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ABSTRACT 
 
WRAP53β is a multifaceted protein involved in several biological processes including 
Cajal body maintenance, cancer cell survival and DNA damage repair. By directing 
factors to Cajal bodies and DNA double-strand breaks (DSBs), WRAP53β facilitates 
site-specific interactions necessary for proper biological responses.  
 
The Cajal body is a subnuclear organelle implicated in cellular processes such as 
splicing machinery maturation and telomere maintenance. In Paper I, we reveal that 
WRAP53β is an essential structural component of Cajal bodies. Furthermore, 
WRAP53β is required for the intracellular targeting of factors to this site. WRAP53β 
associates with the survival of motor neuron (SMN) complex in the cytoplasm, 
mediates its nuclear import and subsequent Cajal body accumulation. In addition, we 
find that the interaction between WRAP53β and SMN is disrupted in the severe 
neurodegenerative disorder spinal muscular atrophy, suggesting clinical relevance of 
WRAP53β-mediated SMN transport.  
 
In Paper II, we study the relationship between WRAP53β expression and cancer cell 
survival. We demonstrate that WRAP53β is overexpressed in a panel of different 
cancer cell lines in comparison to primary cells. WRAP53β depletion results in 
massive induction of cancer cell death, whereas normal human fibroblasts are largely 
insensitive to WRAP53β knockdown. The cell death associated with WRAP53β 
silencing occurs via the intrinsic mitochondrial pathway as demonstrated by Bax/Bak 
activation, loss of mitochondrial membrane potential and release of cytochrome c. 
Finally, we show that high WRAP53β expression levels correlate with poor prognosis 
and radioresistance of head and neck cancer patients.  
 
In Paper III, we establish WRAP53β as a novel player in the DNA damage response. 
We show that WRAP53β rapidly and transiently localizes to DNA DSBs in an ATM- 
and PARP-dependent manner. WRAP53β binds the E3 ligase RNF8 and facilitates its 
interaction with MDC1, which is essential for the downstream recruitment of repair 
proteins 53BP1, BRCA1 and RAD51 to damaged sites. Knockdown of WRAP53β 
results in deficient DNA DSB repair, whereas WRAP53β overexpression enhances 
repair efficiency and provides resistance to DNA damaging agents. Furthermore, 
reduced expression of WRAP53β is related to decreased ovarian cancer patient 
survival. 
 
In summary, our data identify WRAP53β as a novel structural and regulatory 
component of Cajal bodies as well as an important factor in carcinogenesis and DNA 
repair.     
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1. LIST OF ABBREVIATIONS 
53BP1   Tumor suppressor p53-binding protein 1 
ALC1   Amplified in liver cancer 1 
ALT   Alternative lengthening of telomeres 
Alu   Arthrobacter luteus 
Apaf-1   Apoptotic protease-activating factor 1 
APB   ALT-associated PML bodies  
ASF/SF2  Alternative splicing factor/splicing factor 2 
ATM   Ataxia telangiectasia mutated 
ATR   Ataxia telangiectasia and Rad3-related 
ATRIP    ATR-interacting protein  
BACH1  BTB and CNC homology 1 
Bak   Bcl-2 homologous antagonist/killer 1 
BAL1   B-aggressive lymphoma 1 
BARD1  BRCA1 associated RING domain 1 
Bax   Bcl-2-associated X protein 
BBAP   B-lymphoma- and BAL-associated protein 
Bcl-2   B-cell lymphoma 2 
BIR   Break-induced replication 
BLM   Bloom syndrome protein 
BMI1   B Lymphoma Mo-MLV Insertion Region 1  
BP   Base pair 
BRCA   Breast cancer susceptibility gene 
BRCC   BRCA1/BRCA2-containing complex subunit 
BRCT   BRCA1 C terminus  
CAB box  Cajal body box 
Caspase  Cysteine aspartic acid specific protease 
CDC   Cell division cycle 
CDK   Cyclin-dependent kinase 
CHD4   Chromodomain helicase DNA-binding protein 4  
Chk   Checkpoint kinase 
CK2   Casein kinase 2 
CSR   Class switch recombination 
CtIP   CtBP-interacting protein 
DC   Dyskeratosis congenita 
DDR   DNA damage response 
dHJ   double Holliday junction 
DISC   Death-inducing signaling complex 
D-loop   Displacement loop 
DNA   Deoxyribonucleic acid 
DNA2   DNA replication ATP-dependent helicase/nuclease 2 
DNA-PKcs  DNA-dependent protein kinase, catalytic subunit 
DNA pol  DNA polymerase 
DSB   Double-strand break 
DSBR   Double-strand break repair 
DUB   Deubiquitinating enzyme 
EME1   Essential meiotic endonuclease 1  
ERCC1 Excision repair cross-complementing rodent repair deficiency, 

complementation group 1  
EXO1   Exonuclease 1 
FasL   Fas ligand 
FHA   Forkhead-associated 
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GAR1   Glycine arginine rich protein 1  
Gems   Gemini of Cajal bodies 
GEN1   Gen endonuclease homolog 1 
GFP   Green fluorescent protein  
Gy   Gray 
HERC2   HECT domain and RCC1-like domain-containing protein 2  
HNSCC  Head and neck squamous cell carcinoma 
HR   Homologous recombination 
IRIF   Ionizing radiation-induced foci 
IR   Ionizing radiation 
JMJD2A  Jumonji domain-containing protein 2A 
JNK   c-Jun N-terminal kinase  
kDa   Kilodalton 
L3MBTL1  Lethal (3) malignant brain tumor-like protein 1 
LOH   Loss of heterozygosity  
LSm   Like Sm 
m7G cap  7-monomethylguanosine cap 
m3G cap  2,2,7-trimethylguanosine cap 
MDC1   Mediator of DNA damage checkpoint protein 1 
MEF   Mouse embryonic fibroblast 
MERIT40   Mediator of RAP80 interactions and targeting subunit of 40 kDa 
MMC   Mitomycin C 
MMSET  Multiple myeloma SET domain-containing protein 
MOF   MOZ, YBF2/SAS3, SAS2 and TIP60 protein  
MRE11   Meiotic recombination 11   
mRNA   Messenger RNA 
NBS1   Nijmegen breakage syndrome 1 
NHEJ   Non-homologous end joining 
NHP   Non-histone chromosome protein  
NOP   Nucleolar protein 
OTUB1   OTU domain, ubiquitin aldehyde binding 1 
PALB2   Partner and localizer of BRCA2 
PAR   Poly (ADP-ribose)  
PARG   Poly (ADP-ribose) glycohydrolase 
PARP   Poly (ADP-ribose) polymerase  
PI3K   Phosphatidylinositol 3-kinase 
PLA   Proximity ligation assay 
PLK1   Polo-like kinase 1 
PML   Promyelocytic leukemia 
POH1   Pad1 homologue  
PPT   Polypyrimidine tract 
PSMD4   Proteasome (Prosome, Macropain) 26S subunit, non-ATPase 4 
PTEN   Phosphatase and tensin homolog 
RAD   Radiation 
RanGTP  Ras-related nuclear protein guanosine triphosphate 
RAP80   Receptor-associated protein 80 
RDS   Radioresistant DNA synthesis 
RG    Arginine-glycine 
RIDDLE  Radiosensitivity, immunodeficiency, dysmorphic features and 

