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ABSTRACT 
The atypical antipsychotic drug (APD) clozapine is the most efficacious APD in treatment-resistant 

schizophrenia including negative symptoms and cognitive impairment, and still lacks extrapyramidal 

side effects (EPS). Clozapine, which also possesses an antidepressant effect and can be used as 

monotherapy in bipolar disorder, has a broad receptor binding profile with higher affinity for the α2-

adrenoceptor and several serotonergic receptors than D2 receptor, enhances dopamine output in the 

medial prefrontal cortex (mPFC) and facilitates glutamatergic NMDA receptor-mediated transmission 

in pyramidal cells in the same brain region. These effects may clearly contribute to its superior clinical 

efficacy, although haematological side effects limit its use. The atypical APD olanzapine lacks e.g. the 

high affinity to the α2-adrenoceptor, as well as the high efficacy of clozapine, and generates dose 

dependent EPS. Previous studies show that addition of the selective α2-adrenoceptor antagonist 

idazoxan to olanzapine may enhance its antipsychotic-like effect and increase dopamine output in the 

mPFC, effects that might also be achieved by inhibition of the norepinephrine transporter (NET). In 

the present study we investigated whether adjunct treatment with reboxetine, a selective NET inhibitor 

used for the treatment of depression, might generate another means to augment the antipsychotic-like 

effect of olanzapine and, in principle, provide a somewhat more clozapine-like effect. Addition of 

reboxetine potentiated the antipsychotic-like effect of low doses of olanzapine, without increasing EPS 

liability. This combined treatment also preferentially enhanced cortical dopamine output and NMDA 

receptor-mediated currents in pyramidal cells of the mPFC in slice preparations. The results propose 

that adjunct NET inhibition by reboxetine may be used to augment the antipsychotic effect of low 

doses of olanzapine in schizophrenia and improve the effect on negative symptoms and cognitive 

impairments.  We continued to experimentally investigate whether NET inhibition by norquetiapine, 

an active metabolite of quetiapine in humans but not in rodents, and a potent NET inhibitor, may 

contribute to the overall effects of quetiapine in patients. To this end we studied the effects of 

reboxetine added to quetiapine in rodents and found an augmented antipsychotic-like effect and a 

selectively enhanced dopamine output in the mPFC. As the increased extracellular dopamine levels in 

the mPFC were accompanied by a decrease in DOPAC levels, the enhanced extracellular dopamine 

levels should represent a consequence of NET inhibition. Although high concentrations of quetiapine 

alone facilitated NMDA-induced currents in the mPFC, concomitant NET inhibition was found to 

generate the same effect at a low, subeffective concentration of quetiapine, being mediated via the 

dopamine D1 receptor.  Consequently, NET inhibition generated by the active metabolite 

norquetiapine in patients should, in principle, contribute to the clinical antipsychotic effect of 

quetiapine, which is obtained at low D2 receptor occupancy, and furthermore serve to improve 

depressive symptoms as well as cognitive impairments. Low to moderate doses of atypical APDs 

added to selective serotonin reuptake inhibitors (SSRIs) have been found to augment the 

antidepressant effect with a rapid onset compared to SSRIs alone. Our data show that addition of low 

doses of the novel atypical APD asenapine to the SSRI escitalopram enhances the output of 

monoamines in the mPFC and also facilitates not only NMDA, but also AMPA receptor-mediated 

transmission in pyramidal cells of the mPFC, both effects being mediated via activation of the 

dopamine D1 receptor. A similar effect was also obtained by a combination of low concentrations of 

olanzapine and the SSRI fluoxetine. Significantly, a systemic ketamine injection 24 hours prior to the 

electrophysiological experiments, which previously has been found to produce a rapid and potent 

antidepressant-like effect in rodents, significantly potentiated AMPA receptor-mediated transmission 

in the mPFC in our study. Consequently, our data propose that asenapine may be clinically used as 

adjunct to SSRIs in treatment-resistant depression to augment and hasten the clinical response. Overall 

our data thus propose that the relatively rapid onset of the augmented antidepressant effect of 

combined antipsychotic and antidepressant drug treatments may be related to an enhanced AMPA 

receptor-mediated transmission in the PFC, in analogy with the effects of ketamine. In summary, our 

experimental results suggest that an enhanced efficacy in both schizophrenia and depression may be 

achieved by combined administration of atypical APDs and antidepressant drugs.
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1. Introduction 
Mental illness has been defined as “health conditions that are characterized by 

alterations in thinking, mood, or behavior (or some combination thereof) associated 

with distress and/or impaired functioning” (HHS, 1999). In a study investigating the 

global burden of disease, psychiatric disorders occupied five places on the top-ten list of 

the leading causes of disability in the world, when calculated as years lived with a 

disability (Lopez and Murray, 1998). In addition to immense personal suffering for the 

afflicted and his next of kin, mental illness poses an enormous cost to society with 

regards to direct and indirect medical cost (Gustavsson et al., 2011, Wittchen et al., 

2011).  

The discovery of several new drugs (e.g. chlorpromazine, lithium and imipramine) 

revolutionized psychiatric care during the latter half of the 20
th

 century and changed the 

life for large patient groups that previously had been without rational treatments and 

been confined to hospitalization. Even though many drugs have been developed since 

then, the efficacy and side effect profile of the drugs available today are by no means 

optimal. 

Approximately one third of patients suffering from depression achieve remission with 

selective serotonin reuptake-inhibitors, the most prescribed antidepressant drugs 

(Trivedi et al., 2006). Moreover, a recent Swedish study showed that, although there are 

a number of effective antipsychotic drugs (APDs) available, schizophrenia is still so 

debilitating that less than one in fourteen schizophrenic patients are employed, suicide 

rates are increased ten-fold and schizophrenic patients are estimated to die 12 to 15 

years earlier than the rest of the population as a consequence of their disease (Crump et 

al., 2013). Thus, improved treatments for these diseases are urgently needed. In the 

present thesis, using preclinical methodologies, I have investigated augmentation 

strategies to improve the treatment of schizophrenia and mood disorders by combining 

conventional antidepressant drugs and APDs. 

1.1. Neurotransmitter systems 

1.1.1. The dopamine system 

In 1957, Montagu claimed to have identified dopamine in brain tissue from several 

species (Montagu, 1957). However, it was Carlsson and co-workers who originally 

discovered that dopamine has a physiological function as a neurotransmitter in its own 

right, not just serving as a precursor in the synthesis of noradrenaline (Carlsson et al., 

1957, Carlsson et al., 1958, Carlsson, 1959). Since its discovery, dopamine has been 

found to be critically involved with a multitude of complex behaviors such as reward, 

cognition, salience and movement control. Aberrant dopaminergic transmission is 

thought to be involved in several central nervous system (CNS) disorders, accordingly, 

drugs affecting dopaminergic transmission are used in e.g. schizophrenia, Parkinson’s 

disease and mood disorders. 
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1.1.2. The dopamine pathways 

In the CNS, the dopaminergic system can be divided into four distinct pathways; 

namely the nigrostriatal, the mesocortical, the mesolimbic and the tuberoinfundibular 

pathway (Dalström and Fuxe, 1964, Ungerstedt, 1971, Moore and Bloom, 1978; figures 

1, 2). In the nigrostriatal pathway, the cell bodies are located in the substantia nigra 

(SN; A9), and project predominantly to the dorsal striatum (STR), i.e. caudate and 

putamen, where they form extensive axonal arborizations which can measure up to 500 

mm in length (Matsuda et al., 2009). The nigrostiatal pathway is involved in movement 

control, and Parkinson’s disease is largely caused by cell death in this pathway 

(Hornykiewicz, 1962). Moreover, massive blockade of D2 receptors in the dorsal 

striatum may induce extrapyramidal side effects, (EPS) such as Parkinsonism, which is 

a common side effect of most, but not all APDs, especially in higher doses (see 3.4).  

Figure 1. Dopaminergic 

pathways in the human 

brain. AM: amygdala; Hip: 

hippocampus; Hyp: 

hypothalamus; NAC: 

Nucleus accumbens; P: 

pituitary gland; PFC: 

prefrontal cortex; SN: 

substantia nigra; Th: 

Thalamus; VTA: ventral 

tegmental area. Modified 

from (Rang et al., 1999). 

 

 

Dopamine cells that originate in the ventral tegmental area (VTA; A10) constitute the 

other main dopaminergic pathway, the mesocorticolimbic pathway. Depending on 

where the dopamine neurons in the VTA project, the mesocorticolimbic pathway can be 

further divided into the mesocortical part (projecting to the prefrontal cortex [PFC]) and 

the mesolimbic part projecting to subcortical brain regions e.g. the ventral STR (i.e. the 

nucleus accumbens [NAc]), amygdala and the hippocampus. The pituitary gland and the 

median eminence receive dopaminergic input from the arcuate nucleus in the 

hypothalamus and this pathway constitute the tuberoinfundibular system which acts 

inhibitory on the prolactin synthesis and secretion, via activation of D2 receptors 

(Fitzgerald and Dinan, 2008). Thus, blockade of D2 receptors, by APDs (especially 

typical APDs) may increase the secretion of prolactin, causing side effects such as 

galactorrhea. 
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Figure 2. Schematic drawing showing monoaminergic pathways innervating the prefrontal 

cortex (PFC) on coronal sections of rat brain. The noradrenergic pathway projects from the 

locus coeruleus (LC), the serotonergic pathway from the dorsal and median raphe (DR, MR) 

and the dopaminergic pathway from ventral tegmental area (VTA). NAC: Nucleus accumbens; 

SN: Substantia nigra. Modified from (Fuster, 1997). 

1.1.3. Dopamine synthesis and elimination 

Dopamine is synthesized from the amino acid tyrosine, which is actively transported 

over the blood brain barrier into the brain (Brunton et al., 2011). Tyrosine is first 

converted to L-dihydroxyphenylalanine (L-DOPA) by the enzyme tyrosine hydroxylase 

before L-DOPA is converted into dopamine by the enzyme dopa-decarboxylase (figure 

3). Dopamine is transported into synaptic vesicles by the vesicular monoamine 

transporter2 (VMAT2), which is located in the vesicular membrane. The drug reserpine 

inhibits VMAT2 and thereby inhibits the transport of monoamines into vesicles, which 

depletes the terminals of monoamines. Dopamine is released into the synaptic cleft 

when vesicles are fused with the cell membrane (exocytosis) via a Ca
2+

-dependent 

mechanism initiated by nerve impulses. Once released into the synaptic cleft, the main 

elimination route of dopamine is reuptake back into the dopaminergic terminal by the 

dopamine transporter (DAT). Blockade of the DAT causes a large increase in 

extracellular dopamine levels and represents a major mechanism of action of several 

drugs such as cocaine and bupropion. When dopamine is transported back into the 

terminal, it can either be packed into vesicles and reused or metabolized to 

dihydroxyphenyl acetic acid (DOPAC) by the enzymes monoamine oxidase (MAO) and 

aldehyde dehydrogenase. In the extracellular space, dopamine can also be metabolized 

by catechol-O-methyl transferase (COMT) into 3-metoxytyramine (3-MT). 3-MT and 

DOPAC may also be further metabolized into homovanillic acid (HVA), by MAO and 

COMT respectively. There are two isoforms of the MAO enzyme, MAO-A and MAO-

B. MAO-A has higher affinity for serotonin, whereas both dopamine and noradrenaline 

show equal affinity for these enzymes (Waldmeier, 1987, Berry et al., 1994). MAO-A 

inhibitors are used as antidepressant drugs, whereas MAO-B inhibitors are 

preferentially used in the treatment of Parkinson’s disease. 
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1.1.4. Dopamine receptors  

The dopamine receptors are divided into two families depending on their structural, 

pharmacological and signaling properties (see Beaulieu and Gainetdinov, 2011, Tritsch 

and Sabatini, 2012, and references therein). The D1– like family consists of D1 and D5 

receptors and the D2- like family consists of D2, D3 and D4 receptors. Pharmacological 

agents can distinguish between the two families, but usually possess less specificity 

within each family. In general, stimulation of D1-like and D2-like receptors exert 

opposite effects by activation of different second messenger pathways. Dopamine has 

been found to possess a higher affinity for the D2-like receptors than the D1-like 

receptors.  

Figure 3. Schematic drawing 

illustrating a dopaminergic nerve 

terminal. 3-MT: 3-metoxytyramine; 

AD: aldehyde dehydrogenase; APDs: 

antipsychotic drugs; COMT: 

catecholamine-O-methyl transferase; 

DA: dopamine; MAO: monoamine 

oxidase. Modified from (Cooper et al., 

2003). 

 

 

 

 

 

Binding of dopamine to the D1 receptor activates Gαs or Gα/olf, which are positively 

coupled to adenylyl cyclase and thereby increases cyclic adenosine monophosphate 

(cAMP) production (Brunton et al., 2011). Increased levels of cAMP may subsequently 

activate protein kinase A (PKA). D1 receptor activation is also suggested to couple to Gq 

and enhance the production of inositol triphosphate (IP3) and diacylglycerol (DAG). 

PKA mediates most of the effects of D1 receptor stimulation, and PKA may in turn 

regulate the function of several different cellular substrates, such as voltage gated ion 

channels, ionotropic glutamate receptors, γ-aminobutyric acid (GABA)-ergic receptors 

and transcription factors. PKA may also activate the dopamine and cAMP-regulated 

phosphoprotein of 32-kDa (DARPP-32). This effect on DARPP-32 can be inhibited by 

activation of D2 receptors. D2 receptor activation inhibits adenylyl cyclase activation but 

may also affect intracellular Ca
2+

 levels and voltage-gated ion channels independently 

of cAMP/PKA inhibition. D2 receptors are expressed presynaptically as well as 

postsynaptically. D2 receptors located on the soma and dendrites of dopaminergic cells 

act as autoreceptors, decreasing firing frequency (see below) whereas D2 receptors 

located on nerve terminals reduce dopamine synthesis and release. D2 receptors exist in 

two splice variants D2S (short) and D2L (long). D2L is predominantly located 
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postsynaptically whereas D2S is predominantly expressed presynaptically (Brunton et 

al., 2011).  

Dopamine receptors are expressed in regions that receive dopaminergic innervations. 

The most commonly expressed receptor subtypes are the D1 and the D2 receptors, with 

the D1 being the most widely distributed and abundant. In subcortical areas, the 

expression of D1 and D2 are approximately equal whereas in the cortex, the D1 type 

outnumbers the D2. Dopamine receptors (D1 and D2 subtypes) are expressed on medium 

spiny neurons as well as interneurons in the STR and on as on cortical pyramidal cells, 

interneurons and glial cells (Tritsch and Sabatini, 2012). The D3 receptor shows a lower 

expression than the D2 receptor and is predominantly found in limbic regions. The D4 

and D5 receptors are expressed in e.g. cortical regions but also limbic areas (Tritsch and 

Sabatini, 2012).  

1.1.5. Regulation of dopamine cell activity 

Midbrain dopamine cells (i.e. located in SN or VTA) essentially display two modes of 

function, single spike firing and burst firing i.e. short bursts of action potentials with 

high frequency (Bunney et al., 1973, Grace and Bunney, 1983). Burst firing is 

associated with a larger release of dopamine in both cortical and subcortical areas 

(Gonon, 1988, Bean and Roth, 1991, Chergui et al., 1996) and may be especially 

important for signaling reward or salience (Schultz, 2010). Single spike firing on the 

other hand, may provide a basal tonic stimulation of dopaminergic receptors which is 

important for e.g. motor activity (Schultz, 2007). 

Activation of somatodendritic D2 receptors on midbrain dopamine cells hyperpolarizes 

the neurons and reduces their firing rate by enhancing K
+
 conductance (Bunney et al., 

1973, Lacey et al., 1987). However, the mesocortical dopamine cells are not regulated 

by autoreceptors (Chiodo et al., 1984). The cortically projecting dopamine cells also 

respond differently to e.g. N-methyl-D-aspartate (NMDA) receptor antagonists than the 

mesolimbic dopamine neurons (see e.g. Murase et al., 1993b), have higher firing 

frequencies and fire a larger proportion of spikes in bursts compared with dopamine 

cells in the mesolimbic or nigrostriatal pathways. In addition, mesolimbic dopamine 

release appears to be subjected to negative feed-back control by dopamine in the mPFC 

(Pycock et al., 1980, Deutch et al., 1990). Thus, mesocortical and mesolimbic dopamine 

cells are differentially regulated in several ways. Moreover, the midbrain dopamine 

cells are negatively modulated by GABAergic interneurons as well as GABAergic 

feedback loops originating in brain regions innervated by dopamine such as the STR 

and the NAc (Fonnum et al., 1978, Walaas and Fonnum, 1980).  

Dopamine cells receive excitatory input from the PFC but also from e.g. the 

subthalamic nucleus (Grace and Bunney, 1985, Svensson and Tung, 1989, Chergui et 

al., 1994). This is indicated by experiments showing that inactivation of the mPFC 

reduces burst firing, whereas activation of the mPFC increases the proportion of spikes 

fired in bursts in dopamine cells in the VTA (Gariano and Groves, 1988, Svensson and 

Tung, 1989, Murase et al., 1993a). The dopamine cells in the VTA also receive a 
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noradrenergic input from locus coeruleus (LC), neurons which may enhance burst 

activity via activation of excitatory α1-adrenoceptors on the dopaminergic cell bodies 

(Grenhoff et al., 1993, Grenhoff and Svensson, 1993). The VTA receives serotonergic 

afferents from the raphe nuclei and although the modulation of dopamine firing in the 

VTA is complex, the main effect seems to be inhibitory (Di Giovanni et al., 2008). 

1.1.6. Regulation of dopamine in the cortex 

The expression of DAT is scarce in the PFC, in contrast to the abundant DAT 

expression in other dopaminergic terminal areas, such as the STR (Sesack et al., 1998). 

As a consequence, prefrontal dopamine is essentially inactivated by the norepinephrine 

transporter (NET) located in noradrenergic nerve terminals (Carboni et al., 1990, Pozzi 

et al., 1994). As a result, NET-inhibitors increase both dopamine and noradrenaline 

levels in the mPFC to a similar extent, but does not affect dopamine levels in NAc or 

STR where dopamine is cleared by the DAT (Bymaster et al., 2002). Furthermore, 

blockade of the α2-adrenoceptor in the mPFC increases the extracellular levels of 

dopamine (Hertel et al., 1999b). In fact, lesion and pharmacological studies indicate that 

dopamine may be co-released with noradrenaline from noradrenaline terminals in the 

mPFC (Devoto et al., 2001, Devoto and Flore, 2006, Masana et al., 2011).  

