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ABSTRACT 
The subjects dealt with in this thesis are clinical aspects of congenital adrenal hyperplasia (CAH), 
such as neonatal screening, growth and the incidence of CAH during the last century in Sweden. 
In addition, we have used CAH as a model system to study possible prenatal effects of androgen 
exposure on growth and gestational length. 

Gestational age at birth correlated with CYP21A2 genotype in girls (P < 0.01), but not in boys with 
CAH (n = 109; 62 females, 47 males) (Paper I). The exact number of gestational days was known 
in 66 patients (37 females, 29 males). The pregnancy was longer for females with the most severe 
form, null genotype, 285.7 days, than for I172N, 273.9 days (P < 0.01) or V281L, 274.7 days (P < 
0.05), indicating that higher androgen levels in severe forms could explain this effect. No 
differences between genotypes were seen in CAH males, possibly because testicular androgen 
production is high in normal male foetuses and adrenal androgens therefore may not have an 
additional effect. The cortisol deficiency is equal in CAH girls and boys, making this deficiency a 
less likely explanation. 

Birth weight standard deviation score (SDS) corrected for gestational age in children with CAH (n 
= 73; 43 females, 30 males) did not differ from that of the reference population (mean, CI 95%: 
0.0, -0.3 to 0.3, and 0.2, −0.2 to 0.6, for boys and girls, respectively) (Paper II). Nor did the birth 
weight differ between CYP21A2 genotype groups (P > 0.05). In 29 46,XY females with complete 
androgen insensitivity syndrome (CAIS), the mean birth weight SDS was similar to that of 
reference boys (mean, CI 95%: 0.1, -0.2 to 0.4) and higher than the reference of females (mean, CI 
95%: 0.4, 0.1 to 0.7, P = 0.02). Hence, these results indicate that gestational age at birth, but not 
prenatal growth, is affected by androgen exposure. 

In a retrospective, population-based cohort study we investigated the apparent incidence of CAH 
in Sweden between 1910 and 2011 (Paper III). We identified 606 patients with known CYP21A2 
genotype in 490 cases (81%). The female:male ratio was 1.25:1 for the whole cohort, but close to 
1 in patients detected in the screening. The number of diagnosed patients increased dramatically in 
the 1960s and 1970s. The proportion of salt-wasting (SW) CAH compared to milder forms 
increased in both sexes after the introduction of neonatal screening from 114/242 to 165/292 (P < 
0.05). The milder forms were diagnosed more often in females. This means that both boys and 
girls with SW CAH were missed before screening and that screening for CAH does not only 
increase the number of detected boys with SW CAH as previously thought, but also of girls. 

The neonatal screening for CAH in Sweden was studied from the start in 1986 to 2011 (Paper IV). 
A total of 2 737 932 neonates (99.8% of all live births) had been screened. No cases with evident 
SW CAH had been missed, sensitivity 100%. The sensitivity was lower in the simple virilising 
form, 79%, and non-classical CAH, 32%. The positive predictive value was higher in full-term 
infants, 25.1%, than in pre-terms, 1.4% (P < 0.001). The recall rate was lower in full-terms, 
0.03%, than in pre-term infants, 0.57% (P < 0.001). An analysis of all publications describing 
neonatal screening programmes since 1996 revealed that the screening sensitivity correlated 
negatively with the duration of follow-up (P = 0.034). In contrast to current reports, our study 
shows that neonatal screening is effective in identifying SW CAH. 

Growth in CAH was studied in a prospective, observational cohort study including all children 
born or diagnosed with CAH between 1989 and 1994, 80 patients (46 females, 34 males). Most 
children were treated with a glucocorticoid dose within the recommended 10–15 mg/m2 body 
surface area. Corrected final height correlated with CYP21A2 genotype (P = 0.012). An important 
finding was that the corrected final height SDS was lower in patients who had been treated with 
the addition of prednisolone, -1.1 ± 1.0, than in those who had been treated with cortisone acetate 
and/or hydrocortisone alone, -0.60 ± 1.0 (P < 0.05). Furthermore, body mass index at 18 years of 
age was higher in patients treated with prednisolone, 25.3 ± 4.7 kg/m2, compared to 23.4 ± 4.5 
kg/m2 (P < 0.05). Hence, the results suggest that treatment with prednisolone should be avoided in 
growing subjects with CAH. 
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1 INTRODUCTION 

Congenital adrenal hyperplasia (CAH) constitutes a group of autosomal recessive diseases. The 

most common form, 21α-hydroxylase deficiency, is caused by a defective CYP21A2 (1-7). In this 

thesis, CAH will refer to 21α-hydroxylase deficiency if not stated otherwise. 

In CAH, glucocorticoid and mineralocorticoid synthesis is impaired and there is a concomitant 

overproduction of adrenal androgenic precursors. This may lead to potentially lethal salt loss in 

both sexes and prenatal genital virilisation in females (1, 2, 4-7). 

There are different clinical forms of CAH. The salt-wasting form (SW CAH) is marked by both 

cortisol and mineralocorticoid deficiency and overproduction of androgens (4, 8). The simple 

virilising form (SV CAH) is not associated with salt loss, but with cortisol deficiency and 

overproduction of androgens (3). SW CAH and SV CAH are sometimes referred to as classical 

CAH and both have their onset before 5 years of age (1, 2). Non-classical CAH (NC CAH) is the 

mildest form and may sometimes remain undetected. It is diagnosed more often in females, 

probably owing to more obvious symptoms of androgen excess, such as hirsutism and menstrual 

disturbances (3). 

Since severe forms of CAH may be fatal, especially in infancy, many countries have introduced 

newborn screening programmes to detect the disease at an early stage (9-11). 

The treatment of CAH consists of substitution therapy with glucocorticoids and 

mineralocorticoids in doses large enough to reduce the androgen overproduction. Most patients 

with classical CAH require treatment with glucocorticoids and mineralocorticoids, as well as 

supplementation therapy with sodium during infancy and early childhood (1, 2, 4-7). Androgen 

blocking drugs have been used experimentally, but are not yet included in clinical routine 

treatment (12). 

Despite thorough follow-ups and seemingly adequate treatment, short stature remains a clinical 

problem (1, 2). Development of overweight is thought to be attributable to excessive 

glucocorticoid treatment (13). 

In adult patients with CAH, fertility is compromised in both females and males (14). Although 

the mechanisms has not been entirely elucidated, high level of progesterone may negatively 
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affect the endometrium and ovulation in females (15). In males with CAH, testicular adrenal rest 

tumours often develop. These benign tumours have been associated with reduced fertility (16). 

The long-term effects on cardiovascular disease and osteoporosis have recently begun to be 

investigated. The increased production of androgens raises the concern that patients with CAH 

may be at increased risk of atherosclerosis and ischaemic heart disease (17, 18). In addition, 

long-term excessive glucocorticoid treatment may have negative effects on bone mass (16). 

In untreated patients, there is a special endocrine situation with overproduction of androgens and 

decreased production of cortisol and aldosterone. CAH can thus be used as a model for studying 

effects of androgens on human physiology. In this thesis two papers address the potential effect 

of these hormones on birth weight and length of pregnancy. 

The management of patients with CAH was first described in the 19th century (19, 20) and has 

changed remarkably during the last 100 years. Before 1950 no efficient therapy was available. 

Neonatal screening for CAH was first described in the late 1970s and introduced in Sweden in 

1986 (9). Today, deaths due to CAH are rare in countries with well-functioning screening 

programmes (11). 

 



 

 3 

2 BACKGROUND 

2.1 EPIDEMIOLOGY 

The most common aetiology of CAH is 21α-hydroxylase deficiency causing about 90–95% of 

the cases (2). 11β-hydroxylase deficiency is less common and is the cause in about 5% of CAH 

cases (21). Other more rare causes of CAH are 3β-hydroxysteroid dehydrogenase II deficiency, 

lipoid CAH, caused by mutations in steroidogenic acute regulatory protein (StAR) or cholesterol 

side-chain cleavage enzyme (P450scc), and 17α-hydroxylase deficiency (4).  

SW CAH has been reported to occur with an incidence of 1:10 000–23 000. Some ethnic groups 

show a profoundly increased rate of SW CAH. The incidence of SW CAH in Yupik Inuits is 

1:282 and in the French island of La Reunion, east of Madagascar, an incidence of 1:2141 has 

been reported (11). 

In most populations the mildest form, NC CAH, is more frequent than the more severe forms. 

The highest frequency of NC CAH has been reported among Ashkenazi Jews in New York City, 

where it was found to affect 1:27 (22). Other small studies have suggested high frequencies in 

Hispanics (1:40) (3), Croatians (1:50) (23) and Italians (1:300) (3). The prevalence of NC CAH 

in Sweden seems to be lower than in other reported populations (24). 

2.2 PATHOPHYSIOLOGY 

2.2.1 Genetics 

CAH due to 21α-hydroxylase deficiency is caused by mutations in the CYP21A2 gene, located 

on the short arm of chromosome 6 (band 6p21.3). The gene is located in the major 

histocompatibility complex (MHC) locus, known for a high degree of rearrangement leading to 

inter-individual variability (25). 

A pseudogene, CYP21A1P, is located in tandem with the active gene, but is not expressed 

because of deleterious mutations. In fact, more genes in the same regions are highly homologous, 

with one gene being expressed to a functioning protein, whereas its counterpart will only be 

translated to a truncated protein. In the region, the following genes are arranged, from 5’ to 3’: 

RP1, C4A, CYP21A1P, TNXA, RP2, C4B, CYP21A2 and TNXB (26, 27) (Figure 1A). The RP1 

gene encodes for a nuclear protein, whereas RP2 forms a truncated protein just as TNXA forms a 
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truncated protein of TNXB, which encodes a functioning extracellular matrix protein. C4A and 

C4B both encode complement proteins in the innate immune system (25). 

Figure 1 

 

A. Organisation of the CYP21A2 gene locus. Both the pseudogene and the functioning 
CYP21 gene are located in separate RCCX regions. B. Nine of the most common mutations 
are transferred from the CYP21A1P pseudogene by microconversion. C. Residual in vitro 
activity in different common mutations. The positive predictive value (PPV) for SW CAH 
with a null genotype is 96–100% (8, 28) and with I2 splice genotype 85–96% (28, 29). The 
PPV for SV CAH with I172N genotype is 53–74% (8, 29) and the PPV for NC CAH with 
V281L or P453S genotype is 63–100% (28, 29). 
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As stated above, the repeated genes (RP, C4, CYP21 and TNX) are referred to as the RCCX 

region. Since the RCCX region is highly homologous, misalignment may occur during meiosis 

causing a recombination of gene elements. Furthermore, small or large sequences from the 

psuedogene may be inserted into the functioning gene in a process termed gene conversion. 

These psuedogene-derived mutations result in impaired function of the encoded enzyme and are 

frequently found in patients with CAH (4). 

Although nearly 100 disease-causing mutations in CYP21A2 have been described, nine 

pseudogene-derived mutations are accountable for more than 95% of cases of CAH due to 21α-

hydroxylase deficiency (Figure 1B). Of these mutations, del 8 bp E3 

(c.329_336delGAGACTAC), Cluster E6 (c.707T>A+710T>A+716T>A), L307 frameshift 

(c.920_921insT), Q318X (c.952C>T), R356W (c.1066C>T) result in no enzymatic activity. I2 

splice (c.290-13A/C>G) leads to almost no enzymatic activity and is linked to severe forms of 

CAH. I172N (c.515T>A) has been linked to SV CAH, but generally not to SW CAH, and is 

characterised by less than 2% of in vitro residual enzymatic activity. Salt loss is seen in less than 

10% of all cases with the I172N genotype (30). P30L (c.89C>T) and V281L (c.841G>T) 

generally lead to milder forms of CAH (25). 

Most cases of CAH are compound heterozygous. The degree of severity is determined by the 

mildest affected allele (4). 

In most cases of CAH, there is a reliable genotype phenotype correlation (30-32) (Figure 1C). 

Hence, a genetic analysis may facilitate decisions regarding the choice of treatment and 

frequency of follow-up in patients with CAH. Since males with SW CAH do not exhibit 

ambiguous genitalia, the distinction between SW CAH and SV CAH forms can often be 

facilitated by genetic analysis (8, 33).  

Being an autosomal recessive disease with the affected gene closely linked to the class 3 HLA 

complex, the inheritance of CAH can be coupled to HLA markers. Before detailed analyses of 

CYP21A2 were available, HLA linkage analysis was therefore used to diagnose foetal CAH in 

chorionic villus sampling/amniocentesis from subsequent pregnancies by comparison with HLA 

markers in the index sibling (34). 

Southern blotting may be employed to detect gene deletion and large gene conversions. 

However, the method is time-consuming and has now been surpassed by more modern methods. 
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Real time quantitative polymerase chain reaction (PCR) is a more rapid method, which also 

detects deletions and can be used to estimate gene copy number. Multiplex ligation-dependent 

probe amplification is another commonly used method for gene copy number determination. 

Allele-specific PCR is designed to detect single point mutations, but it sometimes requires a 

knowledge of differences between the alleles; hence, parental DNA must be available (25). 

Direct DNA sequencing remains the only alternative to reliably detect all possible mutations, 

except for larger rearrangements such as deletions. Lately, new techniques have made this 

approach faster; however, since most cases of CAH are caused by a limited number of mutations, 

it may not always be cost-effective (25).  

As mentioned before, CAH is a disease exhibiting clear genotype-phenotype correlations with 

few exceptions. This has been supported by enzyme activity measurements in vitro, which 

appear to be consistent with glucocorticoid and mineralocorticoid deficiency in vivo (1). 

However, compared to the correlation between genotype and the risk for salt loss, the degree of 

virilisation is not as dependent on the CYP21A2 genotype (8, 28, 33, 35, 36). Female genital 

virilisation, defined as a Prader score, may vary even between patients with identical mutations. 

The reason for this is poorly understood, but it may be caused by variations in e.g., the androgen 

receptor (AR) or P450 oxidoreductase (POR) activity. The AR is known to be highly 

polymorphic in the number of CAG repeats at its 3’ end, which is known to affect its activity 

(37). Initial results suggested a possible association between CAG repeats and virilisation in 

CAH patients (37), but these data were not supported by a later report (38). POR reduces 

cytochrome P450 enzymes including 21α-hydroxylase, to reactivate them for further enzymatic 

activity (39). The POR gene has been shown to be polymorphic (40). Furthermore, the hepatic 

cytochrome P450 enzymes, CYP2C19 and CYP3A4 can 21-hydroxylate progesterone, but not 

17-hydroxyprogesterone (17-OHP) in vitro, thus potentially reducing the deficiency of 

mineralocorticoids, but not of glucocortiocoids in vivo (41). In addition, 17-OHP may be 

converted to dihydrotestosterone (DHT) via androsterone, according to the so called “back-door 

pathway” (42, 43). The possible importance of this pathway in humans (42), as well as its 

influence on prenatal virilisation in female foetuses affected with CAH, has attracted attention 

lately (44). 
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2.2.2 Biochemistry 

All steroid hormones are synthesised from the same precursor, cholesterol. Cholesterol can be 

taken up from the intestine, either from the diet or from recirculation when secreted from the 

liver or synthesised de novo.  

For further steroid biosynthesis (Figure 2), cholesterol needs to pass from the outer to the inner 

mitochondrial membrane. Although a detailed description of this process remains partly 

unknown, this transport is mainly facilitated by StAR, the rate-limiting step in steroid 

biosynthesis. P450scc then converts cholesterol to pregnenolone, the first step in all human 

steroid biosynthesis. The product, pregnenolone, is transported back into the cytosol for further 

steroid hormone biosynthesis (45).  

Figure 2 

 

Human steroid synthesis. Aldosterone production occurs predominantly in the zona glomerulosa, 
whereas cortisol and androgenic precursor production occur predominantly in the zona 
fasciculate and zona reticularis of the adrenal gland. Testosterone is reduced to 
dihydrotestosterone in extra-adrenal tissue, as well as aromatised to oestrogens (52). P450scc, 
side-chain cleavage enzyme; 3β-HSD, 3β-hydroxysteroid dehydrogenase; 21-OH, 21α-
hydroxylase; 11-OH, 11β-hydroxylase; 18-OH, 18α-hydroxylase; 18-HSD, 18-hydroxysteroid 
dehydrogenase; 17-OH, 17α-hydroxylase; 11β-HSD1, 11β-hydroxysteroid dehydrogenase type 
1; 11β-HSD2, 11β-hydroxysteroid dehydrogenase type 2; 17,20D, 17,20 lyase; STS, steroid-
sulphatase; HST, hydroxysteroid sulphotransferase; 17β-HSD, 17β-hydroxysteroid 
dehydrogenase. 
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The adrenal cortex consists of three anatomically and biochemically distinct layers, the outer 

zona glomerulosa, the middle zona fasciculata and the inner zona reticularis, closest to the 

adrenal medulla (46). 

