very difficult to predict which patient will respond well to a treatment, 

as tumours often develop resistance to drugs. Development of therapy related 

biomarkers to select the most effective treatment, as well as diagnostic biomarkers to 

enable early diagnosis are key aspects to improve prognosis and survival for cancer 

patients [14, 15]. 

 

Recent advances in genomics and proteomics technologies have gained a lot of 

interest and expectations in the quest for cancer biomarkers. Unfortunately, the 

biomarker discovery research has so far mainly failed to deliver biomarkers for 

clinical use [19]. Omics technologies such as proteomics and DNA microarrays have 

generated more than 150 000 papers on putative biomarkers, but less than 100 have 

been validated for clinical practice [20].  

 

Proteomics discovery research in clinical material faces many challenges [21, 22]. A 

big challenge is small sample cohorts in combination with large and unknown 

complexity of the human proteome as well as large biological variation between 
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clinical samples. This is due to normal variation between healthy individuals as well 

as disease heterogeneity. Another complicating factor is that the differences in protein 

levels between groups might be very small, sometimes even smaller than the normal 

biological variation. Further, the low concentration of potential protein biomarkers 

[23, 24] makes biomarker discovery difficult, since most proteomics technologies are 

biased towards the detection of high abundant proteins. A number of key factors 

causing biomarker discovery to fail have been identified [19, 20]. Many of those can 

be explained by the influence of bias, the existence of a hidden structure in the data 

making the marker appear promising. Bias has been suggested to be the single biggest 

threat to validity of biomarker studies [25, 26], mainly because there are so many 

different sources of bias that can be difficult to keep control of. Furthermore, the 

observational design used in biomarker research is more subject to bias; subjects are 

selected and not randomly assigned, and baseline equality between cases and controls 

can most often not be assured. Many other factors can be explained by the use of 

inappropriate statistical methods. In high dimensional data there is a risk of over-

fitting the statistical model to the data, giving overly optimistic results. Another risk 

of analysing data with thousands of variables, and often few subjects, are the false 

positives, positive results that occur just by random events.  

 

Failures in biomarker development cost a lot, in terms of money, time, labour, talent, 

and reliability for the research field. To overcome the main obstacles for biomarker 

research and to increase the chances of taking a biomarker into clinic, the study has to 

be planned and executed carefully [21]. The selection of samples to include and a 

valid experimental design trying to avoid any possible bias is crucial. The 

experimental platform need to be suitable for the type of material and measurements, 

and the performance of the assay, in terms of sensitivity, accuracy and robustness, 

should be known. The technical, experimental and biological variation of the system 

has to be assessed and considered in the handling of the quantitative data. A proper 

statistical analysis is of outmost importance, taking into account risks of over-fitting 

and false positives. Testing thousands of hypotheses simultaneously requires methods 

for multiple testing correction to keep control of the false discovery rate. Further, the 

statistical model and the biomarker have to be validated properly, preferably in an 

independent sample cohort using an orthogonal technique. Hence the analytical 

properties of the validation method also have to be taken into account.  
 

1.2 PROTEOMICS TECHNOLOGIES 

As mentioned above, there are several analytical challenges in studying the human 

proteome, as compared to studying the genome (DNA) or the transcriptome (RNA). 

Besides the size and complexity of the human proteome, there are large differences in 

protein abundance, spanning over ten orders of magnitude in human plasma [23, 27] 

and at least six in tissue. Proteins are also chemically more heterogeneous than DNA 

and RNA and differ largely in solubility, size and pI. Those challenges put high 

demands on the methods used for proteomics analysis, to be able to cover as much as 

possible of the human proteome and also be able to reach the low abundant proteins. 

 

The main analytical techniques aiming at studying the proteome have traditionally 

been two-dimensional gel electrophoresis (2DE) together with mass spectrometry 

(MS). In 2DE, proteins are separated in two dimensions based on isoelectric point 

(pI) and size (Mw) (Figure 2A) [28]. The gel is stained and protein spots of interest 

can be cut out and identified using MS. The 2DE technique has limitations such as 

limited throughput, low dynamic range and low resolution; a typical 2DE experiment 
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detects approximately 2000-3000 protein spots out of which only a subset will be 

identified [29-32]. Today liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) is a commonly used method to study protein expression 

on a proteome/genome wide scale. The peptides, proteins or other analytes eluting 

from the LC column are separated according to their mass-to-charge (m/z) ratio by 

the mass spectrometer (Figure 2B). Recent developments in methods and instruments 

for mass spectrometry enable large scale quantitative proteomics analysis of complex 

samples with very good coverage [10, 33-42]. The number of samples feasible to 

analyse by MS is however limited by low throughput. At present, some publications 

have reported over 10 000 proteins identified and quantified in human cell lines [43-

45]. The developments have also enabled the quantification of complete proteomes of 

model organisms such as yeast [46-49]. The technical advances have moreover made 

MS based proteomics an important tool for biomarker discovery [24, 50-58]. In 

addition to mass spectrometry methods, affinity based proteomics methods using 

antibodies are also widely used to study protein levels, protein localization and 

protein interactions [59-63]. 

 

 
Figure 2. A: Two-dimensional gel electrophoresis. Proteins are separated in two dimensions based on 

isoelectric point (pI) and size (Mw). Protein spots of interest can be cut out and identified using MS/MS. 

B: Liquid chromatography coupled to tandem mass spectrometry. Peptides are usually fractionated by 

charge or here by pI, followed by separation by hydrophobicity (retention time in LC column) and by 

mass-to-charge ratio (m/z) in tandem mass spectrometry, first on peptide ions in MS1 and secondly on 

fragmented peptides in MS2 (see Figure 3). 

 

1.3 MASS SPECTROMETRY 

Mass spectrometry (MS) is an analytical technique that separates molecules according 

to their mass-to-charge ratio (m/z) [35, 64, 65]. It can be used for determining masses 

of particles, determining the elemental composition of a sample or molecule, and for 

elucidating the chemical structures of molecules, such as peptides, proteins, 

metabolites or other chemical compounds. In proteomics, MS can be used for protein 

quantification, protein identification, identification of protein modifications and 

protein complexes, as well as protein localization (imaging) [36, 66-68]. 

 

MS instruments consist of three major modules: an ion source, a mass analyser and a 

detector (Figure 3). In the ion source, the analytes are ionized and brought into gas 

phase. The most commonly used ion sources in proteomics are electrospray ionization 

(ESI) or matrix assisted laser desorption ionization (MALDI). The mass analyser 

separates the ions based on their m/z ratio, by applying electromagnetic fields. 
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Orbitrap and ion cyclotron resonance (ICR) separate ions based on m/z resonance 

frequency, quadrupoles (Q) and ion traps (IT) separate ions based on stability of their 

paths in oscillating electric fields and time of flight (TOF) analysers use flight time. 

Once separated by m/z, the detector measures the number of ions hitting the detector 

and provides the data for calculating the abundance of each ion cloud present. The ion 

signal is processed into a mass spectrum, with m/z on x-axis and ion count on y-axis. 

 

 

Figure 3. Major modules of tandem mass spectrometers. In the ion source the analytes are ionized. The 

mass analyser separates the ions based on m/z ratio. In shotgun proteomics, the first analyser (MS1) 

separates the peptide ions (precursor ions), peptides are then fragmented by collision energy (here 

exemplified by CID, collision induced dissociation) and the fragment ions (product ions) are separated by 

the second analyser (MS2). The detector measures the number of ions for a certain m/z ratio, which is 

used for the generation of the mass spectrum. 

 

1.3.1 Shotgun proteomics 

There are two main strategies for mass spectrometry based proteomics: bottom-up 

and top-down. In a top-down approach, intact proteins are analysed directly by mass 

spectrometry. Measuring intact proteins directly in MS on a larger scale is limited to 

rather small proteins (<45 kDa). Another problem of analysing intact proteins is that 

they have very different properties, making some proteins difficult to solubilize, 

separate and ionize by MS. 

 

In a bottom-up approach, proteins are enzymatically digested into peptides, which are 

analysed by mass spectrometry [7, 40, 69-71]. Bottom-up, also known as shotgun 

proteomics, is the far most common workflow in MS based proteomics. A typical 

quantitative shotgun proteomics workflow in our lab is depicted in Figure 4. 
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Figure 4. Quantitative shotgun proteomics workflow. Proteins are digested to produce a peptide 

mixture. The peptides are labelled, pooled and pre-fractionated. Fractions are loaded onto a nano 

column and the peptides are separated by reverse phase chromatography. As the peptides elute from 

the column, they are subject to tandem mass spectrometry analysis. The MS1 and MS2 spectra yield 

peptide identifications, which are used to infer proteins. The reporter ions from the labels are used for 

relative quantification of peptides. Peptide ratios are then summarized into protein ratios. Statistical 

analysis is performed to select the most important proteins for further systems biology based analysis 

to infer biological interpretation.   
 

Shotgun proteomics is based on enzymatic cleavage of proteins into peptides (usually 

by trypsin). This is performed to facilitate ionization and fragmentation. It further 

avoids problems associated with intact protein analysis, such as poor separation 

efficiency and poor sensitivity. 

 

The level of sample complexity, and protein abundance range, influences the 

performance of the MS analysis. It is difficult to obtain optimal ionization and 

fragmentation process for all analytes in complex samples, since the analytes have 

very different chemical properties. In addition, MS has limited dynamic range of 

detection, limiting sensitivity and quantification in complex samples. To overcome 

these challenges, and to maximize protein identifications, various steps directed at 

reducing sample complexity can be performed prior to MS analysis [64, 72, 73].   

 

The most common approach to reduce sample complexity is by pre-fractionation, 

performed either on protein or peptide level. Since the sample complexity is increased 

by enzymatic cleavage (by a factor of about 40), pre-fractionation on peptide level is 

particularly valuable. By pre-fractionation, the peptide sample can be fractionated 

according to its physicochemical properties such as charge, isoelectric point, 

hydrophobicity or a combination of these. Alternatively, specific subsets of the 

sample can be targeted through enrichment of peptides or proteins using affinity-

based resins or antibody-based immunoprecipitation. 

 

To further reduce complexity of the peptide mixture, the peptides are subjected to 

separation prior to MS analysis. The separation is required to detect low-abundance 
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proteins that would otherwise be overshadowed by higher abundance signal, as well 

as for un-ambiguous identifications. A common setup is to couple a liquid 

chromatography system (LC) to a mass spectrometer. 