1.2. The glutamate system 
Glutamate is the main excitatory neurotransmitter in the CNS and is found in high 

concentrations throughout the brain. It is estimated that approximately 80 % of all 

neurons and 85% of all synapses in the human neocortex are glutamatergic (Douglas 

and Martin, 2007). Given the almost ubiquitous nature of glutamate, it is involved in 

almost all processes in the brain, in one way or the other. The majority of the 

glutamatergic projections is descending and project from the cortex to subcortical 

regions, but may also project within the cortex (i.e. cortico-cortical projections). In the 

nerve terminals, glutamate can be synthesized from glucose, via the Krebs cycle, or 

from glutamine, which is synthesized in glia, and converted to glutamate by 

glutaminase. Inactivation of released glutamate is accomplished by reuptake into 

neurons or glia. In glia, glutamate is metabolized into glutamine by glutamine 

synthease. Glutamine is subsequently transported to neighboring neurons where it is 

converted to glutamate and subsequently reused. Glutamate receptors include ionotropic 

receptors, i.e. NMDA, AMPA and kainate receptors, as well as metabotropic glutamate 

receptors (mGluR 1-7). Glutamate receptors of all types have been found to be located 

both pre- and postsynaptically (Pinheiro and Mulle, 2008). 

1.2.1. NMDA-receptors 

The NMDA receptor is a ligand-gated voltage-dependent ionotropic receptor that is 

widely expressed in the CNS (figure 4). NMDA receptors have slow 

activation/deactivation kinetics and are highly permeable to Ca
2+

 as well as Na
+
 and K

+
 

(see Cull-Candy et al., 2001 and references therein). NMDA receptors are essential for 

neuronal development, learning and neural plasticity as well as neural cell death.  
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Figure 4. Schematic drawing of glutamatergic ionotropic receptors. Co-agonist i.e. glycine or 

D-serine; Glu: glutamate; APV: D(−)-2-Amino-5-phosphonopentanoic acid, a competitive 

NMDA receptor antagonist; CNQX: 6-Cyano-7-nitroquinoxaline-2,3-dione, a AMPA/ Kainate 

receptor antagonist. Modified from (Kandel et al., 1991). 

The activity of the NMDA receptor is regulated by several different mechanisms. In 

addition to glutamate, NMDA receptor activation also requires binding of a co-agonist 

(glycine or D-serine) controlling the number of NMDA receptors that can be activated 

by released glutamate (Johnson and Ascher, 1987, Mothet et al., 2000, Oliet and 

Mothet, 2009). Glycine levels are regulated by glycine transporters which are located on 

glial cells and glutamatergic neurons close to NMDA receptor synapses (Cubelos et al., 

2005, Eulenburg et al., 2005). In addition, NMDA receptor ion-channels are blocked by 

Mg
2+

 ions at resting membrane potentials and in order for the NMDA receptor to be 

activated, the membrane potential must be depolarized (Cull-Candy et al., 2001). In the 

postsynaptic density, NMDA receptors may associate with scaffolding, anchoring and 

signaling proteins (Cull-Candy et al., 2001).  

There is considerable heterogeneity among the NMDA receptors, depending on their 

subunit composition (Cull-Candy et al., 2001). There are eight different splice variants 

of the NR1 subunit, four different NR2 subunits and two NR3 subunits. The NMDA 

receptor is considered to be a tetramer, the most common consisting of two NR1 

subunits and two NR2 subunits, which can be of different splice variants. However, the 

NMDA receptor may also contain NR3 subunits. The subunit composition is important 

as it determines the pharmacological and biophysical properties of the NMDA receptor. 

NR2 subunits bind glutamate and contain the modulatory site, binding Zn
2+

, whereas the 

NR1 and NR3 subunits contain the co-agonist site. Phencyclidine (PCP), ketamine and 

MK-801 bind to the pore of the ion-channel and thereby block the transmission. 

1.2.2. AMPA and kainate receptors 

The AMPA and kainate receptors are ionotropic receptors, which are responsible for the 

major part of the fast excitatory transmission in the CNS. The AMPA receptors are co-

localized with NMDA receptors. Activation of AMPA receptors induces an influx of 

Na
+
 increasing the membrane potential, which is required to release the Mg

2+
 blockade 

of the NMDA receptor (see above). Activation of NMDA receptors may regulate the 
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number of AMPA receptors in the synapse trough Ca
2+

 influx and triggering of 

intracellular cascades, thus regulating the synaptic strength (i.e. long term depression or 

long term potentiation; Malinow and Malenka, 2002, Citri and Malenka, 2008). 

Regulation of synaptic strength is thought to be involved in learning and memory.  

The AMPA receptors are composed of four subunits (GluR1 to 4), which each contains 

a glutamate binding-site (Rosenmund et al., 1998). AMPA receptors may be heteromers 

as well as homomers (Wenthold et al., 1996). Most AMPA receptors are Na
+
 and K

+ 

permeable to but may also be permeable to Ca
2+

 if the receptor lacks the GluR2 subunit. 

The kainate receptors form homo- and heterotetramers from the subunits GluR5-7 and 

KA1 and 2. The kainate receptors are distributed throughout the brain but are less 

abundant than the AMPA receptors (Pinheiro and Mulle, 2006). 

1.2.3. Metabotropic glutamate receptors  

There are eight types of metabotropic glutamate receptors (mGluRs) divided into three 

groups (see Nicoletti et al., 2011, and references therein). Group I includes GluR1 and 

5, group II includes mGluR 2 and 3, and subsequently, group III includes mGluRs 4, 6, 

7 and 8. mGluRs are expressed on neurons as well as on microglia and astrocytes and 

are widely expressed throughout the brain. The mGluRs are involved in pre- and 

postsynaptic regulation of synaptic transmission and are considered as interesting drug 

targets for the treatment of a number of neuropsychiatric disorders, such as depression, 

anxiety and schizophrenia. For example, mGluR2/3 agonists, which attenuate glutamate 

release, have been developed for schizophrenia and initially showed encouraging results 

(Patil et al., 2007). However, a subsequent trial could not confirm the initial finding 

(Kinon et al., 2011) and thus the effectiveness of mGlu2/3 as a target for schizophrenia 

remains to be conclusively determined. 

1.2.4. Dopamine D1 receptor and NMDA receptor interactions in the PFC 

Several lines of evidence support the functional as well as physical interaction between 

the dopamine D1 and the NMDA receptor. In fact, optimal interaction between the D1 

receptor and the NMDA receptor in the PFC has been proposed as a crucial mechanism 

for cognitive function (Castner and Williams, 2007).  

Dopamine projections to the mPFC terminate mainly in deep cortical layers (layer V 

and VI) and pyramidal cells in layer V receive both dopaminergic and glutamatergic 

input from the VTA and from the thalamus, respectively (Kuroda et al., 1996). D1 

receptors and NMDA receptors co-localize on pyramidal cells, as well as on 

interneurons in the rat mPFC (Kruse et al., 2009). Dopamine D1 receptor activation has 

been found to facilitate NMDA-induced responses and to potentiate excitatory 

postsynaptic potentials (EPSPs) in layer V pyramidal cells of the rat mPFC (Seamans et 

al., 2001, Tseng and O'Donnell, 2004), whereas α- or β-adrenoceptors do not seem to 

affect NMDA-induced currents (Wirkner et al., 2004). In contrast to the well established 

interaction between the D1 and NMDA receptors, interactions between D1 and AMPA 

receptors remain to be clarified. 
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1.3. The serotonin system 
Evolutionary, serotonin is thought to be one of the oldest neurotransmitters and is found 

to in the CNS as well as in the peripheral nervous system and in various non-neural 

tissues. The distribution of serotonin is widespread in the brain (figure 2 and 5) and 

serotonin modulates a number of important functions including sleep, mood, aggression, 

cognition, temperature and feeding. Accordingly, the cerebral serotonin system is a 

target for the treatment of several psychiatric disorders, such as depression and anxiety. 

Figure 5. Schematic drawing illustrating 

the serotonergic pathways in the human 

brain. AM: amygdala; C: cerebellum; 

Hip: hippocampus; Hyp: hypothalamus; 

Str: striatum; Sep: Septum; Th: Thamalus. 

Modified from (Rang et al., 1999). 

 

 

 

 

 

1.3.1. Serotonins synthesis and elimination 

Serotonin is synthesized in serotonergic neurons from tryptophan which is converted 

into 5-hydroxytryptamine (5-HT; i.e. serotonin), via 5-hydroxytrypophan by the 

enzymes tryptophan hydroxylase and amino acid decarboxylase, respectively (Figure 6.) 

(Brunton et al., 2011). In the nerve terminal, serotonin is packed into vesicles and 

released into the synaptic cleft by exocytosis through a nerve impulse initiated Ca
2+

-

dependent mechanism. The main route of elimination is reuptake by the serotonin 

transporter (SERT). Serotonin is metabolized by MAO and aldehyde dehydrogenase 

into its main metabolite 5-hydroxyindole acetic acid (5-HIAA).  

Figure 6. Schematic drawing illustrating a 

serotonergic nerve terminal. 5-HT: 5-

hydroxytryptamine i.e. serotonin; MAO: 

monoamine oxidase. Modified from (Cooper 

et al., 2003). 
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1.3.2. Serotonin projections 

The serotonergic pathways in the CNS project from the raphe nuclei located in the brain 

stem (Dahlström and Fuxe, 1964), to most regions of the brain. From the medial and 

dorsal raphe, serotonergic cells project rostrally to e.g. the thalamus, hypothalamus, 

striatum, amygdala, hippocampus and the cortex via the medial forebrain bundle (figure 

2 and 6) whereas from caudal parts of the raphe nuclei, serotonergic cells project to the 

cerebellum and the spinal cord.  

1.3.3. Serotonin receptors 

There are 14 types of serotonergic receptors, 5-HT1-7 (with subgroups), all of which are 

G-protein coupled except for the 5-HT3 receptor, which is an excitatory ligand-gated ion 

channel (Hannon and Hoyer, 2008). There are several different subgroups of the 

serotonin receptors for example 5-HT1A, B, D, E, F and 5-HT2A/B/C. The 5-HT1A and 5-

HT2A/C receptors are involved in the mechanism of action of many APDs see e.g. 

(Ichikawa et al., 2001). 5-HT1A receptors are mostly linked to Gi and may hyperpolarize 

the cell membrane and reduce adenylate cylase. 5-HT1A receptors are expressed in e.g. 

the hippocampus and in cortical areas as well as on cell bodies in the raphe nuclei, 

where it acts as an autoreceptor. 5-HT2 receptors are preferentially Gq coupled and 

increases IP3 and PKC, which subsequently enhances the intracellular Ca
2+

 

concentration. 5-HT2A receptors are expressed on e.g. cortical pyramidal cells and 

interneurons as well as in the brain stem, limbic areas and in the basal ganglia. 5-HT2B 

receptors are expressed in lower number than the 5-HT2A and 5-HT2C, and confined to 

discrete regions e.g. the medial amygdala where 5-HT2B activation induce anxiolytic 

effects in rodents. 5-HT2C receptors are expressed in limbic structures and in substantia 

nigra as well as in some cortical structures.  

 

1.4. The noradrenaline system 
Noradrenaline was first identified as a CNS neurotransmitter in the 1950’s (Vogt, 

1954). Noradrenaline has been found to modulate the activity of neurons, more 

specifically noradrenaline may function to enhance signal to noise ratio (i.e. enhance 

activity in active cells and depress activity in less active cells) in target areas. 

Noradrenaline transmission is suggested to be involved in e.g. attention, behavioral 

reorientation and is thought to function as a significance enhancer (Aston-Jones et al., 

1999, Arnsten and Li, 2005). The cerebral noradrenergic transmission represents a 

target for a number of different psychoactive drugs, including antidepressants, 

antipsychotics and drugs used in the treatment of attention deficit hyperactive disorder 

(ADHD). 
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Figure 7. Schematic drawing 

illustrating the noradrenergic 

pathways in the human brain. AM: 

amygdala; C: cerebellum Hip: 

hippocampus; Hyp: hypothalamus 

;LC: locus coeruleus; LTG: lateral 

tegmental group; Str: striatum; sep: 

septum; Th: thamalus. Modified 

from (Rang et al., 1999). 

 

 

 

1.4.1. Noradrenaline synthesis and elimination 

Noradrenaline is synthesized from dopamine in noradrenergic terminals by the enzyme 

dopamine β-hydroxylase (Brunton et al., 2011). Dopamine β-hydroxylase is bound to 

the vesicular membrane and, noradrenaline synthesis occurs inside the vesicles (figure 

8). Noradrenaline is released via a nerve impulse-dependent mechanism and is cleared 

from the synaptic cleft by the NET. Noradrenaline is metabolized to its major 

metabolite 3-methoxy-4-hydroxyl-phentylenglycol (MHPG) by COMT and MAO.  

1.4.2. Noradrenaline projections 

Noradrenergic cell bodies are located in several clusters in the brain stem and can be 

divided into two subgroups, the LC and the lateral tegmental nuclei (Dahlström and 

Fuxe, 1964; figures 2 and 7). The LC projects to most of the cerebral cortex, as well as 

to e.g. the cerebellum, hippocampus and the amygdala. The lateral tegmental nuclei 

project mainly to other brain regions such as the brain stem, the hypothalamus, parts of 

the amygdala and the spinal cord.  

Figure 8. Schematic drawing of 

a noradrenergic nerve terminal. 

DA; dopamine; MHPG: 3-

methoxy-4-hyroxyl- 

phentylenglycol ; COMT: 

catecholamine-O-transferase; 

MAO: monoamine oxidase; 

NA: noradrenaline NM; 

normetanephrine. Modified 

from (Cooper et al., 2003). 
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1.4.3. Noradrenaline receptors 

There are two types of noradrenaline receptors α- and β-adrenoceptors (Bylund et al., 

1994, Civantos Calzada and Aleixandre de Artinano, 2001). The α-adrenoceptors are 

divided into α1- and α2- adrenoceptors which are both widely distributed in the brain 

(Nicholas et al., 1996). The α1 receptors are positively coupled to Gq and thus stimulates 

phospholipase C and increases IP3 and DAG. There are three subclasses of the α1 -

adrenoceptors, the α1A/B/D. α1-receptors are predominantly located on postsynaptic 

neurons e.g. on pyramidal cells of the mPFC where they co-localize with 5-HT2A 

receptors and increase the excitation of the cells (Santana et al., 2013). Presynaptically 

located α1-adrenoceptors have been found in e.g. NAc, where they are thought to 

regulate dopamine release (Mitrano et al., 2012). α2-adrenoceptors are negatively 

coupled to cAMP production and thereby act inhibitory. The inhibitory function of 

presynaptic α2-adrenoceptors on transmitter release was first demonstrated on central 

noradrenaline neurons by Andén and colleagues (Anden et al., 1970b) and, 

independently, on peripheral sympathetic nerves by Langer (Langer, 1970). Now it is 

known that α2-adrenoceptors act as hetero- and autoreceptors, regulating noradrenergic 

as well as serotonergic and dopaminergic transmission (Svensson et al., 1975, Gobert et 

al., 1998, Devoto et al., 2001). There are three subclasses of β-adrenoceptors, β1/2/3, but 

only β1/2 are expressed in the CNS (Nicholas et al., 1996). The β1/2-receptors are 

positively coupled to Gs activating adenylyl cyclase. β-adrenoceptors have been found 

to modulate neurotransmission in the mPFC and may be involved in for example 

memory retrieval (Ji et al., 2008, Reyes-Lopez et al., 2010). 

1.5. Prefrontal cortex 
The human PFC has been divided into three anatomically different regions the lateral, 

medial and orbital regions (Fuster, 2001). The PFC is involved in emotional behavior 

and cognitive processes that includes behavior, speech and reasoning, planning and 

executive function. In the PFC, information from external sources (sensory information) 

and internal sources (memories, mood) is integrated and an appropriate response is 

selected. The human PFC is not fully mature until early adulthood (Fuster, 2001). 

Patients who sustained lesions in the dorsolateral PFC (dlPFC) may display cognitive 

deficits such as problems with generating coherent speech, memory retrieval as well as 

working memory and attention deficits (Stuss and Levine, 2002). The critical 

importance of the PFC for working memory is supported by a plethora of animal 

studies. Hypofunction of the PFC is well established in schizophrenia, and is thought to 

contribute to the negative symptoms and cognitive deficits (c.f. 1.7). Recent studies, 

using imaging techniques, showed that poor activation of the dlPFC corresponded to 

poor cognitive performance in schizophrenic patients, but not in patients suffering from 

cognitive decline caused by ageing (Dreher et al., 2012). This indicates that the dlPFC 

dysfunction is a core deficit in schizophrenia, but not for poor cognition per se. The 

dlPFC is also implicated in emotional processing and impaired function of the dlPFC 

has been proposed also in depression (Savitz and Drevets, 2009). For example, 

hypometabolism and even reduced grey matter in the dlPFC has been observed in 

MDD.  
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The rat cerebral cortex is approximately 1000 times smaller than that of a human cortex, 

making a direct translation based on anatomy alone impossible (c.f. Uylings et al., 

2003). The region in rat cortex that best corresponds to the human dlPFC is the rat 

medial PFC (mPFC; Ongur and Price, 2000, Uylings et al., 2003). This notion is based 

on the fact that the rat mPFC, in similarity to the human dlPFC, forms extensive 

reciprocal projections from e.g. the mediodorsal thalamus, receives similar 

neurotransmitter input (e.g. noradrenaline from the LC, serotonin from the DRN, 

dopamine from the VTA) and expresses similar receptors as the human dlPFC. In 

addition, analogous behaviors are mediated via these areas in humans and rats, 

respectively, such as attention, working memory and social interaction. The rat mPFC is 

considered to consist of four regions, medial (frontal) agranular, anterior cingulate 

cortex, prelimbic cortex and infralimbic cortex (Ongur and Price, 2000, Uylings et al., 

2003, Hoover and Vertes, 2007). The medial agranular and the anterior cingulate cortex 

receive afferents from large areas of the cortex and thalamic nuclei whereas the 

prelimbic and infralimbic corex generally receive less cortical afferents and instead 

more limbic afferents (Hoover and Vertes, 2007).  

1.6. Nucleus Accumbens 
The NAc is a forebrain structure that makes up most of the ventral striatum. The main 

cell type of the NAc is the GABAergic medium spiny neurons, which express D1 or D2 

receptors (Tritsch and Sabatini, 2012). The NAc receives dopaminergic input from the 

VTA, via the mesolimbic dopamine projection, and glutamatergic input from limbic 

regions as well as the mPFC. The NAc has been suggested to act as an interface 

between the motor system and the limbic system, in which motivation is translated into 

action (Mogenson et al., 1980). Thus, the NAc is important for a number of processes 

including reward, reinforcement, hedonia and motivation. The NAc can be subdivided 

into the shell and core compartments. The shell mainly receives input from the 

infralimbic subdivision of the mPFC and the core from the prelimbic subdivision. The 

core region is functionally related to dorsal striatum and is thought to be involved in 

motor function whereas the shell region is thought to be more associated with the limbic 

system and to be involved in motivational and emotional processes (Deutch, 1993). 