The zona glomerulosa differs from the other layers in that it does not express 17α-hydroxylase, 

which is responsible for converting pregnenolone to 17-hydroxypregnenolone and further 

biosynthesis of glucocortiocoids and androgens (47). Instead, zona glomerulosa cells express 3-

β-hydroxysteroid dehydrogenase which catalyses the conversion of pregnenolone to 

progesterone (48). Progesterone is then hydroxylated by 21α-hydroxylase to 11-

deoxycorticosterone. 11-hydroxylase and aldosterone synthase finish the biosynthesis of the most 

potent mineralocorticoid hormone, aldosterone, in the zona glomerulosa (49). Absence of a 

functioning 21α-hydroxylase, due to mutations in CYP21A2, leads to an inability to produce 

aldosterone and an accumulation of precursors (2). 

In contrast to the zona glomerulosa, the zona reticularis express 17α-hydroxylase. Pregnenolone 

is therefore hydroxylated to 17-hydroxypregnenolone, which is further converted to 

dehydroepiandrosterone (DHEA) by 17,20-lyase (46). DHEA is a weak androgen and can be 

further metabolised into androstendione or dehydroepiandrosterone sulphate (DHEAS) in the 

adrenal cortex (50). These androgens are transported in the circulation bound to sex hormone-

binding globulin (SHBG) and may be further metabolised to the more potent androgens 

testosterone and DHT in extra-adrenal tissue (51). 

The zona fasciculata mainly contributes to the production of glucocorticoids. Pregnenolone may 

be converted to either 17-hydroxypregnenolone or progesterone by 17α-hydroxylase or 3-β-

hydroxysteroid dehydrogenase, respectively. 17-hydroxypregnenolone is further converted into 

17-OHP. Progesterone and 17-OHP are hydroxylated by 21α-hydroxylase to 11-

deoxycorticosterone and 11-deoxycortisol, respectively (46). 11α-hydroxylase finalises the 

production of cortisol from 11-deoxycortisol and may hydroxylate 11-deoxycorticosterone to 

corticosterone, a weak mineralocortiocoid hormone (49). Since both the zona fasciculate and the 

zona reticularis lack aldosterone synthase, corticosterone cannot be further converted to 

aldosterone in these layers. Although the zona fasciculata is the main site for the production of 

glucocorticoids and the zona reticularis is the main site for production of adrenal androgens, they 

both express the enzymes for both these processes (46, 50). 
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From the above description of adrenal steroid biosynthesis, it is clear that mutations causing 

decreased function in 21α-hydroxylase will lead to an inability to produce adequate amounts of 

cortisol and aldosterone with a concomitant accumulation of precursors. Since androgen 

synthesis is independent of 21α-hydroxylase, these precursors will be shuttled towards the 

biosynthesis of androgenic hormones (2, 4).  

2.3 CLINICAL FEATURES 

21α-hydroxylase deficiency results in decreased production of aldosterone and cortisol and 

concomitant overproduction of androgens. The symptoms of CAH are caused by these hormonal 

disturbances (2, 53, 54).  

2.3.1 Foetus 

2.3.1.1 Female virilisation 

The perhaps most prominent sign in severe forms of CAH is the prenatal virilisation of the 

external genitalia in females (53). There is a wide spectrum of degrees of virilisation that is 

related to the degree of 21α-hydroxylase deficiency in that females with completely abolished 

enzyme function have pronounced virilisation. The correlation is not as strong in milder forms, 

perhaps allowing other factors, such as mentioned above, to contribute. 

Normal sex differentiation is a complex embryonic process that partly remains elusive (44). Male 

and female embryos share the same internal and external appearances until the sixth gestational 

week (55). The gonads have the potential of developing either into testes or ovaries. In the 

presence of a Y chromosome, the Sertoli cells express the SRY gene product and thus activate 

the expression of further gene products, driving the gonads into testicular development (56). 

Leydig cells in the testes will form testosterone, which is converted into DHT, which is essential 

for the formation of the external genitalia (57). With the appearance of developing testes and 

testosterone production, the Wollfian ducts will develop into internal male genitalia. Anti-

müllerian hormone (AMH), produced by the testicular Sertoli cells, enables the involution of the 

Müllerian ducts, which are the anlagen for internal female genitalia (58).  

In the absence of adequate levels of testosterone, the Wollfian ducts will regress. Female 

development requires the absence of AMH and testosterone to facilitate the formation of the 

internal female genitalia from the Müllerian ducts (59). 
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Under the influence of DHT in the 46,XY embryo, the genital tubercle develops into a penis, the 

urethral folds into the urethra and the genital folds into the scrotum (58). However, in the 

absence of DHT, such as in the normal 46,XX embryo, the genital tubercle develops into the 

clitoris, the urethral folds into the labia minora and the genital folds into the labia majora (44). 

Increased levels of androgens in 46,XX embryos during the first trimester may thus result in 

virilisation of the external, but not internal, genitalia (33, 60). In the presence of increased 

androgens in a 46,XX embryo, the genital folds that develop into the labia majora will fuse, 

partially or completely, resembling the development of the scrotum. Failure to develop the lower 

third of the vagina leads to the formation of a urogenital sinus. Increased androgens throughout 

pregnancy will lead to clitoral enlargement (44). The Prader score is used to categorise the 

degree of virilisation in CAH (Figure 3) (61).  

Figure 3 

 

Prader stage. Increasing clitoromegaly from I to V and increasing posterior fusion from I to IV, 

with the formation of a sinus urogenitale in Prader III and IV. Prader V with complete fusion of 

the labioscrotal folds and the urethral opening at the tip of the glans. Originally published by 

Prader, A. et. al., 1955 (62). 

The phenotype of a virilised female infant with CAH may thus, in severe cases, resemble a male 

with hypospadias and undescended testes. Hence, sex assignment in females with virilising 

forms of CAH may be difficult since other rare conditions also present with ambiguous genitalia 

(44, 61). 

2.3.1.2 Length of pregnancy 

The physiological onset of parturition is a complex, not fully elucidated process. Foetal size, 

maternal and foetal endocrine factors and local inflammation are known to contribute (63). A 

detailed description of this area of research is not within the scope of this thesis. 
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Both preterm and term labour are, however, associated with an increased inflammatory state in 

the amniotic fluid, foetal membranes, myometrium and cervix (64). Throughout pregnancy, 

progesterone receptors are abundant in these tissues and are stimulated by high circulating levels 

of progesterone (63). The nuclear progesterone receptor acts in an anti-inflammatory way by 

inhibiting the pro-inflammatory transcription factor NF-κB (65). This inactivation of NF-κB is 

thought to contribute to the quiescent state of the myometrium throughout most of the pregnancy 

(63). It is noteworthy that progesterone production is increased in CAH. 

In late pregnancy, uterine stretch (66), placental corticotropin-releasing hormone (CRH) 

production (67) and surfactant production (68) lead to the activation of macrophages that change 

the anti-inflammatory state to a more pro-inflammatory state of the amniotic fluid, foetal 

membranes, uterus and cervix by increasing the production of pro-inflammatory cytokines, 

resulting in NF-κB activation. This leads to down-regulation of the progesterone receptor 

function in the myometrium (63). The absence of the inhibitory action of the progesterone 

receptor and the consequently increased activation of NF-κB lead to enhanced prostaglandin 

production by up-regulation of COX-2 (69), increased expression of connexin 43 (70) and thus 

more gap-junctions and increased expression of oxytocin receptors in the myometrium (63, 71). 

This ultimately leads to a more contractile myometrium and the onset of contractions. 

The human placenta has been suggested to increase the production of CRH at term. This CRH 

would then enhance the production of foetal ACTH, which stimulates cortisol production. 

Cortisol in the maternal-foetal circulation increases placental COX-2 production and hence 

prostaglandin synthesis (72). Furthermore, placental 17α-hydroxylase is up-regulated by cortisol, 

leading to increased production of C-19 steroids that are aromatised into oestradiol, which 

inhibits the anti-inflammatory action of the progesterone receptor signalling (73). Oestradiol may 

also have pro-inflammatory effects on its own by activating COX-2 expression (Mendelson CR, 

personal communication, 2013). In addition, the physiological increase in foetal adrenal cortisol 

production may increase the production of surfactant-protein A, which increases uterine 

myometrial contractility (68). Cortisol production is decreased in CAH. 

It has been suggested that males have been shown to have a prolonged gestation compared to 

females (74) and healthy male foetuses have been shown to produce more testosterone than 

female foetuses (75). Circulating testosterone in males is high at birth and rapidly falls after the 
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first post-natal week (76). However, the impact of testosterones on the length of pregnancy is not 

known. 

2.3.1.3 Foetal growth 

Healthy male foetuses are both slightly longer and heavier than females (77-79), raising the 

hypothesis that androgens may be responsible for this difference between the sexes. Both birth 

weights and birth lengths in infants with CAH have been reported to exceed the normal reference 

data, suggesting that increased androgen levels may increase growth (80, 81). However, 

administration of testosterone in pregnant sheep has actually resulted in reduced birth weights in 

the offspring (82). Birth weight is positively correlated with gestational age at birth (83). 

2.3.2 Growth 

2.3.2.1 Normal growth 

Normal longitudinal growth and weight development are regulated by complex mechanisms 

including hereditary factors, endocrine regulation and nutritional status (84, 85). Usually, growth 

in humans is divided into three distinct phases: infancy, childhood and puberty (Figure 4). 
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Figure 4 

 

Foetal and infant growth is dependent on thyroid hormones (T3, T4) and nutritional factors that 

increase hepatic production of IGF-1, but not growth hormone, which plays a more important 

role during childhood. Pubertal growth is dependent on testosterone and oestrogen while 

epiphyseal closure relies on oestrogen production. Infancy is marked by the fastest height 

velocity. The onset of the childhood growth phase actually occurs before the end of infancy. 

Similarly, childhood growth continues through puberty and adds to the pubertal growth spurt. 

The height given on the y-axis corresponds to males, but the growth pattern and endocrine 

regulation are similar in females. 
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Longitudinal growth is a process that occurs in the growth plate as a result of endochondral 

ossification (86). Stem-like cells in the growth plate replicate and differentiate into proliferative 

chondorocytes which replicate rapidly (87). After several generations of chondrocyte 

replications, cell division ceases and the chondrocytes differentiate into hypertrophic cells, 

increasing 6- to 10-fold in cell height (88). 

Even though there seems to be an intrinsic termination of cell division in the growth plate itself 

(89), the process is highly sensitive to regulatory mechanisms, including both endocrine signals 

(85) and nutritional state (84). Growth hormone (GH), insulin-like growth factor I (IGF-I) and 

thyroid hormone are definitely involved in the process of normal endochondral ossification (85, 

86, 89) and increases longitudinal growth. Glucorticoids exert negative effects on longitudinal 

growth, both by direct signalling to growth plate chondrocytes (90), by inducing chondrocyte 

apoptosis (91), and probably indirectly by lowering systemic GH concentrations (92). 

Sex steroid hormone levels are high in both infants and healthy pubertal subjects (93). Although 

newborns seem to be insensitive to this ‘biochemical mini puberty’ (94), true pubertal growth 

acceleration is dependent on increased production of sex steroids (95). The positive effect on 

longitudinal growth is dependent on both oestrogens and androgens (95, 96). Although both 

androgens and oestrogens induce growth acceleration, oestrogen also triggers bone maturation 

and epiphyseal fusion, which marks the end of longitudinal growth (97). 

During the infancy period, healthy children continue to grow at a dramatic rate and many 

researchers see this phase as a continuation of the foetal growth period. The average gain in 

length is about 25 cm for both sexes, although males are somewhat taller at 1 year of age (98). 

Typically, children born small for gestational age exhibit a catch-up in growth and children born 

large for gestational age exhibit a catch-down in growth, thereby diminishing the differences 

seen at birth (99). Normal growth development is dependent on nutritional status as well as 

physiological signalling of thyroid hormone, insulin and IGF-I (85). Androgens are not thought 

to play an important role in growth during infancy. High levels of androgens have been 

demonstrated at this period without signs of precocious puberty or growth acceleration. Transient 

physiological androgen insensitivity is therefore thought to be present during infancy (94). 

The childhood growth phase begins when the high growth velocity in infancy abates (100). 

Growth during childhood is mostly linear with a stable growth rate of about 4–8 cm per year (85, 

101) and there is almost no difference in height velocity between the sexes (101). The 
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hypothalamus-pituitary-gonad axis is inactive due to high sensitivity to negative feedback of 

oestrogen (102) and growth is dependent on the GH-IGF-1 axis (103).  

In the later part of the childhood growth phase the adrenal gland increases its production of the 

weak androgens DHEA and DHEAS (104) in a process called adrenarche. Adrenarche typically 

begins at about 5–7 years of age (105, 106). Only humans and some great apes demonstrate this 

process in which pituitary adrenocorticotropic hormone (ACTH) increases the production of not 

just DHEA and DHEAS, but also cortisol (51, 107). 

Despite being a weak androgen, DHEA does not increase growth. On the contrary, the growth 

rate is decreased during adrenache and the period immediately after (102). Rather than acting as 

an androgen, DHEA directly stimulates the oestrogen receptor in the growth plate and is 

aromatised into oestrogen, so as to reduce the proliferative rate in the growth plate (104). In fact, 

the growth rate before the onset of puberty is at its lowest since birth (108).  

The onset of puberty is defined as the presence of two common pubertal signs in girls, thelarche 

and increased growth, and, in boys, increased testicular growth (≥ 4 ml). In girls, the peak height 

velocity, the growth spurt, occurs at the beginning of puberty, whereas, in boys, the height 

velocity peaks later in puberty when the testicles are about 10 ml in size (109). 

In the childhood phase, the amplitude of the pulsatile GnRH secretion is low, but adequate not to 

make the gonad completely quiescent. During puberty both the amplitude and frequency of these 

pulses increase (109). At the onset of puberty the amplitude, but not the frequency, of the nightly 

pulsatile secretion of GH is increased and leads to increased levels of IGF-1 (110, 111). In the 

absence of gonadotrophins or GH signalling, the pubertal growth spurts default. The two 

hormonal axes seem to be closely related as sex steroids, predominately oestrogens, increase 

production of GH (109). 

The average gain in height during puberty is 20–30 cm but the interindividal differences are wide 

(112). Boys grow more during puberty than girls (113). If the age at onset of puberty is within 

the normal range, it does not seem to affect final height (114). However, an extremely early start 

of pubertal growth or a complete absence of puberty leads to short final stature (112, 115). 

As chondrocyte proliferation decreases and they undergo apoptosis, longitudinal growth 

gradually ends (89). In a Swedish population-based study, girls reached their final height at a 

mean of 17.5 years of age and boys at a mean of 19.2 years (116). 
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Girls with the androgen insensitivity syndrome (AIS), and 46,XY, have a dysfunction in the AR 

and are thereby unable to respond to testosterone. They reach a final height nearly equivalent to 

the average for men (117), suggesting that androgens are not involved in the process of 

epiphyseal closure and that genetic influence from the Y-chromosome is important for the 

determination of final height. 

In addition, the achieved final height is closely connected to parental height (118). The usual 

method for predicting a child’s target height was proposed by Tanner in 1970 as the mid-parental 

height + 6.5 cm for boys and – 6.5 cm for girls (119). 

Although final height seems to be genetically predetermined, environmental factors may 

contribute (120). Nutritional factors and intercurrent chronic disease modulate final height (121, 

122). However, obese children who often exhibit increased childhood growth have an attenuated 

pubertal growth spurt leading to a final height not different from that of the normal population 

(123). 

2.3.2.2 Growth in congenital adrenal hyperplasia 

Children with CAH present a genuine challenge to the clinician, not least in trying to achieve a 

final height close to the predisposed target height and avoiding the development of overweight. 

In CAH, growth during infancy has been shown to be impaired. Especially children with SW 

CAH have a markedly reduced growth velocity (124). High doses of glucorticoids, which could 

potentially interfere with the endochondral ossification in the growth plate, are given to children 

with severe forms of CAH. In fact, impaired growth during the first year of life has been reported 

to be more frequent in children with SW CAH treated with hydrocortisone equivalent doses 

exceeding 18 mg/m2 BSA/day than in those with lower doses (125, 126). It has been noted that 

children with CAH on glucocorticoid treatment have a reduced height development compared to 

the normal population during the first 1–2 years of life (81) and that the height velocity 

correlated negatively with the glucocorticoid dose (127). Glucocorticoids suppress 

osteoblastogenesis and may increase osteoclastic bone resorption (128). 