 

Peptides eluting from the LC column are then analysed by tandem MS. The peptides 

are ionized and analysed by the first MS, generating the peptide ion spectrum (MS1). 

For each MS1 scan, the top 5-10 peaks are usually fragmented and subjected to the 

second MS scan generating the fragment ion spectrum (MS2) [74]. 

 

The raw data (MS1 and MS2 spectra) generated by the instrument is first processed 

by signal processing softwares to reduce the raw data into a set of peaks [75, 76]. 

 

Peptide identification is typically accomplished by matching the experimental MS2 

spectra to in-silico predicted spectra generated by a theoretical digest of a protein 

database, using the precursor ion mass as support. The peptide spectrum matches 

(PSMs) are then summarized into protein identities. 

 

Peptide quantification can be performed either based on the MS1 spectra, as in label-

free quantification, or based on the MS2 spectra, as in quantification based on 

isobaric labels. 

 

The major advantage of shotgun proteomics is the ability to identify and quantify 

thousands of proteins in a single analysis. One disadvantage is the informatics 

challenges related to processing the large amount of acquired data [76]. A shotgun 

proteomics approach is most suitable for discovery projects aiming at rapid 

identification, and relative quantification, of complex sample mixtures in a limited 

number of samples. It is a hypothesis generating experiment that requires several 

follow up steps using alternative techniques. Typically, the proteins identified in the 

discovery phase would be validated with more targeted approaches like selected 

reaction monitoring (SRM) mass spectrometry [77-80] or affinity based proteomics 

[63, 81] in a larger cohort.  
 

1.3.1.1 Labelling and Quantification 

Many proteomics studies aim at studying differences in protein expression levels 

between different conditions. Such comparative analysis depends on protein 

quantification [69]. As mentioned before, two principally different approaches exist 

for quantification by MS: label free methods and methods based on stable isotope 

labelling [82-85].  

 

Label free quantification is based either on the mass spectrometric signal intensity in 

MS1 for any given peptide, or on spectral counting; using the number of times the 

peptides from certain proteins are detected as a proxy for protein abundance [86-89].   

 

An advantage of isotopic labelling is that it enables pooling of samples, thereby 

reducing MS run time as well as technical variability. ICAT [90], iTRAQ [91], TMT 

[92] and SILAC [93] are among the most commonly used labelling methods based on 

stable isotopes. iTRAQ (isobaric tags for relative and absolute quantification) allow 

for simultaneous relative quantification of up to eight samples within a single run. 

Using iTRAQ labelling, fragmented reporter ions from the tag are used for relative 

quantification in MS/MS mode. 
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1.3.1.2 Peptide identification 

Modern MS instruments generate an enormous amount of fragment ion spectra per 

hour of data acquisition. The fragment ion spectrum of a peptide ion needs to be 

assigned to a peptide sequence. There are several different computational approaches 

to do this [94-98]: i) Database searching; experimental fragment ion spectra are 

matched with predicted spectra based on theoretical digest of protein sequences. 

Experimental spectra can also be used; in this case fragment ion spectra are matched 

to libraries containing experimental MS/MS spectra identified in previous 

experiments (Spectral library search), ii) De novo sequencing; peptide sequences are 

explicitly read out directly from the fragment ion spectra, iii) Hybrid approaches; 

database searching assisted by de novo sequencing. 

   

1.3.1.3 Protein identification 

The purpose of most proteomics experiments is the identification, and quantification, 

of the proteins present in the sample prior to digestion. Peptide sequences identified 

by a shotgun proteomics experiment thus need to be assembled into proteins. This is 

not straightforward due to several reasons [99, 100]. The major cause is peptide 

sequences shared between several proteins, leading to ambiguities in the 

identification process. The presence of several proteoforms (protein variants) [101], 

often with very similar protein sequences, further complicates the process. Commonly 

the parsimony principle (Occam’s razor) is used to infer proteins [102]; it determines 

the smallest number of proteins that can account for all observed peptides. 

 

1.3.1.4 Proteoforms 

Protein post-translational modification increases the functional diversity of the 

proteome by the covalent addition of functional groups to proteins, proteolytic 

cleavage of regulatory subunits or degradation of entire proteins. Post-translational 

modifications are key mechanisms to increase proteomic diversity. The total number 

of protein variants in the human proteome is estimated at over 1 million [8]. Protein 

isoforms also arise due to alternative splicing of the mRNA. Eukaryotic genes consist 

of exonic (protein coding) and intronic (non-coding) regions, after transcription the 

introns are removed by a process called splicing. Alternative splicing allows for the 

production of a variety of different proteins from one gene, by splicing and 

reconnecting exonic sequences in alternative ways to produce mature mRNA [103]. 

Alternative splicing is a very prevalent process in the human genome, it is estimated 

that around 92-94% of human genes has the potential to undergo alternative splicing 

[104]. It thus has great significance in increasing the proteome diversity and 

complexity. Alternative splicing plays an important role in regulating gene 

expression; it determines binding properties, intracellular localization, enzymatic 

activity, protein stability and posttranslational modifications of a large number of 

proteins. Disruption of alternative splicing events has been implicated in a large 

number of diseases, such as neurodegenerative, cardiovascular, respiratory and 

metabolic diseases, as well as several cancer types [105-107].   
 

1.4 QUANTITATIVE DATA ANALYSIS 

Once the peptide sequences have been determined and assembled into protein groups 

and the quantitative measurements have been defined both on peptide and protein 

level (see more details in sections 2.2.6 and 2.2.7), the analysis of the quantitative MS 

data can take place. 
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To extract meaningful results from MS proteomics data on biological and clinical 

material, care has to be taken to all the critical steps in the quantitative data analysis 

workflow, from handling the raw data to the statistical analysis and the biological 

interpretation of the result [70, 108-111]. The data analysis part is specifically 

delicate in large scale omics experiments since often thousands of variables are 

measured for only a few samples [112]. This implies a risk in the statistical analysis 

step to generate false positive discoveries. Further, the data often harbours a large 

amount of noise, in terms of biological variation, technical variation as well as 

experimental variation. The first important step is to know the quality of the 

quantitative data, to be aware of the limitations and reasonable expectations. 

Secondly, a suitable statistical method has to be selected and the statistical validation 

of the result has to be done carefully. 
 

1.4.1 Pre-processing and Quality control 

Prior to any statistical analysis the quantitative mass spectrometry data has to be pre-

processed and quality controlled. The quantitative data from an iTRAQ experiment is 

expressed as ratios between iTRAQ channels, since the iTRAQ reporter ions are used 

for relative quantification of each peptide. Often the ratios are log transformed to give 

the up- and down regulations equal importance, prior to statistical analysis. Further, 

the quantitative data need to be normalized to make samples and experiments 

comparable. The amount of missing values in the data also has to be assessed and 

proteins with a large amount of missing data points might have to be excluded prior 

to statistical analysis. 

 

Quality control of the quantitative data also has to be performed; this can be done by 

investigating the distribution of the data and missing values. A useful plot for 

investigation of data distribution, data separation and outliers is the PCA (Principal 

Component Analysis) scores plot (see section 1.4.2.3). For detecting differences in 

the distribution between samples or pools of samples, the boxplot can be very useful 

(see example in Figure 5). The purpose of the quality control is to detect problems in 

the quantitative data such as biases in data distribution, which can then be adjusted 

for by normalization prior to statistical analysis.  

 

 
Figure 5. Example of a boxplot for protein expression data from two clinical sample groups: control and 

recidiv (relapse). The intensities of all proteins for one sample are plotted in each column. The horizontal 

line marks the median intensity for each sample, the boxes covers the mid 50% of data, spanning from 

the first quartile to the third quartile. The upper and lower vertical lines marks a 95% confidence interval 

for the median and the circles outside the lines are thus outliers.  
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1.4.2 Statistical analysis 

In a large scale proteomics experiment we regularly start with thousands of variables, 

although we expect only a small fraction of those to be interesting for the biological 

or clinical question. The purpose of the statistical analysis is to extract the 

variables/proteins that are important for the clinical or biological question at task 

[113]. Most often the goal is to do a group comparison of samples from different 

conditions. Statistical methods for group comparisons can be divided into univariate 

methods, that test one variable at a time, and multivariate methods, that test all 

variables simultaneously. 

 

1.4.2.1 Univariate methods 

The most commonly used univariate method for group comparison is the student’s t-

test, which compares the distribution of a variable between two groups of samples. T-

test exists for one or two groups. For more than two groups the ANOVA is an 

alternative. Both t-test and ANOVA are parametric which mean they rely on certain 

assumptions about the data – that it is normally distributed and has a homogenous 

variance (homoscedasticity). If those assumptions are not met, there exist non-

parametric methods for both two group (Mann Whitney) and multiple group 

comparisons (Kruskal-Wallis). 
 

1.4.2.2 Multiple testing problem 

The significance level of a hypothesis test is often expressed in terms of p-values. The 

p-value indicates the probability that the relationship or difference found in the 

sample occurred by chance and is used to control the type I error (false positives) 

[112]. In proteomics studies, where many proteins are tested simultaneously, the 

probability of committing a type I error increases dramatically. The problem is that 

the standard hypothesis test is designed to control the type I error of each test at 

certain significance level. As the number of independent tests increase, the likelihood 

of observing data that satisfies the rejection criterion by chance alone increases (type 

I errors). To control the experiment-wise error rate, alternative measures of error are 

needed in those cases [112, 114]. Commonly used measures of error in multiple 

testing procedures are family wise error rate (FWER), the probability of at least one 

type I error, and false discovery rate (FDR), the expected proportion of type I errors 

among the declared significant results. 

 

There are two main approaches for controlling the experiment wise error rate: 

Methods for controlling the FWER, like the Bonferroni method [115], and methods 

for controlling the FDR, like the Benjamini & Hochberg step down method [116]. 

Methods to control FWER are appropriate when you want to guard against any false 

positive. However, in many cases (particularly in omics discovery experiments) this 

is too conservative and a certain number of false positives can be tolerated. In these 

cases, the more relevant quantity to control is the false discovery rate (FDR). 

Furthermore, controlling FWER may lead to a very high rate of false negatives (type 

II error). 
 