learning difficulties  
RIF1   Rap1-interacting factor 1 
RING   Really interesting new gene 
RMI   RecQ mediated genome instability  
RNA   Ribonucleic acid 
RNF   Ring finger protein 
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RNP   Ribonucleoprotein  
RPA   Replication protein A 
rRNA   Ribosomal RNA 
scaRNA  Small Cajal body-specific RNA 
SCF   Skp, Cullin, F-box  
SDSA   Synthesis-dependent strand annealing 
Sm   Smith 
SMA   Spinal muscular atrophy 
SMARCA5 SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily A member 5 
SMN   Survival of motor neuron 
SNP   Single nucleotide polymorphism 
snoRNA  Small nucleolar RNA 
snRNA   Small nuclear RNA 
SSA   Single-strand annealing 
SSB   Single-strand break 
ssDNA   Single-stranded DNA 
SUMO   Small ubiquitin-like modifier 
SWI/SNF  Switch/sucrose nonfermentable  
TCAB1   Telomerase Cajal body protein 1 
hTERT   Human telomerase reverse transcriptase 
TGS1   Trimethylguanosine synthase 1 
TIF   Telomere dysfunction-induced foci 
TIN2   TRF1-interacting nuclear factor 2 
TIP60   60 kDa Tat-interactive protein  
TMG cap  2,2,7-trimethylguanosine cap 
TopBP1  DNA topoisomerase 2-binding protein 1 
TOPO   Topoisomerase  
hTR   Human telomerase RNA 
TRAIL   TNF-related apoptosis-inducing ligand 
β-TrCP   Beta-transducin repeat containing protein 
TRF   Telomere repeat binding factor  
TRIP12   Thyroid receptor-interacting protein 12 
UBC   E2 ubiquitin-conjugating protein 
UBR5   Ubiquitin protein ligase E3 component n-recognin 5 
Unrip   Unr-interacting protein 
USP   Ubiquitin-specific protease  
UTR   Untranslated region 
UV   Ultraviolet 
VCP   Valosin-containing protein 
V(D)J   Variable diversity joining 
WDR79  WD repeat-containing protein 79 
WRAP53  WD40-encoding RNA antisense to p53 
XLF   XRCC4-like factor  
XPF   Xeroderma pigmentosum group F-complementing protein 
XRCC   X-ray repair cross-complementing protein  
ZPR1   Zinc-finger protein 1 
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2. INTRODUCTION 

2.1 The Cajal body 
 
The cell nucleus is a highly organized organelle that contains several sub-
compartments serving to concentrate specific factors and biological processes into 
restricted spaces thereby optimizing their performance. Numerous distinct non-
membrane-bound nuclear bodies have been identified, including structures such as 
nucleoli, nuclear speckles, histone locus bodies, PML bodies, Gems and Cajal bodies. 
The size and number of nuclear bodies depends on cell type, cell cycle stage and 
cellular demands. Although existing as separate nuclear entities, there are overlapping 
components and organizational properties between different nuclear bodies. The 
formation of these sub-organelles usually depends on dynamic processes such as 
protein modifications, protein self-association, different RNA and protein interactions 
and association with specific gene loci leading to tethering of central factors (1, 2).  
 
In 1903, Santiago Ramón y Cajal identified Cajal bodies in the nuclei of vertebrate 
neurons and described them as “nucleolar accessory bodies” due to their close 
proximity to the nucleolus in these cells (3). The Cajal body is a 0.2-2 µM spherical 
organelle ranging in numbers of 1-10 per cell nucleus and is characterized by the 
presence of the marker protein coilin (Figure 1A). Cajal bodies are found across many 
species, including plants, yeast, insects and mammals (4). Cajal body numbers vary 
over the cell cycle, reaching a maximum at G1/S followed by their disassembly 
during mitosis (5, 6). Early in G1, coilin is diffusely distributed throughout the 
nucleoplasm and there is a lag period before mature Cajal bodies reappear. This 
phenomenon might be regulated through hyperphosphorylation of coilin in mitosis or 
indirectly via mitotic repression of transcription, a process intimately linked to the 
Cajal body (7-9). Cajal body numbers also correlate with metabolic and proliferative 
activity and are most abundant in cells with high transcription and splicing rates, as 
observed in neuronal and cancer cells (2, 9-12). Certain cell types of adult tissues 
such as spleen and blood vessels are devoid of Cajal bodies, whereas they are 
observed in all fetal tissues (13, 14).  
 
Besides coilin, Cajal bodies contain a multitude of other molecules. Notably, several 
different proteins and RNA species in the form of ribonucleoprotein (RNP) 
complexes are enriched in Cajal bodies. These include the spliceosomal small nuclear 
RNPs (snRNPs), the small nucleolar RNPs (snoRNPs) and components of the 
telomerase RNP complex. Cajal bodies also contain the Cajal body-specific RNPs 
(scaRNPs) that guide the post-transcriptional modifications of snRNAs, required for 
their complete maturation and incorporation into the spliceosome. Accordingly, Cajal 
bodies have been described to play essential roles in snRNP and snoRNP maturation 
and telomere maintenance (Table 1). Furthermore, the snRNP-assembling survival of 
motor neuron (SMN) complex and factors involved in histone mRNA 3’-end 
processing accumulate in the Cajal body (2, 5). These factors and processes will be 
described in greater detail in upcoming sections.  
 
Cajal bodies are highly dynamic structures that move within the nucleoplasm, shuttle 
to and from the nucleoli, fuse and undergo fission events leading to variations in size 
and numbers (15). Since Cajal bodies lack surrounding membranes, components 
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readily exchange and diffuse to the surrounding nucleoplasm. Studies analyzing the 
kinetics of Cajal body components revealed turnover rates of seconds to a few 
minutes, with coilin and members of the SMN complex demonstrating the longest 
residence times (16). However, a subset of Cajal bodies can also be immobilized by 
interacting with specific gene loci such as snRNA, snoRNA and histone gene clusters 
in a transcription-dependent manner (17-19). Therefore, Cajal bodies seem to 
alternate between a mobile state of passive diffusion within the nucleoplasm and an 
immobile state of transient chromatin association. Cajal bodies may associate with 
specific genes in order to facilitate or regulate gene expression by providing pre-
assembled RNP complexes to sites of transcription (20). Additionally, Cajal bodies 
may facilitate nuclear export of newly transcribed snRNAs, which is a vital step in 
their maturation pathway (21).   
 
Tethering experiments have revealed that immobilization of a variety of Cajal body 
components leads to the de novo formation of Cajal bodies. These results demonstrate 
that Cajal body formation does not absolutely depend on a specific locus and there is 
no specific factor that initiates the assembly process (22). However, others have 
suggested that RNA initiates Cajal body formation. In this model, RNA functions as a 
scaffold for the immobilization and retention of Cajal body-associated factors 
resulting in nuclear body assembly (23). This is in line with data showing that 
transcriptional inhibition results in Cajal body disassembly and furthermore prevents 
Cajal body re-formation following completion of mitosis (6, 24). Nevertheless, Cajal 
bodies seem to assemble without internal hierarchy of individual components, in a 
random and self-organized manner, either in the presence or absence of a RNA-
mediated seeding event. 
  

Cajal body-associated RNP complexes 
RNA component Protein components RNP complex Process 

snRNA Sm proteins snRNP Splicing 
scaRNA Fibrillarin/Dyskerin scaRNP snRNA modification 
snoRNA Fibrillarin/Dyskerin snoRNP rRNA modification 

hTR hTERT Telomerase RNP Telomere elongation 
 
Table 1: A simplified overview of Cajal body-associated RNP complexes. The indicated protein 
components represent core RNP proteins, however additional proteins (not included in the table) are 
also present in the RNP complexes.  

2.1.1 Coilin 
 
Cajal bodies had been recognized for almost a century when coilin was identified as a 
constitutive component of this nuclear organelle. By using human autoimmune sera, 
distinct Cajal bodies could be visualized and immunoblotting analysis revealed the 
presence of a 80 kDa protein that was named p80-coilin (25-27). Although coilin is an 
essential factor for Cajal body maintenance, coilin levels are not rate-limiting for 
Cajal body numbers or size. Transient overexpression of coilin does not lead to the 
formation of additional Cajal bodies. Instead, exogenous coilin mainly localizes 
throughout the nucleoplasm and appears to disrupt Cajal bodies (28). The majority of 
endogenous coilin resides in the nucleoplasm as well (29). Instead of altered protein 
levels, post-translational modifications such as methylation and phosphorylation of 
coilin can influence Cajal body formation through alterations in self-association 
properties and protein binding. The self-interaction domain of coilin resides in its N-
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terminus and is required for targeting coilin to Cajal bodies (28). Coilin hyper-
phosphorylation reduces its self-interaction potential, which is observed in mitosis 
when Cajal bodies are disrupted and in primary cells lacking Cajal bodies (7, 12, 28). 
In addition, the C-terminal region of coilin contains an arginine- and glycine-rich 
region (RG box) and an atypical Tudor domain. The classical Tudor domain binds 
methylated arginine and lysine residues on target proteins, however the atypical 
Tudor domain of coilin is not believed to retain this function due to structural 
aberrations (30). The arginines of the coilin RG box can be symmetrically 
dimethylated, which promotes its interaction with SMN (31). Coilin interacts both 
with SMN and snRNPs through its C-terminus, although via separate regions (32).  
 