Untreated patients with CAH had a normal growth pattern until 18 months of age, suggesting 

that this growth period is androgen-insensitive (94). However, treatment is necessary in children 

with classical CAH who are at potential risk of an adrenal crisis and salt loss. Since children 

seem to be relatively androgen-insensitive during infancy, supra-physiological glucocorticoid 
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regimens to suppress androgen synthesis in children affected by CAH may not be needed during 

this phase (124). Overtreatment with glucocorticoids does not only affect final height (129), but 

also height velocity in all growth phases (130). The glucocorticoid dose is related to growth, but 

the effect of overtreatment appears to be strongest during infancy and puberty, whereas the effect 

during the childhood growth phase is not as evident (81). 

Treatment with potent synthetic glucocorticoids such as prednisolone leads to reduced growth 

(131). Prednisolone needs to be recalculated into hydrocortisone equivalents to allow proper 

comparisons of dosing. Previous studies have calculated prednisolone to be 4 times (131), 5 

times (132) or even 15 times (133) more potent than hydrocortisone in affecting growth in 

children with adrenal insufficiency. 

Rivkees and co-workers (134) published their results on 26 children with CAH treated with the 

long-acting and potent glucocorticoid dexamethasone. In their study they saw normal growth and 

skeletal maturation during the 7 years of follow-up. However, they calculated dexamethasone to 

be 70 times more potent than hydrocortisone, rather than the manufacturer’s suggestion of 30 

times. The use of long-acting, potent glucocorticoids in growing patients with CAH must 

therefore be preceded by careful consideration concerning the aim of treatment and dosing. 

Besides the deficiency in cortisol, a mineralocorticoid deficiency causes hyponatraemia. A 

deranged sodium balance has ben connected with poor growth. Furthermore, adequate treatment 

with mineralocorticoids can lessen the need for glucocorticoids and thereby allow lower total 

doses, ultimately leading to an improved final height (135-137). 

Poor compliance is hard to study, but still it is thought to contribute to a lower achieved final 

height (138). 

The peak height velocity in puberty in patients with CAH develops about two years before 

expected for the normal population (139). Patients with CAH show reduced growth during 

puberty (127, 140, 141) and the magnitude of pubertal growth is related to the glucocorticoid 

dose (131). In addition, the total gain in height during puberty was significantly less for both 

males and females with classical CAH compared to a control group in the study by Bonfig and 

co-workers (131). It was suggested that to increase final height, unnecessary over-substitution of 

glucocorticoids needs to be especially avoided from 8 years of age and onwards (140). 
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In 2010 Muthusamy and co-workers published a meta-analysis concerning final height in 

classical CAH (142). The study included the results of 35 previous studies of children diagnosed 

before 5 years of age, treated and followed up to final height. They found a total final height SDS 

of -1.38 (CI 95%, -1.56 to -1.20). However, for that figure, studies as far back as 1966 contribute 

to the results. The corrected final height SDS (final height SDS – target height SDS) was -1.03 

(CI 95%: -1.20 to -0.86) and was based on 17 studies also including target heights published 

between 1995 and 2007. In fact, on performing a regression analysis they found that the 

published achieved final height in patients with CAH correlated with the year of publication, 

meaning that older studies reported more impaired final height than recent ones. 

Children with NC CAH often show a reduced final height. A contributing factor to this is 

probably the advanced skeletal maturation at diagnosis as these patients are often diagnosed later 

in life (143, 144). The achieved final height corresponds to the age of initiation of treatment, 

where an early start is associated with a better final height (138). Furthermore, a later diagnosis 

has been associated with a poor final height outcome (145).  

Final height is negatively correlated with body mass index (BMI) during childhood in patients 

with CAH (81, 146). It has been interpreted as related to the glucocorticoid dose, or to an earlier 

pubertal onset and, in girls, an earlier menarche in the presence of obesity (147). 

2.3.3 Weight development 

2.3.3.1 Normal weight development 

As in the case of longitudinal growth, the development of childhood obesity is a multifactorial 

process including heredity, psychosocial factors, dietary intake, exercise and endocrine 

regulation (148-151). Weight development in healthy children is intense during infancy and BMI 

increases rapidly from about 14 kg/m2 at birth to 17–18 kg/m2 at about 1 year of age (152). 

In the early childhood phase, healthy children grow in a linear fashion that is faster than the 

weight gain. This means that young children become physiologically leaner with a decreased 

BMI (152). At about 6–7 years of age, BMI increases again, the so-called adiposity rebound 

(153). The increase in BMI is thereafter relatively stable from adrenarche to the end of puberty 

(154).  

Glucocorticoids increase energy intake and are linked to the pathophysiology of obesity (155). 
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2.3.3.2 Weight development in congenital adrenal hyperplasia 

Similar to growth, weight development in children with severe forms of CAH has been reported 

to be impaired during the first year of life. Despite higher glucocorticoid dosages in children with 

severe forms of CAH, compromised weight development seems more pronounced in these 

children than in those with milder forms of CAH (124). 

However, 75% of patients with CAH suffered from obesity in late childhood if high doses of 

hydrocortisone, defined as  > 30 mg/m2 BSA per day, had been given during the first two years 

of life, compared to only 11% if the doses were lower (13). BMI appeared to be higher in a 

cohort of children (2–8 years old) with classical CAH compared to a control group (156). 

2.3.4 Congenital adrenal hyperplasia in adults 

Adrenal crises are not as common in adults as they are in children, still they are feared and 

adjustments in treatment are necessary to reduce the risk of such events (14). Since salt-wasting 

is not as precarious in adults as it is in children, some researchers claim that mineralocorticoid 

substitution therapy may be discontinued in most adult patients (14). Others, on the other hand, 

believe in using mineralocorticoids in adults, not only in SW but also in SV and sometimes even 

in NC CAH, in an effort to be able to decrease the glucocorticoid doses. The doses of 

mineralocorticoids employed are however reduced with age due to side effects (157). 

The primary objectives for treatment in adults with CAH, besides general well-being and 

reducing the risk for adrenal crisis, are to maintain fertility and reduce the risk of tumours in the 

adrenals and gonads. Since glucocorticoid treatment may provoke such side effects as iatrogenic 

Cushing syndrome and reduced bone mineral density (BMD), the doses have to be kept as low as 

possible (14, 158). Although a reduced BMD is common in CAH, osteoporosis is not (159). It 

may be that, although excess glucocorticoid treatment causes demineralisation of the bone, 

excess androgens may counteract this process (14). 

Hypotension is uncommon in adults with CAH but, rather paradoxically, hypertension is 

sometimes seen (14). 

Long-term excess ACTH stimulation of the adrenals may cause hyperplasia, which is associated 

with the development of such tumours as myelolipomas (160, 161). 
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2.3.4.1 Men 

Impaired fertility in men with CAH is common (162, 163). The development of testicular adrenal 

rest tumours (TARTs) has been linked to hyperandrogenaemia and they are found in most adult 

men with CAH (163, 164). TARTs increase the pressure within the testis, leading to reduced 

blood flow and, ultimately, compromised function (14). Furthermore, overproduction of sex 

steroids causes a down-regulation in gonadotrophin stimulation of the gonads, which may cause, 

reduced testosterone production from the Leydig cells, testicular atrophy and reduced fertility 

(14). If fertility is not important to the male patient with CAH, substitution therapy with 

hydrocortisone may be designed to mimic the physiological secretion of cortisol at a dose of 

about 8 mg/m2 BSA per day (14). However, with low doses of glucocorticoids, there is an 

increased risk of TART development (165).  

2.3.4.2 Women 

Excess androgens need to be suppressed more effectively in women to avoid androgen effects in 

the long-term perspective such as infertility, hirsutism and deepening of the voice. Women with 

CAH may require evening doses of glucocorticoids to reduce excessive androgen production 

(14); however, such side-effects as sleep disorder and weight-gain are common (14). 

As in men, the fertility rate in women is reduced (166). However, this is due to endocrine factors 

as well as psychological ones, since women with severe forms, as a group, also express less 

interest in having children (166, 167). In order to establish ovulatory menstrual cycles and 

improved fertility, treatment with glucocorticoids may need to be supra-physiological in order to 

reduce both androgen and follicular phase progesterone excess (167). 

Suboptimal glucocorticoid treatment in childhood and adolescence may cause adrenal 

hyperplasia and hence hyperandrogenism. This has been linked to the development of a 

polycystic ovarian syndrome (PCOS) phenotype in women with CAH. Ovarian androgen 

production is one of the hallmarks of PCOS. Thus, in women with both CAH and polycystic 

ovaries on ultrasound, androgen overproduction may originate from both the adrenals and the 

gonads (168). These patients may benefit from combined oral contraceptive pills to reduce the 

ovarian androgen production and to decrease free testosterone by inducing SHBG production 

(14). 
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2.3.4.3 Cardiovascular disease 

The risk for cardiovascular disease in CAH is still largely an unexplored field. Most studies have 

been conducted on rather young populations and with surrogate markers. However, it has been 

shown that the BMI in patients with CAH is often increased (169). This increase in BMI may 

correlate with excessive glucocorticoid treatment (170) and hypercortisolism has been linked to 

an increased risk of cardiovascular death (171). 

Reduced insulin sensitivity has been reported to be more common in CAH, however most studies 

suggest that dyslipidaemia is not more common in patients with CAH than in the normal 

population (18, 172-174). 

The results concerning whether hypertension is more common in adults with CAH than in the 

normal population are conflicting. One study found that the systolic blood pressure in a 

paediatric cohort of patients with CAH was elevated (175). However, these results have not been 

confirmed in larger populations of adults (174, 176). 

Interestingly, Sartorato and co-workers found that the intima-media thickness (IMT) was 

increased in the common carotid and common femoral arteries, as well as in the abdominal aorta, 

in young adults with CAH, compared to healthy controls. IMT is measured with ultrasound and 

is a surrogate marker for atherosclerosis and it is considered to be a predictor of myocardial 

infarction and stroke (177). 

2.3.5 Management of congenital adrenal hyperplasia 

2.3.5.1 Children 

2.3.5.1.1 Aims of treatment 

The ideal aims of glucocorticoid treatment in children and adolescents with CAH should be to 

achieve a normal height velocity and normal bone maturation without developing overweight. By 

satisfying these criteria, treatment would be optimal, allowing no hyperandrogenism or hypo- or 

hypercortisolism (178). Keeping substitution therapy with glucocorticoids at a level where the 

HPA-axis is shut down without causing iatrogenic hypercortisolism is, however, a difficult task 

(1). 
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When the diagnosis has been demonstrated clinically and biochemically, genetic analysis is 

helpful not only for confirmation, but also for future genetic counselling, prognosis and 

optimising therapy (4, 33). 

2.3.5.1.2 Glucocorticoid substitution therapy 

The physiological endogenous production of cortisol is usually perceived to be about 6–8 mg/m2 

BSA per day (179-181). In order to mirror normal production, oral doses of 10–12 mg/m2 BSA 

per day of hydrocortisone are usually needed to overcome the degradation in the enterohepatic 

circulation (182). However, to suppress the HPA axis, higher doses may be needed; doses of 

about 15 mg/m2 BSA per day have been suggested (178). The joint ESPE/LWPES CAH working 

group recommended that the total dose of hydrocortisone equivalents per day in childhood 

should be 10–15 mg/m2 BSA per day, and that the dose should be divided and administered at 

least three times per day, with the highest dose given in the morning (132). 

Long-acting, potent glucocorticoids carry a higher risk of such adverse effects as compromised 

growth and development of obesity (136). However, successful careful treatment with 

dexamethasone, accompanied by close monitoring, has been reported by Rivkees and Crawford 

(134). 

Since 9α-fludrocortisone, besides acting on the aldosterone receptor, also has a strong affinity to 

the glucocorticoid receptor, this should be taken into account and added into the calculation of 

the total glucocorticoid dose (Table 1) (182). 
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Table 1 

 Potency in relation to hydrocortisone 

 Anti-inflammatory Mineralocorticoid Growth inhibitory 

Hydrocortisone 1 1 1 

Cortisone 0.8 0.8 0.8 

Prednisolone 5 0.8 5 

Fludrocortisone 10 125 n/a 

Relative potency of the glucocorticoids most frequently used to treat CAH in Sweden. The 

relative growth inhibitory potency of fludrocortisone compared to hydrocortisone is not known. 

Modified from Gupta, et. al. 2008 (182). 

Glucocorticoid doses may need to be increased during puberty. There are several reasons for this. 

Firstly, the increased GH secretion inhibits reactivation of cortisone to cortisol (183). Secondly, 

increased oestradiol concentrations stimulate the production of cortisol binding globulin, thereby 

decreasing the free and biologically active cortisol fraction (178). Finally, increased GH 

secretion elevates the insulin levels that stimulate both the ovaries (184) and the adrenals (185) to 

produce androgens. 

2.3.5.1.3 Mineralocorticoid substitution therapy and sodium supplementation 

In the neonatal period, electrolytes and blood glucose should be measured at diagnosis. In cases 

of salt loss, symptoms often occur in the second to third week of life (186) and potassium levels 

usually increase before sodium levels decline (187). If salt crisis occurs, intravenous fluid 

treatment with sodium chloride and glucose is necessary, in addition to glucocorticoid and 

mineralocorticoid treatment (52). 

During the first 6 months of life, a salt crisis is particularly impending and patients with potential 

SW CAH require supplementation with sodium chloride consisting of 1–3 g/day (132). The risk 

of salt crisis and the need for supplementation is particularly important to consider in fully 

breast-fed infants, as breast milk contains very little sodium (188). 

In SW CAH, substitution with the mineralocorticoid 9α-fludrocortisone is needed. Doses may 

need to be higher during the first two years of life, i.e., about 50–300 µg/day. Usually, the doses 
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can be lowered during childhood and at transition from paediatric care doses of 50–200 µg/day 

are often sufficient (132). 

2.3.5.1.4 Other adjuvant therapies 

If the control of disease is poor before final height is achieved, experimental treatment with 

aromatase inhibitor to reduce the conversion of androgens to oestrogens has been tried. By 

lowering the circulating levels of oestrogens, premature epiphyseal growth plate closure could be 

avoided or delayed (12). 

Peripheral androgen blockade may be helpful for treating hyperandrogenism in CAH, especially 

in combination with an aromatase inhibitor, but the effect on growth and long-term effects in 

children still has not been fully studied (12). 

The use of GH treatment to improve final height is still poorly investigated in CAH and the 

results are not convincing (126). 

In case of evolving central precocious puberty, treatment with GnRH agonists may be introduced 

to halt this process and to reduce the risk of future short stature (189). 

2.3.5.1.5 Surgery 

Although bilateral adrenalectomy is an effective way to completely diminish hyperandrogenism 

in CAH and thereby reduce the risk of iatrogenic hypercortisolism, it leaves the patient with no 

residual ability for endogenous cortisol, mineralocorticoid or adrenaline production. It is 

therefore only recommended in experimental settings in patients with very poor disease control 

and where a long-term follow-up can be guaranteed (132). 

Corrective genital surgery is a technically complicated and psychologically delicate matter. The 

aims of such interventions should be to see to it that the urinary tract function is good, without 

incontinence or recurrent infections, and to maintain good adult sexual and reproductive function 

and that the appearance of the external genitalia is congruent with the gender. Surgery has been 

reported to be technically easiest at 2–6 months of age; however, the level of the patient’s own 

consent, rather than the parents’, is of course limited at such an age (132). It is recommended that 

clitoroplasty, with reduction of clitoromegaly, and vaginoplasty is performed early in females 

with Prader IV-V in one stage. The reason for this is that clitoral tissue can then be used for the 
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vaginal construction (190). Presently, consensus has not been reached as to what degree of 

clitoromegaly that should indicate surgical intervention (191, 192).  

2.3.5.1.6 Monitoring 

In a review article, Hindmarsh suggests that the follow-up after first-discharge should be clinical 

check-ups at least every sixth week during the first 6 months and, after that, every third month up 

to 3 years of age. During childhood, check-ups can be done twice a year until puberty when more 

frequent clinical controls are again warranted, namely, at least every third month (178) . 

Treatment with glucocorticoids is often based on clinical evaluation, laboratory markers such as 

17-OHP, androstenedione and cortisol, auxological data such as height velocity and weight gain, 

and bone maturation (132). 