1.4.2.3 Multivariate methods 

If the phenotype or biological process studied is thought to be effected by several 

variables/proteins in combination, a multivariate approach is often more appropriate 

than a univariate. The strength of multivariate methods is the possibility to define 

combinations of variables that maximizes the model predictive ability. Characteristics 
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of proteomics experiments are thousands of variables (features) and small sample 

size. This is called the high-dimensional small-sample problem, which causes several 

statistical methods to fail or perform sub-optimal [113, 117]. Therefore, dimension 

reduction is often a necessary step in the analysis of proteomics data. Dimension 

reduction can be divided into feature selection and feature extraction 

(transformation). Feature selection methods reduce the number of features by 

excluding irrelevant or redundant features. Feature extraction methods identify a new 

set of features by transforming or combining the old features [117]. 

 

Commonly used multivariate methods for dimension reduction, variable selection and 

classification are Principal Component Analysis (PCA) and Partial Least Squares 

(PLS). PCA and PLS can handle high dimensionality of the data, as well as the 

presence of a large amount of biological noise. PCA is an unsupervised method [118], 

useful for getting an unbiased overview of the data as well as to detect trends and 

outliers. A PCA model is generated by introducing a new set of variables, which 

maximize the variance of a linear combination of the original predictor variables. The 

new variables, called principal components, represent directions in the data 

demonstrating the highest variation (Figure 6). This might of course be distinctly 

different from the directions best separating the classes. PLS regression is a 

supervised multivariate method for assessing the relationship between a descriptor 

matrix X and a response matrix Y [119, 120]. PLS takes the classes in the data into 

account and finds new variables by maximizing the covariance between the response 

variable and a linear combination of the predictor variables (see more details in 

section 2.2.8). 

 

 
Figure 6. Schematic figure of principal component analysis for a simple case of three predictor variables 

(x1, x2, x3). The PCA model is generated by introducing a new set of variables, which maximize the 

variance of a linear combination of the original predictor variables. The new variables, called principal 

components (PC1 and PC2), represent directions in the data demonstrating the largest variation. 

 

1.4.2.4 Model validation 

Any statistical model needs to be validated, to assess the stability and generalizability 

of the model [113]. In an optimal scenario a completely new set of samples would be 

used to test the model performance on. In most cases, this is not possible due to few 

samples available. An alternative way to validate the model, which is commonly 

used, is cross-validation. In a k-fold cross-validation the data is randomly divided into 

k parts. The model is built and optimized on k-1 of the parts and tested on the 

excluded part. This is repeated for all the k parts and average model performance is 

calculated. During cross-validation it is important to remember to handle replicates 

together; otherwise one might risk receiving overly optimistic model performance.  
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1.5 BIOLOGICAL INTERPRETATION 

The output of a statistical analysis of proteomics data is one or more lists of proteins 

that show an interesting change in level in the context of the experiment. This is not the 

end point of the analysis, but the starting point of a very complex process of deriving 

biological interpretation. The biological interpretation aims at placing the selected 

proteins into a context, to lift the analysis from individual molecules to the biological 

system level. During the biological interpretation process, the molecular expression 

data from the proteomics experiment is coupled with the vast information held in public 

knowledge databases [121, 122]. 

 

1.5.1 Systems Biology 

To enable the leap from data analysis to biological interpretation, system based 

approaches integrating multiple data types are crucial. Systems biology is the study of 

systems of biological components, with the focus on complex interactions between 

the components [123-126]. Living systems are dynamic and complex and their 

behaviour are hard to predict from the properties of the individual parts. 

 

Biological processes are often driven by modules of proteins working together rather 

than individual genes or proteins. Several comprehensive studies, mostly in cancer, 

have shown very few genes that have a robust and significant differential expression 

pattern across different sample cohorts [127, 128]. However, many of the sample 

cohorts showed similar differentially regulated pathways [129-132]. By moving the 

omics field from single molecules to affected pathways or network modules, we can 

generate models of the system which are more readily interpretable as well as more 

robust. 
 

1.5.2 Networks and Pathways 

Networks are built up by components (nodes) and interactions (edges) between them. 

The interaction can be almost any kind of association and can be directed or 

undirected. For example is a protein-protein interaction network built up by proteins 

(the nodes) and the physical interactions between them (the edges) [133]. Pathways 

are also networks, the difference lays in the level of annotation or understanding. 

Typically pathways are well-defined parts of the network that relates to a known 

physiological process or complete function, for example Glycolysis, Amino acid 

metabolism or Cell cycle. There are numerous databases available for networks and 

pathways. For a comprehensive listing of biological pathway and molecular 

interaction related resources see www.pathguide.org [134]. 

 

Biological networks have shown to be very different from random networks 

(randomly connected molecules); they apply to some basic organizing principles in 

their structure and evolution. For example, biological networks show a high degree of 

clustering and presence of a few highly connected nodes (hubs) that hold the network 

together [135]. By the use of networks and pathways we can integrate different types 

of molecular expression data and form modules of biologically related proteins. The 

network is the backbone, placing the molecules into a topological context. Molecular 

expression data on the other hand, has quantitative measurements of the molecules in 

a sample under different conditions. The integration of those different sources of 

information (i.e. expression data and networks) holds great potential to give new 

insights into disease biology [135-137]. 
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1.5.2.1 Regulated subnetworks 

Several methods have been developed to integrate expression data with interaction 

maps or pathway databases with the aim to identify subsets of the network 

(subnetworks) that associates with biological or clinical outcome. The subnetworks 

are sets of interacting proteins whose combined expression data can predict or 

classify samples. Numerous recent publications have shown that the predictive 

performance of expression data can be improved by the incorporation of interactome 

data [138-140]. Compared to traditional individual marker genes, the identified 

subnetwork markers had several advantages, as they more readily provide models of 

molecular processes and are more robust and predictive [138]. 
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2 THE PRESENT STUDY 

2.1 AIMS 

The overall aim of this thesis work was to generate robust methods for selection of key 

proteins, networks and pathways relevant in relation to biological and clinical 

questions, using vast experimental proteomics data as starting point. This includes 

development and evaluation of methods for quantitative analysis of proteomics data, 

proceeding from setting adequate limits of quantification to statistical data analysis 

methods and system based approaches for integrating several types of data, towards the 

goal to generate biologically and clinically relevant information. 

 

The specific aims of the papers I-IV were: 

 

Paper I: To develop a multivariate meta-analysis workflow to couple 2DE data from 

colon and prostate human tumours, to identify common and unique protein patterns for 

the two tumour types.    

 

Paper II: To develop a methodology for improved protein quantification in shotgun 

proteomics data and introduce a way to assess quantification errors for proteins in 

complex biological samples.  

 

Paper III: To develop a tool for splice variant identification and visualization based on 

MS proteomics data, to provide the possibility to perform splice variant specific 

quantitative analysis. 

 

Paper IV: To develop a multivariate network based analysis workflow for proteomics 

data to identify subnetworks with different activity between groups of samples, to 

enable detection of differences on a biological system level and to further enhance the 

interpretation of results from cancer studies. 
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2.2 MATERIALS AND METHODS 

This section describes some selected key methods and aspects applied in papers I-IV. 

The materials and methods are described in detail in each paper.  

 

2.2.1 Samples and Study design 

Proteomics data from both cancer cell lines and tumour material was used in the present 

study. Paper I includes 2DE data on samples from human prostate and colon tumours. 

The approach in paper II was first evaluated on a standard dataset of A549 cell lysate 

mixed in the proportions 2:2:1:1:2:2:1:1 (see experimental setup in Figure 7). To 

demonstrate the usability, the methodology was also applied to another cancer cell line 

experiment as well as in a clinical dataset of lung cancer tissue samples. To exemplify 

the capability of the software developed in paper III, the method was applied on an 

experimental dataset of A431 cell line treated with Gefitinib. The analysis developed in 

paper IV was tested on different complex biological datasets, both cell line samples 

and clinical samples. 

 

 
Figure 7. Experimental setup for standard dataset in paper II. Tryptic peptides from A549 cells were 

labelled with iTRAQ in a 2:2:1:1:2:2:1:1 ratio. Peptides were analysed by LC-MS/MS alone or pre-

fractionated before LC-MS/MS using narrow range immobilized pH gradient isoelectric focusing (IPG-

IEF). A mix of all peptides or extracted peptide fractions from the IPG-IEF were analysed on three 

different LC-MS platforms. 

 

2.2.2 Two-dimensional gel electrophoresis 

In paper I, data from two-dimensional gel electrophoresis (2DE) on prostate and colon 

tumours were subject to a multivariate meta-analysis. The proteins were separated in 

the first dimension of isoelectric focusing using immobilized pH-gradient (IPG) strips 

with a pH 4-7 linear gradient. The second dimension was performed using 10-13% 

linear gradient SDS/PAGE gels. The gels were then stained and scanned and the 

images analysed by the PDQuest software [141]. The two sample sets, prostate and 

colon, were first analysed separately in the software. The masters (image containing the 
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most spots) from the separate match sets were then matched to each other and thereby 

linked all the gels in the two data sets together. 

 

2.2.3 Isoelectric focusing 

In papers II, III and IV narrow range immobilized pH gradient isoelectric focusing 

(IPG-IEF) was used on peptide level to reduce sample complexity [142, 143]. On an 

IPG-IEF strip, the peptides are separated according to their isoelectric point. The 

complexity of the peptide mixture is thereby reduced by selectively analysing the sub-

fraction of peptides within a certain pI range. Different pH ranges can be used 

dependent on which fraction of the peptidome one would like to focus on. The acidic 

pH range (3.7-4.9) in these studies is chosen so that the complexity is reduced without 

any significant loss of proteome coverage [143]. The pI of identified peptides can 

further be used to validate the peptide sequence and to restrict the search database [144, 

145]. 

 

2.2.4 iTRAQ and TMT labelling 

Papers II, III and IV uses 8-plex iTRAQ based quantification of peptides. iTRAQ 

(isobaric tags for relative and absolute quantification) allow for quantification of up to 

eight samples within a single run. Using iTRAQ, fragmented reporter ions from the tag 

are used for quantification in MS/MS mode. The intact iTRAQ labels have the same 

mass and same MS properties. The individual tags are distinguished by their 

fragmentation patterns in MS/MS, giving rise to reporter ions of different masses that 

can be quantified in the MS/MS spectra. iTRAQ is primarily used for relative 

quantification, the ratio between the reporter ions within one spectrum is used for 

relative quantification of each peptide within one run. If more than eight samples are 

analysed, comparison between runs is necessary, for this one commonly uses an 

internal standard shared between the runs. Paper IV also includes one dataset with 

quantification by tandem mass tags (TMT). TMT is similar to iTRAQ, but the reporter 

ions have slightly larger mass and exist in six tags. 