Knockout studies of coilin in several different species have been performed to 
uncover the functional importance of Cajal bodies. Since the Cajal body has been 
indicated as the site of snRNP maturation, deficiencies in this pathway is expected to 
result in splicing defects (33-36). Coilin knockout in Arabidopsis and Drosophila 
revealed no apparent phenotype. The levels of splicing appeared to be unaffected even 
though Cajal bodies were absent, suggesting that splicing machinery maturation also 
can occur by Cajal body-independent means in the nucleoplasm (37, 38). In mice, 
homozygous loss of coilin results in partial embryonic lethality. The surviving 
fraction of coilin-/- mice display defective fertility and fecundity (39). Cells derived 
from the knockout mice lack canonical Cajal bodies and instead form so-called 
residual Cajal bodies with distinct constituents. Although unable to accumulate 
proteins of the SMN complex, one subtype of residual Cajal bodies are enriched in 
snRNAs and the guide RNAs (scaRNAs) responsible for their modification, 
suggesting that snRNP maturation can occur in the absence of canonical Cajal bodies. 
Accordingly, coilin knockout MEFs showed no defect in the post-transcriptional 
modification of snRNAs. Nevertheless, these cells were later identified to display 
impaired artificial reporter splicing (40-42). Knockdown of coilin in zebrafish is 
lethal and associated with defective snRNP assembly and pre-mRNA splicing. 
Addition of human snRNPs can partially rescue the phenotype of coilin-deficient 
zebrafish, suggesting that the developing zebrafish embryo is particularly sensitive to 
alterations in snRNP biogenesis (43). Human HeLa cells devoid of coilin are viable 
but display reduced reporter splicing and decreased proliferation rates (42, 44).  
 
The relatively mild phenotypes observed in most species upon coilin knockout 
indicate that the Cajal body is not an essential organelle per se. Given the fundamental 
biological importance of pre-mRNA splicing, any gross splicing defect would lead to 
a severe phenotype. Accordingly, disruption of the snRNP biogenesis genes SMN1, 
Gemin2 and ZPR1 in mice all results in embryonic lethality (45-47). Moreover, many 
adult cell types lack Cajal bodies (14). Instead of being essential for the splicing 
process, the Cajal body has been suggested to increase the efficiency of snRNP 
biogenesis by bringing the diverse components of the Cajal body together. Indeed, it 
has been estimated that snRNP assembly occurs 10-fold faster in the Cajal body 
compared to the surrounding nucleoplasm. Cajal bodies might therefore allow cells to 
efficiently adjust to fluctuating splicing demands (48).  

2.1.2 The SMN complex 
 
The SMN protein is produced from the disease-causing gene of the neurodegenerative 
disorder spinal muscular atrophy (SMA) (49). SMN is ubiquitously expressed and 
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essential for efficient assembly of splicing RNP complexes. The SMN protein 
contains two self-association domains and a Tudor domain that can interact directly 
with RG box-containing partners such as coilin and Sm proteins. Furthermore, exon 7 
of SMN contains a region that confers protein stability (50, 51). Deletion of the self-
association or Tudor domains disrupts SMN targeting to Cajal bodies (52). 
Knockdown of SMN disrupts canonical Cajal bodies, suggesting that snRNP 
assembly and import is essential for the integrity of this organelle (44).  
 
SMN functions in a large macromolecular complex that, besides SMN, is composed 
of seven proteins termed Gemin2-8 and Unrip (53, 54). SMN, Gemin7 and Gemin8 
appear to act as an interaction platform that brings the SMN complex together via 
multiple interactions. There have been conflicting reports regarding the contribution 
of specific Gemin proteins to the function of the SMN complex, although SMN 
protein carrying a SMA-related mutation displayed severe impairment of SMN 
complex formation (55). Silencing of SMN leads to reduced expression of several 
Gemins, whereas depletion of Gemin2 and Gemin6 results in disrupted Sm core 
assembly (56). Others have shown that Gemin3 and Gemin4 are important for the 
maintenance of snRNP assembly-activity (57). Moreover, the WD40-domain of 
Gemin5 has been pinpointed to be responsible for recognizing and binding snRNAs 
(58). The most well studied function of the SMN complex is the cytoplasmic 
assembly of snRNPs. The SMN complex promotes the binding between snRNAs and 
Sm proteins, thereby forming the snRNP core particle that mediates pre-mRNA 
splicing. The SMN complex also provides sequence specificity towards snRNAs, thus 
preventing non-specific binding of Sm proteins to other RNAs (59). Cells lacking 
SMN display defective snRNP core assembly and splicing (59-62).  

 
Figure 1: (A) Cajal bodies visualized by coilin immunostaining. Dashed white circle marks the 
nucleus and white arrows indicate Cajal bodies. (B) Cajal bodies and Gems visualized by SMN 
immunostaining. White arrows indicate Cajal bodies, whereas yellow arrows highlight two Gems. All 
small nuclear bodies represent Gems. Cajal bodies were distinguished from Gems by coilin co-
immunostaining.  
 
Besides being enriched in Cajal bodies, SMN localizes to the cytoplasm and to an 
additional nuclear body termed Gemini of Cajal bodies (Gems) (Figure 1B). As their 
name implies, Gems are closely associated with Cajal bodies and concentrate SMN 
and Gemin proteins but are not enriched in snRNPs (63). Cajal bodies and Gems exist 
as separate structures in fetal tissues but coincide in adult tissues (13, 64). However, 
in some cultured cells, the separate organizational pattern of Gems and Cajal bodies is 

Cajal bodies Gems & Cajal bodies 

B A 
A B 
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maintained and appears to be regulated via coilin methylation. Hypomethylated coilin 
promotes the accumulation of SMN in Gems, which coincides with reduced coilin-
SMN interaction (31, 65). The precise function of Gems during development remains 
unknown, although it has been suggested that cells with both Cajal bodies and Gems 
have the highest snRNP assembly rates and splicing capacities (42).  

2.1.3 Spinal muscular atrophy 
 
Spinal muscular atrophy is an autosomal recessive disorder characterized by the 
progressive degeneration of spinal cord anterior horn α-motor neurons. SMA is the 
leading genetic cause of infant mortality and affects around 1:6000 live births. The 
gradual neurodegeneration results in muscular atrophy and in the severe cases 
respiratory complications lead to death. SMA is classified into four clinical forms, 
SMA type I-IV, based on age of onset and disease severity (51). The severity of 
disease correlates with SMN protein levels, where SMA type I (or Werdnig-
Hoffmann disease) is the most severe form with a life expectancy of less than 2 years 
(66, 67).  
 