When monitoring children with CAH it is important to evaluate growth, since disturbances may 

reflect both over- and undertreatment with glucocorticoids, as well as inadequate sodium 

supplementation in infancy (132). Increased weight development may mirror unnecessarily high 

doses of glucocorticoids (193). Some researchers advocate yearly radiological bone maturation 

evaluations to detect inadequately treated hyperandrogenism (5). Biochemical evaluations may 

give short-term information concerning the rationale for the current dose (6). 

The risk for developing TARTs should be considered in adolescent boys. Regular ultrasound 

scans to detect these lesions early on are recommended (178). Increasing the glucocorticoid dose 

has been shown to reduce the risk for further development of TARTs (16). 

Many adolescent girls with CAH develop polycystic ovaries, one of the features in PCOS. To 

what extent early detection of this syndrome influences the long-term consequences is not clear 

and at the moment the rationale for regular ultrasound screening remains unknown (178). 

2.3.5.2 Adults 

The adult patient with CAH presents other challenges to the physician than children. There is no 

need to adjust doses to allow for adequate growth and the risk of salt crisis is less significant 

(194). However, the concern about low BMD and overweight related to iatrogenic 

hypercortisolism remains the same (17). Furthermore, the adult patient often requires the 

physician to optimise treatment in order to increase fertility (14, 17). 
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Because of the decreased risk for salt crisis, mineralocorticoid substitution can be lowered 

according to the monitoring of plasma renin, sodium levels and blood pressure (14, 17, 194). 

Furthermore, sodium is excessive in the diet of the Western world (14). 

The safest way to avoid iatrogenic cushingoid symptoms in adult patients with compromised 

adrenal steroid synthesis is probably to maintain the patients on a glucocorticoid substitution 

therapy based on hydrocortisone, divided as three doses daily (158). However, most adult 

patients are switched to two doses a day of either pure hydrocortisone, a combination therapy 

with prednisolone or pure prednisolone (14, 195-197). Prednisolone has the advantage of 

supressing androgen production also during the night time and may be the preferred drug 

especially in women who are actively planning to become pregnant (14). Hyperandrogenism is 

often asymptomatic in men, but awareness of the development of TARTs is advised (14, 17). 

2.3.5.3 Prenatal treatment 

In the case of a previous sibling with classical CAH, the foetus in the next pregnancy to the same 

parents has a risk of 1:4 of being affected. Prenatal treatment with dexamethasone in subsequent 

pregnancies is an effective way to reduce the genital virilisation in girls with classical CAH, but 

it has no potential beneficial effects in boys. Therefore, only 1 in 8 foetuses would benefit from 

such treatment (7). 

Lajic and co-workers in Sweden studied the psychological effects on children after prenatal 

treatment with dexamethasone and found a negative effect on verbal working memory in those 

treated during the first trimester. In addition, boys showed reduced masculine and more gender-

neutral behaviour (198). A later study failed to reproduce these results; however, it was noted in 

that study that girls who had been treated throughout the pregnancy showed slower mental 

processing (199). As a result of these studies, prenatal treatment is not currently given in Sweden 

(200) and the recommendation is to administer prenatal treatment only as part of a clinical trial 

(7). 

2.4 NEONATAL SCREENING 

2.4.1 Introduction to screening 

In 1951 the Commission on Chronic Illness Conference on Preventive Aspects of Chronic 

Disease, defined screening as: 
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The presumptive identification of unrecognised disease or defect by the application of tests, 

examinations, or other procedures which can be applied rapidly. Screening tests sort out 

apparently well persons who probably have a disease from those who probably do not. A 

screening test is not intended to be diagnostic. Persons with positive or suspicious findings 

must be referred to their physicians for diagnosis and necessary treatment (201). 

This definition is still valid. In order to identify disease before actual symptoms develop, 

screening is employed for a wide spectrum of diseases and in various manners, such as the 

cervical Papanicolaou smear for early detection of cervical cancer (202), mammography for 

detection of breast cancer (203) and newborn screening for detection of inborn errors of 

metabolism (204) or congenital heart diseases (205). Some screening programmes employ 

histological analysis, radiography, laboratory markers or pulsoxymetry, as in the examples 

above, but clinical examination may also be utilised (206). Mass screening or universal screening 

sets out to detect disease in a whole population (207). Selective screening, sometimes referred to 

as case finding, is utilised in a high-risk group (208), for example, the screening for retinopathy 

in diabetic patients (209). Despite the differences in diseases or methods, all screening 

programmes have some common denominators. 

2.4.1.1 Criteria for screening according to Wilson and Junger (207) 

1. The condition should be an important health problem. 

2. There should be an accepted treatment for patients with recognised disease. 

3. Facilities for diagnosis and treatment should be available. 

4. There should be a recognisable latent or early symptomatic stage. 

5. There should be a suitable test or examination. 

6. The test should be acceptable to the population. 

7. The natural history of the condition, including development from latent to declared 

disease, should be adequately understood. 

8. There should be an agreed policy on whom to treat as patients. 

9. The cost of case-finding (including diagnosis and treatment of patients diagnosed) should 

be economically balanced in relation to possible expenditures on medical care as a 

whole. 

10. Case-finding should be a continuing process and not a ‘once and for all’ project. 
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2.4.2 Evaluating screening programmes 

In any screening programme test results can come back as positive, negative or borderline 

(equivocal) (207). Positive test results can either be true, meaning that the individual actually has 

the disease, or false, meaning that the individual does not, despite the positive test result, have the 

disease. Similarly, negative test results can either be true, meaning that the individual does not 

have the disease, or false, meaning that the individual has the disease despite the negative test 

result (210). 

Table 2 

Screening result 
True classification 

Has the disease Does not have the disease 

Positive True positive False positive 

Negative False negative True negative 

Total Total cases with the disease Total cases without the disease 

From the contingency table (Table 2), the most common measurements in evaluating a screening 

programme can be calculated. 

The sensitivity, meaning the proportion of individuals that actually have the disease who are 

detected by the test, is equal to the number of true positive cases divided by the total number of 

individuals with the disease (true positives and false negatives) (207, 210). 

The specificity is the proportion of individuals without the disease who will actually have a 

negative test result and is equal to the number of true negatives divided by the total number of 

individuals without the disease (false positives and true negatives) (207, 210). 

The positive predictive value (PPV) represents the proportion of positive tests that are in fact true 

positives. It is calculated as the number of true positives divided by the total number of positive 

tests (including false positive tests). Similarly, the negative predictive value is the proportion of 

true negatives divided by the total number of negative tests (including false negatives) and 

represents the proportion of negative tests that are in fact true negatives (207, 210). 



 

 29 

All screening programmes struggles with similar difficulties. There will always be false test 

results. False positive results, when the screening test result is abnormal despite an absence of 

disease, may cause unnecessary worry and treatment of healthy individuals. False negative 

results, when the screening test result is normal despite the presence of disease, may cause 

unnecessary delay of treatment and further investigations. Furthermore, screening programmes 

result in economic costs and may cause adverse effects such as stress, anxiety and pain for the 

screened individuals and their families (208). 

Research evaluating screening programmes is not trivial. As in all evidence-based medicine, the 

golden standard for assessing the efficiency of a clinical routine is to conduct a randomised 

clinical trial. However, as for many other areas in medicine, this may not be feasible for 

economic, ethical and practical reasons (208). 

Case-control studies and, in particular, cohort studies are the most frequent study designs used to 

evaluate screening. Aside from other better known causes of bias, screening programmes are 

afflicted with some more specific causes of bias (208). 

Lead time bias occurs when a disease is detected earlier with a screening programme than it 

would be with just clinical surveillance, but the earlier detection does not lead to increased 

survival. In that case, the survival time, from the detection of disease to death, will be increased 

although the actual survival time, from the onset of disease to death, is stable. Lead time bias 

may lead to the false assumption that survival time is increased (208). 

Overdiagnosis bias occurs, for example, when a screening programme increases detection of 

diseases that would not normally lead to an adverse outcome in the near future. The classical 

example is prostate cancer, which can occur in different forms of severity. It is likely that a 

screening programme for prostate cancer would also detect milder, slow-growing forms of 

disease that would not normally lead to any adverse outcome for the patient; hence, the disease is 

detected early but does not increase survival time since the patient actually dies from something 

else (211). 

Selection bias is a common problem in many other, particular epidemiological, research areas. It 

seems more likely that individuals with many close relatives who have died of colorectal cancer 

would be more prone to participate in a screening programme designed to detect this particular 

form of cancer than the general population would be. Since the risk of colorectal cancer 
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correlates with hereditary factors, this could influence the outcome of the screening programme 

(212). 

Length time bias is often discussed in screening programmes setting out to detect different forms 

of cancer. Survival time is often longer with slow-growing tumours than fast-growing ones. 

Since slow-growing tumours exhibit a longer time before being symptomatic, they are more 

likely to be detected in a screening programme. By early detection of slow-growing tumours, 

compared to fast-growing ones, it may be that a screening programme could increase the 

apparent survival, but not the actual, survival time (212). 

Cohort studies and case-control studies are often not designed to be robust against these types of 

bias. Furthermore, the control group in cohort studies may be from a different population, 

historically or geographically, leading to biased results that are difficult to generalise (208).  

2.4.3 Screening for congenital adrenal hyperplasia 

2.4.3.1 History 

In 1937 Butler and Marrian (213) described an abnormal excretion of hormonal rest products in 

the urine of patients with CAH. In the 1950s (19, 20) it was known that the disorder could be 

treated with glucocorticoids. However, a robust method for detecting CAH in screening was first 

developed in the late 1970s (9). It was based on measuring 17-OHP from micro-filter paper cuts 

using a radioimmunoassay, a technique developed by Rosalyn Yalow in the 1950s (214). In fact, 

Yalow was awarded the Nobel Prize for her development of the radioimmunoassay the same 

year as Pang and co-workers described its use for neonatal screening for CAH (215). 

The first screening programme for CAH was developed in the U.S.A. in the 1970s. It was 

developed in Alaska and employed the method mentioned above to quantify 17-OHP (10). Since 

then, neonatal screening for CAH has been wide-spread and is currently used in more than 30 

countries (11). 

The original radioimmunoassay and the later introduced enzyme-linked immunosorbent assay 

have now been abandoned by most screening laboratories in favour of a direct solid-phase time-

resolved fluoroimmunoassay (11, 216). This method is based on lanthanide-labelled antibodies 

that emit fluorescence. Compared to the previous methods, it is faster, automated and more 

precise. 
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The rate of false-positives is especially high in preterm infants. Possibly due to cross-reactivity 

with other steroids secreted by the immature adrenal gland in stressed infants (217). 

Because of the high rate of false-positives in the screening for CAH, new strategies to reduce this 

rate have been developed (218). In 2004, Lacey and co-workers (219) reported the use of liquid 

chromatography, followed by tandem mass spectrometry (LC-MS/MS) as a method for second-

tier testing after an initially positive test.  This was developed to examine ratios between steroids 

before and after the hydroxylation step disturbed in CAH. Reports are promising and the method 

has been implemented as routine in some screening laboratories (11, 220, 221). 

In 2005 genotyping was investigated as a second-tier test for the first time (222), but its use has 

not yet been investigated on a large scale (11). 

2.4.3.2 Methods 

All methods to determine 17-OHP in neonatal screening are based on preparing the samples from 

dried blood spots. This is usually done by eluting a paper disc of the filter paper, cut out from the 

blood spot, into a buffer (11). 

2.4.3.2.1 Radioimmunoassay 

The first method used to determine the concentration of 17-OHP in dried blood spots was, as 

mentioned above, radioimmunoassay. In brief, a known amount of radioactively labelled antigen, 

17-OHP, is mixed with a known amount of a primary antibody with affinity for the antigen. The 

solution is mixed with the sample from the patient. Then the unlabelled antigen, 17-OHP, from 

the patient will compete with the labelled antigen and bind to the antibody. The unbound 

radioactive antigen is decanted from the solution and the radioactivity it is emitting can be 

measured in a gamma counter. The method has many different variations, but the basic idea is 

the same (214, 223). 

2.4.3.2.2 Enzyme-linked immunoassays 

As with radioimmunoassay, enzyme-linked immunoassays utilise the binding of an antibody to 

the antigen, 17-OHP, being measured. A primary antibody binds to the antigen. A secondary 

antibody with an attached enzyme is added. Any unbound antibodies are washed away and a 

substrate for the enzyme is added. When reacting with the enzyme the substrate often changes its 

colour. The colour change can be measured in a spectrometer (224, 225). 
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2.4.3.2.3 Dissociation-enhanced lanthanide fluorescence immunoassay 

This method shares many similarities with enzyme-linked immunoassays; however, instead of 

the secondary antibody being attached to an enzyme, it is attached to a lanthanide chelate. After 

the unbound antibodies are washed away, an enhancement buffer dissociates lanthanide from the 

antibody. Lanthanide then produces a measurable fluorescent signal when stimulated with light 

of a certain wavelength (226). This method is by far the currently most frequently used for first-

tier screening tests in neonatal screening for CAH (11, 216). 

2.4.3.2.4 Liquid chromatography and tandem mass spectrometry 

LC-MS/MS was implemented in newborn screening for inherited metabolic disease in the 1990s 

(227). The method is completely different from those mentioned above. The first step is a liquid 

phase chromatography that separates the chemicals included in the sample of interest by 

hydrophobic interactions in the presence of a hydrophilic solvent, such as water. The chemicals 

are then eluted in a more hydrophobic solvent, such as methanol, and released into the first of 

two mass spectrometers. The first mass spectrometer separates the chemicals based on their 

mass/charge ratio. The chemicals then enter a chamber called a collision cell in which the sample 

is broken down. The chemicals, now broken down into smaller fragments, are then analysed by 

the second mass spectrometer detector (228). 

LC-MS/MS is a high-resolution technique in which the concentration of tiny fractions of a 

substance can be analysed. The advantages of LC-MS/MS are that it is a rapid and very accurate 

technique. In addition, it is possible to measure several substances at the same time. For some 

diseases included in screening programmes, such as analyses of acylcarnitines to detect medium 

chain acyl-CoA dehydrogenase deficiency, no other analytic methods are available (227). The 

first results concerning the potential use of LC-MS/MS in newborn screening for CAH were 

published in 2001 by Lai and co-workers (218). Since measuring the concentrations of different 

analytes simultaneously is very rapid and accurate with LC-MS/MS, it is possible to determine a 

ratio of steroid precursors before and after the enzymatic block in CAH due to a 21α-hydroxylase 

deficiency, which would potentially lower the false positive rate in the screening (229). 

2.4.3.2.5 Genotyping 

Because of the high rate of false positives in neonatal screening for CAH, it is attractive to 

consider genotyping as a tool to assist in particularly equivocal results. As genotyping is costly 
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and time-consuming, it is not suitable for first-tier screening. However, its use has been described 

and suggested previously (222, 230-233) and recently described as a second-tier method (221). 

2.4.3.2.6 Screening for congenital adrenal hyperplasia in Sweden 

Newborn screening for CAH was introduced in Sweden in 1986. The results and experience 

from the screening programme are described in detail in Paper IV. 

2.4.3.2.7 Cost-effectiveness of screening for congenital adrenal hyperplasia 

A female preponderance is generally interpreted as missed male cases since girls with potentially 

lethal forms of CAH are often diagnosed before an actual salt crisis occurs and boys are at 

greater risk of dying before the diagnosis (234). Mortality in SW CAH in unscreened populations 

has been estimated to be to 4–10% (235). 

It is difficult, however, to evaluate the effectiveness of screening by comparing screened and 

unscreened populations since children affected by SW CAH can die without a proper diagnosis 

being made (11). In a retrospective post mortem series, three out of 242 cases of sudden infant 

death syndrome had genetically verified classical CAH (236). 

Boys with SV CAH who escape early detection present later on with accelerated growth and 

advanced bone age, which could negatively affect final height (11). Sometimes patients with NC 

CAH are detected in neonatal screening. However, the overall benefits for patients with milder 

forms remain uncertain (11). 

Classical cost-benefit analyses are generally based on calculations concerning mortality and 

years of expected life. Thus, the analyses calculate the number of saved life-years in relation to 

the costs of a certain procedure, such as neonatal screening (11). Based on American screening 

programmes, it has been calculated that the cost of neonatal screening is between $20 000 and 

$250 000 per saved life-year (237, 238). A screening programme is generally considered 

worthwhile if the cost is less than $50 000 per life-year (237). Besides the actual costs for the 

screening programme, additional costs, such as for further clinical examinations and laboratory 

investigations, are added subsequently. 