 

2.2.5 Mass spectrometry instruments 

MS instruments consist of three major modules: an ion source, a mass analyser and a 

detector. Each type of MS instrument uses a different setup of those three modules. In 

papers II, III and IV an LTQ-Orbitrap [146, 147] was used for LC-MS/MS analysis. 

The LTQ-Orbitrap was coupled to a nano-ESI source that ionizes the peptides eluting 

from the LC column. LTQ-Orbitrap Velos [148] is a hybrid instrument with two 

different kind of mass analysers: a LTQ (Linear Quadrupole Ion trap) which separates 

ions based on stability of their paths in oscillating electric fields and an Orbitrap that 

separates ions based on m/z resonance frequency. This LTQ-Orbitrap thus combines 

the sensitivity and speed of the LTQ with the high mass accuracy and high resolution of 

the Orbitrap [146, 149]. 

 

In the LTQ-Orbitrap Velos, the peptide ion mass spectrum (MS1) is acquired with the 

Orbitrap. The fragmentation of the peptide ions can be done either in the ion trap, using 

collision induced dissociation (CID), or in the higher-energy collisional dissociation 

(HCD) chamber. The fragment ion mass spectrum (MS2) can then be acquired either in 
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the ion trap or in the Orbitrap. The low energy CID fragmentation results in an escape 

of many small ions (low mass range) leading to low quality spectra in the low mass 

region, where the iTRAQ reporter ions end up. Using the higher energy collision 

(HCD), the small ions stay and the quality of the spectra in the low mass region is 

good, thus the reporter ions can be used for quantification [150]. Optimal settings for 

the LTQ-Orbitrap Velos, regarding collision energy for HCD and fragmentation time, 

are investigated in paper II. 

 

In paper II, the performance of several different MS platforms were compared and 

data was also generated on a MALDI-TOF/TOF [151] and Q-TOF [152] system. 

Matrix assisted laser desorption ionization (MALDI) is a soft ionization method used in 

mass spectrometry. In MALDI the sample co-crystallizes with a matrix and is pulsed 

with a laser, which ionizes and vaporizes the analytes. The MALDI ion source is most 

often coupled to a time-of-flight (TOF) analyser, which uses flight time to separate 

ions. TOF/TOF is a tandem mass spectrometry method where two time-of-flight mass 

spectrometers are used consecutively to generate MS2 spectra. The Q-TOF is another 

hybrid instrument with a Quadrupole coupled to a time-of-flight analyser. Each 

instrument has its own advantages as well as disadvantages, and is suitable for different 

types of studies [35, 64]. 

 

2.2.6 Peptide and Protein identification 

2.2.6.1 Database search 

The output from tandem mass spectrometry analysis is precursor (peptide) ion spectra 

(MS1) and fragment ion spectra (MS2). The fragment ion spectra need to be assigned 

to peptide sequences to be able to infer which peptides, and thereby proteins, were 

present in the sample. The method for peptide identification used in papers II, III and 

IV was database search [153]. The database consists of all protein sequences 

downloaded from for example Ensembl (www.ensemble.org) [154]. The protein 

sequence is then theoretically digested by trypsin to generate peptide sequences. The 

database is then searched, using a search engine, for the peptide whose predicted 

spectrum best matches the observed spectrum. To limit the possible matches in a 

database search, the search is restricted by mass tolerance, proteolytic enzyme 

constraints, post-translational modifications and the m/z of the precursor ion (peptide).  

 

The output from a database search is a collection of peptide-spectrum matches (PSM) 

with an associated score. The score reflects the similarity between measured and 

predicted spectra. A number of different search algorithms and scoring schemes have 

been described in the literature [94, 95, 97], commonly used publically available tools 

are Mascot (used in paper II) and Sequest (used in paper III and IV). 

 

The peptide score depends on dataset, search algorithm and search parameters, which 

makes it very difficult to compare scores between search algorithms and datasets. 

Methods have been developed to provide statistical measures of confidence and 

estimates of error rate, which are independent of the scoring scheme used [94]. The 

statistical approaches can be grouped into two categories: target-decoy approaches 

[155] and empirical Bayes approaches [156, 157]. The target-decoy approach was used 

in papers II, III and IV. This approach is based on creating a decoy database, which is 
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a reversed or shuffled version of the target database, and then search the two databases 

with the same settings. Assuming that there is no overlap between the target and decoy 

databases and assuming that incorrect assignments from target and decoy sequences are 

equally likely, we do not expect to get any real matches from a decoy database. The 

number of matches found in the decoy database is thus a good estimate of the number 

of false positives present in the matches from the target database. The target-decoy 

approach gives robust and effective estimates of the number of incorrect identifications 

(FDR) for an entire dataset, but it does not remove incorrect identifications. With the 

use of the target-decoy approach one can select the score threshold needed to reach a 

certain FDR level (1% used in papers II-IV). 

  

Most often, the peptides identified by the database search are grouped into proteins, and 

one would therefore like to control the FDR at the protein level. But since errors 

determined at the PSM level, by target-decoy approach for example, propagate to 

protein identification level in a non-trivial manner, this is not a straight-forward task. 

One method for computing FDR at protein level is MAYU [158], which was used in 

paper II. 

 

Using a database search, only around 25-30% of the generated spectra can be explained 

successfully. The unexplained spectra can have several reasons, like for example poor 

quality spectra. One other big limitation is incomplete databases not containing all the 

protein variants present in the sample. This is specifically true for protein isoforms, and 

post translational modified proteins, which often are poorly covered in the traditional 

databases and search engines. 

 

2.2.6.2 Inferring protein 

Protein identifications are defined as assemblies of PSMs. The protein inference, which 

groups peptides into proteins, faces many challenges: many peptides group into 

relatively small number of proteins, incorrect spectral identifications match randomly 

to the large protein database and shared peptides make it difficult to separate out 

protein isoforms. Alternative splicing is a widespread event in the human genome, as 

much as around 90% of human genes undergo alternative splicing. Splice variants share 

peptide sequences to a large extent and is therefore difficult to separate out by database 

search.  

 

One method to try to increase the number of splice variants detected by mass 

spectrometry has been to include the sequence of known and predicted protein variants 

in the search database [159]. However, this method expands the searching space 

significantly, effecting searching time and risk of making false peptide discoveries. In 

paper III, an alternative method for identifying and quantifying splice variants in mass 

spectrometry based proteomics data is developed. The developed tool mines data from 

the alternative splicing database EVDB (Evidence Viewer Database) [160] and maps 

MS identified peptides to known splice variants. 

 

2.2.7 Peptide and Protein quantification 

In the current study (papers II-IV), the iTRAQ reporter ions are used for relative 

quantification of the peptides in each of the eight samples. The peptide ratios are 
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calculated by dividing each iTRAQ channel by the mean of the first two iTRAQ 

channels (113, 114). In papers II-IV, the peptide ratios are normalized to the same 

sample median on peptide level to make iTRAQ channels comparable, assuming that 

the peptide distribution is equal between samples. This assumption is also based on the 

fact that the protein amount loaded is equal for all samples. The protein ratios are also 

log2 transformed to bring low signals and high signals more together and to make up 

and down regulations equally important.  

 

The peptide ratios are then aggregated to yield protein ratios. The quantitative 

measurements on the peptide level have to be aggregated to protein quantification in a 

way that returns the best (most accurate and precise) protein quantification measure. 

Most methods for summarizing peptide data into protein data rely on a simple mean or 

median over the peptide ratios. By this method, low intensity signals or noisy data as 

well as wrongly assigned peptides may easily distort the computed protein ratios. A 

recent paper introduced a novel statistical estimator for protein ratios, generating 

improved protein quantification as well as a built-in quality control metric [161]. In 

paper II, some methods for summarizing peptide data into protein ratios are compared. 

The presence of several protein isoforms in the sample can potentially also cause 

incorrect protein ratios. If several unresolved protein isoforms are present, the protein 

ratio is a mixture of different protein species. Recently, a tool for Protein Quantification 

by Peptide Quality control (PQPQ), was developed [162]. PQPQ looks at the 

correlation pattern for peptides over iTRAQ channels to detect peptide clusters and 

outlying peptides and includes only correlated peptides in the calculation of the protein 

quantities. Paper III investigates the effect of unresolved protein isoforms by 

comparing the quantification based on gene centric, protein centric and splice variant 

centric analysis.  

 

In iTRAQ, systematic biases can arise because of differences in iTRAQ labelling 

efficiency and protein digestion. Recent studies have reported that iTRAQ data has 

issues with both accuracy and precision [163, 164]. Fold changes were underestimated 

and biased towards null. The precision was affected by variance heterogeneity, with 

higher variance for low intensity signals. This is a problem since low signals dominate 

the data sets and many proteins have only few peptide readings. Improved quantitation 

methods have been suggested, addressing the variance heterogeneity by excluding low 

intensity peptides [165], weighting peptide data by uncertainty [165-168] or stabilizing 

the variance [163]. In paper II, the errors in iTRAQ quantification is investigated and 

an improved method for protein quantification is suggested. 

 

2.2.8 Statistical analysis 

The statistical method is used to prioritize or select the proteins believed to be 

important for the clinical or biological question. From 5000-10 000 proteins identified 

in a high quality shotgun proteomics experiment, the statistical analysis narrows down 

to a few (10-100) proteins of interest. In papers I and IV, a multivariate PLS model is 

used as the basis for selection and evaluation of proteins. PLS regression is a 

multivariate method for assessing a relationship between a descriptor matrix X and a 

response matrix Y. In the context of the proteomics data, the protein expression data is 

the descriptor matrix and the sample class is the response matrix.  
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PLS models are generated by finding latent variables (PLS components) in the data 

that maximize the covariance between the response variable (Y) and a linear 

combination of the predictor variables (X). PLS Discriminant Analysis (PLS-DA) is a 

classical PLS regression but where the response variable is categorical, indicating the 

classes of the samples. PLS-DA has often been used for classification and 

discrimination problems [169, 170]. An extension to the supervised PLS regression 

method is Orthogonal projection to latent structures (OPLS) [171]. OPLS uses 

information in the Y matrix to separate the X matrix into correlated (predictive) and 

uncorrelated (non-predictive) orthogonal information. Those changes often lead to an 

improved interpretability, while the predictivity is the same as for the PLS model.   