The genetic background of the different SMA subtypes explains the variations in 
SMN proteins levels. In humans, the SMN gene is present in two copies as an inverted 
repeat on chromosome 5q13. All SMA patients carry deletions or mutations of the 
telomeric SMN1 gene, whereas at least one copy of the centromeric SMN2 gene 
remains intact (68). The SMN2 gene is nearly identical to SMN1, however a C-to-T 
transition in exon 7 disrupts an exonic splicing enhancer and results in the production 
of a truncated SMN protein termed SMNΔ7 (69, 70). Although not dominant 
negative, SMNΔ7 display oligomerization defects and is highly unstable. 
Nevertheless, SMN2 retains the capacity to produce approximately 10% of full-length 
SMN protein, which appears to be sufficient for most cell types except motor neurons 
(71, 72). SMN1-to-SMN2 gene conversion events result in increased copy numbers of 
SMN2, which is associated with milder forms of SMA and prolonged survival (73, 
74). Carriers and control persons with homozygous deletions of SMN2 show no 
clinical manifestations, supporting the idea that SMN1 is the main producer of full-
length SMN protein (75). Mice only have one SMN gene and homozygous SMN 
disruption results in embryonic lethality. Introduction of human SMN2 to SMN 
knockout mice rescues the lethality and instead leads to the development of SMA, 
demonstrating that low SMN protein levels triggers the disease (47, 76-78). SMA 
type I motor neurons demonstrate defective targeting of SMN and coilin to Cajal 
bodies and a severe decrease in Cajal body numbers (79).  
 
Given the fundamental importance of splicing, the underlying reason why SMA 
affects lower motor neurons to such a high extent remains unexplained. It has been 
suggested that motor neurons have higher energy demands and might express SMN at 
the levels required whereas other cell types express an excess of SMN (80, 81). 
Animal and cell culture models of SMA have revealed a correlation between reduced 
capacity of snRNP assembly and disease severity in the form of motor neuron 
degeneration (46, 82-84). However, in a Drosophila SMA model, the role of SMN in 
snRNP biogenesis was independent from its effect on viability (85). Moreover, SMN 
deficiency causes aberrant splicing that is not restricted to motor neurons. Therefore, 
the motor neuron-specific effects of SMA cannot be exclusively explained by 
deficient splicing, although it has been suggested that specific transcripts required for 
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motor neuron activity are affected in SMA (62, 82). SMN is also proposed to function 
in the axonal transport of β-actin mRNA in motor neurons, important for local protein 
synthesis and axonal sprouting (86, 87). 

2.1.4 snRNP biogenesis and splicing 
 
The biogenesis of splicing snRNPs is a complex series of events that includes both 
nuclear and cytoplasmic phases. Briefly, this process includes three major steps: (1) 
nuclear transcription of the snRNA, (2) cytoplasmic snRNA export followed by 
assembly of the core snRNP particle, and (3) nuclear re-entry and final maturation of 
the snRNP complex. Upon completion of the maturation pathway, the snRNP 
particles participate in pre-mRNA splicing as elementary units of the spliceosome 
(88-90). A simplified scheme of snRNP biogenesis is depicted in Figure 2.  
 
There are five spliceosomal snRNAs, named U1, U2, U4, U5 and U6 due to their high 
uridine content. All snRNAs except U6 are transcribed by RNA polymerase II and 
acquire a 7-monomethylguanosine (m7G) cap at their 5’ end. Nuclear export proteins 
interact with the m7G cap structure, which serves as a nuclear export signal for 
snRNA precursors (Step 1 and 2, Figure 2) (91). In contrast, the U6 snRNA is 
transcribed by RNA polymerase III and acquires a different cap structure. The U6 
snRNA is not exported into the cytoplasm and acquires its associated core proteins in 
a different manner (92).  
 
In the cytoplasm, the SMN complex promotes the assembly of the seven Sm proteins 
(SmB/B’, D1, D2, D3, E, F and G) in the form of a heptameric ring onto the snRNA, 
thus forming the core snRNP particle (Step 3, Figure 2) (60, 93). The Sm ring 
assembles on a conserved structural motif present in snRNAs called the Sm site (94). 
Although snRNPs can assemble spontaneously in vitro, the SMN complex appears to 
be required for their assembly in vivo (95). To achieve this, SMN complex 
components first associate with Sm proteins and then with the snRNA (59, 96). Once 
the snRNP is assembled, the snRNA m7G cap is hypermethylated by the 
methyltransferase TGS1 into a 2,2,7-trimethylguanosine (m3G or TMG) cap and the 
3’ end is exonucleolytically processed (Step 4, Figure 2) (97, 98). The TMG cap and 
the Sm proteins form a bipartite snRNP nuclear localization signal (99, 100). The 
nuclear import adaptor snurportin1 interacts with the TMG cap structure and mediates 
binding to the nuclear import receptor importinβ (101). The Sm core-dependent 
snRNP import is suggested to occur via the SMN complex or an unknown adaptor 
that directly interacts with importinβ (Step 5 and 6, Figure 2) (102, 103).  
 
Once re-imported into the nucleus through the nuclear pore complex, the import 
proteins disassociate and the snRNPs are targeted to Cajal bodies together with the 
SMN complex (104-106). Coilin has been shown to associate with both SmB and 
SMN. Moreover, coilin appears to compete with SMN for binding SmB. Coilin might 
therefore function to release the snRNP cargo from the SMN complex (107). The 
Cajal body contains an additional class of RNAs termed scaRNAs. These RNAs guide 
post-transcriptional modifications of snRNAs, essential for the final maturation of 
snRNPs and their proper incorporation into the spliceosome (33-36). By associating 
with specific enzymes, scaRNAs direct site specific 2-O’-methylation and 
pseudouridylation of snRNAs via sequence complementarity (Step 7, Figure 2) (40, 
108, 109). As mentioned previously, assembly of the U6 snRNP is believed to occur 
in the nucleus. The U6 snRNA lacks an Sm site and instead associates with seven Sm-
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like proteins (LSm2-8) (110). In addition to the common core proteins there are also 
snRNP-specific proteins, which might be added in the Cajal body (111). Finally, some 
of the snRNPs are assembled into higher order particles, where the U4, U5 and U6 
snRNP forms a functional tri-snRNP. First, base paring between U4 and U6 snRNAs 
forms a di-snRNP, which is assembled into a tri-snRNP upon incorporation of the U5 
snRNP. Di- and tri-snRNP formation is suggested to take place within the Cajal body 
(112-114). Following modifications and assembly in the Cajal body, snRNP particles 
accumulate in splicing speckles that serve as snRNP storage sites before and/or after 
splicing (Step 8, Figure 2) (105, 115).  

 
Figure 2: Cellular biogenesis of snRNPs. 1) Nuclear transcription of pre-snRNA, 2) Pre-snRNA 
nuclear export, 3) SMN-mediated snRNP assembly, 4) 5’ cap hypermethylation, 5) Import complex 
formation, 6) snRNP nuclear import and localization to Cajal bodies, 7) scaRNP-mediated snRNP 
modification, 8) Mature snRNP particles exit the Cajal body and participate in splicing.  
 
The spliceosome is a complex macromolecular machinery composed of the five 
spliceosomal snRNPs and a multitude of additional proteins serving to remove non-
coding introns from pre-mRNAs to generate mature mRNAs that can be translated 
into proteins. Introns are defined by specific sequence elements, which include the 5’ 
and 3’ splice sites, the branch point sequence and a polypyrimidine tract (PPT). The 
5’ splice site is characterized by a GT dinucleotide, whereas the 3’ intron boundary 
contains AG nucleotides and the PPT. The spliceosome assembles in a stepwise and 
sequential manner on pre-mRNA and catalyzes two successive transesterification 
reactions, where phosphodiester bonds are cleaved by hydrolysis for subsequent 
intron removal. Upon completion of splicing, the spliceosome is released and 
components are recycled to participate in additional splicing reactions (116). Besides 
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the major spliceosome described above, there is also a minor spliceosome that 
removes a rare group of introns using distinct snRNPs. These non-canonical introns 
display AT and AC terminal nucleotides at their respective 5’ and 3’ splice sites, 
instead of the conventional GT and AG. Moreover, the low-abundance snRNPs U11, 
U12 and U4atac/U6atac are utilized as alternatives to U1, U2 and U4/U6. The U5 
snRNP participates in splicing reactions performed by both the major and minor 
spliceosomes. The low-abundance snRNAs also associate with Sm cores and SMN 
has been implied in the assembly of the minor snRNPs as well (117-120). 
 