In the case of a positive screening result, the family is obviously worried (239). However, the 

concern about the child’s health seems to be reduced if the confirmatory test is negative (239). It 
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is, however, clearly important to keep the false positive rate as low as possible also for a number 

of other reasons.  

An earlier diagnosis does not only lead to decreased mortality, but also to decreased morbidity. 

Boys with SW CAH diagnosed by neonatal screening have been shown to have higher mean 

sodium concentrations at diagnosis than those diagnosed by clinical surveillance: 134 mmol/l 

(range 115–148) versus 124 mmol/l  (range 93–148) (187). Hence, they may escape neurological 

sequelae from salt-loss crises. 

The clinical relevance of the finding that patients detected by screening tend to be hospitalised 

for a shorter period than patients detected clinically, without further considerations concerning 

morbidity, remains uncertain (11, 187, 240).  

Overall, neonatal screening for CAH shortens the time to diagnosis (187, 241), which is 

especially important in SW CAH (11) since a salt crisis may be avoided. Furthermore, the time 

of uncertain sex in 46,XX individuals with classical CAH is shortened (187, 241). 
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3 AIMS 

This thesis describes several aspects of CAH. One aim of the project was to describe and present 

the previous and present status of the clinical management for CAH in Sweden. In addition, 

CAH viewed as a model system for androgen exposure enabled us to investigate how androgens 

interfere with normal physiological phenomena such as foetal growth and duration of pregnancy. 

The pre-specified hypotheses were: 

1. Foetal growth is independent of androgen effects. 

2. Pregnancy lengths are increased when the foetus is affected by severe CAH as compared 

to milder forms. 

3. Neonatal screening for CAH increases survival compared to clinical surveillance alone. 

4. Neonatal screening for CAH is effective in detecting SW CAH. 

5. Growth and weight outcomes in children with CAH are dependent on treatment, sex and 

genotype. 

The specific aims were: 

1. To compare birth weight, as a measurement of foetal growth, between children with 

disordered androgen signalling and the normal reference population. 

2. To compare lengths of pregnancy between children with different severities of CAH. 

3. To investigate changes in the incidence of CAH over time in relation to improvements in 

treatment and the introduction of neonatal screening. 

4. To describe the neonatal screening programme in Sweden. 

5. To determine explanatory factors for growth and weight outcomes in children with CAH. 
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4 SUBJECTS AND METHODS 

4.1 PAPER I: GESTATIONAL AGE CORRELATES TO GENOTYPE IN GIRLS WITH 
CYP21 DEFICIENCY 

4.1.1 Study population and design 

Male sex has been associated with prolonged pregnancy (74). Male foetuses have higher levels 

of androgens compared to female foetuses (242). Androgens are particularly elevated in 

newborns with severe forms of CAH (232). The objective of this study was to investigate 

whether the length of pregnancy was prolonged for foetuses with severe forms of CAH, 

compared to milder forms. 

The study retrospectively included patients with CAH detected through the national screening 

programme or included in a national prospective study (n = 165). Patients were excluded if their 

gestational age was unknown (n = 9), their sex was unknown (n = 1), genotyping had not been 

performed or their CYP21A2 genotype group was not possible to determine (n = 33), prenatal 

treatment with dexamethasone was given during the whole pregnancy (n = 4) or delivered by 

elective caesarean section (n = 1). Patients who were born preterm (n = 8) were excluded from 

the statistical analyses that included a total of 109 patients. 

Pregnancy lengths for children with CAH with different genotypes were compared. Furthermore, 

a comparison was made to the normal reference population born in singleton pregnancies lasting 

≥ 37 weeks between 1987 and 1996 (74). 

Data concerning gestational age were collected from the Guthrie cards used in the screening or, 

in patients who were born before the implementation of screening, from the medical records. The 

introduction of ultrasonographic determination of gestational age started in Sweden in the early 

1980s (243). 

CYP21A2 mutation analyses had been carried out before this retrospective study. Patients were 

divided into four genotype groups depending on the severity of the mutation on the mildest 

allele, null, I2 splice, I172N, and V281L. 
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4.1.2 Statistical methods 

The Kruskall-Wallis test was used to analyse differences in gestational age between genotype 

groups and post hoc analyses were done between individual groups employing the Mann-

Whitney test. Spearman’s rank correlation coefficient was used to measure the statistical 

dependence between gestational age and genotype group for patients with CAH. Student’s t-test 

was used to determine the difference in gestational age between patients with CAH and the 

normal population. The level of statistical significance was set at 0.05. 

4.2 PAPER II: THE ROLE OF ANDROGENS IN FETAL GROWTH: 
OBSERVATIONAL STUDY IN TWO GENETIC MODELS OF DISORDERED 
ANDROGEN SIGNALLING 

4.2.1 Study population and design 

Similarly to the difference in gestational age, human males are heavier at birth than females (77-

79). This difference seems to occur in most other primates as well (244). Since newborn males 

have higher androgen levels than females (242) and since testosterone is an anabolic hormone 

later in life, but does not seem to affect growth during the first 1.5–2 years of life, we wanted to 

investigate the relationship between birth weight in CAH, with foetal overexpression of 

androgens, and CAIS, with no foetal androgen effect. 

CYP21A2 genotype, length of pregnancy and birth weight were recorded for a total of 73 out of 

the 88 children diagnosed with CAH who were included in the prospective study. The study was 

a collaboration project with Professor Ieuan Hughes’ group at the University of Cambridge. In 

their material, they identified 29 46,XY females with CAIS. The birth weight standard deviation 

score (SDS), adjusted for gestational age, was calculated from the normal population in Sweden 

and Great Britain, respectively. 

4.2.2 Statistical methods 

Birth weights were calculated as the SDS, adjusted for gestational age, and compared with the 

relevant national normal population data using one-sample t-tests. This calculation is based on 

the fact that the normal population mean value for birth weight SDS is ± 0 and the test 

investigates whether the mean birth weight SDS in CAH or CAIS is significantly different from 

0. 
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The non-parametric Kruskal-Wallis test was used to compare differences between CAH 

genotype groups. The level of statistical significance was set at 0.05. 

4.3 PAPER III: ONE HUNDRED YEARS OF CONGENITAL ADRENAL 
HYPERPLASIA IN SWEDEN: A RETROSPECTIVE, POPULATION-BASED 
COHORT STUDY 

4.3.1 Study population and design 

The study population consisted of the patients in the national CAH registry at the neonatal 

screening laboratory. This registry comprises all patients detected in the neonatal screening 

programme, missed cases who had been reported to the laboratory or who had been known to the 

laboratory through clinical contacts, patients for whom 17-OHP samples had been sent as clinical 

routine, patients included in previous Swedish studies of CAH and patients who had undergone 

CYP21A2 analyses. 

A total of 612 patients with CAH were included in the registry. The oldest patient was born in 

1915. The CYP21A2 genotype was known in 490 patients. Patients were divided into genotype 

groups according to the mildest mutated allele. Patients with no known genotype, but in whom 

the clinical form was known, were grouped solely based on the clinical classification. Null and I2 

splice were combined in the group of clinically defined SW CAH. I172N and P30L were 

combined in the group of clinically defined SV CAH. Patients with V281L and other milder 

mutations were combined in the group with clinically defined NC CAH (Table 3). Six patients 

had other, more rare, causes of CAH apart from 21α-hydroxylase deficiency and were excluded 

from the statistical analysis. 
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Table 3 

n (%) SW CAH SV CAH NC CAH Unknown Total 

 M F M F M F M F  

-1950 2 (67) 1 (33) 9 (60) 6 (40) 0 (0) 5 (100) 0 (0) 0 (0) 23 (4) 

1950-

1985 
46 (41) 65 (59) 32 (41) 47 (59) 6 (21) 23 (79) 32 (62) 20 (38) 271 (45) 

1986-

2011* 
73 (44) 92 (56) 41 (49) 43 (51) 15 (35) 28 (65) 13 (65) 7 (35) 312 (51) 

Total 121 (43) 158 (57) 82 (46) 96 (54) 21 (27) 56 (73) 45 (63) 27 (37) 606 (100) 

SW CAH defined clinically as sodium <125 mmol/l or genetically, depending on the severity of 

the mildest allele as either null genotype group (deletion, R356W, Q318X, R483GGtoC, cluster 

E6, L308F, L307insT+Q318X, G291S, I7splice, W405X, R356P or V139E) or I2 splice genotype 

group (I2 splice, T52P or R356Q). SV CAH defined clinically as prenatal virilisation of external 

genitalia in females or symptoms before 5 years of age in males, but with no known signs of 

concomitant salt loss or genetically with I172N, P105L+P453S, H62L+P453S, P30L or G424S 

on the mildest allele. NC CAH defined clinically as onset of symptoms after 5 years of age or 

genetically with V281L, P453S, R233G or R341W. Unknown denotes cases with known CAH but 

no information on the severity of disease. Values represent the number of cases and, in 

parentheses, the percentage of males and females in each clinical group per time period. 

* The number of patients during 1986-2011 represents screened and unscreened individuals. 

Data on live births in Sweden were collected from the government agency Statistics Sweden 

(SCB), which has stored information on the number of live births per year since 1749 (245). Data 

on the number of males and females born alive in Sweden were obtained from the same source 

and was available from 1968 (246). 

4.3.2 Statistical methods 

The proportions of males and females, genotype and clinical severity groups per decade and time 

period were compared using the χ2 test. Statistical significance was set at P < 0.05. 
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4.4 PAPER IV: NATIONWIDE NEONATAL SCREENING FOR CONGENITAL 
ADRENAL HYPERPLASIA IN SWEDEN: A LONGITUDINAL PROSPECTIVE 
POPULATION-BASED STUDY COVERING 26 YEARS 

4.4.1 Study population and design 

Nationwide neonatal screening for CAH in Sweden has continued consecutively since its start in 

1986. Data on the number of screened subjects and information concerning positive and false 

negative cases have been collected prospectively. 

In Paper IV the results of the screening programme from 1986 to 2011 are described. During this 

period, 2 742 944 infants were born alive in Sweden and 2 737 932 (99.8%) were screened for 

CAH. 

4.4.2 Statistical methods 

Student’s t-test was used for normally distributed continuous variables and the Mann-Whitney U 

test was used for non-parametric continuous variables. The χ2 test was used for comparisons in 

contingency tables. For correlation analyses, Spearman’s rank correlation was used for non-

parametric variables and Pearson’s correlation for normally distributed variables. 

The marker for disease, 17-OHP, was not normally distributed and, furthermore, in 78 cases, the 

17-OHP level was above the standard curve. For 42 of these cases, the exact value of 17-OHP 

was determined after dilution. However, for the remaining 36 cases, the exact 17-OHP values 

were not determined. In the statistical analysis, these 36 cases were given the mean 17-OHP 

value for the diluted tests. Mann-Whitney U and Kruskall-Wallis tests based on rank rather than 

the mean were therefore used to compare 17-OHP values between independent groups. 

Wilcoxon’s test was used to compare the 17-OHP levels between the first and second samples. 

Statistical significance was set at P < 0.05. 
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4.5 PAPER V: GROWTH AND TREATMENT IN CONGENITAL ADRENAL 
HYPERPLASIA: A PROSPECTIVE OBSERVATIONAL STUDY FROM 
DIAGNOSIS TO FINAL HEIGHT 

4.5.1 Study population and design 

Paper V describes a population-based observational cohort study. The study included all subjects 

born or diagnosed with CAH in Sweden between 1 January 1989 and 31 December 1994. A total 

of 88 children were eligible for inclusion. During the study period, two cases were found to be 

healthy and were thus excluded from further analysis. Six additional cases were excluded: two 

because of other intercurrent chronic disease and four due to loss to follow-up. 

The diagnosis was confirmed by clinical examination, laboratory investigations and genetic 

analysis. 

Cases diagnosed within the first month of age were considered early-diagnosed, whereas patients 

with a later diagnosis were regarded as late-diagnosed.  

Patients were divided into genotype groups according to the mildest allele: null, I2 splice, I172N, 

P30L and V281L. Furthermore, because of the generally good concordance between genotype 

and phenotype, children with null and I2 splice were regarded as SW CAH, with I172N and 

P30L as SV CAH and with V281L as NC CAH. 

The local paediatrician reported all changes in treatment and auxological findings continuously. 

The included subjects were followed prospectively until their achieved final height or 18 years of 

age. Auxological data were plotted onto a growth chart based on the Swedish reference 

population and extrapolated values of height and weight at 0, 0.25, 0.5, 0.75, 1, 1.5, 2 years and 

annually thereafter were read out manually. The standard deviation score (SDS) for height and 

weight was calculated based on the Swedish reference population. Body surface area (BSA) was 

calculated using the DuBois formula (247). Auxological data before diagnosis in late-diagnosed 

cases were collected retrospectively. 

All complete growth charts were examined by a senior paediatric endocrinologist and classified 

as having a pubertal growth spurt or not (height velocity > 7 cm/year). Furthermore, it was noted 

whether the growth charts revealed a separate preceding growth spurt of > 7 cm/year before the 
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actual pubertal growth spurt (biphasic growth curve) or whether there was any occurrence of 

reduced growth before the pubertal growth spurt. 

Every change in treatment was recorded and the mean doses of hydrocortisone equivalents were 

calculated for the periods of 0–0.25, 0.25–0.5, 0.5–0.75, 0.75–1, 1–1.5, 1.5–2 years of age and 

thereafter between all full years. All glucocorticoid treatments (hydrocortisone, cortisone acetate, 

prednisolone and 9α-fludrocortisone) were converted into hydrocortisone equivalents. Patients 

who had undergone prednisolone treatment were compared with those who had not taken 

prednisolone. 

The study aimed at examining growth and weight development in patients with different degrees 

of severity of CAH and CYP21A2 genotypes and to correlate this with different treatment 

strategies used in clinical practice. Since treatment traditions differ between centres in Sweden, it 

was possible to compare the outcomes with hydrocortisone and/or cortisone acetate alone or with 

the addition of prednisolone. 

4.5.2 Statistical methods 

The means of continuous variables were compared between two groups using Student’s t-test if 

the data were normally distributed and the Mann-Whitney test if the data were not normally 

distributed. Wilcoxon’s test was used to compare two paired samples with not normally 

distributed data. To compare repeatedly measured variables, such as height or dose, between 

groups, a two-way repeated measures analysis of variance was utilised. Since all paired data in 

the study violated the assumption of sphericity, the Greenhouse-Geisser correction was used. 

Bonferroni corrections were used in post hoc analyses. Given the nature of the SDS, comparisons 

with the normal population were calculated using the one-sample t-test. Spearmans’s correlation 

test was used for correlations since all data examined in that respect were not normally 

distributed. The χ2 test for comparisons of proportions was used if all groups consisted of at least 

five cases; otherwise, Fisher’s exact test was used. Statistical significance was set at P < 0.05 

4.6 ETHICAL CONSIDERATIONS 

Committees on ethics in biomedical research have approved all the studies included in this thesis. 

Approval numbers: Paper I (dnr: 89136, Uppsala University, and dnr: 95:137, Karolinska 

Institutet); Paper II (dnr: 89136, Uppsala University, and dnr: 95:137, Karolinska Institutet and 
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the Ethics Committee at Cambridgeshire Ethics 2); Paper III (2010/1869-31/1, Karolinska 

Institutet); Paper IV (2010/1869-31/1, Karolinska Institutet) and Paper V (dnr: 89136, Uppsala 

University and dnr: 95:137, Karolinska Institutet). 

None of the studies in this thesis involves any medical risks to the patients, as they are all purely 

observational. The collection of data and publication of results have been carried out so as to 

guarantee the integrity and anonymity of the patients. 

For the prospective study that recruited the patients described in Paper II, V and partly in Paper I, 

the informed consent of the parents was obtained at the start of the study. Papers III and IV are 

based on population-based registries in which informed consent was neither feasible nor required 

according to the Committee on Ethics in Biomedical Research at the Karolinska Institutet. 
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5 RESULTS 

5.1 RELATIONSHIP BETWEEN LENGTH OF PREGNANCY AND GENOTYPE IN 
CONGENITAL ADRENAL HYPERPLASIA 

Of the 165 patients eligible for the study, 109 met the criteria for inclusion (Table 4) 

Table 4 

Sex  Null I2 splice I172N V281L Total 

Male 
N 10 21 13 3 47 

GA 288.3 ± 7.6 286.3 ± 10.3 280.6 ± 12.2 - 284.8 ± 10.7 

Female 
N 18 15 22 7 62 

GA 285.7 ± 8.6 284.4 ± 7.1 273.9 ± 8.8 274.7 ± 10.5 280.8 ± 10.0 

Total  28 36 35 10 109 

N, number of patients that met the inclusion criteria. GA, mean gestational age at birth in 
days of patients with both exact numbers of days of pregnancy recorded (n = 66), ± SD. 