 

PLS models can be used for regression, classification, prediction and variable selection. 

The strength of PLS lies in the interpretation of the model and the variables importance 

for the model. The usage of PLS in the current study has been mainly to select proteins 

of interest. For this the Variable Importance on Projection (VIP) was used, which is a 

summary of the importance of a variable on the model [120]. 

 

2.2.8.1 Statistical model validation 

The PLS models are validated by cross-validation in papers I and IV. In paper I, a 

double cross-validation scheme is used [172]. The inner loop consisted of a bootstrap 

cross-validation [173] for the optimization of PLS model parameters and variable 

selection. The outer loop was a 5-fold cross-validation used to evaluate the 

performance of the optimal model. The variable selection was based on mean VIP 

score as well as stability over cross-validation rounds. In paper IV, the subnetwork 

PLS model is evaluated based on a leave-one-out (LOO) cross-validation. In general, 

LOO should be used with care since leaving out only one sample might lead to over-

optimistic results caused by other similar samples in the training set. The choice of 

LOO for the subnetwork model was based on that one of the proteomics datasets 

consisted of very few samples (3+3).   

 

The model performance can be assessed by several different measures. R2 and Q2 are 

commonly used for multivariate PLS and OPLS models. R2 is a measure of how well 

the model describes the data, thus it is based on the training dataset. R2X is the fraction 

of X variance explained by the model, while R2Y is the fraction of Y variance 

explained by the model. Q2 is based on the test set during cross-validation and is a 

measure of how well the model predicts “new” data. The subnetwork PLS model in 

paper IV was evaluated based on Q2. Other frequently used measures of model 

performance are sensitivity and specificity, which are also calculated from the 

prediction of a test set. Sensitivity, or true positive rate, is the probability of a positive 

test among positive samples. Specificity, or true negative rate, is the probability of a 

negative test among negative samples. The success measure used to evaluate the PLS 

model in paper I was the geometric mean of sensitivity and specificity. 

 

2.2.8.2 Subnetwork methods 

In paper IV, protein expression values from MS analysis were mapped to protein 

interaction data. A network based PLS model was then developed to identify 

subnetworks differentially regulated between phenotypes. Several different approaches 
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to identify differently regulated subnetworks, based on expression data, have been 

published over the last years. Most methods have two components in common: a 

scoring method to measure the discriminative strength of the subnetwork and a search 

algorithm to find the highest scoring subnetworks. The scoring methods used have been 

basic scoring schemes such as absolute difference [140], p-values [174] and mutual 

information [138], as well as more complicated scoring strategies based on principal 

components [175], decision trees [176] and support vector machines [177].  

 

The scoring approaches can roughly be divided into univariate and multivariate [139]. 

A univariate scoring approach assesses the regulation of each node individually and 

then searches for subnetworks with enrichment in regulated nodes. A multivariate 

scoring approach on the other hand, assesses regulation for all nodes in the subnetwork 

together. The scoring in paper IV was based on a multivariate PLS model, evaluated 

by Q2 based on a LOO cross-validation on the samples. The possible variables in the 

PLS model were thus restricted by the links in the network. A greedy search algorithm 

[138] was used to search for the optimal scoring subnetwork initiated from each 

starting node. 

 

The generated subnetworks each have a score based on the Q2 of the PLS model. The 

significance level of the scores has to be assessed by randomization. Random networks 

were created by node permutation [178] in paper IV to define a score threshold for 

significant subnetworks.  

 

2.2.8.3 Network data 

To increase the protein network size in paper IV, a meta database (STRING) of protein 

associations was used. STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) is a resource for retrieving all information on functional links between 

proteins [179, 180]. The associations in STRING are derived from high-throughput 

experimental data, from text-mining of databases and literature, and from predictions 

based on genomic context analysis. STRING combines and scores interaction data from 

the various sources for a large number of organisms, and also transfers information 

between the organisms via orthologous protein pairs. The confidence score for each 

link, reflects how likely a given association is. The database currently covers over 5 

million proteins from 1133 organisms (Version 9.1). For paper IV, the network was 

restricted to only Human interactions with a confidence score higher than 900, 

considered to be highly confident (Figure 8). 
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Figure 8. Network of protein interactions from STRING. The nodes are proteins and the edges 

between them are functional couplings. The network is restricted to only Human interactions with a 

confidence score higher than 900. The network consists of 113306 interactions and 9542 proteins. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Paper I 

In this work, we demonstrated a multivariate meta-analysis of 2DE proteomics data 

from human prostate and colon tumours, with the aim to identify common and unique 

protein patterns. The bioinformatics workflow developed included merging of the two 

datasets followed by dealing with pre-processing of data and handling of missing 

values and the development of a multivariate PLS model for prediction and variable 

selection. The missing values posed a big challenge in analysing the 2DE data from two 

very different tumour types. Many missing values existed in the merged data set, which 

affected the modelling result. With the purpose of finding proteins with common 

expression patterns over the two tumour types, the analysis was restricted to those 

proteins that were expressed in both data sets. 

 

This study utilized PLS-DA to build predictive models and to select variables important 

for separating between the classes normal and tumour, independent of tissue origin. The 

PLS model development and variable selection was rigorously evaluated using a double 

cross-validation scheme (Figure 9). The mean success rate over bootstrap rounds in the 

outer loop was plotted for varying number of variables and number of PLS components 

and used to find an optimal PLS model.  

 

The optimal number of variables and PLS components in the PLS model is a trade-off. 

The number of selected variables should be small enough to enable further validation of 

the proteins using more targeted methods for measuring the expression levels in a 

larger cohort of clinical samples. At the same time, the number of variables has to be 

large enough to achieve a good predictive PLS model. Regarding the PLS components, 

too few components might not be enough to explain the data while too many might lead 

to an over-fitted model, describing the noise in the data. For the current study, three 

PLS components and 50 variables were selected as optimal PLS parameter settings.  

 

 
Figure 9. Double cross-validation scheme. In the inner loop, PLS model parameters and variables are 

estimated based on a bootstrap cross-validation. Based on performance of the PLS models and stability of 

variables over bootstrap rounds, the optimal parameters and final set of variables are selected. Model 

performance of the optimized parameters and selected variables are then evaluated on the held-out test set 

in the outer loop. The outer loop is repeated within a 5-fold cross-validation procedure.   
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The final selection of variables was based on stability over the bootstrap validation 

rounds in the inner loop. The reasoning is that the stable variables are thought to 

represent variables generally good for predicting the classes and not specific for certain 

subsets of the data. Despite such different tissues in the data, there were around 40 

variables (from the lists of 50 variables) that were selected in at least 50% of the 

bootstrap rounds. The stable variables were together with the optimized PLS model 

applied to predict the held-out test sets in the outer loop. The average prediction success 

over five cross-validation rounds was 0.93 (±0.06), for the PLS model discriminating 

between normal and tumour samples, independent on tissue type.  

 

The combined prostate-colon model was compared to individual prostate and colon 

PLS models (including only variables present in both datasets). The resulting lists of 

stable variables for the three models were compared in a Venn diagram (Figure 10). 

The figure reveals that most variables are unique to the models and few overlaps are 

identified, only three variables overlap between all three models. As many as 46 of the 

variables from the meta-analysis of prostate-colon did not show up in the individual 

models, while 25 and 27 variables were unique to the prostate and colon models 

respectively. The 46 variables unique to the meta-model represent proteins whose 

expression levels discriminate between normal and tumour samples independent of 

tissue type in this study, i.e. a common protein profile for malign tumour types. The 

variables unique to the individual models on the other hand represent proteins that are 

specific for the certain tumour types prostate and colon. This result shows the potential 

of a meta-analysis to identify proteins not found when analysing the data sets in 

separate. The current study only included two tumour types, and can mainly function as 

a proof of concept, but the potential of including more tumour types is apparent.  

 

 
Figure 10. Overlap of variables selected in different models. Venn diagram showing overlap between 

stable variables selected using the prostate-colon meta-model and individual prostate and colon models.  
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2.3.2 Paper II 

In this study, we developed a methodology for improved protein quantification in 

shotgun proteomics data and introduced a way to assess quantification quality. Peptide 

and protein identification and quantification was compared between different MS 

platforms, as well as between different loaded peptide amounts and different sample 

separation methods. See experimental setup for the standard dataset in Figure 7. 

 

The quality of the peptide quantification was evaluated by scaled root mean square 

error (RMSEs). The RMSEs includes both bias and variance and measures the average 

magnitude of the error per peptide over all eight iTRAQ channels. The RMSEs values 

were plotted against intensity, revealing that the error in quantitation is intensity 

dependent and decreases as the peptide intensity increase. To be able to study only the 

variance in the peptide quantifications, the peptide intensities were normalized to equal 

sample median and the relative standard deviation (RSD) calculated. RSD and RMSEs 

shows the same trend with decreasing RSD when intensity increases. The RSD was 

overall smaller than RMSEs showing that there is a bias in the un-normalized data. 

Further investigations exhibited a small bias (around 5%) towards one. In our settings, 

the variance thus seems to be the largest contributor to the error.  

 

RMSEs was calculated to compare instruments, loaded peptide amount and separation 

method. The peptide quantities from the Orbitrap and MALDI have rather similar 

RMSEs values, while QTOF peptide quantities have much higher RMSEs values. The 

number of identified peptides also varied largely with the MS instrument, the Orbitrap 

generated more than five times as many identifications as the MALDI and QTOF. The 

results on protein level mainly confirm the results from the comparison on the peptide 

level; the Orbitrap performs best followed by MALDI and then QTOF. Orbitrap 

identifies approximately four times more proteins than the other instruments do. In 

summary, increasing the amount of loaded peptides as well as pre-fractionating the 

sample by IPG-IEF results in the best performance for the Orbitrap, both when it comes 

to error levels at the peptide and protein level as well as number of identifications. 

 

It is crucial that the quantitative information on the peptide level is correct when 

summarizing to protein level quantity. In this study we therefore evaluated two 

alternative methods to improve protein quantities: either by removing low intensity 

peptides prior to summarizing to protein quantity or by using all peptides but weight 

them according to their uncertainty (determined by their absolute intensity, high weight 

corresponding to high intensity) when summarizing to protein quantity. The weighted 

mean and filter methods were compared to using all peptides for the calculation of a 

regular mean as well as to the weighted mean method in the Mascot software. The 

measured protein ratios were compared to the expected ratios and the relative error was 

calculated for all protein quantification approaches (Figure 11A). It can be seen in the 

figure that more proteins are calculated with a lower relative error when using the 

weighted mean as compared to the other methods. 