Interestingly, the Cajal body appears to be involved in all nuclear steps of the snRNP 
maturation pathway. As mentioned above, Cajal bodies associate with snRNA gene 
loci and seem to accumulate pre-snRNA (17, 121). Moreover, Cajal bodies have been 
demonstrated to enable nuclear export of snRNA precursors by facilitating their 
binding to RNA export factors (21). Following nuclear re-entry, Cajal bodies ensure 
proper snRNA base modification by accumulating the mediating guide scaRNAs 
(108). Cajal bodies have also been implicated as the site where certain snRNP-
specific proteins are added to the core snRNPs and in the formation of di- and tri-
snRNPs. Finally, the Cajal body is involved in snRNP recycling following splicing, 
for instance in the reassembly of the tri-snRNP (48, 90, 122). Furthermore, Cajal body 
integrity is closely linked to proper snRNP biogenesis. Knockdown of factors 
involved in snRNP biogenesis prior to their re-entry into the nucleus disrupt Cajal 
bodies (44). Inhibition of nuclear export and silencing of the import protein 
snurportin1 also results in loss of Cajal bodies (5, 57, 101, 123, 124). Whereas coilin 
overexpression does not enhance Cajal body formation, increased expression of 
snRNPs and SMN induce Cajal bodies even in cell normally lacking them (28, 123, 
125).  

2.1.5 scaRNAs and snoRNAs 
 
The concept of the Cajal body as the cellular site of spliceosomal snRNA post-
transcriptional modification came from the identification of the Cajal body-specific 
RNAs (108). The structurally and functionally related snoRNAs were already 
established as guiding factors for the 2’-O-methylation and pseudouridylation of 
ribosomal RNA, which is essential for proper ribosome function (109, 126, 127). Two 
major classes of scaRNAs exist with specific sequence elements, structural motifs and 
guide-specificity. The so-called C/D box scaRNAs carry the C (RUGAUGA) and D 
(CUGA) box motifs and directs methylation of target RNAs. The H/ACA scaRNAs 
contain the H (ANANNA) and ACA boxes and promote the isomerization of uridine 
into pseudouridine (Figure 3) (128). In contrast to snoRNAs that usually contain one 
of these domains, scaRNAs often consist of two domains that can be two C/D box, 
two H/ACA box or a mixed domain carrying both types. Analogous to snoRNAs, the 
scaRNAs contain the sequence complementarity to the substrate RNA but lack 
catalytic activity. Instead, the C/D and H/ACA core motifs direct the binding of 
associated proteins that provide the enzymatic capacity. The C/D box scaRNAs 
associate with the methyltransferase fibrillarin and three additional proteins termed 
NOP56, NOP58 and 15.5K/NHPX. The H/ACA scaRNAs associate with GAR1, 
NHP2, NOP10 and the pseudouridine synthase dyskerin. In the form of scaRNPs and 
snoRNPs, the RNA components direct the enzymes to their target RNA (Figure 3) 
(127, 128). The exact function of the snRNA post-transcriptional modifications is not 
fully understood. The modified sites are generally conserved, cluster in functionally 
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important regions of the target RNAs and might be required for proper RNA folding 
(109, 129, 130). For instance, pseudouridylation of the U2 snRNA stabilizes its 
interaction with intronic pre-mRNA and induces a structural change that promotes the 
first nucleophilic attack of the splicing reaction. U2 snRNAs lacking 
pseudouridylation and 2-O’-methylation sites have been suggested to display 
defective assembly of the functional U2 snRNP particle and/or defective assembly of 
whole spliceosomal complexes, resulting in deficient splicing (33-36, 131).  

 
 
Figure 3: Simplified figure of box H/ACA scaRNA (A) and box C/D scaRNA (B). Pseudouridylation 
is marked by ψ, whereas 2’-O-methylation is indicated by Me. The scaRNA forms base pairs with the 
complementary region found in the target snRNA (blue). The C and D boxes are found near the 5’ and 
3’ ends of the molecule, respectively. C’ and D’ represent a second pair of boxes that display lower 
conservation and are found in the middle of the molecule. Black boxes indicate associated proteins, 
where the enzyme is marked in bold. WRAP53β associates with the scaRNAs and mediates their Cajal 
body localization.  
 
ScaRNAs accumulate in Cajal bodies due to the presence of a common RNA element 
called the CAB box, which functions as a Cajal body localization signal. In H/ACA 
scaRNAs, the CAB box is four nucleotides long and present either on the 5’ or 3’ 
hairpin terminal loops. The tetranucleotide CAB box consensus sequence is ugAG, 
where the AG dinucleotide is highly conserved and probably found in all H/ACA and 
mixed domain C/D-H/ACA scaRNAs (Figure 3) (132). Interestingly, the RNA 
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component of the telomerase enzyme (hTR) is a CAB box-containing H/ACA 
scaRNA that associates with the scaRNP core proteins and localizes to Cajal bodies 
(133-135). A CAB-like box has also been identified in Drosophila C/D scaRNAs, 
consisting of 10 conserved nucleotides (cgaGUUAnUg). However, the CAB box 
sequence of human C/D scaRNAs has not yet been identified.  
 
For a long time, the factor(s) responsible for the Cajal body-specific localization of 
CAB box-containing scaRNAs remained unidentified. WRAP53β (also denoted 
TCAB1 or WDR79) was later identified to specifically associate with scaRNAs and 
promote their Cajal body targeting. WRAP53β associates with human H/ACA 
(including hTR), C/D and mixed domain C/D-H/ACA scaRNAs (Figure 3). 
WRAP53β binding to H/ACA scaRNAs requires intact CAB and ACA box 
sequences, since combined CAB and ACA box mutations drastically reduces 
WRAP53β binding to these scaRNAs. WRAP53β is suggested to interact with the 
scaRNA CAB box sequence directly, whereas its association with the ACA box 
probably requires an additional protein. Interestingly, dyskerin interacts directly with 
the conserved ACA element and has also been found to interact with WRAP53β in a 
RNA-independent manner, proposing that WRAP53β binds directly to the CAB box 
and indirectly to the ACA motif via dyskerin. WRAP53β also associates specifically 
with the CAB box of Drosophila C/D scaRNAs. Furthermore, scaRNA CAB box 
mutants unable to bind WRAP53β mislocalize to the nucleoli. In line with this, 
WRAP53β depletion also results in nucleolar targeting of scaRNAs (136-138).  

2.1.6 Telomerase 
 
The telomerase holoenzyme is a RNP complex that synthesizes the addition of 
TTAGGG telomeric repeats onto the ends of linear chromosomes. The tandem 
telomeric repeats range from 2-15 kilobases in length and terminates in a 3’ overhang 
of approximately 200 bases. The minimal catalytic unit of the telomerase enzyme is 
composed of the internal RNA template (hTR) that contains the sequence copied by 
the reverse transcriptase (hTERT). Telomerase activity is regulated over human 
development, with high activity during embryogenesis that is silenced in most adult 
somatic tissues. However, certain adult stem cell compartments maintain telomerase 
activity (139-142). 
 