Studies show that clozapine and other atypical APDs preferentially increase dopamine 

release in the shell region, whereas the typical APD haloperidol induces dopamine 

release preferentially in the core (Marcus et al., 2000, Marcus et al., 2002) 

1.7. Schizophrenia  
Schizophrenia is a severe psychiatric disorder which affects almost all domains of the 

personality as well as the mental capacity and thereby severely affects the ability of an 

individual to function in society. The severity of the symptoms and the fact that the first 

symptoms usually appear in the late teens or early adulthood, i.e. periods important for 

e.g. education, building a career and family, contribute to the fact that the disease 

usually is associated with short education, low rates of employment and marriage, as 

well as low income (Crump et al., 2013).  
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The estimated lifetime prevalence of schizophrenia is approximately 0.5 to 1% (Regier 

et al., 1988, Carpenter and Buchanan, 1994, Goldner et al., 2002). Most patients 

experience their first psychotic symptoms in adolescence or early adulthood (an der 

Heiden and Hafner, 2000). In a majority of patients, schizophrenia develops into a 

chronic disease with poor outcome (Carone et al., 1991, Bromet and Fennig, 1999). As 

a consequence, schizophrenic patients have a reduced life expectancy of approximately 

12 to 15 years mainly due somatic diseases (e.g. ischemic heart disease and cancer) but 

in addition, schizophrenia is associated with high risk of suicide and other causes of 

unnatural death (Casey et al., 2011, Crump et al., 2013). Even though some APDs are 

associated with severe side effects such as the metabolic syndrome, they have still been 

found to significantly reduce mortality in schizophrenia (Tiihonen et al., 2009, Crump et 

al., 2013). In addition, co-morbid diseases such as drug abuse are common and may 

significantly worsen the prognosis of schizophrenia (c.f. Krystal et al., 1999).  

1.7.1 Symptoms of schizophrenia  

The diverse symptoms of schizophrenia were first described as one disease under the 

name dementia praecox by the German psychiatrist Emil Kraepelin about a century ago 

(Kraepelin, 1919). The symptoms may vary considerably between patients and also 

within a single patent over time. The disease is mostly preceded by a prodromal phase, 

characterized by unspecific symptoms such as restlessness, anxiety, depressive and 

negative symptoms (see below), which can last several years before the patients 

experience their first psychotic episode (an der Heiden and Hafner, 2000). There is no 

specific diagnostic test and schizophrenia is diagnosed according to diagnostic manuals; 

Diagnostics and Statistical Manual of Mental Disorders (DSM-IV or the recently 

implemented new edition DSM-V; (American Psychiatric Association, 2000) or the 

International Classification of Diseases (ICD-10;WHO, 1992) and the symptoms are 

often divided into three broad clusters; positive symptoms, negative symptoms and 

cognitive deficits (Andreasen and Olsen, 1982, Gold and Harvey, 1993). Positive 

symptoms, sometimes referred to as psychotic symptoms, include delusions (such as 

thought broadcasting or communication with aliens), hallucinations (mostly auditory), 

formal thought disorder and catatonia. Negative symptoms include social withdrawal, 

flattened affect, apathy, anhedonia (inability to feel pleasure) and alogia (poverty of 

speech). Schizophrenia is associated with deficits in almost all cognitive domains, but 

with high a degree of interpersonal heterogeneity. The most characteristic cognitive 

impairments include deficits in working memory, attention and executive function, with 

less deficits found in other cognitive domains, e.g. spatial ability (Heinrichs and 

Zakzanis, 1998). Cognitive deficits in schizophrenia, indicated by e.g. low IQ and poor 

educational performance, pre-date the psychotic symptoms (Jones et al., 1994, David et 

al., 1997). Importantly, the severity of cognitive deficits, such as impaired verbal 

working memory and vigilance, predicts treatment outcome in schizophrenia to a higher 

degree than psychotic symptoms (Green, 1996), suggesting that treatments that 

effectively may ameliorate the cognitive impairments would be particularly 

advantageous. Cognitive impairments in schizophrenia are more stable than the 

psychotic symptoms, which may fluctuate considerably over time. Moreover, cognitive 
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deficits similar to those found in schizophrenia have been found in unaffected first-

degree relatives (Snitz et al., 2006), implicating cognitive deficits as an endophenotype 

of the disease. In addition to impairments in higher cognitive functions, deficiencies in 

sensory information processing (Braff et al., 1978) and motor speed and coordination 

(Flashman et al., 1996) have been found associated with schizophrenia, indicating a 

more general neuropsychiatric deficit that may reflect a neurodevelopmental 

impairment. 

1.7.2. Etiology of schizophrenia 

The cause or causes of schizophrenia are not known, however, both genetic and 

environmental factors have been found to contribute. For example, having a first-degree 

relative with schizophrenia significantly increases the risk of developing the disease 

(see e.g. Lichtenstein et al., 2009).  

Linkage and genome-wide association studies have found several susceptibility genes 

and short nucleotide polymorphisms that are associated with schizophrenia, some of 

which are shared with other disorders e.g. bipolar disorder. However, each gene variant 

seems to account for very little of the increased risk; rather it is the contribution of 

many gene variants that together convey an increased risk of developing schizophrenia 

(Harrison and Weinberger, 2005, Purcell et al., 2009, Ripke et al., 2013). Moreover, rare 

alleles conveying a high risk as well as de novo mutations may also play a role in the 

development of schizophrenia (for review see Doherty et al., 2012).  

In addition to susceptibility genes, several environmental factors have been found to 

increase the risk of acquiring schizophrenia. For example, several prenatal factors such 

as winter birth, obstetric complications, and intrauterine influenza infections have been 

proposed as risk factors for schizophrenia (for review see Bromet and Fennig, 1999). 

Furthermore, poor socioeconomic background (Bromet and Fennig, 1999), urban living 

(Lewis et al., 1992), migration (Cantor-Graae and Selten, 2005) as well as drug abuse, 

most notably use of certain stimulants and cannabis, has been found to increase the risk 

of developing schizophrenia (Andreasson et al., 1987, Callaghan et al., 2012).  

1.7.3. The dopamine hypothesis of schizophrenia 

The first indication that the dopamine system may be involved in schizophrenia was the 

discovery by Arvid Carlsson that chlorpromazine and haloperidol both enhanced the 

turnover of catecholamines (Carlsson and Lindqvist, 1963). They proposed that the 

effect represented a compensatory activation of the dopamine system due to a blockade 

of catecholamine receptors. Later it was found that a range of clinically used APDs 

were indeed dopamine receptor antagonists, subsequently identified as D2 receptor 

antagonists (Anden et al., 1966, Anden et al., 1970a, Creese et al., 1975, 1976, Seeman 

et al., 1976). It was observed that amphetamine, which enhances the release of 

catecholamines in the brain, may elicit or aggravate preexisting psychotic symptoms, 

which in turn could be blocked by APDs (Angrist et al., 1974). Moreover, L-DOPA, the 

precursor to dopamine, may also worsen psychotic symptoms in schizophrenic patients 

(Angrist et al., 1973). These findings lead to formulation of the dopamine hypothesis, 
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which suggests that schizophrenia is associated with an enhanced dopaminergic 

neurotransmission in the brain (Carlsson, 1978). Later studies demonstrated that 

although basal dopamine release is appears similar in patients and healthy subjects, 

amphetamine induces a larger dopamine release in the STR of schizophrenic patients 

than in healthy controls (Laruelle et al., 1996). This difference was only evident when 

the patients were in a psychotic state (Laruelle et al., 1999), indicating that the psychotic 

symptoms of schizophrenia may indeed be related to increased dopamine release. In 

addition to an enhanced subcortical dopaminergic transmission contributing to the 

positive symptoms of schizophrenia, several lines of evidence indicate that the negative 

symptoms may be related to impaired dopaminergic transmission in the PFC. This has 

led to a modified version of the dopamine hypothesis, which posits that an hyper-

reactive mesolimbic dopaminergic transmission is associated with the positive 

symptoms of schizophrenia, whereas a hypoactive mesocortical dopamine system may 

largely contribute to the negative symptoms and cognitive impairments.  

For example, schizophrenia is associated with hypofrontality i.e. reduced cerebral blood 

flow in the frontal lobes (Ingvar and Franzen, 1974) and some of the symptoms of 

schizophrenia resemble those observed in frontal lobe damage (Stuss and Benson, 

1984). Accordingly, schizophrenic patients taken as a group perform poorly in tasks that 

involve the PFC, e.g. working memory tests. This is associated with a hypoactivation of 

the dlPFC (Dreher et al., 2012). However, some schizophrenic patients with less 

working memory impairment may even display a hyperactivation of the dlPFC 

(Callicott et al., 2000).  

In contrast to the effect of D2 blockade on the positive symptoms, D2 receptor blockade 

has little effect on negative symptoms and cognitive impairments in schizophrenia and 

may, in fact, even worsen them (Carpenter, 1996, Saeedi et al., 2006). Interestingly, 

amphetamine, which exacerbates positive symptoms, may actually reduce negative 

symptoms and cognitive impairments in some patients (Laruelle et al., 1999, 

Lindenmayer et al., 2013). 

Results from studies in primates show that the PFC requires an optimal level of 

dopamine and D1 receptor activation for proper working memory function (Sawaguchi 

et al., 1988, Sawaguchi and Goldman-Rakic, 1991, Williams and Goldman-Rakic, 

1995). Dopamine D1 receptor activation display an inverted U-shape form, i.e. too little 

or too much dopamine in the PFC impairs working memory (Vijayraghavan et al., 

2007). Interestingly, amphetamine was found to enhance activation of the PFC in 

schizophrenic patients and to improve cognitive performance (Daniel et al., 1991), 

suggesting that low cortical dopamine level contribute to the cognitive deficits in 

schizophrenia. The ability of clozapine to preferentially potentiate dopamine release in 

the mPFC is suggested to underlie its effect on cognitive impairments and negative 

symptoms in schizophrenia (Moghaddam and Bunney, 1990, Nomikos et al., 1994, 

Goldman-Rakic et al., 2004). 
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Alterations in prefrontal dopamine transmission have also been found in patients. 

Several imaging studies have observed alterations in prefrontal D1 receptor binding in 

schizophrenic patients, further supporting a dysregulated dopaminergic transmission 

contributing to the symptoms. While Okubo and colleagues (Okubo et al., 1997) found 

the D1 receptor binding to be decreased in the PFC, correlating with negative and 

cognitive symptoms, Abi-Dargham and colleagues found the D1 receptor binding to be 

increased in the PFC (Abi-Dargham et al., 2002, Abi-Dargham et al., 2012). The higher 

D1 receptor binding correlated with poor working memory in one of the studies (Abi-

Dargham et al., 2002). The discrepancy between these seemingly contradictory studies 

may be attributed to methodological differences (for further discussion see Abi-

Dargham et al., 2002). Abi-Dargham and colleagues suggest that the enhanced number 

of D1 receptors may be due to a compensatory up-regulation of D1 receptors due to 

decreased dopamine stimulation. This conclusion was recently substantially supported 

by an imaging study, which demonstrated a reduced cortical dopamine release in 

schizophrenic patients (Abi-Dargham, 2011). 

1.7.4. Glutamate hypothesis of schizophrenia  

Dopamine is not the only neurotransmitter implicated in schizophrenia. In 1959, Luby 

and colleagues discovered that PCP, later shown to be a non-competitive NMDA 

receptor antagonist, could induce a schizophrenia-like state which was almost 

indistinguishable from schizophrenia (Luby et al., 1959, Javitt and Zukin, 1991). In 

similarity, ketamine, also a non-competitive NMDA receptor antagonist may induce 

positive and negative symptoms as well as cognitive impairments in healthy volunteers 

that are similar to those observed in schizophrenia (Krystal et al., 1994). Moreover, low, 

sub-dissociative doses of ketamine have been found specifically to impair verbal 

working memory in healthy volunteers, a common cognitive deficit in schizophrenia 

(Honey et al., 2003). Moreover, PCP, and other NMDA receptor antagonists have been 

found to worsen symptoms in schizophrenic patients (Luby et al., 1959, Lahti et al., 

1995, Malhotra et al., 1997).  

Several of the risk genes associated with schizophrenia have been shown to be linked to 

NMDA receptor-mediated signaling (e.g. DISC1 and dysbindin) and could contribute to 

an aberrant NMDA receptor-mediated transmission (Snyder and Gao, 2013). 

Genetically modified mice with reduced expression of the NMDA receptor subunit NR1 

display behavioral abnormalities analogous to schizophrenia for example deficits in 

social interaction (Mohn et al., 1999). 

Other data supporting the involvement of NMDA-receptor abnormalities in 

schizophrenia are derived from post mortem studies indicating alterations in the 

expression of several glutamatergic receptors in schizophrenia e.g. the NMDA receptor 

subunits NR2A and NR1 as well as associated postsynaptic proteins in the PFC 

(Dracheva et al., 2001, Kristiansen et al., 2007, Beneyto and Meador-Woodruff, 2008). 

More recently, alterations in the post-translational modifications of kainate and AMPA 

glutamatergic receptors have been identified. These modifications are thought to affect 
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translocation of the receptors (Tucholski et al., 2013a, Tucholski et al., 2013b), and may 

thereby also contribute to aberrant glutamatergic neurotransmission in schizophrenia.  

In addition to various alterations in the expression of glutamate receptors, patients 

suffering from schizophrenia have low cerebrospinal fluid (CSF) levels of the NMDA 

receptor co-agonist D-serine, an observation supported by findings from post mortem 

and genetic studies, suggesting that dysregulation of D-serine levels may contribute to 

NMDA receptor hypofunction (see Labrie et al., 2012). Thus, these observations 

propose that NMDA receptor hypofunction contributes to the symptoms of 

schizophrenia (Javitt and Zukin, 1991, Krystal et al., 1994). 

The involvement of both dopamine and glutamate in schizophrenia is not surprising 

since there is substantial interaction between the dopaminergic and glutamatergic 

systems in the brain and NMDA receptor antagonists have been shown to increase 

dopamine turnover in healthy volunteers (Krystal et al., 1994), affect dopamine cell 

firing rate and firing patterns (Murase et al., 1993b) and increase dopamine output in 

both cortical and subcortical areas of the brain see e.g. (Mathe et al., 1999). Dopamine 

D1 receptors and NMDA receptors interact on pyramidal cells in the PFC, a mechanism 

important for cognition (see 1.2.4). Moreover, ketamine-abuse has been reported to 

increase the number of D1 receptors in the dorsolateral PFC (dlPFC; Narendran et al., 

2005), in similarity to findings in schizophrenic patients (see above). 

In addition to dopamine and glutamate, also other neurotransmitters have been 

implicated in schizophrenia. For example, lysergic acid diethylamide (LSD) and other 

drugs acting as 5-HT2 agonists cause altered perception and hallucinations, implicating 

serotonin in schizophrenia (for review see e.g. Aghajanian and Marek, 2000). 5-HT2 

agonists suppress firing of serotonergic neurons in the raphe nuclei and may in addition 

increase glutamate release in the PFC. These effects have been shown to generate 

decreased synchronization of the activity of pyramidal cells in the PFC, which has been 

suggested to mediate hallucinations (Aghajanian and Marek, 2000). However, LSD and 

other 5-HT2 agonists mainly induce visual hallucinations, which are rarely observed in 

schizophrenia, and produce symptoms reminiscent of negative symptoms or cognitive 

impairments to a minor extent indicating that deficits in serotonergic transmission alone 

cannot explain the full symptomatology of schizophrenia. Moreover, increased levels of 

kynurenic acid, an endogenous substance derived from astrocytes, with antagonistic 

properties at the α7-nicotinic receptor and NMDA receptor has been found in the CSF of 

patients suffering from schizophrenia (Erhardt et al., 2001) although the 

pathophysiological significance of these findings remains to be fully understood. 

1.8. Antipsychotic drugs  
Before the introduction of APDs, the treatment of schizophrenic patients was limited to 

unspecific pharmacological treatments (such as opium or chloral hydrate) or to 

therapies, such as electroconvulsive therapy or even insulin shock. These treatments had 

in common that they had no sustained effect and as a result, patients often required 

frequent or life-long hospitalization. 
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1.8.1. Typical antipsychotic drugs (first generation antipsychotic drugs) 

The first drug to show a specific antipsychotic effect was chlorpromazine, a drug that 

was first synthesized in 1950. Chlorpromazine was originally developed as an 

antihistaminergic drug and was initially used to reduce shock after surgery. In 1952, 

chlorpromazine was found to alleviate symptoms of schizophrenia and mania (for 

review see (Lopez-Munoz et al., 2005), a finding that revolutionized psychiatric care 

and reduced the number of patients requiring hospitalization dramatically (c.f. 

Carpenter and Davis, 2012). At approximately the same time an extract from the plant 

Rauwolfia serpentina, which was used for the treatment of hypertension, containing 

among other substances reserpine and yohimbine, was also found to possess an 

antipsychotic action (see e.g. Kline, 1954). These findings spurred the search for other 

APDs and subsequently, in the same decade, Paul Janssen and colleagues developed 

haloperidol (Divry et al., 1958, Granger and Albu, 2005) a drug that was a much more 

selective dopamine receptor antagonist than chlorpromazine. These drugs (except 

reserpine), initially called major tranquilizers or neuroleptics, are now often referred to 

as typical APDs or first generation APDs and are still frequently used in the treatment 

of schizophrenia. 

The common mechanism of action of typical APDs is blockade of the D2 family of 

receptors, however affinity for other receptors may also contribute to the antipsychotic 

effect. To produce an antipsychotic effect, typical APD treatment must produce 

approximately 70% D2 receptor occupancy in STR (Farde et al., 1988a, Farde et al., 

1992). Unfortunately, a high degree of D2 blockade i.e. above 80% occupancy increases 

substantially the risk of EPS such as akathisia (inner restlessness and discomfort), 

dystonia (sustained involuntary muscle contractions), parkinsonism (tremor, 

hypokinesia and rigidity) and tardive dyskinesia (involuntary movement of e.g. the lips, 

tongue and extremities). Moreover, the typical APDs may increase prolactin levels, 

inducing endocrine side effects such as galactorrhea.  

Although typical APDs are generally effective in ameliorating positive symptoms of 

schizophrenia, they have less effect on negative and cognitive symptoms. In fact, 

treatment with D2 receptor antagonists, e.g. haloperidol, may even worsen negative 

symptoms, have a negative impact on mood and induce cognitive deficits in healthy 

volunteers (Carpenter, 1996, Saeedi et al., 2006). 