 

In Figure 11B, the relative error of protein quantity is related to protein weight 

(calculated as the mean of the peptide weights derived from the intensity) for proteins 

with different number of peptides. Seen in the figure, the relative error of the protein 
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quantity is very much dependent on the number of peptides used for quantification of 

the protein. For proteins with few peptides, the intensity of the peptides (visualized by 

protein weight) influence the relative error strongly, while for proteins with large 

number of peptides the intensity of the peptides has smaller impact on error. Even at 

low protein weight the relative error is rather small for proteins with multiple peptides 

for quantification. Hence, peptides with low intensity can be important for creating a 

robust protein quantity. 

 

 
Figure 11. A: Comparison of methods to calculate protein quantities based on peptides. The bars 

represent percentage of protein ratios passing different relative error thresholds, for weighted protein 

mean, regular protein mean/median, filtered protein mean/median and Mascot weighted protein mean. B: 

Impact of the number of peptides per protein on quantification error. The relative error of weighted 

protein quantity is plotted against protein weight for proteins with different number of peptides. Lines 

represent smoothed 95% upper limit of relative error. The protein weight is calculated as the mean of 

peptide weights. 

 

In the current study, the weight is calculated based on an internal training set (technical 

duplicate) for each run. An internal training set for the weights is to prefer, according to 

our results, since different experimental settings will affect the data quality differently. 

As an outcome of these results, we suggest including one technical duplicate in each 

iTRAQ run so weights can be calculated specifically for every new data set, and then 

be applied to the remaining biological iTRAQ samples. We further suggest that a plot 

(11B) and corresponding table with weights and errors are created for each dataset 

based on the duplicate in the experiment. This can then be used to set a threshold on 

protein weights to ascertain reliable protein ratios, which will be especially important 

for proteins with one or a few peptides for quantification. 

 

The method of calculating weights based on an internal training set was applied to 

independent datasets of cell line samples and lung cancer tissue samples. The weighted 

mean performs slightly better than the regular mean, confirming the results from the 

original standard dataset. The improvement is rather modest, around 5% for the lung 

cancer tissue samples. Still, we believe this is an important improvement, as it 
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corresponds to around 90 more proteins in the clinical dataset with accurate 

quantification (<5% relative error), which can be essential for discovering biomarkers. 

 

2.3.3 Paper III 

In this study we developed SpliceVista, a tool for splice variant identification and 

visualization based on MS proteomics data. By mining data from an alternative splicing 

database (EVDB) and mapping MS identified peptides to known splice variants, 

SpliceVista can identify splice variant specific peptides and perform splice variant 

specific quantitative analysis. 

 

There are four main parts of SpliceVista: Data pre-process, in which all PSMs are 

assigned a gene symbol from its protein ID and grouped into peptides. Download, 

where SpliceVista retrieves known splice variants in the EVDB database and translated 

sequences of these splice variants from GenBank. Mapping, in which all identified 

peptides are grouped by gene based on the downloaded data. In particular, for each 

gene all the identified peptides are mapped to the gene’s known splice variants. 

Genomic and transcriptional position of each peptide is reported in the output file. 

Visualization, where the data from previous steps is used for visualizing the exon 

structures of each splice variant of the protein and the transcriptional position of 

identified peptides. In addition, if PQPQ [162] is used, the peptide clusters based on 

quantitative information are visualized allowing connection between splice specific 

peptides and detected quantitative peptide clusters. See example in Figure 12.     

 

 
Figure 12. Example output figure of SpliceVista. The top panel displays the exon structure of the gene. 

The mid panel displays the transcriptional positions of identified peptides. If PQPQ is applied, each 

peptide is assigned to a cluster in which all peptides show correlated quantitative pattern. The different 

clusters are coloured and the peptides are coloured accordingly and plotted in line with the cluster it 

belongs to. In the bottom panel, the quantitative patterns of the different clusters are drawn in the same 

order as in the mid panel. The bars represent the mean intensity ratio of all peptide spectra matches 

(PSMs) for each unique peptide, the standard deviation is indicated by vertical lines (error bars). 
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To evaluate the potential and limitations of shotgun MS based proteomics for splice 

variant specific analysis, we performed in silico trypsin digestion of the human 

proteome (Ensembl 63). 18% of the tryptic peptides uniquely map to a splice variant 

and 22% of the splice variants have unique tryptic peptides. Given that a splice variant 

is present in the sample, the identification by shotgun proteomics is dependent on 

mainly two factors. First it depends on whether or not the splice variant has unique 

sequences to make it possible to identify. According to the theoretical calculation, up to 

22% of human splice variants can thus be identified in theory by peptide centric MS by 

assigning splice variant specific peptides (SVSP). Secondly, it depends on the protein 

sequence coverage in the MS experiment. The higher the protein sequence coverage is, 

the higher the chance of identifying a splice variant by its unique peptides. 

 

To test the applicability of the method on proteomics data generated by shotgun MS, 

we used SpliceVista to analyse human cancer cell line that had been analysed both as 

whole cell lysate, as well as through sub-cellular fractionation. 607 splice variants and 

1680 SVSPs were identified in the whole cell fraction. After combining splice variants 

identified in the three subcellular fractions, the number of unique splice variants 

identified was 939 and the number of SVSPs was 2983. By subcellular fractionation, 

the number of splice variants and SVSP identifications were increased by 55% and 

78% respectively. Theoretically, the chance of identifying one splice variant specific 

peptide is higher if there are more peptides per protein identified. As expected, the data 

demonstrated that using subcellular fractionation, we can increase splice variant 

specific peptide and splice variant identifications due to increased protein coverage.  

 

We performed three different quantitative analyses on the genes with splice variants 

identified in the cell line dataset: gene centric, protein centric and splice variant specific 

analysis (Figure 13). In the gene centric analysis, the relative expression level of a gene 

is calculated by the mean ratio of all PSMs identified for this gene. In protein centric 

analysis, the conventional way, the relative expression level of a protein is calculated 

by the mean ratio of all PSMs for this protein. In splice variant specific analysis, PSMs 

specific (uniquely mapped) to one splice variant are grouped and the relative expression 

level of the splice variant is calculated as the mean ratio of those PSMs only. 

 

The genes in Figure 13 exemplify cases where there is a large difference between gene 

centric, protein centric and splice variant specific analysis. Since more than 90% of 

genes can undergo alternative splicing, there is a potential risk of averaging out the 

differences of differentially regulated splice variants when doing protein centric 

analysis if the protein contains peptides shared among protein isoforms. With 

SpliceVista, we are able to quantify splice variants specifically and compare to gene 

centric and protein centric analysis. 

 



 

  29 

 
Figure 13. Heat map showing comparison of fold change between gene centric, protein centric and splice 

variant specific analysis at different time points. 

 

2.3.4 Paper IV 

In this work, we developed a network based analysis workflow for proteomics data to 

identify subnetworks with different activity between groups of samples. The idea was 

to shift focus from individual proteins showing differential expression to protein 

subnetworks with altered activity. 

 

The outline of the subnetwork method is shown in Figure 14. The network data was 

extracted from the STRING database. Each of the proteins mapped to the network data 

was used as a starting node for the search algorithm, searching for the optimal scoring 

subnetwork. The search stops if any of the termination criteria are met; addition of 

neighbours does not improve the score over a defined threshold, 5%, or the size of the 

subnetwork is larger than 20 (to keep the search local), or if the protein node lacks 

additional neighbours. The resulting subnetwork scores were shown to be dependent on 

network size and the score distribution is thus not homogeneous.  

 

 
Figure 14. Schematic outline of the subnetwork analysis. The protein expression data is mapped onto the 

protein interaction network from STRING. A greedy search algorithm is searching through the mapped 

network for the highest scoring subnetwork. The score is based on predictive success (Q2) of a 

multivariate PLS model, evaluated by leave-one-out cross-validation on the samples. The optimal 

subnetworks and corresponding measurements of subnetwork score and size are saved in a new data 

matrix. 
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For evaluating the significance of optimal subnetworks, the results were compared to 

randomized input data. The network randomization was done by permuting the nodes 

500 times, searching for optimal subnetworks and scoring them by the PLS model. 

Score threshold for any given significance level could then be calculated based on the 

fraction of random subnetworks exceeding certain score threshold. As was seen also for 

the real network, the score is dependent on subnetwork size, with a bias towards higher 

score for larger subnetworks. Since the score is clearly dependent on subnetwork size, 

the score threshold (corresponding to 5% FDR) was calculated for each subnetwork 

size separately. The resulting significant subnetworks were merged into one if they 

overlapped with at least two proteins. The largest significant subnetwork for the clinical 

data is seen in Figure 15. 

 

 
Figure 15. The figure depicts the largest significant subnetwork for the clinical dataset. The border of the 

nodes are coloured by fold-change of mutated versus wild-type, red is up-regulated in mutated and green 

is down-regulated in mutated. The individual log2 expression values are shown as a bargraph under each 

node, the mutated samples as dark grey bars and the wild-type samples as light grey bars. The four most 

enriched terms for the subnetwork are illustrated as a pie chart in each node, grey means that none of the 

terms are annotated to this node. The figure was generated in Cytoscape, an open source software 

platform for network visualisation [181]. 