Primary human cells have a finite lifespan of 60-80 population doublings that is 
controlled by telomere lengths. Due to the end replication problem, telomeres loose 
about 100-200 bp during each cell division cycle. The progressive telomere 
shortening eventually results in replicative senescence followed by apoptosis in order 
to prevent genomic instability (140, 143). To circumvent this problem, cancer cells 
reactivate telomerase and thus become immortalized. Strikingly, telomere activation 
has been observed in approximately 90% of all cancers (144-146). A recombination-
based telomerase-independent mode of telomere maintenance is also recognized, 
which is termed alternative lengthening of telomeres (ALT) (147). Exactly how 
telomerase activity is regulated remains incompletely understood. Most studies have 
focused on the transcriptional regulation of hTERT, where c-Myc is identified as one 
hTERT-inducing transcription factor. However, telomerase activity is most likely 
subjected to multiple levels of regulation, both via hTERT and other components of 
the telomerase enzyme (148, 149).  
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Besides the core components hTR and hTERT, telomerase also requires additional 
factors for its assembly and function. The H/ACA RNP proteins dyskerin, GAR1, 
NHP2 and NOP10 all associates with telomerase (139). The H/ACA motif of hTR is 
required for its stability, nuclear localization and RNP assembly, however due to 
structural deviations and lack of complementary target RNAs it is not believed to 
direct pseudouridylation (150-152). WRAP53β associates with the enzymatically 
active telomerase complex and promotes its localization to Cajal bodies by binding to 
the hTR CAB box (137, 153). The Cajal body does not appear to promote telomerase 
enzyme assembly, since hTR CAB box-mutants unable to accumulate in Cajal bodies 
still forms the catalytically active telomerase complex (154). However, Cajal bodies 
associate with telomeres and are suggested to deliver the telomerase enzyme for 
telomere elongation during S-phase (155, 156). The interaction of Cajal bodies with 
telomeres is dependent on telomerase activity, since Cajal bodies do not associate 
with ALT telomeres (157).  

2.1.7 Dyskeratosis congenita 
 
Dyskeratosis congenita (DC) is an inherited multisystem syndrome characterized by 
bone marrow failure, premature ageing, cancer predisposition and a triad of 
mucocutaneous features including oral leukoplakia, abnormal skin pigmentation and 
nail dystrophy. DC displays X-linked, autosomal recessive and autosomal dominant 
inheritance patterns depending on the disease-causing gene. Several DC genes have 
been identified, all encoding core components of the telomerase enzyme or telomere 
capping proteins such as hTR, hTERT, dyskerin, NHP2, NOP10, WRAP53β and 
TIN2 (158, 159). Therefore, DC is considered to be a disease of defective telomere 
maintenance and patients display very short telomeres (160, 161). DC has also been 
described as a stem cell disease, where insufficient telomerase activity impairs stem 
cell function and limits tissue renewal (162, 163). Mutations in dyskerin cause X-
linked DC, which is the most common form of the disease affecting approximately 
30% of reported cases (164, 165).   
 
Generally, patients carrying hTERT and hTR mutations present symptoms later in life 
and have a milder form of the disease compared to DC caused by mutations in 
dyskerin, NHP2, NOP10, TIN2 and WRAP53β (138, 166, 167). Interestingly, disease 
severity is not strictly correlated to telomere lengths and DC-associated hTERT 
mutations have been demonstrated to maintain telomerase activity (167, 168). In 
addition to telomere dysfunction, additional perturbations might therefore explain the 
etiology of DC. Consistent with the well-established role of dyskerin in the 
pseudouridylation pathway, studies of dyskerin-defective mice and zebrafish have 
revealed rRNA processing defects that also have been observed in DC patient cells 
(169-172).  
 
In terms of malignant diseases, DC patients most commonly develop myelodysplastic 
syndrome, acute myeloid leukemia and squamous cell carcinoma of the head and 
neck. Patients with DC caused by hTR and hTERT mutations are most prone to 
develop cancer, which is most likely explained by their longer life expectancy (166, 
173). The overall increase in cancer incidence of DC patients is estimated to be 11-
fold (174).  
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2.2 WRAP53β 
	
  
As the name indicates, WD40-encoding RNA antisense to p53, or WRAP53, is a gene 
with dual functions. First, it encodes a regulatory antisense transcript that positively 
regulates p53. Second, via alternative transcriptional start site usage, the WRAP53 
gene also gives rise to a protein product belonging to the WD40-repeat containing 
protein family. These two gene products are now referred to as WRAP53α and 
WRAP53β, respectively, to emphasize their functional separation (175).  
 
The WRAP53 gene is located on chromosome 17p13, where it partially overlaps the 
p53 gene in a head-to-head orientation. Due to the presence of different starting exons 
within the WRAP53 gene, only exon 1α-containing WRAP53α transcripts overlap 
p53. In contrast, the protein-encoding transcripts originating from the downstream 
exon 1β lack the region complementary to p53 (Figure 4A). WRAP53α transcripts 
bind to the 5’ UTR of p53 via the perfectly complementary region, thereby regulating 
p53 mRNA stability. WRAP53α is required for p53 induction upon DNA damage and 
p53-dependent apoptosis. Knockdown of WRAP53α transcripts does not affect 
WRAP53β protein levels, further supporting the distinction between these two 
transcripts (175). 

 
 
Figure 4: Schematic picture of the WRAP53 gene locus (A) and the WRAP53β protein (B). 
 
Most studies of the WRAP53 gene have focused on the function of the WRAP53β 
protein. Besides the centrally located WD40-domain, WRAP53β also contains a N-
terminal proline-rich region and a C-terminal glycine-rich region (Figure 4B). WD40-
domain containing proteins are highly abundant in eukaryotes and the WD40-domain 
is suggested to function as a scaffold that mediates protein and RNA interactions in 
large molecular complexes (176, 177).  
 
WRAP53β has been identified as a component of the telomerase holoenzyme, 
required for telomere elongation. WRAP53β associates with all components of the 
telomerase enzyme, including hTR, hTERT and dyskerin. The interaction between 
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WRAP53β and hTERT is RNase A-sensitive, suggesting that the CAB box-
containing hTR mediates this interaction. Conversely, WRAP53β probably interacts 
with dyskerin via protein-protein contacts, since this interaction is insensitive to 
RNase treatment. The combined observations that WRAP53β co-precipitates with 
nearly all cellular telomerase activity and that WRAP53β does not associate with 
telomerase assembly factors indicate that WRAP53β is a component of the active 
telomerase enzyme. Knockdown of WRAP53β disrupts hTR Cajal body targeting and 
furthermore reduces hTR localization to telomeres. This is not due to altered hTR 
stability, since WRAP53β depletion does not affect hTR levels. WRAP53β silencing 
inhibits telomere elongation promoted by hTR overexpression and also results in 
progressive telomere shortening in cells expressing endogenous telomerase. Similarly, 
cells containing a CAB box mutated version of hTR also display telomere shortening 
(137, 178, 179).  
 
Compound heterozygous missense mutations in WRAP53 results in pathogenic 
telomere shortening and the cancer predisposition syndrome DC. Two identified 
patients displayed autosomal recessive inheritance of WRAP53 mutations that altered 
WRAP53β amino acid sequence. One patient had mutations in exon 2 and exon 8 
(F164L and R398W, respectively), whereas the other had mutations in exon 7 and 
exon 9 (H376Y and G435R, respectively) of WRAP53. The mutations reside in highly 
conserved residues of WRAP53β and were predicted to impair the function of its 
WD40-domain. Interestingly, overexpression of WRAP53β that contains the DC-
associated mutations resulted in its diminished nuclear localization and Cajal body 
targeting. Patient cells displayed severely reduced endogenous WRAP53β protein 
levels, especially in the nuclear compartment. This alteration was suggested to occur 
post-transcriptionally, since WRAP53β mRNA levels were not affected. The patient 
carrying the F164L/R398W mutation developed squamous cell carcinoma of the 
tongue associated with reduced WRAP53β levels and Cajal body localization. As a 
consequence, hTR is not properly targeted to Cajal bodies and instead mislocalize to 
nucleoli. This is unrelated to RNA levels, since hTR, scaRNA and snoRNA levels are 
not affected upon WRAP53β knockdown or in DC cells. Therefore, WRAP53 
mutations cause DC through impaired intracellular trafficking of the telomerase 
enzyme (138, 180).  
 