1.8.2. Atypical antipsychotic drugs (second generation antipsychotic drugs) 

In the 1950’s another APD that would also revolutionize the treatment of schizophrenia 

was first developed, namely clozapine. Based on its structure clozapine was initially 

thought to be an antidepressant drug, although subsequent studies in the mid 60’s by 

Hippius demonstrated its antipsychotic effects. However, in contrast to e.g. haloperidol, 

clozapine treatment was devoid of EPS in patients and did not induce catalepsy in 

laboratory animals; at that time thought prerequisite for antipsychotic activity. Because 

of this property, clozapine was considered an atypical APD compared to 

chlorpromazine and haloperidol (for review see Hippius, 1989, 1999). The discovery of 
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the atypical profile of clozapine has inspired the search for other atypical, or second 

generation APDs, with similar structure e.g. olanzapine and quetiapine.  

Clozapine has since then been found superior to both first generation and other second 

generation APDs in treatment-resistant schizophrenia (Kane et al., 1988, Taylor and 

Duncan-McConnell, 2000, McEvoy et al., 2006, Swartz et al., 2008). Furthermore, 

clozapine has been found to reduce suicidal behavior in schizophrenia and 

schizoaffective disorder (Meltzer et al., 2003, Hennen and Baldessarini, 2005). 

Clozapine exerts its antipsychotic effect at a low striatal D2 occupancy (~45%) 

compared to typical APDs which generally require almost 70% occupancy to exert an 

antipsychotic effect. As a consequence, clozapine has a very low risk of EPS (Farde et 

al., 1992, Nordstrom et al., 1995, Kessler et al., 2006b). Clozapine has higher affinity 

for several 5-HT receptors (including the 5-HT2 receptor) and the α2-adrenoceptor than 

for the D2 receptors (Schotte et al., 1996, Marcus et al., 2005). These properties have 

been proposed to contribute to the superior efficacy of clozapine in schizophrenia 

(Meltzer et al., 1989, Nutt, 1994, Hertel et al., 1999a, Svensson, 2003). Clozapine has 

also been shown to ameliorate negative symptoms and cognitive impairments in 

schizophrenia (Meltzer and McGurk, 1999, Leucht et al., 2009). Unfortunately, 

clozapine treatment may be associated with several severe side effects and, in fact, 

clozapine was even withdrawn from the market because of associated agranulocytosis 

(Idanpaan-Heikkila et al., 1977). The drug was subsequently reintroduced in 1990 

because of its superior efficacy (Kane et al., 1988), although patients receiving 

clozapine require regular hematological monitoring. In addition, clozapine treatment is 

often associated with weight gain and the metabolic syndrome (Mitchell et al., 2013). 

Despite these severe side effects and the fact that clozapine is mostly prescribed to 

treatment-resistant patients, the use of clozapine is associated with the lowest mortality 

rates compared with all other APDs investigated (Tiihonen et al., 2009).  

The effect of clozapine on negative symptoms and cognitive impairments is thought to 

be related to the increased dopamine output in the PFC (Imperato and Angelucci, 1989, 

Moghaddam and Bunney, 1990, Nomikos et al., 1994). Subsequently, also other 

atypical APDs have been found to increase dopamine output in the PFC (see e.g. (Li et 

al., 1998). The mechanism by which atypical APDs induce the cortical dopamine 

release is not entirely clear, although it may involve a blockade of 5-HT2A and D2 

receptors and indirect activation of 5-HT1A (Ichikawa et al., 2001, Ichikawa et al., 2002, 

Liegeois et al., 2002). In addition to the blockade of 5-HT2A receptors, clozapine 

induces dopamine release in the PFC by blockade of α2-adrenoceptors (see Hertel et al., 

1999a, Devoto et al., 2003). Affinity for other receptors may also contribute to the 

antipsychotic effect, for example, clozapine acts as partial agonist at D1 and 5-HT1A 

receptor (Salmi et al., 1994a, Newman-Tancredi et al., 1996).  

In addition to the increased cortical dopamine release, clozapine, as well as other 

atypical APDs, has been found to facilitate both NMDA-induced currents and EPSPs in 

pyramidal cells in cortical slices, an effect which may also contribute to the superior 

effect of clozapine on negative symptoms and cognitive deficits in schizophrenia 
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(Arvanov et al., 1997, Ninan et al., 2003b). The facilitation of NMDA-induced currents 

and EPSPs induced by APDs, at is least in part, dependent on activation of the 

dopamine D1 receptors (Chen and Yang, 2002, Ninan and Wang, 2003, Jardemark et al., 

2010). The effect of clozapine has been found to be mediated by PKA and protein 

kinase C (PKC) as well as the calcium/calmoduline-dependent kinase II (CaMKII) 

(Jardemark et al., 2003, Ninan et al., 2003a, Wittmann et al., 2005). Interestingly, 

clozapine reduced the binding of a selective tracer that binds to the PCP site of the 

NMDA receptor, indicating that clozapine indeed activates NMDA receptor-mediated 

transmission in patients (Bressan et al., 2005). In contrast to the effects on NMDA 

receptor-mediated transmission, atypical APDs such as olanzapine or clozapine have 

not been found to affect AMPA receptor-mediated transmission in the mPFC (Arvanov 

et al., 1997, Ninan et al., 2003b). 

Preclinical studies have shown that, in addition to its importance in cognition, dopamine 

transmission in the mPFC, especially D1 receptor activation, modulates dopamine 

release in the NAc and subcortically derived D2 receptor mediated behaviors (Pycock et 

al., 1980, Vezina et al., 1991, Scornaiencki et al., 2009). Thus, dopamine in the cortex 

acting on D1 receptors may contribute to regulate dopamine-mediated behaviors 

controlled by subcortical dopamine pathways.  

Low doses of L-DOPA given with APDs may augment the effect of APDs in 

schizophrenia (Jaskiw and Popli, 2004). L-DOPA treatment increases dopamine levels 

more in the PFC that in the NAc (Loeffler et al., 1998) and when combined with a low 

sub-effective dose of raclopride, L-DOPA treatment potentiates the suppression of CAR 

behavior and, in parallel, induces a preferential increase in dopamine output in the 

mPFC (Eltayb et al., 2005) supporting the notion that enhanced cortical dopamine levels 

per se contributes to an antipsychotic effect. 

A number of atypical APDs have been developed since the discovery of clozapine. 

There is considerable diversity among them with regard to their receptor binding 

profiles as well as clinical efficacy. As a group, atypical APDs have a broader receptor 

binding profile than typical APDs, with affinity for a wide range of receptors which 

contributes to their antipsychotic effect. Most atypical APDs have high affinity for 

several serotonergic receptors, most notably 5-HT2A/C receptors.  

For example, olanzapine is an atypical APD that is structurally similar to clozapine and 

has, in similarity to clozapine, higher affinity for e.g. 5-HT2A, 5-HT2C, 5-HT6 and the 

histamine H1 receptor than for the D2 receptor (Schotte et al., 1996). However, in 

contrast to clozapine, olanzapine lacks high affinity for the α2-adrenoceptor (Shahid et 

al., 2009). Olanzapine has been found effective against positive and negative symptoms 

in schizophrenia but unfortunately, olanzapine treatment is often associated with side 

effects such as the metabolic syndrome and weight gain (Beasley et al., 1997). Positron 

emission tomography (PET) studies in patients, show that olanzapine treatment produce 

a very high occupancy on the 5-HT2 receptors (>90% even at 5 mg/day) and a D2 

occupancy which was generally higher (i.e. 55 - 88%) than that obtained with clozapine 
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(Nordstrom et al., 1995, Kapur et al., 1998) and, in fact, similar to that observed in 

patients receiving typical APDs (Zipursky et al., 2005).  

Interestingly, the atypical APD quetiapine is effective at lower D2 receptor occupancy 

than olanzapine and similar to that obtained with clozapine treatment (Borison et al., 

1996, Arvanitis and Miller, 1997, Kessler et al., 2006b). Consequently, quetiapine 

treatment is associated with very low risk of EPS or increased prolactin levels (Borison 

et al., 1996, Arvanitis and Miller, 1997). In addition to its effect in schizophrenia, 

quetiapine is effective as monotherapy in bipolar disorder and MDD in approximately 

the same dose range (Calabrese et al., 2005, Cutler et al., 2009). Quetiapine has been 

found to possess higher affinity for 5-HT2A, 5-HT1A, α-adrenoceptors and H1 receptors 

than the D2 receptors (Schotte et al., 1996). In a clinical study investigating the effects 

of atypical APDs in schizophrenia, quetiapine was found to be more efficacious 

compared to other atypical APDs in relieving certain neurocognitive deficits in 

schizophrenia (Riedel et al., 2010). However, it should be noted that clozapine was not 

included in the study.  

One of the newest atypical APDs is asenapine. Asenapine has a multi-receptor binding 

profile and has higher affinity for several receptors (5-HT2A, 5-HT2b, 5-HT2c, 5-HT6 and 

5-HT7, α2B and D3) than for the D2 receptor (Shahid et al., 2009). In clinical studies, 

asenapine was found efficatious in reducing positve as well as negative symtoms of 

schizophrenia, with little metabolic disturbances or weight gain (Potkin et al., 2007, 

Schoemaker et al., 2010). In additon, asenapine has been found effective in mania as 

well as to reduce depressive symtoms in mixed states associated with bipolar disorder 

(Vita et al., 2013). Preclincal studies propose that asenapine may be effective in 

ameliorating cognitive deficts associated with schizophrenia and that this effect may be 

mediated via D1 receptor activation in the mPFC (Jardemark et al., 2010, Snigdha et al., 

2011, Elsworth et al., 2012).  

The drug raclopride was originally developed as an APD and is a highly selective D2/3 

receptor antagonist. Raclopride was found to produce an antipsychotic in clinical 

studies (Farde et al., 1988b). However, raclopride is not used clinically but is widely 

used as pharmacological tool in e.g. PET studies (then as 11C-raclopride) (Farde et al., 

1985, Kohler et al., 1985).  

All the above mentioned APDs have shown antipsychotic-like effect in preclinical 

models (Hillegaart and Ahlenius, 1987, Moore et al., 1992, Wadenberg et al., 2001, 

Franberg et al., 2008). Using microdialysis, the atypical APDs olanzapine, quetiapine 

and asenapine have all been shown to increase dopamine and noradrenaline output in 

the rat PFC and to a lesser extent dopamine output in the NAc (Li et al., 1998, Ichikawa 

et al., 2002, Franberg et al., 2008, Franberg et al., 2009, Yamamura et al., 2009). 

Raclopride, having a typical APD profile, preferentially enhances dopamine output in 

the NAc, compared to the mPFC (Hertel et al., 1999a), an effect similar to that of 

haloperidol. Interestingly, asenapine has also been found to increase serotonin output in 

the mPFC, an effect not obtained by olanzapine and quetiapine (Li et al., 1998, 
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Ichikawa et al., 2002, Franberg et al., 2009, Yamamura et al., 2009). In similarity with 

clozapine, the atypical APDs olanzapine, quetiapine and asenapine all have been found 

to facilitate NMDA receptor-mediated currents in pyramidal cells, using intracellular 

recordings in vitro (Ninan et al., 2003b, Franberg et al., 2008, Jardemark et al., 2010). 

Raclopride however, does not affect NMDA-induced currents in pyramidal cells, in line 

with its typical profile (Jardemark et al., 2009). 

The atypical APD aripiprazole acts as a partial agonist at the D2 receptor, and is 

sometimes called a third generation APD. Partial agonism at the D2 receptor is thought 

to stabilize rather than to block dopaminergic transmission (Keck and McElroy, 2003). 

In addition to D2 partial agonism, aripiprazole is a partial 5-HT1A agonist and a 5-HT2A 

antagonist. Aripiprazole treatment is associated with low risk for EPS and prolactin 

increase as well as weight gain (Keck and McElroy, 2003).  

1.8.3. Adjunctive antidepressants added to APDs in schizophrenia 

In a series of studies, Tiihonen and colleagues have shown that addition of the 

antidepressant drug mirtazapine to typical APDs may improve positive and negative 

symptoms, as well as cognitive deficits and depressive symptoms in schizophrenia 

(Joffe et al., 2009, Stenberg et al., 2010, Terevnikov et al., 2010, Stenberg et al., 2011, 

Terevnikov et al., 2011). Mirtazapine is an α2A/C-adrenoceptor and at 5-HT2C receptor 

antagonist, which preferentially increases dopamine and noradrenaline output in the 

frontal cortex with little effect in the NAc (Millan et al., 2000). Thus, addition of 

mirtazapine to low doses of APD generates a binding profile reminiscent of clozapine 

(c.f. 1.8.2). Similarly, addition of selective α2-adrenoceptor antagonists (e.g. idazoxan) 

to typical APD may reduce both positive and negative symptoms of schizophrenia 

(Litman et al., 1996, Hecht and Landy, 2012).  

1.9. Bipolar disorder 
Bipolar disorder, sometimes called manic-depressive disorder, is a disease characterized 

by shorter manic (bipolar depressive disorder type I) or hypo-manic episodes (bipolar 

disorder type II) followed by longer euthymic and/or depressive episodes (Judd et al., 

2002). Cyclothymic disorder and bipolar disorder not otherwise specified are also 

considered to belong to the bipolar disorder spectrum. Depression is more prevalent 

than mania and it is estimated that bipolar patients experience depressive symptoms 

approximately 1/3 of the time (Judd et al., 2002). Moreover, patients with bipolar 

disorder also experience subsyndromal depressive symptoms which are associated with 

impairment at work and in social life (Altshuler et al., 2006). The lifetime prevalence of 

bipolar disorder is estimated to approximately 1% (Regier et al., 1988), but is 

considered by some to be substantially higher (Akiskal et al., 2000) mainly due to the 

fact that many patients with an MDD diagnosis experience shorter episodes of mania or 

hypomania without receiving a bipolar diagnosis. A recent longitudinal study found that 

approximately one third of the patients that had an MDD diagnosis later receive a 

bipolar diagnosis, a finding that may explain treatment-resistance in some MDD 

patients (Dudek et al., 2013).  
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The manic episodes are characterized by periods of elevated mood, irritability, reduced 

need for sleep and may include delusive symptoms such as grandiose delusions and 

florid religious beliefs. Some patients may also exhibit psychotic symptoms resembling 

those seen in schizophrenia. Manic episodes may be experienced as positive by the 

patient, however, their irresponsible behavior most often causes conflicts with family 

and colleagues and, consequently, bipolar patients in a manic state may require 

hospitalization, often against their will. The risk of suicide amongst bipolar patients is 

very high, approximately 20 times higher than in the general population (Tondo et al., 

2003).  

Cognitive functions such as executive function, working memory and attention is 

impaired in bipolar disorder (Goldberg and Chengappa, 2009) although to a lesser 

extent than in schizophrenia (Daban et al., 2006). Interestingly, cognitive function is 

impaired not only in manic or depressed states but also in the euthymic state (Martinez-

Aran et al., 2004) and is apparent also in first degree relatives (Ferrier et al., 2004), 

indicating that impaired cognition is a trait for bipolar disorder. Moreover, in bipolar 

disorder, impaired cognition is associated with poor occupational functioning 

(Martinez-Aran et al., 2004). 

1.9.1. Etiology of bipolar disorder 

The etiology of bipolar disorder is not fully understood. In similarity with 

schizophrenia, there is a substantial genetic contribution also to bipolar disorder, some 

of which is shared with schizophrenia (Lichtenstein et al., 2009, Craddock and Sklar, 

2013).  

Environmental factors such as obstetric complications or winter-spring birth and 

parental loss are suggested to contribute to the risk of developing bipolar disorder, 

however there are discrepancies between studies (for review see Tsuchiya et al., 2003). 

Moreover, stressful life events, altered circadian rhythm, childbirth and use of 

antidepressants may precipitate a manic episode in bipolar patients (Proudfoot et al., 

2011).  

Imaging studies of anatomical or functional brain alterations in bipolar disorder have 

largely yielded inconsistent results (see e.g. Nery et al., 2013), however, in similarity to 

schizophrenia, bipolar disorder has been associated with an altered expression of 

glutamate receptors in several brain areas including the PFC (Beneyto et al., 2007, 

Beneyto and Meador-Woodruff, 2008). 

1.9.2. Treatment of bipolar disorder 

Several different types of drugs are used in the treatment of bipolar disorder, partly 

depending on in which state of the disease the patient is. Lithium is effective as a mood-

stabilizing drug in preventing conversion to mania or depression (Cade, 1949, Geddes et 

al., 2004). Lithium is also effective in reducing suicide in mood disorders (Cipriani et 

al., 2005). The mechanism of action of lithium is complex and not fully understood and 

may include effects on both neurotransmitter release and intracellular processes (Malhi 

et al., 2013). Although generally effective, lithium has a narrow therapeutic interval and 
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may induce hypothyroidism and affect renal function (McKnight et al., 2012). In 

addition antiepileptic drugs are used as mood stabilizers, however, the efficacy differs 

between drugs (Cipriani et al., 2011, Geddes and Miklowitz, 2013). Although lithium 

and the antiepileptic drugs may alleviate an acute manic episode, recent data suggests 

that APDs such as haloperidol or risperidone have a better effect on manic symptoms 

than the mood stabilizers (Cipriani et al., 2011). 

Monotherapy with antidepressant drugs such as SSRIs seems to have limited effects on 

bipolar depression (Sidor and MacQueen, 2012). Atypical APDs are often combined 

with antidepressants generating a mood stabilizing effect, and thus prevent conversion 

to mania or depression. Interestingly, such combinations have also been found to 

produce an enhanced antidepressant effect in MDD and bipolar depression, with a rapid 

onset (see 1.11.1).  

The atypical APD quetiapine has gained widespread use in bipolar disorder and has 

been found effective in ameliorating both manic (Cipriani et al., 2011) and depressive 

(McElroy et al., 2010, Young et al., 2010) episodes as well as to increase the time to 

relapse of depressive events (Young et al., 2012). In a recent study investigating the 

efficacy of different drugs used to treat mania and depression, quetiapine was found to 

be almost equally effective in treating mania and depression (Popovic et al., 2012). 

1.10. Major Depressive Disorder  
Depression is an affective disorder characterized by periods of low mood interchanged 

with periods of euthymia. Depression is very common and twice as common in women 

as in men, with an estimated 12 month prevalence of approximately 7 % (Kessler et al., 

2003, Wittchen et al., 2011) and lifetime prevalence is estimated to approximately 15 to 

20 % (Kessler et al., 2003, Kessler et al., 2005). Co-morbid disorders, such as anxiety, 

substance use and impulse control disorder are very common and correlates with the 

severity of depressive symptoms (Kessler et al., 2003). Recent figures shows that 

depression affects 30 million people yearly in the European Union alone, and of all 

mental and neurological disorders depression is associated with the highest burden of 

disease (measured as disability-adjusted life years, DALYs) in Europe (Wittchen et al., 

2011). Due to the high prevalence and the severity of symptoms, mood disorders, i.e. 