Gestational age correlated with the genotype group when the foetus had CAH (correlation -

0.362, P < 0.001) in that patients with a more severe form had a longer pregnancy than those 

with milder forms. The correlation was significant in females with CAH (P = 0.003), it but failed 

to reach significance when only males were examined. 

The mean gestational age at birth was compared between the different genotype groups. A 

significant difference between genotype groups was noted in females (P = 0.002). A post hoc 

analysis revealed that the gestational age in female patients with the most severe null form, 285.7 

days, was higher than in those with genotypes I172N, 273.9 days (P = 0.003) and V281L, 274.7 

days (P = 0.04), but did not differ from those with the almost as severe form, genotype I2 splice, 

284.4 days (P > 0.05). Female patients with I2 splice had a higher gestational age than both 

I172N and V218L patients (P = 0.011 and P = 0.043, respectively). No significant difference was 

observed between females with I172N and V281L genotypes. The gestational age in different 



 

 45 

genotype groups did not differ significantly in males (P > 0.05) and therefore no post hoc 

analyses were carried out in males. 

The mean length of pregnancy in the Swedish reference population was 280.2 ± 8.8 days (± SD). 

The mean length for pregnancies in which the foetus was later diagnosed with CAH was 282.5 ± 

10.4 days and differed statistically significantly from the normal population (P < 0.05). Males 

with CAH had a higher mean gestational age at birth, 284.8 ± 10.7 days, compared to the normal 

male population, 280.6 ± 8.9 days (P < 0.05). In females with CAH, the length of pregnancy, 

280.8 ± 10.0 days, did not differ significantly from that of the normal female population, 279.8 ± 

8.6 days (P > 0.05). 

5.2 FOETAL GROWTH MAY BE INDEPENDENT OF ANDROGENS 

Birth weight SDSboys in CAIS girls was similar to that of reference boys (mean, CI 95%: 0.1, -0.2 

to 0.4) and birth weight SDSgirls was higher than the reference of females (mean, CI 95%: 0.4, 0.1 

to 0.7, P = 0.02). 

Birth weight SDS in both girls and boys with CAH did not differ from that of the reference 

population (mean, CI 95%: 0.0, -0.3 to 0.3 and 0.2, −0.2 to 0.6, respectively). Birth weight SDS 

did not differ between genotype groups in children with CAH (P > 0.05) (Figure 5). Birth length 

SDS was not different from the national reference in either sex. 

No correlation between genotype and birth weight or birth length could be detected in children 

with CAH. 
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Figure 5 

 

Birth weight standard deviation score (SDS) adjusted for gestational age in complete androgen 
insensitivity syndrome (CAIS) and congenital adrenal hyperplasia (CAH). 
* P < 0.05 compared to the national reference mean (SDS ± 0) using a one-sample t test. 

5.3 DESCRIPTION OF CONGENITAL ADRENAL HYPERPLASIA IN SWEDEN 
DURING THE LAST CENTURY 

Only 23 patients identified in the study were born before the introduction of glucocorticoid 

treatment in 1950 and the majority, 583 patients (96%), were born from 1950 onwards. The 

apparent incidence increased throughout the 20th century with a peak in the 1990s. The apparent 

incidence rose steeply, however, from the 1960s and 1970s (Figure 6A-C). 

  

Original article

Arch Dis Child Fetal Neonatal Ed 2010;95:F435–F438. doi:10.1136/adc.2009.173575 F437

Italian study reported increased mean birth weight and length 
in a group of classical CAH infants of 38–41 weeks gestation, 
24 of whom were girls.19 However, birth weight in that study 
was actually lower in the more severe, salt-wasting group. We 
have previously reported that the CYP21A2 genotype corre-
lated with length of gestation in girls, but not in boys.20 The 
differences in reported results may therefore be related to this 
variation in gestational age. Birth length data were not avail-
able in the other genetic model used in the present study.

Sex dimorphism in size is established as early as 8–12 
weeks gestation, based on a prospective study of conceptions 
occurring spontaneously and following assisted reproductive 
techniques.4 Androgen exposure does not appear to explain 
a larger male size, yet the phenomenon of sex dimorphism in 
neonatal body size is observed across a range of primate spe-
cies.21 It is possible to invoke factors on the Y chromosome to 
explain size sex dimorphism. In males with sex chromosome 
anomalies, there is a trend of decreasing birth weight with an 
increase in the number of X chromosomes, whereas the addi-
tion of a Y chromosome is not found to be correlated with low 
birth weight.22 There is certainly compelling evidence for sex 
dimorphism in tooth root lengths.23 Measurements are larger 
in normal males compared to females, are similar to normal 
males in XY CAIS, similar to normal females in XX males and 
are increased in both 47,XXY and 47,XYY males and decreased 
in 45,X individuals.24 25 The dichotomy in root length between 
the sexes begins at around 8 years of age. It has been suggested 
that such differential effects of the sex chromosomes on tooth 
growth can be extended within the context of genetic pleiot-
ropy to other somatic features such as statural growth.

In conclusion, studies undertaken on two groups of indi-
viduals with well defi ned genetic disorders that affect andro-
gen signalling indicate that sex dimorphism in birth size is not 
explained by the effects of prenatal androgen exposure. This 
fundamental biological observation of variance in sex-related 
birth size is present across the range of human and non-human 
primate species. Evidence points to the differential effects 
of the sex chromosome, particularly the Y chromosome, 
as an explanation. The mechanism of the effect is currently 
unexplained.
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Figure 6 

 

 

A. The distribution of sex per decade and the apparent incidence per 100 000 live births per 

decade in Sweden during the last century.  B. The distribution of SW CAH, SV CAH and NC 

CAH per decade. C. The distribution of severity of CAH based on the genetic or clinical 

diagnosis. Clinical SW and SV denote patients with a known severity of disease, but no 

information on genotype. NC denotes cases with a known mutation causing NC CAH and 

patients clinically classified as NC CAH. Neonatal screening for CAH was introduced in Sweden 

in 1986. 
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The Committee on Ethics in Research at Karolinska 
Institutet approved the study; informed consent was not 
required in this registry-based study.

Procedures
The earliest genetic testing for the disorder was first 
done in the 1980s and was based on linkage to HLA 
genes.28 In the 1990s, rapid genotyping of common 
mutations and complete CYP21A2 sequence analysis 
were intro duced.7,29,30 In this study, analyses of CYP21A2 
mutations were done by allele-specific PCR and DNA 
sequencing from genomic DNA prepared from venous 
blood samples as described elsewhere.31

17-hydroxyprogesterone was used as a marker for disease 
and analysed by radioimmunoassay between 1986 and 
1990, and from 1991 onwards by a dissociation-enhanced, 
lanthanide fluorescence immunoassay (Delfia; Wallac Oy 
Corporation, Turku, Finland). The blood samples were 
taken when individuals were aged 3–5 days until Nov 15, 
2010, and as soon as possible after 48 h thereafter. Results 
were available at a median age of 8·7 days (SD 3·0). Cut-
offs related to gestational age were used.24

Statistical analysis
We compared the distribution of patients, grouped 
according to decade of birth, sex, and genotype or clinical 
severity, using the χ² test. Statistical significance was set 
at p<0·05. We used SPSS (version 19) for all statistical 
analyses.

Role of the funding source
The sponsors of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. SG and AN had full access to all the 
data in the study. The corresponding author had final 
responsibility for the decision to submit for publication. 

Results
The study population consisted of 606 patients, born 
between 1915 and 2011. Most patients (n=583 [96%]) were 
born after 1950, when treatment with glucocorticoids was 
introduced. Only 23 patients were born before 1950 
(table 1 and appendix).

Our data show that the apparent incidence of congenital 
adrenal hyperplasia in Sweden increased during the 20th 
century (figure 1), from fewer than one individual per 
million livebirths between 1910 and 1920, to more than 
one individual per 9000 livebirths between 1990 and 2000. 
We detected a major increase in the apparent incidence 
per decade beginning in the 1950s. During the 1960s and 
1970s, the apparent incidence increased substantially 
from one in 37 000 to the present one in 8800.

By the end of 2011, 2·7 million infants had been 
screened, representing 99·8% coverage of all newborn 
babies in Sweden (population 9 million).

We identified 312 individuals with the disorder born 
after the introduction of neonatal screening (born 
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one individual per 9000 livebirths between 1990 and 2000. 
We detected a major increase in the apparent incidence 
per decade beginning in the 1950s. During the 1960s and 
1970s, the apparent incidence increased substantially 
from one in 37 000 to the present one in 8800.
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babies in Sweden (population 9 million).

We identified 312 individuals with the disorder born 
after the introduction of neonatal screening (born 

20102000199019801970196019501940193019201910

N
um

be
r o

f i
nd

iv
id

ua
ls

125

100

75

50

25

0

125

100

75

50

25

0

80

60

40

20

0

N
um

be
r o

f i
nd

iv
id

ua
ls

N
um

be
r o

f i
nd

iv
id

ua
ls

A

B

C

Decade

Male
Female

Unknown
Salt-wasting
Simple-virilising
Non-classic

12

10

8

4

0

Incidence per 100 000 livebirths

6

2

Unknown
Null
Clinical salt-wasting
I2 splice
I172N
Clinical simple-virilising
P30L
Clinical non-classic

20102000199019801970196019501940193019201910

20102000199019801970196019501940193019201910

Figure 1: Distribution of 
congenital adrenal 
hyperplasia patients by sex 
(A), clinical severity of 
disease (B), and CYP21A2 
genotype or phenotype 
when genotype was not 
available (C)

See Online for appendix

Articles

www.thelancet.com/diabetes-endocrinology   Published online February 26, 2013   http://dx.doi.org/10.1016/S2213-8587(13)70001-9 3

The Committee on Ethics in Research at Karolinska 
Institutet approved the study; informed consent was not 
required in this registry-based study.

Procedures
The earliest genetic testing for the disorder was first 
done in the 1980s and was based on linkage to HLA 
genes.28 In the 1990s, rapid genotyping of common 
mutations and complete CYP21A2 sequence analysis 
were intro duced.7,29,30 In this study, analyses of CYP21A2 
mutations were done by allele-specific PCR and DNA 
sequencing from genomic DNA prepared from venous 
blood samples as described elsewhere.31

17-hydroxyprogesterone was used as a marker for disease 
and analysed by radioimmunoassay between 1986 and 
1990, and from 1991 onwards by a dissociation-enhanced, 
lanthanide fluorescence immunoassay (Delfia; Wallac Oy 
Corporation, Turku, Finland). The blood samples were 
taken when individuals were aged 3–5 days until Nov 15, 
2010, and as soon as possible after 48 h thereafter. Results 
were available at a median age of 8·7 days (SD 3·0). Cut-
offs related to gestational age were used.24

Statistical analysis
We compared the distribution of patients, grouped 
according to decade of birth, sex, and genotype or clinical 
severity, using the χ² test. Statistical significance was set 
at p<0·05. We used SPSS (version 19) for all statistical 
analyses.

Role of the funding source
The sponsors of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. SG and AN had full access to all the 
data in the study. The corresponding author had final 
responsibility for the decision to submit for publication. 

Results
The study population consisted of 606 patients, born 
between 1915 and 2011. Most patients (n=583 [96%]) were 
born after 1950, when treatment with glucocorticoids was 
introduced. Only 23 patients were born before 1950 
(table 1 and appendix).

Our data show that the apparent incidence of congenital 
adrenal hyperplasia in Sweden increased during the 20th 
century (figure 1), from fewer than one individual per 
million livebirths between 1910 and 1920, to more than 
one individual per 9000 livebirths between 1990 and 2000. 
We detected a major increase in the apparent incidence 
per decade beginning in the 1950s. During the 1960s and 
1970s, the apparent incidence increased substantially 
from one in 37 000 to the present one in 8800.

By the end of 2011, 2·7 million infants had been 
screened, representing 99·8% coverage of all newborn 
babies in Sweden (population 9 million).

We identified 312 individuals with the disorder born 
after the introduction of neonatal screening (born 
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Neonatal screening for CAH was implemented in Sweden in 1986. The overall sex ratio before 

and after the introduction of screening did not change significantly. However, the proportion of 

SW CAH among affected subjects increased significantly (Figure 7) (P = 0.038). 

Figure 7 

 

The proportion of SW CAH and non-SW CAH before (1950–1986) and after (1986–2011) the 

introduction of screening for both sexes. The sex ratio did not differ after the introduction of 

screening, but the proportion of cases diagnosed with SW CAH increased (P = 0.038).  

5.4 NEONATAL SCREENING FOR CONGENITAL ADRENAL HYPERPLASIA IN 
SWEDEN 

Between 1986 and 2011, 2 742 944 infants were born alive in Sweden and 2 737 932 (99.8%) 

underwent neonatal screening for CAH. A total of 1728 tests were positive. Of these, 854 were 

from premature infants and 874 from infants born at term (Figure 8).  

Articles
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between 1986 and 2011). Of these, 274 were born in 
Sweden and hence screened for congenital adrenal 
hyperplasia: 231 individuals were detected during neo-
natal screening and 43 detected clinically at a later date.

The total cohort consisted of 337 female and 269 male 
patients. The female-to-male ratio before 1950 was 12 to 
11. However, four of the patients diagnosed before 1950 
were 46XX male, giving a 46XX to 46XY ratio of 16 to 
seven. The overall female-to-male ratio in individuals 
with congenital adrenal hyperplasia detected through 
screening was close to one (115 vs 116), which did not 
differ from that of the general population. The proportion 
of individuals with the salt-wasting form of the disorder 
increased in both sexes after the introduction of 
screening (p=0·038; figure 2).

25 (58%) of the 43 patients who were identified late, 
after false-negative results of neonatal screening, were 
female. 24 of the 38 infants with non-classic disease were 

Number of 
patients (N=490) 

CYP21A2 deletion or large gene conversion 220 (28%)

Pseudogene-derived mutations

I2 splice 218 (27%)

I172N 135 (17%)

V281L 62 (8%)

Q318X 31 (4%)

R356W 25 (3%)

P30L 21 (3%)

Cluster E6 7 (1%)

P453S 7 (1%)

L307insT 6 (1%)

Combinations of pseudogene-derived mutations

Q318X+R356W 5 (1%)

I2 splice and Q318X (two genes on one 
chromosome)

4 (1%)

I172N+P453S 4 (1%)

L307insT+Q318X 3 (<0·5%)

Cluster E6+V281L 2 (<0·5%)

V281L+L307insT 2 (<0·5%)

I172N+ClusterE6+V281L+L307insT+Q318X+R356W 2 (<0·5%)

I172N+ClusterE6+L307insT+Q318X 2 (<0·5%)

I2 splice+I172N 1 (<0·5%)

I172N+ClusterE6+V281L+L307insT 1 (<0·5%)

P30L+Q318X 1 (<0·5%)

H62L+P453S 1 (<0·5%)

I2 splice+P453S 1 (<0·5%)

V281L+R356W+A487P 1 (<0·5%)

(Continues in next column)

Number of 
patients (N=490) 

(Continued from previous column)

Non-pseudogene-derived mutations

R483GGtoC 11 (1%)

R483P 2 (<0·5%)

R341W 2 (<0·5%)

R233G 2 (<0·5%)

R354H 1 (<0·5%)

W22X 1 (<0·5%)

I1 splice 1 (<0·5%)

G291S 1 (<0·5%)

I7 splice 1 (<0·5%)

R356P 1 (<0·5%)

W405X 1 (<0·5%)

R356Q 1 (<0·5%)

T295N 1 (<0·5%)

G424S 1 (<0·5%)

C147R 1 (<0·5%)

V139E 1 (<0·5%)

R426H 1 (<0·5%)

P482S 1 (<0·5%)

R444X 1 (<0·5%)

F404C 1 (<0·5%)

T52P 1 (<0·5%)

M283V 1 (<0·5%)

R408C 1 (<0·5%)

Unknown despite gene sequencing: 2 (<0·5%)

Total 800

Data are n (%). A total of 490 individuals were genotyped, and because all 
patients carry two alleles, they can have two different mutations (compound 
heterozygosity). The genotyped patients thus represent 980 alleles. However, 
many patients were siblings. In these cases, the families’ two alleles were counted 
only once so as not to skew the allele frequencies, and to generate the relative 
frequencies of unrelated alleles.