In addition to associating with the CAB box motifs of scaRNAs, WRAP53β binds an 
additional class of RNAs termed AluACA RNAs. Interestingly, the AluACA RNAs 
originate from Alu repetitive elements and are processed into H/ACA and CAB box-
containing RNAs. Accordingly, these RNAs also associate with dyskerin, NOP10, 
NHP2 and GAR1, in addition to WRAP53β. Although containing CAB box motifs, 
the AluACA RNAs accumulate in the nucleoplasm and not to Cajal bodies. However, 
the 3’ hairpin of AluACA RNAs carries two closely spaced CAB box motifs, instead 
of the single 3’ or 5’ hairpin CAB box sequence of H/ACA scaRNAs. Whether the 
differentially arranged CAB boxes contribute to the subcellular localization of 
AluACA and H/ACA RNAs remains elusive. The function of the AluACA RNAs is 
not known, however they might guide site-specific RNA pseudouridylation as well 
(136, 181).  
 
Moreover, WRAP53β is essential for Cajal body maintenance and promotes cancer 
cell survival (182, 183). SNPs within the WRAP53 gene increase the susceptibility to 
breast and ovarian cancer (184-186). One of the cancer-predisposing SNPs in 
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WRAP53 also correlates to defective DNA repair and hematotoxicity in workers 
exposed to benzene (187). Recently, WRAP53β has been identified as a novel player 
in the DNA damage response (DDR). WRAP53β promotes DNA repair by mediating 
the assembly of repair proteins at DNA breaks (Paper III).  
 
Common to all of the described functions of WRAP53β is the recruitment and proper 
targeting of factors to cellular sites. WRAP53β controls telomerase localization to 
Cajal bodies as well as to telomeres and disruption of this intracellular trafficking 
causes DC (137, 138, 153). Moreover, WRAP53β binds the SMN complex in the 
cytoplasm and promotes its nuclear entry and Cajal body-localization. SMA patients 
display defective WRAP53β-SMN binding and reduced SMN accumulation in Cajal 
bodies (182). In addition, WRAP53β binds scaRNAs and promotes their localization 
to Cajal bodies (136). Finally, WRAP53β binds the E3 ligase RNF8 and facilitates its 
interaction with MDC1, which is required for proper localization of RNF8 to DNA 
breaks and downstream repair events (Paper III). This leads us into the final topic of 
this introduction, which is the DDR.  

2.3 The DNA damage response 
 
The DNA in our nuclei is particularly vulnerable to insults since it carries the genetic 
information passed between cells and over generations. The integrity of DNA is 
constantly threatened by potentially damaging agents originating from both 
endogenous and exogenous sources. Spontaneous chemical reactions and byproducts 
of normal cellular metabolism underlie endogenous damage to DNA. Environmental 
and exogenous genotoxic agents such as ultraviolet-light (UV), ionizing radiation (IR) 
and chemicals all generate DNA damage. Although difficult to estimate, DNA could 
be subjected to approximately 105 spontaneous lesions/cell/day. The cellular response 
to DNA damage depends on numerous factors such as type of lesion, dose of the 
break-inducing agent, cell type, cell cycle position and chromatin context. The DNA 
double-strand break (DSB) is considered to be the most cytotoxic lesion and two main 
repair pathways termed homologous recombination (HR) and non-homologous end 
joining (NHEJ) promote repair of these breaks. Unrepaired or misrepaired DNA 
damage can induce genomic alterations, for instance in the form of translocations or 
by introducing mutations in genes. To counteract these potentially life-threatening 
events, cells activate a cellular signaling cascade collectively termed the DDR that 
serves to maintain genomic integrity upon DNA damage-induction. The DDR 
coordinates basic cellular processes such as replication and transcription with DNA 
repair, eventually determining the destiny of the damaged cell – survival, senescence 
or apoptosis (188-190).  

2.3.1 Genomic instability and carcinogenesis 
 
Cancer is a collective term describing a complex and heterogeneous group of 
diseases, varying in a range of aspects including tissue origin, genetic background, 
treatability and clinical outcome. Although diverse, a common set of acquired 
capabilities is shared by most human cancers. By activating genes called oncogenes, 
which are involved in promoting carcinogenesis, cancer cells are able to sustain 
proliferation and angiogenesis. Similarly, by inactivating the genes involved in 
suppressing tumor formation (i.e. tumor suppressor genes), malignant cells become 
unresponsive to anti-proliferative signaling and apoptosis. A prominent hallmark of 
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cancer, that also differentiates a malignant tumor from a benign, is the capacity of the 
primary tumor to metastasize to distant sites via tissue invasion. Cancer development 
can be seen as a step-wise process, where normal cells gradually transform into 
malignant cells via the accumulation of genetic changes conveying proliferative 
benefits. Substantiation of this hypothesis lies in the fact that cancer incidence is 
increased with age (191). Genomic instability represents an enabling characteristic in 
the multistep process that results in the acquisition of the abovementioned 
capabilities. The term genomic instability in cancer describes all genetic alterations 
present in the tumor and also includes a rate aspect where the mutational process 
display increased speed. Genomic instability can be manifested as point mutations, 
deletions, insertions, gene amplifications, translocations and alterations in 
chromosome numbers, which contributes to intra-tumor heterogeneity. Such 
alterations in genes controlling cellular homeostasis drive cellular proliferation and 
cancer progression. Genomic instability is a characteristic feature of most human 
cancers (192-194).  
 
The DDR is intimately linked to genomic instability and carcinogenesis. Numerous 
studies have highlighted the DDR as an essential barrier to cancer development. The 
DDR is activated already in early lesions of different cancer types. The activated 
DDR is thought to represent DNA replication stress conferred by oncogene 
expression. By deregulating oncogenes, pathways normally restricting cellular 
proliferation can be bypassed resulting in an accelerated S phase entry. However, the 
unscheduled S phase progression results in an exhaustion of factors required for 
normal DNA replication, leading to collapsed replication and the induction of DNA 
breaks. The DDR is then activated to induce the proper protective responses, such as 
DNA repair, senescence or apoptosis, to suppress genomic instability and 
carcinogenesis. Given that a functional DDR serves to eliminate DNA damage, cells 
defective in their responses to DNA damage will continue to proliferate albeit with 
genetic alterations. Selective pressure towards p53 inactivation represents one such 
survival response following DNA damage (195-198). Indeed, hereditary human 
disorders associated with deficient DNA repair commonly predispose to premature 
ageing and cancer (189, 199, 200). Another source of genomic instability comes from 
telomere attrition. Upon progressive or pathogenic telomere shortening, the DDR 
machinery recognizes telomeres as broken DNA ends. In an attempt to repair the 
DNA break, chromosome ends can fuse to each other resulting in random breakage 
during mitosis. Further fusion-breakage-bridge cycles continue with each cell division 
leading up to uneven distribution of genetic material between daughter cells (139, 
201). Aberrant DNA repair of non-telomeric DSBs can also induce genomic 
rearrangements (202). For instance, defects in classical HR and NHEJ DSB repair 
pathways can shift the balance towards more mutagenic alternatives (203-205).  

2.3.2 Cancer therapies and DNA damage 
 
Most available anti-cancer therapies, such as radiotherapy and chemotherapy, rely on 
the induction of DNA breaks to induce cell death. DNA damaging agents target 
highly proliferative tissues, which not only include tumor cells but also adversely 
affect the gastrointestinal tract, bone marrow and hair follicles. However, many 
cancer cells display deficient DNA repair systems rendering them sensitive to the 
induction of DNA damage, whereas intact DNA repair pathways of normal cells 
decrease the toxicity associated with DNA damage (206-208). This phenomenon is 
exemplified by the highly increased sensitivity of HR- and NHEJ-deficient cells to 
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DNA damaging agents (209). An enhanced DDR can also be associated with therapy 
resistance. For instance, the HR protein RAD51 is overexpressed in many cancers and 
results in enhanced cell survival following the induction of DNA DSBs (210-212). 
Furthermore, BRCA-deficiency is correlated with genomic instability, predisposition 
to cancer and increased radiosensitivity due to DNA repair defects. Intriguingly, the 
intrinsic DNA damage-sensitivity of BRCA2-mutant cells can be reversed by 
secondary BRCA2 mutations resulting in acquired drug resistance (213, 214). Finally, 
DDR deficiency can present a challenge in terms of cancer management, since 
patients with deficient DNA repair systems are predisposed to cancer and at the same 
time hypersensitive to DNA damage. Radiation mortality has been reported in 
patients carrying defective DNA repair systems due to highly increased toxicity of the 
DNA damaging agent (215, 216).  
 