MDD and bipolar disorder, leads to the highest costs for society of all disorders of the 

brain (Gustavsson et al., 2011), costs which are mainly accounted for by indirect costs, 

e.g. absence from work and low productivity (Kessler et al., 2003, Kessler et al., 2006a, 

Gustavsson et al., 2011). Another severe consequence of depression is an increased risk 

of suicide. Co-morbid disorders and other risk factors (e.g. severity of the depression, 

anxiety disorder and drug use) significantly increase the risk of suicide in depression 

(Hawton et al., 2013).  

Like schizophrenia and bipolar disorder, depression is diagnosed by a clinical 

evaluation according to DSM-IV or ICD-10. The symptoms of depression are diverse 

and to be diagnosed with a depressive episode according to DSM-IV, one of the two 

cardinal symptoms must be fulfilled; either depressed mood most of the day or 
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diminished interest or pleasure in all or most activities for at least two weeks. In 

addition, five of the following symptoms are required; unintentional weight gain or loss, 

hypersomnia or insomnia (early morning awakenings are very common), psychomotor 

agitation or retardation noticed by others, feelings of worthlessness or excessive guilt, 

fatigue or loss of energy, diminished ability to think or concentrate or indeciveness, 

recurrent thoughts of death or suicide. Given the diversity of symptoms, it is possible 

for two depressed patients not to share a single symptom further illustrating the 

heterogeneity of MDD. 

1.10.1. Etiology of major depressive disorder 

The etiology of depression remains to be fully understood. The heritability of MDD has 

been estimated to 40% (Kendler et al., 2006), which is lower than for schizophrenia and 

bipolar disorder. Risk genes have been found but the results have been difficult to 

replicate and seem to convey little of the increased risk of MDD (Shyn and Hamilton, 

2010). One explanation for difficulties in finding candidate genes is that there seems to 

be a considerable gene x environment interaction for the risk of developing MDD (see 

e.g. Caspi et al., 2003).  

MDD is associated with cognitive impairment, in domains such as working memory, 

emotional processing and attention, and these deficits may persist even after remission 

(Taylor Tavares et al., 2003, Preiss et al., 2009, Bora et al., 2012). Antidepressant drugs 

usually do not affect dopaminergic transmission which may have bearing on the relative 

lack of efficacy of these drugs, since there are several indications for an impaired 

dopamine system in MDD, especially for symptoms such as cognitive deficits, reduced 

drive and anhedonia (Nestler and Carlezon, 2006, Dunlop and Nemeroff, 2007).  

1.10.2. Hypotheses of depression 

The first drugs found to have antidepressant effect were iproniazid and imipramine, 

which were discovered by serendipity in the 1950’s. At the time, the mechanism 

conveying the antidepressant effect was unknown but both drugs were found to increase 

the availability of monoamines in brain; iproniazid by inhibiting the enzyme 

monoamine oxidase (MAO) and imipramine by inhibiting the reuptake of monoamines. 

Based on the mechanism of action of these drugs and the fact that reserpine, a drug 

which reduces monoamine levels may induce depressive symptoms, it was hypothesized 

that depression was caused by a deficiency in monoamines, in particular noradrenaline, 

in the brain (see e.g. Schildkraut, 1965). Since then, many antidepressant drugs with 

different mechanism of action have been developed that all have in common that they 

enhance monoaminergic transmission in the brain. However, although augmented 

monoaminergic transmission may ameliorate depressive symptoms, it has been difficult 

to actually demonstrate reduced levels of monoamines in depressed patients, indicating 

that it may not be a monoamine deficiency per se that causes depression. Although, 

antidepressant drugs increase monoamine levels within hours after administration, the 

antidepressant response is usually delayed and patients may require treatment for weeks 

to months to be fully effective (Trivedi et al., 2006). One explanation to the delayed 

effect may be that the initial increase in monoamine levels is attenuated by inhibitory 
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autoreceptors (e.g. α2 and 5-HT1A) which desensitize over time allowing for the full 

antidepressant response (Svensson and Usdin, 1978, see  Nutt, 2002). Moreover, studies 

in animals have shown that repeated dosage of antidepressants increases cortical 

plasticity (Maya Vetencourt et al., 2008) and may induce neurogenesis in the 

hippocampus of rodents (Malberg et al., 2000), effects which if existing in humans 

might contribute to explain the delayed antidepressant effect. In contrast, in a series of 

experiments Harmer and colleagues have shown that antidepressant drugs reduce a 

negative bias in emotional processing associated with MDD (Harmer, 2008). This effect 

is already observable within a few hours of drug administration and thus precedes the 

effects on mood and the authors suggest that antidepressant drugs do not enhance mood 

per se but rather affect the emotional processing which subsequently also reduces 

depressive symptoms. 

Stress is a major risk factor for developing depression and chronic stress has been found 

to affect the morphology of pyramidal cells in the rat cortex. Repeated stress may 

induce atrophy of the dendrite arbor of layer V pyramidal cells of the rat mPFC (Liu 

and Aghajanian, 2008). The stress-induced atrophy has biological consequences as it 

reduces the excitatory input to the pyramidal cells. Indeed, MDD has been found to be 

associated with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, and stressful 

life-events is associated with the onset of depression (Kendler et al., 1995, Krishnan and 

Nestler, 2010). The dysregulated HPA axis is suggested to contribute to the observed 

neuronal atrophy as well as the symptomatology of MDD. However, hypercortisolemia 

is mostly found in severely depressed patients requiring hospital care and a subset of 

depressed patients actually display hypocortisolemi (Krishnan and Nestler, 2010). 

Depression is associated with dysfunction in brain networks that regulate mood and 

emotion, and both imaging and post-mortem studies show a reduced gray matter volume 

and altered activity in several areas of the brain, including sub-divisions of the PFC, 

cingulate cortex, hippocampus and the ventral striatum, although some conflicting 

results have been obtained (Drevets et al., 2008). In the PFC, post-mortem studies have 

demonstrated a reduced size of neurons and number of glia cells, alterations that seem 

to be specific for depression (Rajkowska et al., 1999). A recent study found a reduced 

number of synapses and expression of several genes associated with synapse function in 

the dlPFC of patients suffering from MDD (Kang et al., 2012). Moreover, a reduced 

prefrontal expression of NR1, NR2A, NR2B, mGluR5 and PSD-95 (Beneyto and 

Meador-Woodruff, 2008, Feyissa et al., 2009, Deschwanden et al., 2011) as well as 

increased expression of mGluR2/3 receptors (Feyissa et al., 2010) has also been 

observed in depressed patients.  

1.11. Antidepressant drugs 
Imipramine was the first in what became a whole class of drugs called tricyclic 

antidepressants, which received the name because of their structure. The tricyclic drugs 

are effective in depression (Kuhn, 1958), however they have affinity for e.g. 

histaminergic and cholinergic receptors, and may cause serious side effects, including 

QT prolongation and cardiac death. Such side effects made the tricyclics far from 
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optimal in the treatment of depression, and therefore more selective reuptake inhibitors 

were developed. 

Since the introduction of the first SSRI, zimelidine around 1980, several other SSRIs 

have been developed and have now become available (e.g. sertraline, fluoxetine and 

citalopram). SSRIs increase synaptic levels of serotonin by inhibiting the SERT. 

Numerous clinical studies have shown a significant antidepressant effect of the SSRIs 

(see e.g. Trivedi et al., 2006) and the increased use of SSRIs has been found to correlate 

well with the reduction in suicide rates observed during the last 20 years (Gibbons et al., 

2005). SSRIs are associated with fewer and much less serious side effects than the 

tricyclic drugs and are now widely used and are the first line treatment for depression. 

However, the efficacy of SSRIs is less than optimal. In similarity with TCAs, SSRIs 

have a delayed onset of the antidepressant effect (Trivedi et al., 2006) and, importantly 

only about one third achieve full remission. In fact, significant symptom relief is only 

achieved in approximately 50% of patients treated with SSRIs (Trivedi et al., 2006).  

The first SSRI that gained worldwide use is fluoxetine (Wong et al., 2005). In clinical 

trials, fluoxetine was found as effective as imipramine but with less side effect (Stark 

and Hardison, 1985). In addition to MDD, fluoxetine and other SSRIs has been found 

effective in other psychiatric disorders e.g. obsessive compulsive disorder and anxiety 

disorders (Wong et al., 2005). Preclinical studies have shown fluoxetine to increase 

extracellular serotonin levels in several brain regions and to be effective in animal 

models of depression (see Wong et al., 1995 and references therein). In a study using 

intracellular recordings, fluoxetine was found to increase NMDA-induced currents in 

pyramidal cells of the rat mPFC at 1 µM, but not at 200 nM (Arvanov et al., 1997). 

Another commonly used SSRI is escitalopram which is the the S-enatiomer of 

citalopram (which is a a racemate containing both R- and S-enantiomers) with high 

selectivity for the SERT. Experimetnal data indicates that the R-enantiomer of 

citalopram antagonizes some of the effects S-enantiomer (see e.g. Sanchez, 2006, 

Schilström et al., 2011). Escitalopram shows a potent effect in animal models predictive 

of antidepressant activity and increases serotonin output in the mPFC (Sanchez et al., 

2003, Pehrson et al., 2013). Moreover, escitalopram facilitates NMDA receptor-

mediated transmission in pyramidal cells of the rat mPFC in vitro and appaers to 

possess a cognitive enhancing action in experimental animals (Schilstrom et al., 2011). 

Escitalopram is seems to generate an enhanced antidepressant activity compared with 

other SSRIs, (including citalopram) with a faster onset of action (Montgomery et al., 

2007, Montgomery and Moller, 2009). Escitalopram has also been found to alleviate 

certain cognitive imparments in depressed patients (Wroolie et al., 2006, Herrera-

Guzman et al., 2009).  

In addition to SSRIs, a selective noradrenaline reuptake inhibitor (NRI), reboxetine has 

been developed for depression. Early clinical studies indicated that reboxetine may be 

as effective as SSRIs in depression and was found to increase drive, cognition and 

social functioning in depressed patients, although with different side effect profile when 

compared with SSRIs (Montgomery, 1997, Schatzberg, 2000, Ferguson et al., 2003). In 
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preclinical studies, reboxetine has been found to possess an antidepressant-like effect, 

improve measures of cognitive function, increase dopamine and noradrenaline output in 

mPFC and the hippocampus as well as to increase burst firing of dopaminergic cell 

bodies within the VTA (Sacchetti et al., 1999, Wong et al., 2000, Linner et al., 2001, 

Borgkvist et al., 2011, De Bundel et al., 2013). Significantly, atomoxetine, an NRI used 

in attention deficit hyperactive disorder (ADHD) has been found to enhance cognition 

also in healthy volunteers (Chamberlain et al., 2006).  

Several other antidepressant drugs acting on the reuptake of monoamines have been 

developed, such as bupropion, a dopamine and noradrenaline reuptake inhibitor (Thase 

et al., 2005). Venlafaxine and duloxetine are serotonin and noradrenaline reuptake 

inhibitors (Golden and Nicholas, 2000, Mallinckrodt et al., 2007). In addition to 

reuptake inhibitors, there are several other drugs that enhance monoaminergic 

transmission which can be used in depression, e.g. the reversible MAO-A inhibitor 

moclobemide (Shulman et al., 2013) and mirtazapine, which is an α2 and 5-HT2C 

receptor antagonist (Millan et al., 2000).  

1.11.1. Rapidly acting antidepressant drugs  

In 1990, Trullas and Skolnick reported that NMDA receptor antagonists possess 

antidepressant-like activity in preclinical studies (Trullas and Skolnick, 1990). An 

antidepressant effect of the non-competitive NMDA receptor antagonist ketamine was 

subsequently demonstrated in patients by Berman and colleagues (Berman et al., 2000). 

Moreover, the antidepressant effect had a very rapid onset (within hours) and was found 

to be sustained over several days after a single administration, despite the short half-life 

of ketamine (Clements et al., 1982). This original study has since been replicated and 

extended several times. For example, Zarate and colleagues showed that the 

antidepressant effect of ketamine at a single dose may last up to 2 weeks and that 

ketamine is effective also in bipolar depression and may reduce suicidal ideation (Zarate 

et al., 2006, Zarate et al., 2012). However, the use of ketamine is limited by side effects 

such as abuse liability and, as previously mentioned, since ketamine may induce 

psychotic symptoms (Krystal et al., 1994). 

The robust antidepressant-like effect of ketamine observed also in preclinical models 

has been shown to be dependent on activation on AMPA receptors in the mPFC as well 

as activation of the mammalian target of rapamycin (mTOR) signaling pathway (Maeng 

et al., 2008, Li et al., 2010). Ketamine was found to induce an increased in synaptic 

proteins, e.g. GluR1, growth of dendritic spines and enhanced glutamatergic 

transmission in the mPFC, including increased release of glutamate in the mPFC of 

awake rats following acute administration of ketamine (Moghaddam et al., 1997). 

Interestingly, clinical studies show that a single intravenous dose of the muscarinic 

acetylcholine receptor antagonist scopolamine can generate a rapid and sustained 

antidepressant effect (Furey and Drevets, 2006, Drevets and Furey, 2010). Moreover, 

the mode of action of scopolamine seems to involve AMPA receptor activation as well 

as the mTOR pathway, in analogy with ketamine (Voleti et al., 2013).  
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Needless to say, the underlying mechanisms of the action of ketamine in primates 

appear to be complex. Thus, for example, a recent study in monkeys reported that low 

doses of ketamine increased serotonergic transmission by inhibiting the activity of the 

SERT, which may contribute to the antidepressant effect of ketamine (Yamamoto et al., 

2013). 

 1.11.2. Adjunctive atypical APDs in bipolar disorder and MDD 

In general, most APDs are effective in ameliorating manic symptoms in bipolar disorder 

(Cipriani et al., 2011). Importantly, several studies show that adjunct treatment with 

atypical APDs can be used to augment the effect of antidepressants in bipolar 

depression as well as treatment-resistant MDD (Nelson and Papakostas, 2009, Cruz et 

al., 2010). In addition, to an enhanced antidepressant effect, in analogy with that of 

ketamine, combined treatment with atypical APDs and antidepressant drugs may also 

generate a fast onset of the antidepressant effect, which may be observed as early as 

within 4-5 days (Calabrese et al., 2005, Dube et al., 2007, Cruz et al., 2010, Tohen et 

al., 2010) as opposed to several weeks with an SSRI alone (Trivedi et al., 2006). 

Thus, the atypical APD olanzapine has been found to augment the antidepressant effect 

of fluoxetine in treatment-resistant MDD and bipolar depression (Brown et al., 2009, 

Tohen et al., 2010) and a fixed combination of olanzapine and fluoxetine is marketed in 

the US for this purpose.  

The atypical APD quetiapine has been shown to reduce depressive symptoms in MDD 

both as adjunct treatment as well as when used as monotherapy (Cutler et al., 2009, 

Bauer et al., 2010). Quetiapine exerts an antidepressant effect also in bipolar depression 

(Calabrese et al., 2005, McElroy et al., 2010, Young et al., 2010). The APD, quetiapine 

seems to induce a genuine antidepressant effect since quetiapine monotherapy reduced 9 

out of 10 of the MADRS subscales, including core symptoms (Calabrese et al., 2005). 

One explanation may be that quetiapine produces an active metabolite in humans, 

norquetiapine, which differs from quetiapine in its high affinity for the NET, which has 

been suggested to mediate the antidepressant effect of quetiapine (Jensen et al., 2008). 

In contrast to the human situation, norquetiapine is however not formed in rodents to 

any significant extent (Hudzik et al., 2008). Quetiapine treatment has been found to 

induce an approximate 3:1 quetiapine: norquetiapine plasma ratio in patients (Nikisch et 

al., 2010) and recent PET studies data have shown that quetiapine treatment results in 

significant NET occupancy (Nyberg et al., 2013). 
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2. Specific aims of this study 
 

 To examine whether reboxetine may provide a means, by NET inhibition, to 

enhance the efficacy of low doses of olanzapine, and potentially contribute to 

mimic some of the preclinical profile of clozapine. 

 

 To investigate whether NET inhibition, which is generated in patients by 

norquetiapine, may contribute to the antipsychotic effect of quetiapine. 

 

 To evaluate adjunctive administration of the novel atypical APD asenapine to 

the SSRI escitalopram on cortical monoamine output, accumbal dopamine 

output, cortical NMDA- and AMPA receptor-mediated transmission, 

respectively, as well as the effects on electrically evoked EPSPs in the mPFC. 

 

 To analyze the neurobiological effects of adjunct administration of olanzapine 

when added to fluoxetine, as well as to compare these effects with the 

corresponding effects of a single dose of ketamine with regard to cortical 

NMDA and AMPA receptor-mediated transmission in the mPFC. 
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3. Materials and methods 

3.1. Animals 
Male albino rats of the Wistar strain were used for behavioral and in vivo microdialysis 

experiments and male albino Sprague Dawley rats were used for the in vitro 

electrophysiological recordings. Rats were obtained from B&K Universal, (Sollentuna, 

Sweden; Manuscript I and II) and Charles River (Germany; Manuscript II, III and IV). 

Food and water was available ad libitum and the rats were housed under standard 

laboratory conditions with controlled temperature and humidity. For behavioral 

experiments, rats were kept on a reversed day/night (12 h/12 h) cycle with lights off at 6 

am whereas for the other experiments animals where kept on a 12 h/12 h day/night 

cycle with lights on at 6 am. Experiments were approved by, and conducted in 

accordance with, the local animal ethics committee, Stockholm North and the 

Karolinska Institutet. 

3.2. Drugs 
Olanzapine was a gift from Eli Lilly (USA), quetiapine fumarate as well as raclopride 

tartrate were gifts from AstraZeneca (Sweden), asenapine was a gift from Schering-

Plough (UK) and Merck Sharp & Dohme Corp (MSD; UK), and escitalopram was a gift 

from Lundbeck A/S (Denmark). Fluoxetine was obtained from Ascent Scientific 

(Bristol, UK). Tetrodotoxin (TTX), bicuculline and 2-amino-3-(3-hydroxy-5-methyl-

isoxazol-4-yl) propionic acid (AMPA) were obtained from Tocris (Bristol, UK). 

Glycine, ketamine and N-methyl-D-aspartic acid (NMDA) was obtained from Sigma 

(St. Louis, MO, USA). SCH23390 HCl was obtained from RBI.  

3.3. Conditioned avoidance response test 
The conditioned avoidance response (CAR) test is a behavioral model used to assess 

antipsychotic-like activity of drugs, based on Ivan Pavlov’s work on conditioned stimuli 

(CS) and unconditioned stimuli (UCS; Courvoisier, 1956). The CAR test has been used 

since the 1950’s and has high predictive validity for antipsychotic activity of drugs 

(Courvoisier, 1956, Arnt, 1982, Wadenberg and Hicks, 1999, Wadenberg et al., 2001). 