Table 2: Frequency of underlying mutations in the congenital adrenal 
hyperplasia population in Sweden
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Figure 2: Number of patients with congenital adrenal hyperplasia, by sex 
and screening status
The proportion of individuals with salt-wasting and non-salt-wasting forms of 
the disorder are given for before (1950–1985) and after (1986–2011) the 
introduction of screening for both sexes. The sex ratio did not differ after the 
introduction of screening, but the proportion of individuals diagnosed with the 
salt-wasting form increased (p=0·038).
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Figure 8 

 

Flow chart describing the study population in Paper IV. 

During the study period 274 subjects were diagnosed with CAH, 231 of which were detected in 

the screening. Thus, the overall sensitivity was 84.3%. There was no statistically significant 

difference between the sensitivity for males (87.2%) and that for females (81.6%) (P = 0.29). The 

specificity was 99.9%. 

There was no statistical skewness in the proportion of males in the CAH population compared to 

the general population, but more males (1063) had a positive test than females (665). The PPV 

was therefore higher in females (17.3%), compared to males (10.9%) (P = 0.001). 

The recall rate (proportion of positive tests) was lower in full-term infants (0.03%) than in pre-

term infants (0.57%) (P < 0.001). Furthermore, the PPV was higher in full-terms than in pre-

terms, 25.1% and 1.4%, respectively (P < 0.001). The PPV correlated positively with gestational 

age (correlation 0.98, P < 0.001). 

The number of false positives was high among extremely premature infants. Both true- and false-

positive tests were low during weeks 32–34 and the proportion of true positives increased in 

infants born near term (Figure 9). 

Born	  in	  Sweden	  
1986-‐2011	  
n	  =	  2,742,952	  

Screened	  for	  CAH	  
n	  =	  2,737,932	  
(99,8%)	  

Negative	  test	  
result	  

n	  =	  2,736,204	  

True	  negative	  
n	  =	  2,736,161	  

False	  negative	  
n	  =	  43	  
CAH	  

Positive	  test	  
result	  

n	  =	  1,728	  

True	  positive	  
n	  =	  231	  
CAH	  

False	  positive	  
n	  =	  1,497	  
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Figure 9 

 

Numbers of cases with a positive screening result per gestational age week. 

The sensitivity was higher in infants with severe forms of CAH compared to milder forms (Table 

5). 
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Table 5 

Genotype Sensitivity N Median 17-OHP (95% CI) 

Null 100% 61 792 (792–836) 

I2 splice 98.8%1 82 759 (677–792) 

I172N 79.0% 49 191 (151–240) 

P30L 85.7% 6 288 (84–756) 

V281L, P453S and R341W 32.4% 12 109 (85–226) 

False positives - 1497 173 (160–198) 

Total (true positives) 84.3% 2312 654 (524–740) 

Sensitivity and 17-hydroxyprogesterone (17-OHP) for different genotype groups and 

false positives. 1 Excluding two cases that would have been picked up with the current 

cut-off level. 2 Seven cases had genotypes not possible to group, the genotype was 

unknown for 12 cases, one case had a 3β-hydroxysteroid dehydrogenase type II 

deficiency and one had a cytochrome P450 oxidoreductase deficiency. 

The 17-OHP level in the screening test correlated with the form of severity (P<0.001), but the 

range of the groups overlapped so it was not possible to determine the exact form of CAH from 

the screening sample alone (Figure 10). 
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Figure 10 

 

Median 17-hydroxyprogesterone (17-OHP) values for true-positive cases of congenital adrenal 

hyperplasia by genotype group. Bars represent medians and error bars 95% CIs for medians. 

Three of the 43 cases missed in the screening belonged to the I2 splice genotype group that is 

considered to be potentially salt wasting. However, none of these subjects showed any evidence 

of episodes of salt loss and probably represented rare, but previously known, cases of I2 splice 

where genotype and phenotype are not concordant. The other cases belonged to milder forms of 

the disease. 

A review of all neonatal screening programmes published during the past 17 years revealed that 

the sensitivity correlated negatively with the published number of years of follow-up (P = 0.034, 

correlation -0.52).  

5.5 GROWTH AND TREATMENT IN CHILDREN WITH CONGENITAL ADRENAL 
HYPERPLASIA 

There were no significant differences in the average glucocorticoid dose in hydrocortisone 

equivalents between the sexes or different clinical or genotype groups, nor for any specific age 
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range (0–2 years, 2–11 years or 11–18 years) or overall from birth to 18 years of age. Doses were 

roughly within the recommended range of 10–15 mg hydrocortisone equivalents per m2 BSA. 

The glucocorticoid dose did not correlate with height velocity in any particular age range. 

Furthermore, the glucocorticoid dose in hydrocortisone equivalents for any specific age range 

(0–2 years, 2–11 years or 11–18 years) or overall from birth to 18 years of age did not correlate 

significantly with the corrected final height SDS or BMI at 18 years of age. 

On the other hand, the corrected final height SDS was lower in subjects who had been treated 

with prednisolone, -1.1 ± 1.0, than in those who had not been treated with prednisolone, -0.6 ± 

1.0 (P = 0.047).  

In addition, BMI at 18 years of age was higher in the group that had been treated with 

prednisolone (25.3 ± 4.7) than in those not treated with prednisolone (23.4 ± 4.5) (P = 0.044). 

BMI at 18 years of age correlated positively with the duration of the prednisolone treatment (P = 

0.02, correlation 0.274), but not with the average dose per BSA per day (P = 0.129, correlation 

0.326). For prednisolone-treated patients (n = 26), the mean duration of treatment was 4.4 years 

(range 0.1 to 13.3 years) and therapy started at a mean age of 11.9 years (range 4.6 to 17.8 years). 

The mean dose during treatment was 2.78 ± 2.5 mg per BSA per day. Prednisolone treatment 

was neither overrepresented in any genotype group (P = 0.462), nor in males compared to 

females (P = 0.381). 

Children with early-diagnosed CAH exhibited impaired growth and weight development during 

infancy but displayed a catch-up growth in childhood (Figure 11). 
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Figure 11 

 

Height SDS from birth to 18 years. Please note that 3-month age intervals are shown from birth 

to 12 months, 6-months intervals from 12 months to 2 years and for each full year thereafter. 

Bars represent medians and error bars 95% CIs for medians.  

Complete growth charts were available for 75 patients, and only 11 of these did not show a 

pubertal growth spurt, defined as growth velocity of > 7 cm/year. The presence of a pubertal 

growth spurt was not more prevalent in any CYP21A2 genotype group or clinical group, sex or 

whether the child had been treated with prednisolone or not. Furthermore, it did not correlate 

with the average glucocorticoid dose at any specific age or overall. 

Onset of puberty was difficult to determine from the reported data. Instead, any growth after 8 

years of age in females and 9 years of age in males was regarded as peripubertal. From these 

ages until final height, children with SV CAH grew more than children with SW CAH, 39.3 ± 
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6.6 cm vs 34.3 ± 5.8 cm (P = 0.012). The magnitude of peripubertal growth correlated positively 

with the corrected final height SDS for both males (P = 0.009, correlation 0.495) and females (P 

< 0.001, correlation 0.664) (Figure 12) and negatively with BMI at 18 years of age (P = 0.002, 

correlation -0.398) (Figure 13). Early-diagnosed patients were more likely to exhibit a pubertal 

growth spurt than late-diagnosed patients (P < 0.001). 

Figure 12 

 

Height SDS corrected for parental heights in relation to peripubertal growth. The straight line 

represents the linear fit curve and the curved lines represent the 95% CI for the linear fit curve. 
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Figure 13 

 

BMI at 18 years of age in relation to peripubertal growth. The straight line represents the linear 

fit curve and the curved lines represent the 95% CI for the linear fit curve. 

A growth spurt, defined as a height velocity of ≥ 7 cm per year after 8 and 9 years of age in girls 

and boys, respectively, was noted in 43 subjects. Ten of these subjects showed a reduced height 

velocity before the onset of a pubertal growth spurt, four of which had had a late diagnosis. 

Twenty-one subjects exhibited a biphasic growth pattern with a distinct separate period of 

increased growth velocity before the actual pubertal growth spurt. No pubertal spurt at all was 

seen in 11 subjects. Early-diagnosed patients were more likely to exhibit a pubertal growth spurt 

than late-diagnosed ones (P < 0.001). The growth patterns, or the presence or absence of a 

pubertal growth spurt, were not associated with sex, clinical severity, genotype, or 

hydrocortisone or prednisolone treatment. However, among children who showed a biphasic 

growth curve, the glucocorticoid doses were increased after the period of the first growth 

acceleration by a mean of 2.05 ± 2.46 mg HC-eq/BSA per day (P = 0.01). 

Although early-diagnosed patients were shorter than the normal population, their mean corrected 

final height SDS at 18 years of age was -0.78 (CI 95%, -1.03 to -0.54) and thus was within -1 
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SD. No statistical difference in corrected final height SDS was seen between males (-0.81; CI 

95%, -1.21 to -0.40) and females (-0.77; CI 95%, -1.08 to -0.45) (P = 0.737). 

Final height was achieved (height velocity < 1 cm/year) at 16.5 ± 1.3 years of age in girls and at 

17.2 ± 0.9 years in boys. An older age at the achieved final height correlated positively with the 

corrected final height SDS (P = 0.011, correlation 0.32).  

The corrected final height SDS correlated with genotype group in the sense that children with 

milder mutations achieved a higher final height than those with more severe mutations (P = 

0.012, correlation 0.300) (Figure 14). 

Figure 14 

 

Corrected final height (SDS) for different genotype groups. 

Overweight and obesity were common in males; in fact, 52% of the males and 25% of the 

females had a BMI > 25 kg/m2 at 18 years of age (P = 0.031). There were no significant 

differences in BMI between the genotype groups at 18 years of age. BMI at 18 years of age was 

higher in patients with an early start of treatment (24.6 ± 4.7 kg/m2) than in patients with a late 

diagnosis and start of treatment (21.5 ± 2.9) (P = 0.027). 
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6 DISCUSSION 

6.1 PAPER I: GESTATIONAL AGE CORRELATES TO GENOTYPE IN GIRLS WITH 
CYP21 DEFICIENCY 

6.1.1 Findings and interpretations 

The results presented in Paper I suggest that gestational age correlates with the CYP21A2 

genotype in girls, but not in boys, with CAH. The length of pregnancy for boys with CAH was 

prolonged compared to the normal male population, although this comparison is accompanied by 

some methodological limitations as mentioned below. 

The results are interesting since they suggest that androgens may be involved in prolonging 

gestation and hence may contribute to the difference in gestational age between the sexes seen in 

the normal population. However, not all investigators agree that there is a true difference in 

pregnancy length between the sexes, but that it is rather a systematic error when determining 

gestational length by ultrasonography (74). Taking these thoughts into account, it is biologically 

plausible for children with severe forms of CAH to be born post-term more often than milder 

forms. Firstly, in foetuses with CAH, there is increased production of 17-OHP. 17-OHP-caproate 

has been successfully used to delay threatening premature births in women at risk (248). 

Secondly, foetuses with CAH exhibit a decreased production of glucocorticoids. It has been 

shown that a surge in cortisol production, due to increased placental CRH production, precedes 

the onset of labour in normal births and may be one of the initiating processes of birth (249, 250). 

In our material, we saw a dose-response relationship between the severity of disease and the 

length of pregnancy for girls but not for boys with CAH. The hormonal disturbance in the 

adrenals is equal in foetuses with CAH, regardless of sex, regarding both androgen excess and 

cortisol and aldosterone deficiency. However, normal newborn males have high levels of 

testosterone due to testicular production. It may be that males with CAH do not differ as much 

regarding testosterone from healthy males as females with CAH do from healthy females. This 

hypothesis might then explain why the dose-response relationship is evident in females, but not 

in males. 

Studying the length of pregnancy in CAH is interesting as pregnancy length is a predictor of birth 

weight. It has been shown by others that birth weight is increased in infants with CAH compared 
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to the normal population (80, 251), which may reflect a longer gestation rather than an increased 

foetal growth. 

6.1.2 Methodological considerations 

A total of 165 pregnancies were eligible for inclusion in the study and 109 were included for 

statistical analysis. Given the low incidence of CAH, this is a large cohort and thus provided the 

power to study the small differences in length of pregnancy. All included subjects were 

genotyped, rather than clinically classified. As shown before, the neonatal, and thus most 

probably also the prenatal, 17-OHP levels, which correspond to the level of adrenal 

insufficiency, correlate with the genotype (187).  

This study suffers from some methodological limitations. Firstly, the study population consists of 

a cohort of patients with CAH whose data on gestational age at birth were collected in two 

different ways. For some patients, the information concerning length of pregnancy was collected 

from medical records and for some the information was obtained from the Guthrie card used in 

the screening. However, for the majority of the patients, both sources of information were 

available and they concurred with one another. Secondly, the normal population reference data 

were obtained from a separate study, meaning that we did not use a control group of our own. 

This poses a risk that the two groups, the CAH cohort and the normal population, were not 

measured equally. However, the data used to represent the control group in this study comprised 

children born contemporarily after full-term singleton pregnancies. The data had been obtained 

from the Medical Birth Registry in Sweden. This registry collects its data from medical files 

recorded by midwives, just as the information on the Guthrie cards and in the medical records. 

However, because of the methodological limitations, the results should be interpreted with 

caution. Furthermore, the retrospective observational design prevents us from additional 

investigations of such causative factors as hormonal samples from the foetus, amniotic fluid or 

the maternal circulation. 

Despite the limitations associated with this study, a British research group reproduced the results 

shortly after its publication. Their report stated that post-term deliveries were more common in 

pregnancies with a foetus with SW CAH than in the normal population (252). 
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6.2 PAPER II: THE ROLE OF ANDROGENS IN FETAL GROWTH: 
OBSERVATIONAL STUDY IN TWO GENETIC MODELS OF DISORDERED 
ANDROGEN SIGNALLING 

6.2.1 Findings and interpretations 

We examined the birth weights in children with CAH and CAIS. Birth weight SDS did not differ 

from the reference for either boys or girls with CAH. Birth weight SDS in CAIS girls was higher 

than the reference for girls, but similar to the reference for boys. 

The results are in contrast to those reported by Balsamo and co-workers (80) and Qazi and 

Thompson (251), both of whom demonstrated that birth weight was increased in CAH. In the 

work by Balsamo and co-workers (80), the CAH cohort, including children with gestational ages 

between 38 and 41 full weeks, was compared with a reference material consisting of girls born at 

week 39 and boys at week 40. These gestational ages corresponded to the mean gestational age 

for boys and girls with CAH, respectively, in their study. It is unclear why not all full-term 

infants from week 37 to 42 were included; the comparison between these groups may be 

inappropriate, as it does not really adjust for the differences in gestational age between the 

children with CAH and the controls. The work by Qazi and Thompson did not adjust for 

gestational age at all (251). Hence, the apparent difference in birth weight noted in these studies 

may be an effect of prolonged pregnancy for foetuses with CAH. 

Girls with CAIS do not respond to androgens, as they have a completely abolished function of 

the AR. However, they have the 46,XY karyotype. Since their birth weight is higher than that of 

the reference girls, this suggests that other factors on the Y-chromosome, and not only androgen 

signalling, may influence foetal growth. Children with the 45,X0 karyotype (Turner´s syndrome) 

that lack the Y-chromosome exhibit lower mean birth weights than other females (253), but no 

difference in birth weights between children with an increased number of Y-chromosomes and 

controls has been demonstrated (254, 255). 

The results presented in Paper II do not provide any support for the hypothesis that there is a 

relationship between androgen signalling and birth weight. However, as it is decidedly 

impossible to statistically prove that there is no difference between groups, apart from showing 

the existence of such a difference, one has to interpret the results cautiously. Furthermore, the 
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study is observational and can only demonstrate the presence or absence of a relationship 

between androgen signalling and birth weight, and not causality. 

In papers I and II CAH was used as a human model for studying the relationship between 

androgen excess and cortisol deficiency and length of pregnancy and birth weight. 

6.2.2 Methodological considerations 

The strength of this study is that it combines two different syndromes marked by disordered 

androgen signalling in an opposite fashion. 

Gestational age at birth may be influenced by androgens and highly predicts birth weight. 

Therefore, birth weight SDS was adjusted for gestational age at birth. Birth weights were 

converted into SDS based on the reference material in the country in which each patient was 

born. This made the use of a specific control group less important. 