 

The significant subnetworks were used as a basis for enrichment analysis, using gene 

sets from the MSigDB (Molecular Signatures Database) [182]. MSigDB is a collection 

of annotated gene sets, derived from a number of different databases as well as from 

computational approaches. Hypergeometric testing adjusted for multiple tests was 

performed to identify enriched terms. Only terms with at least three hits in the 

subnetwork and enriched by an adjusted p-value of less than 0.05 were considered 

(FDR 5%). The four terms with the best coverage (proportion of proteins in subnetwork 

annotated to it) for the largest subnetwork for the clinical dataset are shown in Figure 

15. 
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For comparison, a univariate statistical analysis as well as a regular multivariate PLS 

analysis was performed on the datasets in this study. The univariate analysis generated 

no significant proteins at a 5% FDR level, for any of the tested datasets. In a complex 

study of human cell lines or clinical samples one might expect the effect on proteins to 

be on several proteins, which might not be picked up by a univariate statistical test. The 

regular PLS model on the other hand suffers from other problems: How to select the 

optimal set of variables and how to interpret the results. In the current study, PLS 

analysis on the clinical dataset generated a list of around 80 significant proteins. The 80 

proteins were mapped to the STRING network. The proteins were spread throughout 

the whole network with no visible clustering and very few links connecting the 

significant proteins. The proteins from regular PLS analysis were also subject to 

enrichment analysis, which resulted in no significantly enriched terms at a 5% FDR 

level. This also indicated that the proteins are not biologically related and represent 

proteins from very different processes. The subnetwork analysis on the other hand, 

generates functionally related proteins that are linked to each other in the network. This 

study is still on-going, the statistical model need to be further validated. The significant 

subnetworks also need to be validated biologically, both to see that the interactions 

occur under the conditions studied as well as to verify that the protein subnetworks can 

be picked up in a larger sample cohort and that they have a biological meaning. 
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2.4 GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

Extract more information from available data 

The work in paper I aimed at showing how additional valuable information can be 

extracted from existing 2DE data by performing a meta-analysis cross different tumour 

types. By the workflow for meta-analysis developed in paper I, we identified a 

common protein profile for two malign tumour types, which was not identified when 

analysing the data sets separately. By combining tumour data sets the identified protein 

profiles could potentially be used in addressing several clinical questions which are 

difficult to answer based on analysis of a single study. Common proteins profiles could 

be changes related to oncogenic processes and could thus be used to better understand 

tumour biology and address common issues such as malignity, severity, survival and 

risk of metastasis. The meta-analysis should be used in combination with the separate 

analysis to distinguish the common protein changes from the unique. The specific 

proteins that are differently expressed only in a certain tissue type, could help to 

provide a more certain tumour diagnosis. 

 

A similar meta-analysis approach could have several possible uses. We have in the lab 

now gathered a large amount of mass spectrometry based proteomics datasets, both on 

human cancer cell lines and on clinical material from several different tumour types. As 

the approach is not limited to 2DE per se, the data can be used to draw general 

conclusions on large scale protein expression in different cell lines and in different 

clinical material to find unique and common patterns. The approach could also be 

extended to publically available datasets; the amount of MS based proteomics datasets 

in public domain resources are increasing [183-185]. 

 

Similarly, another use of available in-house datasets is to investigate issues such as 

technical and biological variation and overlaps between experimental runs in terms of 

quantities and identifications. By studying the in-house generated datasets we can build 

up better and more detailed knowledge of our experimental system and better 

understand the limitations and possibilities. Before planning a new experiment one may 

consider if the question can be answered by already existing datasets, just by 

approaching it in a different way. 

  

Another important aspect related to using the full potential of each dataset is the 

amount of data not explained by current peptide identifications by database search (as 

much as 70% of generated spectra are not explained). This is partly due to low quality 

spectra of course, but there is also a big limitation in current database search methods to 

identify protein isoforms and modified proteins. By developing new methods, like 

SpliceVista in paper III, and re-searching available datasets, we can further explore the 

data. The analysis in paper III, demonstrates detection and splice variant specific 

quantitation of 939 splice variants on protein level in the cell line dataset, hence 

improving data output compared to conventional analysis. Nevertheless, the method is 

limited to identify known splice variants reported in the public repositories. The current 

version of the EVDB database contains around 80 000 splice variants. Considering that 

more than 90% of human genes may undergo alternative splicing this probably 

represents only a small fraction of the total protein splice variants. Furthermore, since 

splicing variants are temporal and tissue specific the databases are likely to be biased 
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towards well studied tissues and conditions. Despite limitations, by taking into account 

splice variant information, we have the potential to make new findings, from available 

data as well as from new data. 

 

Importance of high quality quantitative data 

In mass spectrometry based proteomics we are almost always interested in the quantity 

of the proteins, not only the identity. The goal of proteomics discovery research is often 

to measure quantitative changes in protein levels between two or more different 

conditions. It is thus crucial to know what quantitative data we can trust. Bad quality 

quantitative data will have effects at every step in the following data analysis and it will 

most likely lead to failure in the validation of the findings. To provide solid scientific 

data and to save time and money we would like to achieve as correct quantitative 

information as possible as well as to know the limitations of the quantification. The 

purpose of paper II was to generate a basis for the decision of what protein quantities 

are reliable and find a way for accurate and precise protein quantification. We 

developed a methodology that improved protein quantification in shotgun proteomics 

analysis of complex biological samples and introduced a way to assess quantification 

for proteins with few peptides.  

 

The result in the current study is a guideline to assess the quality of protein quantities. 

The methodology we developed in paper II is applicable to both other datasets as well 

to other labelling methods. We suggest including a technical duplicate in each 

experiment, so that the peptide weights can be calculated based on the errors and 

variations in the current experiment. By using two iTRAQ channels for the technical 

replicate samples, six iTRAQ channels could be used for other biological samples. This 

would mean to sacrifice at most one extra channel for a technical replicate. Replicates 

in the experiment can also be used for other purposes, for example in the down-stream 

statistical analysis of finding differently expressed proteins. To be able to interpret the 

data we need at least duplicate samples of the control samples to account for biological 

and technical variation. We further suggested that the generated figures and tables 

could be used as a guideline to set a threshold on protein weights to ascertain reliable 

protein ratios. This will be especially important for proteins with one or a few peptides 

for quantification. Generally, proteins with few peptides detected as well as low 

abundant proteins have the largest relative errors and represent the biggest challenge 

when it comes to reliable protein quantification. For our own lab, I think it is important 

that this methodology is included in the standard data analysis pipeline.  

 

Another important aspect when considering the reliability of the protein quantities is 

the difficulty of current database search methods to infer protein isoforms. In MS based 

proteomics, the peptides identified for a protein could potentially come from different 

splice variants with similar sequences. If several splice variants of a gene exist in a 

sample, the quantitative data for that gene/protein is a mixture of all splice variants. 

During traditional gene centric or protein centric quantitative data analysis, the 

quantitative data can thus be wrong. The quantitative data will be very different 

depending on the abundance of the splice variants in the sample, if there exist one or a 

few highly abundant splice variants, the quantitative data can be dominated by this. The 

tool developed in paper III, SpliceVista, provides the possibility to do splice variant 

centric analysis at the protein level. The quantitation of a splice variant is done by 
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quantitation of its splice variant specific peptides, i.e. peptides uniquely mapped to one 

splice variant. This was in several cases shown to be very different from the gene 

centric or protein centric analysis. The method allows for identification of splice variant 

specific quantitative changes related to for example clinical questions.  

 

Considerations in the statistical analysis 

A critical problem when working with datasets of 5000-10 000 variables but very few 

samples, as often the case in discovery proteomics, is the risk of false positives. Further 

complicating the problem is that the clinical data harbours a large amount of biological 

variation and that we expect the biological changes of interest to be rather small. All 

those factors lead to risks of making false discoveries in the statistical analysis. A false 

discovery will lead to failure during the validation of the finding. 

 

One important step to protect against false discoveries is rigorous validations of the 

statistical model. For univariate methods, methods for correction for multiple tests are 

applied. For multivariate methods we have in paper I and IV used cross-validation to 

assess the models performance on “new” samples not seen by the model during the 

optimisation and training phase. This is done to make sure the model and the variables 

selected are general and not performing well only for a certain subset of the samples. In 

the best of scenarios the statistical model and selected variables are tested on a 

completely different set of samples. This is most often not possible due to few samples 

available. The second best scenario would be to perform two layers of cross-validation, 

an inner layer to optimise the model and select the variables and an outer layer to test 

the model and variables on the held out test set. In paper I a double cross-validation 

scheme was used, and the final variables were selected based on stability over cross-

validation rounds in the inner layer. In paper IV this was not possible since the datasets 

consisted of too few samples. I believe that the subnetwork method would be improved 

by including a second layer of cross-validation. Some samples could be set aside and 

the optimal subnetworks would be tested on those. This would both give a better 

assessment of the predictive performance of the subnetwork as well as an idea of the 

stability of the subnetwork optimisation process. The subnetworks found to be 

significant independent on training set used would represent the most stable ones, most 

likely to perform well also on a different sample cohort. 

 

A rather recent paper [186] discussed the problem of multiple testing adjustment and 

FDR in multivariate methods. The use of multiple testing correction is more or less 

standard in univariate methods, while for multivariate methods no such standard exist. 

The publication suggests a method to assess FDR for molecular signatures, which 

should be valid for any multivariate statistical method for variable selection and 

prediction. The problem is that the multivariate model is often optimized with regards 

to predictive success, while the study showed that signatures that yield high prediction 

success may still have a high FDR. If the purpose of using multivariate methods is to 

select variables (discovery) as in the current study, rather than to predict new samples, 

one should consider taking this into account and select variables based on FDR and 

stability rather than prediction success. Traditional multivariate methods for 

classification based on molecular profiles suffer from the fact that there are often 

several alternative sets of variables yielding the same predictive outcome, thus making 

it difficult to select the most biologically relevant set of variables for reproducible 
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performance in a different sample cohort. By basing the selection on FDR and stability 

rather than prediction success this problem might be reduced. This will hopefully also 

lead to a higher rate of success during validation of the finding. 

 

One has to keep in mind though, that the statistical validation is not the same as the 

biological validation. The biological validation is crucial to verify the changes detected 

by the statistical method, preferably in a larger sample cohort, and also to verify that the 

finding has a biological meaning. But a sound validation of the statistical model to 

protect against false discoveries would at least give a chance for the biological 

validation to be successful. With high rate of false discoveries in the discovery phase 

one cannot expect the biological validation to be successful since the finding is due to 

chance rather than a real biological or clinical effect.  

 

A completely different, and perhaps complementary, approach to improve statistical 

power and reduce risk of false discoveries is to increase the number of samples. The 

strength of the experimental setup we currently use in the lab is the analytical depth, 

enabling the identification and quantification of the low abundant proteins. But this is 

on the cost of the number of samples that can practically be run in an experiment. We 

thus need alternative more high-throughput approaches to be able to increase sample 

size. One option would be to analyse fewer of the fractions from IPG-IEF, thereby 

decreasing runtime on the mass spectrometer. Another option is to do label free 

analysis, but this method suffers from limitations in identification overlap between 

runs. We are currently working on methods to improve the stability and overlap of 

consecutive label free runs. 