With slight experimental modifications, it can be used with rodents as well as with e.g. 

monkeys. The CAR test utilizes the propensity for APDs to reduce responding to a CS 

but has no or little effect on the response to an UCS, in contrast to e.g. sedative drugs, 

where both CS and UCS responding is impaired (Courvoisier, 1956).  

The validity of the model is further supported by the fact that APDs, such as haloperidol 

or olanzapine, are effective in the CAR test at doses that induce similar striatal D2 

receptor occupancy to that observed in patients receiving treatment (Farde et al., 1988a, 

Farde et al., 1992, Wadenberg et al., 2000, Wadenberg et al., 2001). Local injections of 

D2 receptor antagonists into the NAc suppress CAR responding, indicating that D2 

receptor-blockade in this is important for the effect of APDs (Wadenberg et al., 1990). 

The importance of increased dopamine release in the striatum for the symptoms of 

schizophrenia is supported by human imaging studies (c.f. introduction). However, the 



                                                                                                                        Materials and methods                 

33 
 

CAR test is not an indirect measure of striatal D2 receptor occupancy, since the 

suppression of CAR of a low, subeffective, dose of a D2 antagonist, yielding a similar 

D2 occupancy of clozapine in patients, can be potentiated by the addition of e.g. an α2-

adrenoceptor antagonist (Farde and Nordstrom, 1992, Hertel et al., 1999a, Marcus et al., 

2005). In further support of this notion are the results obtained with the muscarinic 

agonist xanomeline, which possess antipsychotic activity (Shekhar et al., 2008) and is 

effective in the CAR test (Shannon et al., 2000). These data indicates that other 

mechanisms of APDs, in addition to D2 receptor occupancy, contribute to the 

antipsychotic-like effect measured in the CAR test, as well as to the clinical effect in 

patients.  

3.3.1. Conditioned avoidance response procedure 

In the present studies, we used a two-way active avoidance test performed in 

conventional shuttle boxes which were divided into two compartments by a partition 

(Salmi et al., 1994b). Upon the presentation of a tone (the CS; 80 dB white noise), the 

rats had 10 s to cross the partition into the other side of the box, or the UCS (i.e. an 

electrical stimuli of approximately 0.3 to 0.4 mA) was delivered. The CAR system was 

automatic and the shuttle box was equipped with photocells connected to a computer to 

continuously monitor the location of the rat, controlling the CS and UCS, and record the 

following behavioral variables; avoidance (respond to CS within 10 s), escape (respond 

to CS+UCS), escape failure (failure to respond to CS and UCS within 60 s). Before the 

start of the experiments, rats were trained for 5 days. Once the rats learn to respond to 

the CS the behavior is very stable, and only rats performing > 85% avoidance were 

included in the study. On experimental days, experiments lasted 10 minutes and were 

preceded by a 10 minute pre-test. The experiments were conducted 20, 90 and 240 min 

(manuscript I) or 5 and 30 min (manuscript II) after injection. Before the start of each 

experimental session the rats were habituated to the box for 5 min. Experimental days 

where always separated by two non-experimental days. All rats received all treatments 

in a counterbalanced change-over design, and thus serving as their own controls (Li, 

1964).  

Data obtained in the CAR experiments are not normally distributed and accordingly, 

non-parametric tests were used. CAR data was analyzed using Friedman’s two-way 

ANOVA using STATISTICA software [Statsoft Inc, USA] followed by Wilcoxon 

matched-pairs signed-ranks test. In all tests, p<0.05 was considered statistically 

significant. 

3.4. Catalepsy  
The measurement of catalepsy in animals is a model with high predictive validity of 

EPS liability in patients (Arnt et al., 1981, Wadenberg, 1996). In rats, catalepsy can be 

defined as “a drug-induced state where the animal, when placed in an awkward or 

unnatural position, will remain in this position for a significantly longer time than 

vehicle-treated control animals” (Wadenberg, 1996). APDs are thought to induce EPS 

and catalepsy by blockade of D2 receptor in the dorsal striatum (Farde et al., 1992, 

Nordstrom et al., 1993, Wadenberg et al., 2001). The level of D2 receptor blockade at 
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which a drug has high risk of catalepsy in rodents and EPS in humans is similar 

(Nordstrom et al., 1993, Wadenberg et al., 2000, Wadenberg et al., 2001). 

Consequently, drugs with high risk of EPS (e.g. haloperidol) induce catalepsy in rodents 

and vice versa, drugs with low risk of EPS in patients (e.g. clozapine and quetiapine) do 

not (Wadenberg et al., 2001, Kapur et al., 2002). Anticholinergic drugs are used to 

ameliorate antipsychotic-induced parkinsonism and can also reverse catalepsy induced 

by D2 receptor antagonists (Arnt, 1982).  

3.4.1. Catalepsy procedure 

The catalepsy experiments in the present studies were performed in a dimly lit room. At 

30, 90 and 120 min after drug administration the rats were placed on an inclining grid 

with an angle of 60°, and, after a 30 s adaptation period, the time to the first paw 

movement was measured. To minimize the risk of bias affecting the scoring, the effect 

of the drug or drug combinations on catalepsy was scored by an observer blind to the 

treatment. 

The recorded time to the first paw movement (in minutes) rendered a score (from 0 to 5) 

according to a scale where the intervals are based on a square root transformation of the 

time: 0.00-0.08 min=0; 0.09-0.35 min=1; 0.36-0.80 min=2; 0.81-1.42 min=3; 1.43-2.24 

min=4: 2.25 min≥5 (Ahlenius and Hillegaart, 1986). A score below 2 indicates low 

propensity to induce catalepsy (Wadenberg et al., 2001). Data from the catalepsy 

measurements are not normally distributed and therefore non-parametric statistical tests 

were used. Catalepsy scores were analyzed by Kruskal-Wallis one-way ANOVA 

followed by Mann-Whitney U-test using STATISTICA software. In all tests, p<0.05 

was considered statistically significant.  

3.5. In vivo microdialysis 
Microdialysis is a technique that allows the continuous measurement of biologic 

molecules such as neurotransmitters from tissues and organs, in living and awake 

animals with minimal tissue damage over long time periods (hours to days; see 

(Ungerstedt and Pycock, 1974, Ungerstedt, 1991). A dialysis probe is implanted in the 

organ of interest and perfused with a perfusion solution, which is collected and can be 

analyzed using conventional analytical methodologies. The semipermeable dialysis 

membrane allows for the diffusion of small (e.g. neurotransmitters) but not large 

molecules (e.g. proteins). Molecules in the extracellular space equilibrate with the 

perfusion solution and the concentration of the molecules of interest in the perfusate 

correlates with the concentration in the surrounding extracellular compartment. 

Microdialysis is widely used in pharmacology and neuroscience to monitor the release 

of neurotransmitters in brain of rodents. In addition to measuring the extracellular 

content of biological molecules, it can also be used to administer substances (e.g. drugs 

or neurotransmitters) directly into the organ of interest with high spatial specificity. The 

samples are collected and analyzed outside the tissue, which allows for the analysis of 

all molecules of interest in each sample and the direct comparison with a known 

standard. 
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However, the microdialysis technique has some important limitations. It is invasive and 

inevitably causes tissue damage in the area around the probe. Therefore, surgical 

implantation must be performed several hours, often days, prior to the experiment. 

Moreover, due to limitations in sensitivity of the method of analysis, the dialysate must 

be collected for some time (up to 30 min in our experiments) to obtain sufficient mass 

of the substance of interest to allow analysis. As a consequence, microdialysis lacks the 

temporal resolution obtained with e.g. biosensors. Therefore, microdialysis is less well 

suited for the measurement of rapid changes in neurotransmitter release. Moreover, 

recovery of molecules from the extracellular space is, in addition to the extracellular 

concentration, dependent on the diffusion over the probe membrane and the diffusion in 

the extracellular space, which may differ between different probes and animals. 

Therefore, in the present studies, we have analyzed changes in neurotransmitter output, 

which then compensates for these technical differences between animals. 

3.6.1. In vivo microdialysis procedure 

In our experiments, rats were anesthetized, placed in a stereotactic frame and surgically 

implanted with a concentric dialysis probe. Dialysis probes were made in-house. The 

probes were implanted in the mPFC and NAc according to the atlas of Paxinos and 

Watson (Paxinos and Watson, 1998) and anchored to the scull with screws and dental 

cement. Rats were allowed 48 h recovery before the start of the experiment. 

Microdialysis experiments were performed in awake, freely moving, rats. During the 

experiments, dialysis probes were perfused with physiological perfusion solution at a 

constant flow rate of 2.5 µl/min and collected for 30 min (mPFC) or 15 min (NAc) for 

analysis.  

After collection, the perfusate was automatically injected on a high performance liquid 

chromatography (HPLC) system. Separation of neurotransmitters and metabolites were 

performed by reversed phase chromatography on a C-18 separation column. Samples 

were analyzed using electrochemical detection in a high-sensitive analytical cell (model 

5111; ESA Bioscience) controlled by a potentiostat with applied potentials of 400 mV 

for detection of metabolites and -200 mV for detection of dopamine, noradrenaline and 

serotonin. Injections of drugs were performed after the output of neurotransmitters and 

metabolites was stable. The correct placement of the probe was verified after the 

experiment in sections of the relevant brain region stained with neutral red. 

Microdialysis data was analyzed using the Totalchrome software (Perkin Elmer, USA) 

which generates both a peak area and peak height for each analyte and sample. The 

obtained retention time and peak area of the sample was compared to that of a known 

standard and the value was expressed as fmol/min. In neither study, did the basal 

concentrations of the analytes differ between the groups in the respective brain area 

(one-way ANOVA), and the data was subsequently expressed as percent of baseline 

(i.e. the mean output of the two [mPFC] or four [NAc] samples preceding the drug 

injection).  
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Statistical evaluation of microdialysis data over time was performed by a repeated 

measures two-way (treatment x time) ANOVA. To analyze the overall effect of the 

different treatments we analyzed the mean neurotransmitter output in studies I and III in 

the interval 60-240 min for mPFC and 45 -240 min for NAc, and in study II in the 

intervals 60-180 min for mPFC and 45 -180 min for NAc . The between groups 

comparison of the overall effect was analyzed using a one-way ANOVA followed by 

planned comparisons of least square means. Effect of treatment was statistically 

evaluated using STATISTICA software. In all tests, p<0.05 was considered statistically 

significant.  

3.6. In vitro electrophysiological recordings  
Hodgkin and Huxley where the first to use intracellular recordings to study electrical 

properties of neurons (Hodgkin and Huxley, 1939). By the late 1940’s Marmont and 

Cole developed a voltage clamp technique, which Hodgkin and Huxley utilized to study 

the mechanisms underlying the generation of action potentials in giant axons of squids 

(see e.g. (Hodgkin et al., 1952). Subsequently, in the 1970’s, Neher and Sakmann 

developed the patch clamp technique, which made it possible to measure conductance 

of single ion channels (see e.g. Neher and Sakmann, 1976). 

The voltage clamp technique allows the experimenter to hold (or clamp) the membrane 

potential of a cell at a fixed value, preventing the activation of voltage dependent ion 

channels which allow recordings or characterizations of activated ligand-gated ion 

channels. In the voltage clamp mode, the ion flow generated by the activation of a 

ligand-gated ion channel is counterbalanced by a current in the opposite direction, 

generated by a voltage-controlled current source, to keep the membrane potential 

steady. The measured current generated by the amplifier is proportional to the current 

generated by the ligand-gated ion channels.  

Electrophysiological recordings of cells in brain slices in vitro have several advantages 

in the study of ion channels. In a slice, electrophysiological measurements are not 

disturbed by fluctuations due to blood flow and breathing of the animal and the content 

of the perfusion solution with regards to e.g. ion concentration as well as drug 

concentrations can be easily manipulated. The placement of the recording electrode is 

also visible to the eye.  

Dopamine release has been shown to occur in rat brain slice preparations e.g. via 

activation of NMDA receptors. This effect was found to be partly TTX insensitive 

(Krebs et al., 1991). Exocytosis of neurotransmitters may occur at a synapse, even 

without presynaptic stimulation, which can be recorded as miniature EPSP. Previous 

studies from our group have shown that depletion of monoamines prevents the 

facilitating effect of a combination of idazoxan and raclopride on NMDA receptor-

mediated synaptic transmission in the slice and that this effect was rescued by L-DOPA 

(Marcus et al., 2005), clearly demonstrating the importance of catecholamines in our 

experiments.  
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3.6.1. Preparation of brain slices 

Rats were decapitated under halothane anesthesia and the brain was cooled in ice-cold 

Ringer’s solution. The brain was cut coronally on a vibratome into 450 µM slices after 

which they kept in aerated Ringer’s solution for >1 h before experiments to allow for 

recovery. A slice containing the mPFC was transferred to the recording chamber (30 

°C) and was held submerged between two nylon nets in aerated Ringer’s solution. The 

chamber was perfused continuously using a gravitational system with a flow-rate of 1-2 

ml/min. Penetration of pyramidal cells in layer V or VI with sharp electrodes was 

performed blindly. Electrodes were manufactured from borosilicate glass capillaries (tip 

resistance of 55-140 MΩ) using a horizontal electrode puller and were filled with 2 M 

potassium acetate.  

3.6.2. Intracellular recordings 

The experiments were recorded using an Axoclamp 2A or 2B amplifier (Molecular 

Devices, USA) connected to a PC running Clampex 9.2 software (Molecular Devices, 

USA), via a digital/analogue interface. Single electrode voltage-clamp recordings were 

performed in the discontinuous mode (sampling rate 5-6.2 kHz) at a holding potential of 

-60 mV. All drugs, as well as NMDA (5-15 µM) and AMPA (2.5- 5 µM), were applied 

by bath perfusion. The effect of NMDA or AMPA induced currents was recorded 

before (control) and after 5 and 30 min of drug application. 

Figure 9. Electrophysiological trace showing injection of 2 

square pulses (1000 ms) of positive current (200 and 300 pA) 

into a presumed pyramidal cell of the rat mPFC, in response 

to which action potentials were elicited. 

 

Presumed pyramidal cells were distinguished from non-pyramidal cells using criteria 

published previously (Connors and Gutnick, 1990, Arvanov and Wang, 1997). 

Presumed pyramidal cells have relatively long spike duration (1-3 ms at half maximum 

spike amplitude) and show a pronounced spike-frequency adaptation in response to 

constant current-depolarization pulses, in contrast to non-pyramidal cells, which have 

relatively short spike duration (< 1 ms at half maximum spike amplitude) and generally 

do not show spike-frequency adaptation. In slice preparations of the PFC four types of 

pyramidal cells can be distinguished by their morphological and corresponding 

electrophysiological properties: the regular spiking, intrinsic bursting, repetitive 

oscillatory bursting and the intermediate type (Yang et al., 1996). 

Excitatory postsynaptic potentials (EPSPs) are transient depolarizations of the cell 

membrane due to the influx of cations via the activation of ligand-gated ion channels. In 

pyramidal cells the EPSP consist of both an early, AMPA-mediated phase, and a 

prolonged, late NMDA-mediated phase (Tanaka and North, 1993, Chen and Yang, 

2002). The opposite, an inhibitory postsynaptic potential (IPSP) is caused by an influx 

of negative ions or outflux of positively charged ions from the cell. IPSPs in pyramidal  
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Figure 10. Micrograph showing a layer V rat pyramidal cell injected 

with biocyntin (Kawaguci 1993). Cortical layers are denoted by 

roman numerals. Layer V-VI pyramidal cells have a triangular (or 

pyramidal) shaped soma with a size averaging approximately 20 µM. 

 

 

 

 

cells of the mPFC are blocked by the GABAA antagonist bicuculline (Chen and Yang, 

2002).The effect of several EPSPs are additive and if the cell membrane is sufficiently 

depolarized over a threshold value, voltage gated ion channels are activated and an 

action potential is elicited. The atypical APD clozapine has been found to induce 

voltage dependent sodium channel-dependent spikes overriding the EPSP. These spikes 

have variable onset latencies and generated by a polysynaptic input to the layer V 

pyramidal cell. However, the action potentials are prevented by NMDA receptor 

antagonists and are thus dependent on NMDA receptor activation (Chen and Yang, 

2002).  

Figure 11. Cartoon illustrating the set-up 

for eliciting and recording EPSPs in 

pyramidal cells of the rat mPFC. Shown are 

the positions of the stimulation electrode and 

the recording electrode. For voltage clamp 

experiments the set-up is similar, but without 

the stimulation electrode. Cg1- Cingulate 

cortex area 1; PrL-Prelimbic cortex; IL-

Infralimbic cortex; fmi-forceps minor; aca-

anterior commissure. Modified from 

(Paxinos and Watson, 1998). 

 

 

 

 

In the present study, electrically evoked EPSPs where achieved by placing two stainless 

steel electrodes in the forceps minor (white matter) proximal to the mPFC and close to 

the recording electrode, in similarity to previously published experiments (figure 11) 

(Arvanov et al., 1997, Chen and Yang, 2002, Jardemark et al., 2012). To elicit EPSPs, 

trains of three square pulses of 0.3 ms (11 to 31 mV) at a rate of 0.05 Hz were passed 

between the tips and the evoked change in membrane potential (i.e. the EPSP) was 

recorded in the current clamp mode in layer V pyramidal cells. The recording electrode 

was filled with 2 M potassium acetate and bicucculine (2µM) was routinely included in 
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the perfusion solution to inhibit GABAA mediated responses. To evaluate the effect of 

drug treatment, a stimulation potential eliciting a sub-maximal response (i.e. EPSP) was 

chosen and the effect was recorded before and after 5, 15, 15 and 35 minutes of drug 

treatment. The effect of drugs or drug-combination was evaluated both qualitatively, for 

their ability to facilitate the induction of action potentials, as well as their effect on the 

total area of the evoked EPSP.  

To investigate whether ketamine pretreatment facilitates NMDA and AMPA receptor-

mediated currents in our slice preparation we injected rats with ketamine (10 mg/kg i.p.) 

or saline (2 ml/kg) 24 h prior to the electrophysiological experiment. Preparation of 

brain slices and recordings of NMDA- (5 µM) and AMPA- (5 µM) induced currents 

were performed as previously described. 

The effect of a drug or drug combination was calculated by dividing the amplitude of 

the AMPA- or NMDA-induced current (in pA) after drug application with the 

amplitude of the control AMPA- or NMDA-induced current. Paired t-test was used to 

evaluate the effect of drug treatment on NMDA- and AMPA-induced currents. 