6.3 PAPER III: ONE HUNDRED YEARS OF CONGENITAL ADRENAL 
HYPERPLASIA IN SWEDEN: A RETROSPECTIVE, POPULATION-BASED 
COHORT STUDY 

6.3.1 Findings and interpretations 

The population of diagnosed cases of CAH during the past century was described. During the 

study period (1910 to 2011), the apparent incidence increased following the general 

improvements in diagnostics and care and particularly the introduction of an effective treatment 

for CAH. With the introduction of an effective treatment, it is likely that physicians increased 

their awareness concerning detecting cases of CAH, thereby leading to more patients being 

diagnosed. Furthermore, during the 1960s and 1970s in Sweden, national surveys of CAH 

probably increased awareness of the disease. 

In this study it was noted that the female preponderance continued after the introduction of 

screening. However, before the introduction of screening, this can be attributed to higher survival 

among female cases with severe forms of disease, whereas, after the introduction of screening, 

the female preponderance is due to NC CAH being diagnosed more often in older girls and 

women than in men. In fact, the proportion of SW CAH increased in both sexes after the 

introduction of screening. 
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No difference in the sex ratio could be seen after the year 2000. This is in all probability because 

mild cases have not yet been diagnosed. Thus, there is a time lag before late onset cases 

contribute to the skewed sex ratio. This also explains why there is a reduction in the apparent 

incidence after the 1990s (Figure 6A). 

6.3.2 Methodological considerations 

The particular strengths of this study are that it is based on the whole population in Sweden and 

that it spans over a century. This reduces the problem of selection bias. The cohort is also quite 

large, especially for such a rare disease as CAH. 

In order to calculate the apparent incidence for each decade, the exact number of individuals born 

each decade needs to be known. In Sweden there is the advantage of a centralised register that 

has collected this information since the 18th century (245). Furthermore, the sex ratio for live 

births is known since 1968 (246). In this study it was assumed that the overall sex ratio between 

1968 and 2011 could also be applied from 1910 onwards. 

The most obvious limitation of this study is that it reflects an historical cohort. Therefore, the 

finding that the proportion of SW CAH increased after the introduction of screening must be 

interpreted cautiously. It may be that the proportion of SW CAH cases would have increased 

independently of the introduction of neonatal screening from 1986 onwards. Furthermore, the 

inclusion of cases with CAH was based on all available sources. Although Sweden is a small 

country with centralised neonatal screening and CYP21A2 investigations, there might be 

unknown cases that escaped inclusion in this study. 

The classification of patients relied on both genotype and phenotype. However, for many cases, 

only one of these parameters was known. A small proportion of the included cases exhibited 

discordance between genotype and phenotype. This may be more common than could be 

investigated using the limited resource of data that was available for many patients. 
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6.4 PAPER IV: NATIONWIDE NEONATAL SCREENING FOR CONGENITAL 
ADRENAL HYPERPLASIA IN SWEDEN: A LONGITUDINAL PROSPECTIVE 
POPULATION-BASED STUDY COVERING 26 YEARS 

6.4.1 Findings and interpretations 

The neonatal screening programme for CAH is described in detail in Paper IV. The main finding 

is that the sensitivity for SW CAH is 100%. This finding is important and timely as a recent 

report published a considerably lower detection rate of SW CAH (256). In addition, the rationale 

for neonatal screening for CAH has been questioned owing to the high rate of false positives in 

premature infants (217). Also in the material reported in Paper IV the rate of false positives was 

high. However, screening in pre-terms may still be justified since it leads to earlier detection of 

patients and a second sample can easily be obtained from already admitted infants. 

Apart from detection of potentially lethal forms of CAH, the secondary aim of the Swedish 

screening programme is to shorten the time of uncertain sex in virilised females. The present 

study did not address this issue, but a previous Swedish study has shown that the median time of 

uncertain sex in girls with CAH was lowered considerably from 23 to 3 days with the 

implementation of screening (187). 

Paper IV included a comparison with recently reported screening programmes. The overall recall 

rate was low and the PPV was high compared to other studies. However, the overall sensitivity 

was low. This probably reflects the fact that, owing to a detailed collection of missed cases, a 

large proportion of late-diagnosed NC CAH was found. On including these cases in the 

calculation of sensitivity, the metrics dropped. In accordance with this, we found that the 

sensitivity in all compared studies correlated with the number of years of follow-up. The study 

described in Paper IV reported the longest follow-up yet published, and thus allowed 

identification of increasing numbers of false negative cases who presented with androgen 

symptoms as they grew older. 

6.4.2 Methodological considerations 

This study is unique in many senses. It reports the longest follow-up of screening for CAH and 

continuously collected data on missed cases ever published. This allows a more accurate 

description of the true sensitivity of milder forms. Information concerning missed cases was 

reported by local clinicians to the laboratory. Furthermore, in the study described in Paper III, a 
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registry including all known cases of CAH was established. These cases were compared with 

patients detected through screening. Genotyping is a precise diagnostic tool and was carried out 

in 94.8% of cases, including all missed cases of CAH. The study was population-based, meaning 

that all (99.8%) infants born alive in Sweden during the study period were included.  

Nevertheless, there are some limitations to the conclusions that can be drawn from the results. 

Despite the thorough procedures to collect missed cases, some cases of SW CAH might have 

been missed and escaped diagnosis completely; in which case, they would not be included in the 

data presented in Paper III either. If such cases exist, it would lower the sensitivity for severe 

forms. 

Although the follow-up was carried out for a period of 26 years, newly screened and potentially 

missed very mild cases might not yet have been given an accurate diagnosis. Therefore, the 

actual sensitivity for mild forms of CAH may be even lower than reported here. 

In spite of these drawbacks, the study is comprehensive and the approach to collecting data is 

methodical. A full guarantee against missing false negative cases in the follow-up of screening is 

obviously impossible. 

6.5 PAPER V: GROWTH AND TREATMENT IN CONGENITAL ADRENAL 
HYPERPLASIA: A PROSPECTIVE OBSERVATIONAL STUDY FROM 
DIAGNOSIS TO FINAL HEIGHT 

6.5.1 Findings and interpretations 

The growth and treatment of a cohort of 80 out of 88 eligible children are described. Growth and 

weight development was impaired during infancy, but a catch-up in both growth and weight 

development was seen during childhood. This is in accord with previously reported data (94, 

124). Others (257) have reported compromised pubertal growth in CAH. Since we could not 

uniformly state the exact onset of puberty in this cohort, it is not possible to make direct 

comparisons between the material in Paper V and those results. However, we could se that the 

size of the peripubertal growth in both males and females with CAH correlated positively with 

the corrected final height SDS and that an absence of the pubertal growth spurt was seen in only 

11 out of 75 patients with complete growth charts. 
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The age at which children with CAH actually achieve their final height has not been reported 

before. In this material, girls grew until a mean of 16.5 years of age and boys until 17.2 years. It 

has previously been reported that the onset of the pubertal growth spurt is earlier in children with 

CAH than in the normal population (139). It is therefore somewhat surprising that the children in 

this cohort had continued growth for this long. In fact, the age at the achieved final height 

correlated positively with the corrected final height, suggesting that allowing for continued 

growth is both possible and important in children with CAH in order to avoid short adult stature. 

Interestingly, the average glucocorticoid dose between 0 and 18 years of age did not correlate 

with the corrected final height SDS. Similarly, there were no correlations between the average 

dose during 0–2 years, 2–11 years or 11–18 years with the corrected final height. Since doses 

were roughly within the recommendations of 10–15 mg hydrocortisone equivalents per m2 BSA 

per day in all groups of children, it may be that the differences were small or they were all 

optimally treated as to their biological need. However, the group of children who had been 

treated with the addition of prednisolone had a shorter corrected final height SDS (-1.1 ± 1.0) 

than those who had not been treated with prednisolone (-0.60 ± 1.0) (P = 0.047). Furthermore, 

BMI at 18 years of age was higher in the prednisolone-treated group, 25.3 ± 4.7, compared to 

23.4 ± 4.5 (P = 0.044), and BMI correlated with the duration of prednisolone treatment (P = 0.02, 

correlation 0.274), but not the average dose during treatment (P = 0.129, correlation 0.326). This 

suggests that prednisolone may be harmful to both growth and weight development and is in 

accord with previous results (131, 136). However, conclusions need to be drawn cautiously as 

this observational study does not allow analyses of causality. No randomisation concerning 

treatment was carried out and it cannot be ruled out that other factors, rather than prednisolone, 

influenced the higher BMI and shorter stature in this group of patients. It is, however, worth 

pointing out that prednisolone treatment was not more prevalent in any clinical or genotype 

group, or in males compared to females. 

6.5.2 Methodological considerations 

This study was designed to include children born or diagnosed with CAH between January 1989 

and December 1994. In fact, all parents of children eligible for the study gave their informed 

consent for inclusion. Only eight patients were excluded from the statistical analysis, only four of 

which were due to loss to follow-up. Thus, the risk of a selection bias can be regarded as small. 
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The local clinician reported the data continuously. Every reported auxological measurement was 

plotted to produce a growth chart and the extrapolated value for the pre-specified ages was read 

off. The data concerning growth and weight development are therefore very reliable. 

Similarly, every change in dose was recorded and the average glucocorticoid dose was calculated 

for the pre-specified age intervals. Since changes in doses are more radical during the first year 

of life, these age intervals were smaller at that age. This method of calculating the doses is time- 

consuming, but it gives a detailed description of the doses used in each patient. In addition, the 

glucocorticoids used in this study were converted into hydrocortisone equivalents. Generally, the 

conversion factors between different glucocorticoids are based on anti-inflammatory action or 

affinity to the glucocorticoid receptor (182). However, their growth-inhibitory action is not as 

well established. It may therefore be that hydrocortisone equivalents as calculated in this study 

do not actually correspond to the negative effect on growth exerted by the different drugs used. 

Similarly, different glucocorticoids may affect the appetite and the development of obesity 

differently than could be expected from their anti-inflammatory effects. 

Each clinician oversaw only a few of the patients included in this study. The benefit is that it was 

possible to compare different strategies of treatment, such as the use of prednisolone. However, 

the risk for subjective decisions concerning treatment and individual evaluations of clinical 

findings, such as the onset of puberty, is inevitable. In this cohort, the onset of puberty was not 

defined uniformly and different clinicians surveyed its onset more or less scrupulously. It is 

therefore impossible to provide data on, for example, growth from the first sign of central 

puberty to final height. 

The main objective of the study was to compare growth and BMI in different clinical and genetic 

forms of severity of CAH, as well as for different strategies of treatment, and therefore no control 

group was employed. Comparisons with the normal population on final height and BMI were 

based on one-sample tests of the height and weight SDS. There are two concerns regarding this 

method. Firstly, the method is vulnerable to secular trend and methodological differences in 

collecting the data. Secondly, one-sample tests are not statistically designed for repeated 

measures and there is an increased risk of type I errors. 

As expected from previous studies concerning the distribution of forms of severity of CAH in 

Sweden (24, 33), the number of patients with NC CAH in this study was low. Therefore, this 
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group of patients had to be omitted from some statistical analyses and the risk of type II errors 

must therefore be regarded as increased. 

As the study was observational, it is not possible to draw conclusions concerning causality. 
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7 CONCLUSIONS 

This thesis describes five different studies designed to answer the pre-specified hypotheses. 

The results from Paper I suggest that length of pregnancy may be prolonged in girls with severe 

forms of CAH. Another group later found that prolonged length of pregnancy was more common 

in children with CAH than in controls (252). Together with the findings that male foetuses have a 

slightly prolonged gestation (74), this may suggests that androgens, rather than the cortisol 

deficiency also seen in CAH, may be responsible for prolonging pregnancy. 

Paper II addresses foetal growth and androgen signalling. Although it is notoriously statistically 

impossible to prove the absence of a difference, our results from two different syndromes, which 

in this respect may be said to mirror each other, suggest that androgens do not affect foetal 

growth. Children with CAH did not have increased birth weights and, furthermore, girls with 

CAIS had mean birth weights comparable to those of normal males, which is in accord with their 

genotype rather than their phenotype. 

The historical medical improvements in diagnosis and care of patients with CAH over time 

where described in Paper III. We could see that the apparent incidence increased after treatment 

was available in 1950. There was a steep rise in the apparent incidence during the 1960s and 

1970s. The exact reason for this is hard to state in this historical material but during the time 

paediatric endocrinology as a sub-speciality was developed in Sweden. Furthermore, the 

knowledge of an effective treatment may have encouraged physicians to detect cases. 

The effects of neonatal screening were addressed in Paper III and described in Paper IV. The 

screening programme proved to be effective in detecting the potentially lethal SW CAH and the 

introduction of screening increased the detected incidence of SW CAH in both boys and girls. 

The overall dose of hydrocortisone equivalent glucocorticoids in children with CAH in Sweden 

was within the recommended dose interval. The overall dose could not be correlated to the final 

height; however, the use of prednisolone was associated with both a compromised final height 

and a higher BMI at 18 years of age. It is probable that the hydrocortisone doses did not differ 

enough between subjects for us to be able to detect a correlation with final height and BMI, or 

the number of participants was too small. Genotype correlated with the final height in children 

with CAH.  
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8 CLINICAL IMPLICATIONS 

The results in this thesis may directly influence the care and treatment for patients with CAH. 

The main findings concern screening and growth.  

Screening for CAH is effective in detecting SW CAH and increases its incidence, saving lives in 

boys as well as in girls. The false positive rate can be kept acceptably low without losing in 

sensitivity for SW cases. The 17-OHP level in the screening gives a good indication of the 

severity of disease of the child which is a clinically useful information. A substantial proportion 

of all NC CAH cases are however not detected in the screening, but are diagnosed based on 

hyperandrogenic symptoms and signs during childhood, adolescence and even in adult life. 

The observational study concerning growth and treatment in CAH described in Paper V suggests 

that prednisolone should be avoided in growing subjects with CAH and that special attention 

should be paid to growth in children with the severe forms. 

This thesis also includes studies using CAH as a model system for prenatal androgen exposure, 

and the studies were designed to investigate important physiological issues, such as the influence 

of androgens on the length of pregnancy and birth weight. Although Paper I indicates that the 

degree of severity may statistically significant influence gestational age at birth in females with 

CAH, the differences between the groups per se are not clinically relevant. But the differences 

suggest that foetal androgen or 17-OHP over production may influence the timing of birth and 

may thus be important from a biological perspective. Moreover, the results from Paper II where 

birth weights were studied in two separate models of disordered androgen signalling do not 

suggest that androgens influence prenatal growth. This is in contrast to previous results 

concerning birth weights in CAH but is in accordance with the notion that androgens do not 

influence early postnatal growth, which is often seen as a continuation of foetal growth. 
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9 SUGGESTIONS FOR FUTURE RESEARCH 

The patients included in Paper III are included in the Swedish CAH registry. Further 

epidemiological investigations of this cohort of 606 patients with CAH are initiated. Sweden is 

unique in that it holds records for the whole population concerning pregnancies and births dating 

from 1973. Within this database, it is possible to anonymise and retrospectively compare this 

cohort with the entire population since data has been collected uniformly for cases and controls. 

Perinatal factors were collected for the study described in Paper V and we could see that 8% of 

mothers who gave birth to infants later diagnosed with CAH suffered from preeclampsia. The 

overall incidence of preeclampsia in the Swedish population is about 3% (258). However, data 

were not collected uniformly and did not allow statistical comparisons with the normal 

population. We now have a possibility to conduct epidemiological studies and investigate the 

incidence of preeclampsia in women who are obligate carriers of CYP21A2 mutations, and to 

compare this to the normal population. This relationship has not been described previously and, it 

would be interesting to investigate if preeclampsia is more prevalent in these pregnancies since 

preeclampsia is more frequent in mothers who bear a male foetus (258), and higher levels of 

circulating androgens have been reported in mothers with preeclampsia (259). 

Furthermore, because we have this large registry, it is possible for us to describe reproductive 

outcomes in women who themselves have CAH. In pregnancies of mothers affected by CAH, 

gestational diabetes may be more common (132) and elective caesarean section is recommended 

in women with prior genitoplasty (15). It has been suggested that women with CAH may have 

more android pelvic characteristics, suggesting an increased risk for cephalo-pelvic disproportion 

and thus labour dystocia (15). With this large series and uniformity in the collection of data, it is 

possible for us to provide a more definite epidemiological description of these and other 

reproductive outcomes in women with CAH. 

Since fertility is reduced in women with CAH we have also initiated a study in which we 

compare the expression of endometrial steroid hormone receptors between women with CAH, 

PCOS and healthy controls. The expressions of steroid hormone receptors are known to be 

associated with endometrial receptivity for the early embryo. The results from this study may 

cast new light on reproductive pathophysiology in CAH. 
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