 

Network based methods 

To move from univariate methods to multivariate statistical methods in the study of 

cancer proteomics is motivated by that complex biological processes not are driven by 

individual proteins. One natural continuation in this reasoning is to incorporate pathway 

and network data in the statistical analysis to let the interaction data steer the 

multivariate model, as in paper IV. The motivation for this would be that the set of 

proteins acting in a biological process are not random, rather they act in interaction with 

other proteins in signalling pathways and network modules. The results generated in 

paper IV pointed towards potential advantages of a subnetwork based PLS model as 

compared to a regular PLS model. The resulting significant proteins were subsets of 

linked proteins with several biological processes and functions in common. The regular 

PLS analysis on the other hand, resulted in a set of proteins that all represented very 

different biological processes and functions. Subnetwork based signatures can thus 

more readily provide a model of the biological mechanisms studied and be easier to 

interpret, since they represent functionally coupled proteins rather than a collection of 

sparse proteins. 

 

Another strength of the network based methods is that by restricting the selection of 

variables by the network, the risk of false and unstable discoveries might be decreased. 

The network data provide robustness and prior knowledge that is used to filter the 

possible variables. This also makes the selection of optimal variables easier, since the 

problem with multivariate models is often that several models give the same predictive 

success thus making it difficult to select the optimal set of variables.  
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The network based models are still a quite new approach though and there is probably 

room for improvement. One possible additional feature that the subnetwork methods 

need to account for is the inter-individual patient variability, as suggested in Sandberg 

et al. [187]. Not all patients can be expected to have changes in all of the proteins in a 

network. The network method thus needs to allow for a few of the proteins in the 

network not to be differentially expressed in a subset of the samples [188, 189]. 

Furthermore, the interaction (edge) between the proteins can also be subject to change 

and can be as important for the phenotype as the changes of protein (node) levels. 

Several subnetwork methods accounting for changes in edge activity has been 

presented over the last few years [140, 175, 190, 191]. An additional weakness of the 

subnetwork approach is the network itself, which relies on databases of protein 

interaction data. The number of proteins and links covered in current databases are far 

from being complete and furthermore they are likely to be error prone and biased 

towards well studied parts of the interactome [192, 193]. So the network based methods 

are expected to be more correct as the databases gets larger and higher quality.  

 

From data to results to biological and clinical knowledge 

We generate terabytes of data per week with the latest instruments and techniques, but 

there is still a gap in how to move from data to knowledge in a robust and sound way. 

To enable the leap from data to biological meaning, system based approaches 

integrating multiple data types are necessary. The integration of vast experimental data 

on different levels of the system, DNA/RNA/protein/metabolite, together with 

knowledge of interactions and pathways are key aspects to be able to create better 

models of disease and healthy phenotype [135-137, 194-199]. We have seen in 

numerous publications, and at conferences, that the predictive performance and stability 

of expression data can be improved by incorporating interactome data, see review in 

[139]. Studies have shown that even though single genes are not conserved in cancer 

(and other disease), the pathways are. The information held in affected pathways, could 

also be used to find new drug targets and alternative treatment regimens based on 

knowledge from other diseases affecting the same pathway. A challenge is to find 

clever and systematic ways to use all the prior knowledge available in public databases 

and to integrate those with molecular expression data. This is of course not an easy 

task, but it is important to use the vast amount of knowledge already collected. One 

further challenge of building models of complex systems is to find a balance between 

accurate models, possible models and useful models, which are often not the same 

thing. 
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3 POPULÄRVETENSKAPLIG SAMMANFATTNING 

Proteiner är cellens arbetshästar; DNA:t har instruktionen och RNA:t är budbäraren 

medan proteinerna utför själva arbetet. Proteiner är inblandade i alla biologiska 

processer i cellen. Proteomet är benämningen av alla proteiner i t.ex. en organism eller 

en vävnad. Det humana protetomet omfattar alltså alla proteiner som finns i människan. 

Det humana genomet (alla gener) består av ca 20 000 gener, det humana proteomet 

däremot uppskattas till omkring totalt 1 000 000 proteiner. Det beror på att en gen kan 

ge upphov till flera olika proteiner. Detta sker både genom så kallad alternativ 

splitsning där en gen klipps ihop till olika proteiner och genom post-translationella 

modifieringar där ett protein får olika kemiska grupper (modifieringar) på sig. Den 

enorma komplexiteten gör proteomet svårstuderat. Proteomet är dessutom dynamiskt 

och i konstant förändring - det varierar med tid, celltyp och omgivande betingelser. 

Studien av proteomet; dess sammansättning, uttrycksnivå, struktur, funktion och 

interaktioner; kallas för proteomik. En vanlig metod för storskalig analys av proteiner 

är att använda masspektrometri. Genom masspektrometri får man information om vilka 

proteiner ett prov innehåller samt den mängd av proteinet som finns i provet. I en så 

kallad ”shotgun proteomics” analys klipps proteinerna först ner till peptider (fragment 

av protein) för att sedan analyseras i masspektrometern. 

 

Detta arbete handlar om cancerproteomik, alltså storskalig studie av förändringar i 

proteomet som är relaterade till cancer. Syftet med vår forskning är dels att hitta 

proteiner som kan hjälpa oss bättre förstå cancerbiologin, t.ex. varför det uppstår 

resistens mot ett läkemedel, dels hitta proteiner som kan användas som biomarkörer. En 

biomarkör är exempelvis ett protein som kan mätas vid provtagning och vars nivå säger 

något om patientens sjukdom. T.ex. kan en diagnostisk biomarkör användas för att 

ställa en diagnos medan en prediktiv biomarkör kan användas för att förutsäga hur en 

patient kommer att svara på en viss behandling. För trots stora framgångar inom 

cancerdiagnos och behandling är cancer fortfarande den ledande dödsorsaken i världen. 

Med hjälp av nya biomarkörer hoppas vi kunna förbättra överlevnaden hos 

cancerpatienter. En tidigt ställd diagnos är avgörande för att kunna sätta in behandling i 

ett tidigt skede. Genom att skräddarsy behandlingen efter patienten kan man undvika 

många biverkningar och slippa förlora värdefull tid på behandlingar med dålig effekt. 

 

Cancer är en komplex sjukdom; flera olika gener är påverkade i utvecklingen från 

normal cell till cancercell. Den senaste tekniken för att studera genomet och proteomet 

har ingett mycket hopp om att kunna hitta nya, bättre biomarkörer. Tyvärr har 

forskningen inom dessa områden ännu inte genererat biomarkörer som kommit till 

klinisk nytta. Hindren har varit många, speciellt har flera storskaliga studier på senaste 

tiden kunnat visa på svårigheten med att finna stabila biomarkörer baserat på enstaka 

gener. När studierna upprepats i en annan provkohort har inte samma gener varit 

förändrade. Man har dock sett att liknande signalvägar (pathways) är påverkade. Trots 

att det inte är exakt samma gener så är det alltså i samma del av det cellulära systemet 

som förändringen skett. Det har således föreslagits att det länge använda uttrycket 

”Cancer is a disease of the genes” kanske borde ändras till ”Cancer is a disease of the 

pathways”. 
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För att kunna använda proteomikdata på bästa sätt och för att kunna dra giltiga 

slutsatser från resultaten krävs en rigid kvalitetskontroll och avancerad dataanalys. 

Först och främst måste vi veta att den kvantitativa datan är pålitlig, alltså att det mått vi 

har på mängden protein är korrekt. Vi måste även ha rätt statistiska metoder för att 

analysera datan, för att inte riskera att plocka upp proteiner som felaktigt klassificerats 

som signifikant ändrade. Vi måste även utveckla metoder för att integrera 

proteinkvantiteter med annan kunskap om t.ex. interaktioner mellan proteiner (protein-

nätverk). Senaste tidens studier har tydligt visat att DNA, RNA och proteiner inte 

räcker för att fullt förstå sjukdomsmekanismer, eftersom biologiska funktioner är 

mycket mer komplexa än summan av de individuella komponenterna. För att kunna 

skapa bättre modeller av sjukdom och hälsa krävs en systembaserad analys, där 

integration av de olika typerna av data är i fokus. 

 

Det huvudsakliga syftet med mitt doktorandprojekt har varit att utveckla robusta 

metoder för att välja ut nyckelproteiner, nätverk och signalvägar som är relevanta för 

kliniska frågeställningar, med proteomikdata som utgångspunkt. Projektet har gått från 

att fastställa lämpliga gränser för kvantifiering, till förbehandling av data samt 

metodutveckling för statistisk dataanalays mot målet att generera ett set av 

nyckelproteiner. Jag har även utvecklat systembaserade metoder för att integrera olika 

typer av data i syfte att förbättra möjligheten att skapa biologiskt och kliniskt relevant 

information från proteomikdatan.   

 

I studie I utvecklade vi en meta-analys för att kunna koppla samman befintlig data från 

humana prostata- och kolontumörer. Syftet var att identifiera proteiner som skiljer 

mellan normala och tumörprover oberoende av vävnadsursprung. Detta arbetsflöde 

möjliggjorde upptäckten av en gemensam proteinprofil för två maligna tumörtyper, 

som inte varit möjligt att fastställa då tumörerna analyserades separat.  

 

Syftet med studie II var att skapa beslutsunderlag för vilka proteinkvantiteter (nivåer) 

som är tillförlitliga och att hitta ett sätt för noggrann och exakt proteinkvantifiering. Vi 

utvecklade en metod för förbättrad proteinkvantifiering och introducerade ett sätt att 

bedöma kvaliteten på kvantifieringen av proteiner. Den experimentella designen och de 

utvecklade algoritmerna minskade det relativa felet i proteinkvantifiering av komplexa 

biologiska prover. 

 

I studie III utvecklade vi SpliceVista, ett verktyg för identifiering och visualisering av 

alternativa splitsningsvarianter i masspektrometridata. Genom att matcha identifierade 

proteiner mot kända splitsningsvarianter, kan SpliceVista identifiera peptider som är 

specifika för en viss splitsningsvariant och upptäcka differentiellt uttryckta 

splitsningsvarianter på proteinnivå. 

 

I studie IV utvecklade vi en nätverksbaserad analys för proteomikdata för att identifiera 

subnätverk med olika aktivitet mellan grupper av prover. Tanken är att flytta fokus från 

enskilda proteiner som visar differentiellt uttryck till protein-subnätverk med förändrad 

aktivitet. Metodiken tillämpades på flera av våra kliniska dataset. Genom att studera 

proteinuttryck i kontexten av protein-nätverk kunde vi detektera skillnader på en 

systemnivå och förenkla tolkningen av resultaten från cancerstudier. 
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