Unpaired t-test was used to evaluate the effect of ketamine pretreatment on NMDA- and 

AMPA-induced currents. For multiple comparisons, one-way ANOVA followed by 

Tukey HSD (manuscript I) or the Newman-Keuls multiple comparison test (manuscript 

II, III and IV) were used. The areas of the electrically evoked EPSPs were quantified 

using Clampfit 9.2. Due to the large variation of the EPSP area (expressed as mV*ms) 

the data was first log transformed before it was analyzed using a repeated measures 

two-way ANOVA followed Fisher’s Least Significant Difference test. The effect of 

treatment on AMPA- and NMDA-induced currents was statistically evaluated using 

STATISTICA (manuscript I) or Prism (Graphpad Prism Inc., USA; manuscript II, III 

and IV). EPSP data was statistically evaluated using STATISTICA. In all tests, p<0.05 

was considered statistically significant.
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4. Results and discussion 

4.1. Role of concomitant NET-inhibition for the clinical effects of 

antipsychotic drugs 
The prototypical atypical APD clozapine has been found to possess superior efficacy in 

treatment resistant schizophrenia compared to other APDs, even though, or maybe just 

because, clozapine-treatment induces a low striatal D2 receptor occupancy. Clozapine 

has high affinity for the α2-adrenoceptor, which has been suggested to be important for 

its superior efficacy in schizophrenia and allow for its low D2 receptor occupancy. 

However, clozapine treatment is associated with severe side effects, most notably 

agranulocytosis, which limits its use. The atypical APD olanzapine has a structure and 

receptor-biding profile similar to that of clozapine, e.g. higher affinity for several 

serotonergic receptors compared to the D2 receptor, but lacks affinity for the α2-

adrenoceptor. Olanzapine-treatment induces a higher D2 receptor occupancy than 

clozapine and may be associated with side-effects, such as weight gain and EPS, but not 

with agranulocytosis. Interestingly, the antipsychotic-like effect of olanzapine was 

potentiated by addition of the α2-adrenoceptor antagonist idazoxan (Wadenberg et al., 

2007). In similarity to the effects of idazoxan, the NET inhibitor reboxetine has been 

found to enhance dopamine output in the mPFC and to facilitate the antipsychotic-like 

effect of raclopride (Hertel et al., 1999a, Hertel et al., 1999b, Linner et al., 2002), 

indicating that reboxetine may potentially also be used to augment the effect of 

olanzapine.  

In fact, NET inhibition may contribute to the clinical effect of the atypical APD 

quetiapine. Quetiapine exerts its antipsychotic effect in similarity with clozapine, at an 

unusually low D2 receptor occupancy and interestingly, quetiapine treatment has been 

found to generate an active metabolite, norquetiapine, which has high affinity for the 

NET. Norquetiapine has previously been suggested to mediate the antidepressant effect 

of quetiapine (Jensen et al., 2008). However, its contribution to the antipsychotic effect 

of quetiapine has not been investigated. Norquetiapine is not formed in rodents to any 

major extent (Hudzik et al., 2008), making rats a suitable model to study the 

contribution of NET inhibition to the effect of quetiapine. 

4.1.1. Manuscript I 

In the present study, we investigated whether concomitant NET-inhibition potentiates 

the efficacy of the SGA olanzapine and potentially mimic some of the preclinical effects 

of clozapine. We used the CAR test to investigate the effect of concomitant NET-

inhibition on the antipsychotic-like activity of olanzapine and the catalepsy test to 

assess its effect on EPS liability. The effect on dopamine output in the mPFC and NAc 

were assessed using in vivo microdialysis in freely moving rats. Moreover, the effects of 

NET-inhibition combined with olanzapine on cortical NMDA-induced currents using 

intracellular recordings in vitro were also investigated. 
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Figure 12. Concomitant NET-inhibition by reboxetine significantly potentiates the 

antipsychotic-like effect of a sub-optimal (1.25 mg/kg), but not optimal (2.5 mg/kg) dose of 

olanzapine at 20 min after treatment without increasing the EPS liability. (a) The effect on CAR 

behavior at 20 min after administration of vehicle, olanzapine 1.25 or 2.5 mg/kg (i.p.) combined 

with saline or reboxetine (6 mg/kg i.p.). The results are presented as the median avoidance ± 

semi-interquartile range (%).
++

 p<0.01 vs. saline+ vehicle, 
##

 p<0.01 vs. reboxetine+ vehicle, * 

p<0.05 saline + olanzapine vs. reboxetine+olanzapine. (b) All treatments showed very low 

propensity to induce catalepsy. The catalepsy score (60 min after dose) is presented as median 

score ± semi-interquartile range. ++ p< 0.01, +++ p< 0.001 vs. saline+ vehicle. 

Addition of reboxetine (6 mg/kg) to olanzapine potentiated the antipsychotic-like effect 

(i.e. suppression of CAR) of a sub-effective (1.25 mg/kg) but not optimal (2.5 mg/kg) 

dose of olanzapine (figure 12a). Reboxetine (6 mg/kg) as well as olanzapine (2.5 

mg/kg) significantly increased in the catalepsy score (figure 12b). However, the median 

scores were low, below 2 for all treatments, indicating low propensity to induce 

catalepsy. 

 

 

Figure 13. Concomitant NET-inhibition by reboxetine enhances the olanzapine-induced 

dopamine output in the mPFC but not in the NAc. The mean dopamine output in mPFC (a) and 

NAc (b) of vehicle or olanzapine (1.25 mg/kg i.p.) in rats pretreated with saline or reboxetine (6 

mg/kg i.p.). The results are presented as mean ± SEM. 
++

 p<0.01, 
+++

 p< 0.001 vs. control 

group (saline/vehicle); **p<0.01, *** p<0.001 indicate between treatment effects. 
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The enhanced suppression of CAR obtained when reboxetine was added to olanzapine 

was accompanied by a preferential increase in prefrontal dopamine output, without 

affecting the olanzapine-induced dopamine output in the NAc (figure 13 a, b).  

 

 

 

 

 

 

 

Figure 14. Addition of reboxetine to a sub-effective concentration of olanzapine significantly 

enhances the NMDA-induced currents in pyramidal cells of the rat mPFC. Reboxetine (20 nM) 

produced a small but significant increase in the NMDA-induced currents. Addition of 

reboxetine (20 nM) to olanzapine (3 nM) significantly increased these currents compared to 

each drug given alone. 
++

 p<0.01, 
+++

 p<0.001 vs. baseline. *** p< 0.001 between different 

treatments. The results are presented as mean ± SEM. The holding potential was -60 mV. 

Addition of reboxetine to a sub-effective concentration of olanzapine enhanced NMDA-

induced currents in pyramidal cells from the rat mPFC (figure 14). 
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4.1.2. Manuscript II  

In the present study, we used reboxetine as a model compound due to its high 

specificity for the NET, to investigate in principle, whether NET-inhibition, obtained in 

patients by the active metabolite norquetiapine, contributes to the antipsychotic effect of 

quetiapine. 

The effect of concomitant NET-inhibition on the antipsychotic-like effect of quetiapine 

was studied using the CAR model. The effect on dopamine and DOPAC output was 

assessed using microdialysis and the effect on NMDA-induced currents was studied 

using in vitro intracellular recordings. In addition, we investigated the effects of adding 

reboxetine to the selective D2/3 receptor antagonist raclopride on cortical NMDA-

induced currents. 

 

Figure 15. Addition of reboxetine to quetiapine potentiates the quetiapine-induced suppression 

of conditioned avoidance behavior. (a) The effect of quetiapine (1, 3, 6 and 9 mg/kg i.v.; n=12) 

on CAR behavior. (b) The effect of quetiapine alone and after pretreatment with reboxetine (6 

mg/kg; n=11) . The results are presented as median avoidance (%) ± semi-interquartile range. 

*p<0.05, **p<0.01, *** p<0.001 vs. vehicle, 
#
 p< 0.05 as indicated in the figure.  

 

Quetiapine, given i.v., produced a short-lasting suppression of the CAR behavior at 6 

and 9 mg/kg (figure 15a). Pretreatment with reboxetine (6 mg/kg i.p.) produced a small 

but significant potentiation of the antipsychotic-like effect of quetiapine at 3 mg/kg 

(figure 15b). Reboxetine pretreatment seemed to facilitate the suppression of CAR 

behavior also of the higher dose of quetiapine (6 mg/kg) but this effect did not reach 

statistical significance.  
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Figure 16. Addition of reboxetine to quetiapine enhances the dopamine output in the mPFC but 

not in the NAc. Effects of quetiapine (6mg/kg i.v.) and reboxetine (6 mg/kg i.p.) on dopamine (a, 

b) and DOPAC (c, d) output in the mPFC and NAc respectively. The results are presented as 

mean ± SEM. **p< 0.01, ***p<0.001 vs. control group (i.e. saline+vehicle).
 #
p<0.05, 

##
p<0.01, 

###
p<0.001 comparisons as indicated in the figure.  

Addition of reboxetine to quetiapine induced a large increase in the dopamine output in 

the mPFC but not in the NAc (figure 16 a, c). The increased cortical dopamine output 

was accompanied by a reduction in the DOPAC output (16 b). 

Quetiapine facilitated NMDA-induced currents (figure 17b), in similarity to previously 

published results (Ninan et al., 2003b). Addition of reboxetine to a sub-effective 

concentration of quetiapine enhanced the NMDA-induced currents compared to each 

drug when given alone (figure 17c). The facilitatory effect was prevented by the 

addition of the dopamine D1 receptor antagonist SCH23390. Addition of reboxetine to 

raclopride also increased the NMDA-induced currents compared to each drug given 

alone (figure 17d). 
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Figure 17. Concomitant NET-inhibition potentiates the effect of quetiapine and raclopride on 

NMDA-induced responses compared to each drug given alone in pyramidal cells of the rat 

mPFC. (a) Representative electrophysiological traces illustrating the effect of combined 

quetiapine and reboxetine on the NMDA-induced currents in pyramidal cells of the mPFC. (b) 

concentration-response curve of the effect of quetiapine on NMDA-induced currents. (c) The 

effect on NMDA-induced currents of a sub-effective concentration of quetiapine (60 nM), 

reboxetine (20 nM), the combination of quetiapine and reboxetine, and the effect of quetiapine 

and reboxetine in the presence of the dopamine D1 receptor antagonist SCH23390. (d) The 

effect of reboxetine (20 nM), the D2/3 receptor antagonist raclopride (1 µM) and the 

combination of reboxetine (20 nM) and raclopride (1µM) on NMDA-induced currents. The 

results are presented as mean ± SEM. *p<0.05 compared to baseline. #p<0.05, ##p<0.01, 

between groups comparison as indicated in the figure.  

4.1.3. Discussion: Role of concomitant NET-inhibition for the clinical effects of 

antipsychotic drugs 

Addition of reboxetine potentiated the antipsychotic-like effect of a sub-effective dose 

of olanzapine, without inducing catalepsy, indicating that adjunctive treatment with 

reboxetine may allow for a dose reduction of olanzapine with maintained antipsychotic 

effect. In similarity, addition of reboxetine also potentiated the antipsychotic-like effect 

of quetiapine, which suggests, in principle, that NET-inhibition provided in patients by 

the metabolite norquetiapine, contributes to the antipsychotic effect of quetiapine, 

which is obtained despite its relatively low D2 receptor occupancy. These results are in 

similarity to previous studies from our group investigating addition of a NET-inhibitor 

and an α2-adrenoceptor antagonist to low doses of a D2/3 receptor antagonist (Hertel et 

al., 1999a, Linner et al., 2002). 

Addition of reboxetine to both olanzapine and quetiapine preferentially enhanced the 

dopamine output in the mPFC, without affecting the dopamine output in the NAc. In 

parallel, the DOPAC output in the mPFC was decreased when reboxetine was added to 
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quetiapine. A reduction of the intracellularly derived metabolite DOPAC in the mPFC 

when reboxetine is added to quetiapine indicates that the enhanced dopamine output 

may stem from an enhanced dopamine turnover generated by an increased VTA cell 

firing induced by the APD (Gessa et al., 2000, Yamamura et al., 2009). The enhanced 

turnover is not observed as increased dopamine output when the APD is given alone, as 

the released dopamine can be cleared from the extracellular space by the NET. 

Reboxetine, by blocking the NET, thus unmasks the enhanced turnover. Another 

contributing mechanism may be blockade of D2 autoreceptors by olanzapine and 

quetiapine, disinhibiting dopamine outflow (Westerink et al., 2001). 

Concomitant NET-inhibition facilitated the NMDA-induced currents of olanzapine, 

quetiapine and raclopride compared to either drug given alone. The effect of the 

reboxetine/quetiapine combination was mediated via D1 receptor activation similar to 

what has been demonstrated in previous studies (Chen and Yang, 2002, Ninan and 

Wang, 2003, Marcus et al., 2005). Given the crucial importance of D1 and NMDA 

receptor mediated transmission for cognitive function and the observed cognitive 

deficits in schizophrenia these results, indicate that APD-treatment with concomitant 

NET-inhibition, may, by facilitation of dopaminergic and NMDA receptor-mediated 

transmission, serve to ameliorate cognitive deficits as well as both depressive and 

negative symptoms in schizophrenia, and may thus be an underlying mechanism 

contributing to the pro-cognitive effect of quetiapine treatment obtained in 

schizophrenia (c.f. 1.8.2). 

The increased cortical dopamine output may also contribute to the enhanced 

antipsychotic-like effect per se, since dopamine acting on D1 receptors in the mPFC has 

been found to suppress subcortically derived D2 receptor-mediated behaviors (c.f. 

1.8.2). 

Previous clinical studies investigating adjunctive treatment with reboxetine to APD 

treatment in schizophrenia yielded both positive and negative results (Schutz and Berk, 

2001, Raedler et al., 2004). However, present data indicates that one of the potential 

benefits of concomitant NET-inhibition would be obtained at reduced dosage of APD 

rather than at standard doses of APDs. A dose-reduction of olanzapine enabled by 

addition of reboxetine, with ensuing reduced D2 receptor occupancy, or norquetiapine in 

quetiapine-treated patients, may not only reduce the risk of side-effects (e.g. EPS) 

(Kapur et al., 2000), but also reduce the risk of drug-induced negative symptoms, 

cognitive deficits, negative mood and impaired reward prediction associated with high 

D2 receptor occupancy (Carpenter, 1996, Saeedi et al., 2006, Kirsch et al., 2007). 

Moreover, previous studies have suggested that enhanced cortical catecholamine output 

may underlie the beneficial effects of addition of atypical APDs to SSRIs in treatment-

resistant MDD and bipolar depression (c.f. 1.11.2). Therefore, the marked facilitation of 

prefrontal dopamine output observed in the present studies thus proposes that NET-

inhibition, in combination with the properties of an atypical APD, may contribute to 

relieve depressive symptoms.  
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4.2. Effects of low doses of atypical antipsychotic drugs added to SSRIs 

on monoaminergic and glutamatergic neurotransmission in the mPFC. 
Addition of low to moderate doses of atypical APDs has been found to potentiate the 

antidepressant effect of antidepressants in both bipolar depression as well as in 

treatment-resistant MDD, with a rapid onset of the effect (see e.g. Dube et al., 2007, 

Nelson and Papakostas, 2009). Previous preclinical studies, investigating addition of the 

atypical APD olanzapine to the SSRI fluoxetine, have suggested that this effect may, at 

least partly, be due to the increased catecholamine output in the mPFC (Zhang et al., 

2000). Moreover, addition of low, sub-effective concentrations of APDs to SSRIs has 

also been found to facilitate NMDA receptor-mediated transmission in pyramidal cells 

of the rat mPFC (Marcus et al., 2012). Preclinical studies investigating the mechanism 

of action of ketamine and scopolamine, show that the antidepressant-like effect is 

critically dependent on activation of AMPA receptors, and subsequently, on 

intracellular mechanisms involving the mammalian target of rapamycin (mTOR) 

pathway in the mPFC (Maeng et al., 2008, Li et al., 2010, Voleti et al., 2013, but see 

also Autry et al., 2011). Ketamine and scopolamine treatment was found to induce 

synapse formation and to increase e.g. the number of AMPA receptor GluR1 subunits in 

the synapses and to increase glutamatergic transmission in pyramidal cells of the rat 

mPFC (Li et al., 2010).  

4.2.1. Manuscript III 

Asenapine is a novel APD used in bipolar disorder and in the present study we 

investigated the potential utility of asenapine as an adjunct to the SSRI escitalopram. 

The effects of add-on of low doses of asenapine to escitalopram on dopamine, 

noradrenaline and serotonin output in the mPFC and dopamine output in the NAc were 

investigated using in vivo microdialysis in freely moving rats. Furthermore, we 

investigated the effects of the drug combination on NMDA and AMPA receptor-

mediated currents as well as the effect on electrically evoked excitatory post-synaptic 

potentials (EPSPs) using intracellular recordings of pyramidal cells in vitro. 
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Figure 18. Addition of asenapine to escitalopram enhances dopamine output in the mPFC. 

Effects of escitalopram (5 mg/kg s.c.), asenapine (0.05 mg/kg s.c.), given alone and in 

combination on the mean output of dopamine (a), noradrenaline (b) and serotonin (c) in the 

mPFC and mean dopamine output in the NAc (d). The dotted line represents baseline (100 %). 

The results are presented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001 vs. control (i.e. 

saline + saline). 
#
p<0.05, 

###
p<0.001 between groups comparison as indicated in the figure. 

Asenapine (0.05 mg/kg) increased the dopamine output in the mPFC, an effect that was 

further enhanced when asenapine was combined with escitalopram (5 mg/kg; figure 

18a). Both escitalopram and asenapine increased dopamine output in the NAc, but there 

was no further increase when the two drugs were combined (figure 18d). Asenapine 

(0.05 mg/kg) increased the noradrenaline output (figure 18b) and escitalopram increased 

the serotonin output (figure 18c) in the mPFC. However, the output of these 

monoamines was not further increased when the two drugs were combined.  
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Figure 19. Addition of a higher dose of asenapine to escitalopram increases noradrenaline and 

serotonin output in the mPFC. Effects of escitalopram (5 mg/kg s.c.), asenapine (0.1 mg/kg s.c.), 

given alone and in combination on the mean output of dopamine (a), noradrenaline (b) and 

serotonin (c) in the mPFC and mean dopamine output in the NAc (d). The dotted line represents 

baseline (100 %) The results are presented as mean ±SEM. *p<0.05, **p<0.01, ***p<0.001 vs. 

control (i.e. saline + saline). 
##

p<0.01, 
###

p<0.001 between groups comparison as indicated in 

the figure.  

A higher dose of asenapine (0.1 mg/kg) enhanced the dopamine output in the mPFC but 

in contrast to the effect of the lower dose of asenapine (0.05 mg/kg), the effect was not 

further increased when combined with escitalopram (figure 19a). Asenapine also 

increased the dopamine output in the NAc but in similarity to the effect of the lower 

dose of asenapine in the NAc, this effect was not affected by concomitant escitalopram 

treatment (figure 19d). Asenapine (0.1 mg/kg) did not increase noradrenaline or 

serotonin output when given alone, however when combined with escitalopram the 

combination induced a large increase in noradrenaline (figure 19b) as well as serotonin 

output (figure 19c).  

The combination of low, sub-effective, concentrations of asenapine (1 nM) and 

escitalopram (3 nM) significantly enhanced NMDA-induced currents in pyramidal cells 

of the rat mPFC via activation of the dopamine D1 receptor (figure 20f) in similarity 

results obtained when asenapine and escitalopram was investigated separately 

(Jardemark et al., 2010, Schilström et al., 2011).  
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Figure 20. A combination of asenapine and escitalopram facilitates NMDA-induced currents 

via activation of the dopamine D1 receptor. Representative electrophysiological traces showing 

the effect of NMDA application before (grey trace) and after (black trace) application of (a) 

escitalopram 3 nM (b) asenapine 1 nM (c) asenapine+ escitalopram (d) asenapine+ 

escitalopram + SCH23390 (1 µM). The grey and black horizontal bars indicate the time of 

NMDA application for control and test trace, respectively. Data is summarized in bar charts 5 

min (e) and 30 min (f) after drug application. The results are presented as mean ±SEM. 

*p<0.05 vs. control response, 
##

p<0.01 between groups comparison as indicated in the figure. 

 

 

Figure 21. Concentration-response curves for asenapine and escitalopram of AMPA-induced 

currents at 5 min (a) and 30 min (b) after drug application. Data are presented as mean ± SEM. 

The holding potential was -60 mV. 
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A combination of asenapine (1 nM) and escitalopram (3 nM) also facilitated AMPA-

induced currents (figure 22 e, f), an effect that was not attainable by either drug when 

administered alone, even at higher concentrations (21 a, b). The facilitation of AMPA-

induced currents was antagonized by SCH23390 (1µM). Moreover, the combination of 

asenapine (1 nM) and escitalopram (3 nM) induced action potentials in all four cells 

tested and increased the total area of the electrically evoked EPSPs (figure 23 a to d).  

 

 

Figure 22. A combination of asenapine and escitalopram facilitates AMPA-induced currents 

via activation of the dopamine D1 receptor. Representative electrophysiological traces showing 

the effect of AMPA application before (grey trace) and after (black trace) application of (a) 

escitalopram 3 nM (b) asenapine 1 nM (c) asenapine+ escitalopram (d) asenapine+ 

escitalopram + SCH23390 (1 µM). The grey and black horizontal bars indicate the time of 

AMPA application for control and test trace, respectively. Data is summarized in bar charts 5 

min (e) and 30 min (f) after drug application. The results are presented as mean ±SEM. 

*p<0.05, **p<0.01 vs. control response, 
#
p<0.05, 

##
p<0.01, 

###
p<0.001 between groups 

comparison as indicated in the figure. 
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Figure 23. A combination of asenapine and escitalopram induces action potentials and 

increases the area of the electrically evoked EPSPs in pyramidal cells of the rat mPFC. 

Representative electrophysiological traces showing the electrically evoked EPSPs before (grey) 

and after (black) treatment with (a) escitalopram 3 nM (b) asenapine 1 nM and (c) escitalopram 

3 nM+ asenapine 1 nM. Arrows indicate time of stimulation. The logarithm of the mean EPSP 

area (log10 mV*ms) is summarized in (d). Asenapine+ escitalopram enhanced the EPSP area 

compared to both escitalopram (**p<0.01, ***p<0.001), asenapine (
##

p<0.01) as well as its 

own control EPSP area (i.e. the EPSP area before drug application; 
¤¤¤

p<0.001). The results 

are presented as mean ± SEM. 

 

4.3.2. Manuscript IV 

Given the similarities in the clinical outcome between the olanzapine and fluoxetine 

combination and ketamine treatment (i.e. potent antidepressant action and relatively 

rapid onset of the effect) we investigated the effect of combined olanzapine and 

fluoxetine on NMDA and AMPA receptor- mediated transmission using intracellular 

recordings in in vitro slice preparations. The combination of olanzapine and fluoxetine 

has previously been found to increase dopamine output in the mPFC, and therefore we 

also investigated whether an effect on this drug combination on NMDA and AMPA 

receptor-mediated transmission was dependent on D1 receptor activation. Moreover, to 

allow for a comparison with ketamine, the effect of a single injection of ketamine on the 

NMDA- and AMPA–induced currents in pyramidal cells was investigated in prefrontal 

brain slices 24 hours after the time of ketamine injection, by using intracellular 

recordings. 
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Figure 24. A combination of olanzapine (3 nM) and fluoxetine (100 nM) facilitates NMDA-

induced currents in pyramidal cells of the rat mPFC via activation of the dopamine D1 receptor. 

Bar charts show the effect on NMDA-induced currents of fluoxetine (100 nM), olanzapine 

(3nM), fluoxetine (100 nM) + olanzapine (3 nM) and fluoxetine (100 nM) + olanzapine (3nM)+ 

SCH23390 (1µM) at (a) 5 min and (b) 30 min of drug administration. Data are presented as 

mean ± SEM (%). *p< 0.05 compared to control response. 
#
p<0.05, 

##
p<0.01 indicates a 

between groups effect, as indicated in the figure. The number in each bar shows group size.  

 

The combination of olanzapine and fluoxetine potentiated NMDA-induced currents in 

pyramidal cells of the rat mPFC (figure 24), an effect that was mediated via D1 receptor 

activation as it was blocked by SCH23390. Interestingly, the combination of olanzapine 

and fluoxetine facilitated AMPA receptor-mediated currents (figure 25) even though 

neither drug had any effect when given alone. The facilitation of AMPA-induced 

currents was prevented by pretreatment with a D1 receptor antagonist, indicating that D1 

activation was necessary for this effect. 

 

Figure 25. A combination of olanzapine and fluoxetine facilitates AMPA-induced currents in 

pyramidal cells of the rat mPFC, via activation of the dopamine D1 receptor. Bar charts 

showing the effect on AMPA-induced currents at (a) 5 min and (b) 30 min of drug 

administration. Data are presented as mean ± SEM (%). *p< 0.05 compared to control 

response. 
#
p<0.05 indicates a between groups effect, as indicated in the figure.  

There was a trend for ketamine pretreatment towards enhancing the NMDA-induced (5 µM) 

currents, although this effect failed to reach statistical significance (figure 26a; p=0.0576). 

However, ketamine pretreatment significantly facilitated AMPA-induced (5 µM) currents 

(figure 26b). 
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Figure 26. Ketamine pretreatment enhanced AMPA-induced currents in pyramidal cells of the 

rat mPFC. (a) NMDA-induced currents in pyramidal cells from rats pretreated with ketamine 

(10 mg/kg) or saline (2 ml/kg). Bar chart shows mean± SEM. There was a trend for ketamine 

pretreatment to enhance the NMDA-induced currents but it failed to reach statistical 

significance (p=0.0576). (b) Ketamine pretreatment significantly enhanced AMPA-induced 

currents in pyramidal cells of the mPFC. *p<0.05 ketamine compared to saline. The number in 

each bar shows the groups size. The holding potential was -60 mV.  

4.3.3. Discussion: Effects of low doses of atypical antipsychotic drugs added to SSRIs 

on monoaminergic and glutamatergic neurotransmission in the mPFC. 

Addition of low doses of asenapine to escitalopram enhanced the outflow of dopamine, 

noradrenaline and serotonin in the mPFC, indicating that asenapine may be effective as 

an adjunct in treatment-resistant depression, in similarity with e.g. olanzapine or 

quetiapine (c.f. 1.11.2). Asenapine is an antagonist at 5-HT2A, α2 and D2 receptor and a 

partial agonist at the 5-HT1A receptor, all of which may contribute to the increased 

monoamine release obtained when combined with the SSRI escitalopram. The increased 

monoamine outflow induced by this drug combination may stem from both systemic 

effects (Arborelius et al., 1993, Szabo and Blier, 2002, Ghanbari et al., 2009) as well as 

local mechanisms within the mPFC (Franberg et al., 2012). Clinical and preclinical 

studies suggest that α2 and 5-HT2A receptor antagonists can be used to potentiate the 

antidepressant or antidepressant-like effect of SSRIs (see e.g. Sanacora et al., 2004, 

Marek et al., 2005), further supporting the utility of asenapine as adjunct in MDD. 

Using intracellular recordings in brain slices, we found that combinations of asenapine 

and escitalopram as well as of olanzapine and fluoxetine facilitated both NMDA and 

AMPA receptor-mediated transmission in the mPFC, via activation of the dopamine D1 

receptor. In similarity, injection of ketamine 24 hours prior to the electrophysiological 

experiment also produced a facilitation of AMPA receptor-mediated transmission, 

compared to saline treated rats. Moreover, ketamine pretreatment appeared to enhance 

also NMDA receptor-mediated transmission, although this effect did not reach 

statistical significance. Previous studies in rats have found ketamine pretreatment to 

enhance a number of synaptic proteins including the AMPA receptor subunit GluR1 and 
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to facilitate glutamatergic transmission in the mPFC and that the antidepressant-like 

effect of ketamine was abolished by a selective AMPA receptor antagonist (c.f. 1.11.1). 

Thus, the seemingly analogous results obtained with a combination of an atypical APD 

and an SSRI compared to the effect of ketamine in the present study, indicates that also 

the relatively rapid onset of the antidepressant effect obtained with a combination of 

atypical APDs and antidepressant drugs may be related to an enhancement of cortical 

AMPA receptor-mediated transmission. Further support for the notion that AMPA 

receptor-activation induces an antidepressant response is provided by studies showing 

that AMPA receptor allosteric modulators may exert a rapid antidepressant effect in 

animal models predictive of antidepressant effect (Li et al., 2001, Knapp et al., 

2002).The mechanism by which the combinations of atypical APDs and SSRIs facilitate 

AMPA receptor-mediated transmission is not entirely clear. Although previous 

electrophysiological studies investigating the influence of D1 activation on AMPA 

receptor-mediated transmission have generated conflicting results (see e.g. Tseng and 

O'Donnell, 2004, Smith et al., 2005), D1 receptor activation has been found to increase 

and D2 receptor activation to decrease the number of AMPA receptors on the cell 

surface of cortical pyramidal cells (Sun et al., 2005). Thus, enhanced dopamine outflow 

with concomitant blockade of the D2 receptor, produced by the APD and SSRI, results 

in a preferential activation of D1 receptors, which may result in an increase of the 

number of cell surface AMPA receptors. However, other mechanisms (e.g. serotonergic 

mechanisms) probably contributes to the facilitation of AMPA receptor-mediated 

transmission, since neither clozapine nor asenapine facilitates these currents when given 

alone, even though they facilitate NMDA receptor-mediated currents via the activation 

of the D1 receptor at the same concentration (Arvanov et al., 1997, Jardemark et al., 

2010). Tentatively, in the intact animal, ketamine may also, by augmenting the AMPA 

receptor-mediated transmission, secondarily enhance NMDA receptor-mediated 

transmission by reducing the voltage dependent Mg
2+

-blockade.  

Moreover, since the effect of ketamine seemed to be relatively more pronounced on 

AMPA receptor-mediated currents than on NMDA induced currents, our data are in 

principle consonant with previous findings and conclusions regarding the mechanism of 

action of ketamine (Maeng and Zarate, 2007). 

Asenapine and escitalopram as well as a combination of olanzapine and fluoxetine 

facilitated NMDA receptor-mediated transmission via D1 receptor activation. We also 

found that a combination of asenapine and escitalopram enhanced the area of the EPSPs 

and induced bursts of action potentials overriding the EPSPs in pyramidal cells of the 

rat mPFC, in similarity with results previously obtained with clozapine (Chen and 

Yang, 2002, Jardemark et al., 2005). This effect of clozapine was found to be dependent 

on NMDA and D1 receptor activation. The action potentials induced by a combination 

of asenapine and escitalopram had varying onset latencies, indicating that they were 

elicited by recurrent activation of neighboring layer V pyramidal cells. This recurrent 

excitation of pyramidal cells in the PFC is thought to some extent explain the 

underlying physiological mechanism for working memory. Thus, low doses of 
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asenapine in combination with an SSRI may contribute to relieve cognitive deficits in 

e.g. depression. In addition to effects on memory, the activity of the NMDA receptor 

may also play a role in the antidepressant response per se, since drugs mediating their 

effect via the co-agonist site of the NMDA receptor (e.g. D-serine and a glycine 

reuptake inhibitors) have been found to generate an antidepressant effect in patients as 

well as in animal models predictive of antidepressant activity (Malkesman et al., 2012, 

Huang et al., 2013). 

Ketamine, and other NMDA receptor-antagonists, has previously been found to increase 

dopamine release in the mPFC and D1 receptor stimulation has been found to stimulate 

the mTOR pathway in the cortex (Schicknick et al., 2008). However, to which extent 

increased outflow in the mPFC induced by a combination of atypical APDs and an 

SSRI affect mTOR signaling, and to which extent dopamine-related effects of ketamine 

may contribute to its antidepressant effect remain to be determined. 

In conclusion, we propose that the relatively rapid and enhanced antidepressant effect 

obtained when low to moderate doses of atypical APDs are added to SSRIs may result 

from a facilitation of monoamine outflow with ensuing facilitation of glutamatergic 

transmission in the PFC.
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5. Summary and concluding remarks 
Although considered as two separate diagnostical entities, increasing evidence points to 

a link between schizophrenia and depression. For example, depression is a common 

prodromal symptom of schizophrenia and it is estimated that the life-time prevalence of 

comorbid depression is 50% in schizophrenia and, vice versa, psychotic symptoms are 

more prevalent in patients diagnosed with depression as compared to the general public 

(Buckley et al., 2009). Depressive symptoms in schizophrenia are associated with 

poorer quality of life and worse long-term outcomes (Conley et al., 2007). The link 

between schizophrenia and depression is further supported by a recent study which 

showed that schizophrenia not only has a shared heritability with bipolar disorder (c.f. 

1.9.1) but also with depression (Lee et al., 2013). 

Moreover, the use of low doses of atypical APDs in non-psychotic depressed patients 

has been steadily increasing over the last decade. Results from a recent European study 

show that approximately 50% of the depressed in-patients in the study received an APD 

(Kasper, S., personal communication). Interestingly, the study also concluded that 

psychiatrists prescribed atypical APDs at moderate dosage as adjunct treatment to 

depressed patients to augment the antidepressant effect even long before regulatory 

authorities approved APDs for this indication. 

In the present set of experimental studies we demonstrated that addition of the NET 

inhibitor reboxetine may further enhance the antipsychotic-like effect of a low but not a 

high dose of olanzapine, without increasing EPS liability. In parallel, adjunct reboxetine 

preferentially enhanced olanzapine-induced cortical dopamine output and facilitated 

NMDA receptor-mediated transmission in the mPFC. Similar results were obtained in a 

subsequent study when quetiapine was combined with the NET-inhibitor reboxetine. 

Moreover, we found that low doses of the novel atypical APD asenapine in combination 

with escitalopram enhanced monoamine output in the mPFC, and to some extent 

dopamine output in the NAc. Using electrophysiological intracellular recordings we 

found that a combination of low, clinically relevant concentrations of asenapine and 

escitalopram increased the area of electrically evoked EPSPs and facilitated the 

generation of action potentials in pyramidal cells of the rat mPFC.  

Our data propose that concomitant NET-inhibition may allow for a lower D2 receptor 

occupancy induced by the APD, yet with maintained antipsychotic effect. Concomitant 

NET inhibition may also ameliorate depressive and negative symptoms as well as 

cognitive impairments in schizophrenia by facilitating cortical dopaminergic 

transmission as well as NMDA receptor-mediated transmission. Moreover, our data 

propose that addition of reboxetine to olanzapine may allow for a dose reduction of 

olanzapine with maintained antipsychotic effect and an ensuing reduced risk of 

extrapyramidal side effects. Our data also suggest that NET inhibition, generated in 

patients by the active metabolite norquetiapine, may not only contribute to the 

antidepressant effect of quetiapine but, in addition, to the antipsychotic effect of 

quetiapine, that can be obtained in patients in spite of a low D2 receptor occupancy. 
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We also showed that addition of asenapine to the SSRI escitalopram enhanced 

catecholamine output in the mPFC, in similarity with results obtained with olanzapine 

and fluoxetine (Zhang et al., 2000). In addition to the increased catecholamine output 

the combination of asenapine and escitalopram also facilitated serotonin output in the 

same brain region, in contrast to the effects obtained with olanzapine added to 

fluoxetine. This difference may be explained by the α2-adrenoceptor antagonistic and 5-

HT1A partial agonistic properties of asenapine (Ghanbari et al., 2009, Franberg et al., 

2012), receptors to which olanzapine have very low affinity (Schotte et al., 1996). This 

effect may be important, since an enhanced serotonin output may confer a therapeutic 

advantage in depression. 

Asenapine and escitalopram as well as a combination of olanzapine and fluoxetine 

significantly potentiated NMDA receptor-mediated transmission via D1 receptor 

activation in pyramidal cells in vitro, in similarity with the effects of clozapine. Given 

the importance of D1 and NMDA receptor-mediated transmission in the mPFC for 

optimal cognitive function, this effect may contribute to ameliorate several aspects of 

cognitive dysfunctions in both schizophrenia and depression. 

In subsequent electrophysiological experiments we showed that a combination of 

asenapine and escitalopram, as well as a combination of olanzapine and fluoxetine at 

low, clinically relevant concentrations, facilitates AMPA receptor-mediated 

transmission in pyramidal cells of the rat mPFC. Our data suggest that activation of the 

D1 receptor may be necessary but probably not sufficient to facilitate AMPA receptor-

mediated transmission. This effect was thus obtained by two different combinations of 

atypical APDs and SSRIs, proposing that facilitation of AMPA receptor-mediated 

transmission may represent a general effect of such drug combinations, in parallel with 

the enhanced antidepressant effect, which has been observed clinically with atypical 

APDs used as adjunct to SSRIs (Nelson and Papakostas, 2009). In support of this 

contention, our data demonstrate an enhanced AMPA receptor-mediated transmission in 

the mPFC following administration of a single dose of ketamine, 24 hours before (c.f. 

(Li et al., 2010), which has been found to generate a powerful antidepressant action with 

a fast onset of action.  

In summary, our results propose that the rapidly augmented antidepressant effect 

obtained by adjunct treatment with low doses of atypical APDs in treatment-resistant 

depression maintained on conventional antidepressant drugs may be related to 

facilitation of monoamine outflow in the PFC with an associated facilitation of 

glutamatergic transmission. 

Moreover, our results propose that asenapine may have potential clinical utility as 

adjunct treatment in treatment-resistant major depression, generating an enhanced 

antidepressant effect with a rapid onset. In fact, a clinical study investigating asenapine 

as adjunct to antidepressant drugs is currently ongoing (ClinicalTrials.gov Identifier: 

NCT01670019). 
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