It might seem counterintuitive that anti-cancer treatment is based on cell death 
induction upon DNA damage exposure, when evasion of apoptosis and selective 
pressure towards inactivating pro-apoptotic genes is a hallmark of cancer 
development. In order for anti-cancer therapy to be effective, cancer cells must still 
retain proficient cell death responses upon induction of DNA damage associated with 
therapeutic agents. Generally, a reduced DDR is positively correlated with therapeutic 
outcome, whereas defective pro-apoptotic factors are linked to therapy resistance 
(199). Given that deficient DNA repair is correlated with therapeutic response, 
inhibition of DNA repair can increase the efficiency of conventional cytotoxic agents. 
For instance, inhibition of the apical DDR kinases DNA-PK or ATM results in 
extreme sensitivity to several DNA damaging agents. The concept of DNA repair 
inhibitors as cytotoxic potentiators has been expanded to exploit cancer-specific DNA 
repair defects. Cancer cells may rely on alternative means of DNA repair to 
compensate for their intrinsic DDR deficiency, such as increased dependence on a 
specific repair factor or on another repair pathway compared to non-cancerous cells. 
This is exemplified by the synthetic lethality of PARP inhibition in cancers harboring 
BRCA1/BRCA2 mutations. The specific killing of BRCA-deficient cells upon PARP 
inhibition is attributed to the role of PARP in the repair of single-strand DNA breaks 
(SSBs). Unrepaired SSBs promoted by PARP inhibition are converted to DSBs 
during replication, which in turn should be repaired by BRCA-mediated HR. 
However, a direct role of PARP in HR has also been suggested to promote the 
synthetic lethal interaction. Furthermore, PARP inhibition appears to promote 
selective killing of cells deficient in other HR components than BRCA1/BRCA2 
(209, 217, 218).  

2.3.3 DNA double-strand breaks 
 
A DNA DSB is generated when the phosphodiester backbone is simultaneously 
broken on two closely located sites on opposite DNA strands. DSBs represent a 
particularly deleterious DNA lesion owing to the loss of genetic information on both 
DNA strands. Accordingly, SSBs are less challenging since the undamaged strand 
remains physically intact and can be used as a template to restore the original DNA 
sequence of the broken strand. Indeed, a single unrepaired DSB in lower organisms 
can have profound effects on cell survival (190, 219).  
 
DSBs arise through several mechanisms. Programmed DSBs occur naturally during 
meiotic recombination and upon maturation of the immune system. Endogenous 
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reactions can produce DSBs in a secondary manner, which for example occurs when 
the replication fork encounters damaged bases or SSBs. Exogenous sources such as 
topoisomerase I/II inhibitors, DNA crosslinking agents, radiomimetic drugs and IR 
directly or indirectly induce DSBs. Although IR is estimated to produce 
approximately 35 DSBs/Gy/cell compared to 1000 or even more SSBs and damaged 
bases, the DSB is still considered to be the main cytotoxic lesion (220). As mentioned 
previously, dysfunctional telomeres can also be a source of DSBs (190, 221-223).  

2.3.4 DNA damage signaling 
 
Following the induction of DNA DSBs, a multitude of different proteins are 
mobilized to the break sites to initiate the signaling cascades required for proper 
repair. DDR proteins are classically divided into DNA damage sensors, transducers, 
mediators and effectors. As the names imply, certain factors initially sense and signal 
the presence of DSBs to proteins that can amplify and transmit the signal to effector 
molecules that produce the appropriate responses (224). The DDR is regulated both 
spatially and temporally, where factors accumulate in areas surrounding the DSBs in a 
hierarchical order. The accumulation of proteins at DSBs can be visualized 
microscopically as DNA repair centers referred to as foci (or IRIF for ionizing 
radiation-induced foci). Similar to Cajal bodies, the sequestration of factors into foci 
allows for the local enrichment of related factors into a specialized compartment. 
Moreover, the binding of factors to DSBs might protect the free ends from 
degradation or improper repair events (225-227). Interestingly, there are also sub-
compartments within the DSB, which separate specific components of the DDR. 
Furthermore, certain DSB repair proteins do not form detectable foci, either due to 
low local concentrations or transient associations (225). Moreover, as observed in 
H2AX-/- MEFs, the concentration of repair factor into IRIFs is separate from the 
actual recruitment of factors to DSBs (228). Tethering experiments revealed that even 
in the absence of DNA breaks, immobilization and local accumulation of DNA 
damage components is sufficient to activate the DDR. Protein accumulation at 
chromatin displayed an internal hierarchy, although there are feedback mechanisms 
functioning to amplify the DNA damage signal (229, 230). The temporal aspect of the 
DDR is also evident in the recruitment kinetics of repair factors to DSBs, where the 
upstream components accumulate first to allow for the arrival of downstream DSB 
factors that indeed display delayed kinetics (227).  
 
A cascade of post-translational modifications that enable specific protein interactions 
regulates the recruitment of repair factors to DSBs. Several different types of 
modifications have been identified to play essential roles in the DDR, including 
phosphorylation, methylation, acetylation, poly(ADP-ribosyl)ation (PARylation), 
ubiquitylation and SUMOylation. One of the earliest DDR events is phosphorylation 
of the histone variant H2AX on serine 139 (referred to as γH2AX). ATM, ATR and 
DNA-PK of the PI3K-related kinase family all mediate phosphorylation of H2AX 
(231). ATR appears to be most critical for H2AX phosphorylation in situations of 
replication stress and in response to UV damage (232). ATM is considered to be the 
major mediator of H2AX phosphorylation upon DSB induction, however DNA-PK 
functions in a redundant and overlapping manner to ATM (233, 234).  
 
ATM is activated in response to DNA damage and becomes autophosphorylated on 
serine 1981, which dissociates inactive ATM dimers into monomers with kinase 
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activity (235). Exactly how ATM senses the DNA damage and converts into an active 
form is not fully understood, although reports suggest the involvement of chromatin 
rearrangements that accompany DNA lesions. The autophosphorylation of ATM 
appears to be crucial for its stabilization at DSBs (236). The MRN complex, 
consisting of MRE11, RAD50 and NBS1, can directly sense DSBs and bind DNA. 
NBS1 of the MRN complex has been reported to interact with ATM and mediate its 
recruitment to DSBs (237, 238). However, numerous factors have been suggested to 
regulate ATM activity and localization including TIP60 and MOF. Besides H2AX, 
activated ATM phosphorylates multiple substrates and mediates DNA damage-
induced cell cycle arrest (239).  

2.3.5 γH2AX 
 
H2AX is a member of the histone H2A family, which together with H2B, H3 and H4 
forms the basic units of chromatin. Depending on the cell type, H2AX constitutes 
approximately 2-25% of the total H2A molecules. H2AX differs from H2A primarily 
by a longer C-terminal tail containing a conserved SQ phosphorylation motif. The 
identification of this serine residue as a DNA damage-responsive phosphorylation site 
was a key step towards establishing γH2AX as a central DDR player (240).  
 
H2AX is rapidly phosphorylated following the formation of DSBs, reaching maximal 
amounts within minutes. Phosphorylation of H2AX spreads over large distances of 1-
2 megabases flanking the break site (188, 241). Spreading of γH2AX is important for 
focus formation and retention of proteins at DNA breaks, possibly by generating 
further binding sites for DDR factors and promoting changes in the chromatin 
environment that facilitates the access to DSBs (242). Accordingly, H2AX is not 
essential for the initial recruitment of factors such as 53BP1 and BRCA1 to DSBs, but 
they fail to form IRIFs and are not retained at the sites (228). H2AX-/- mice are viable 
and exhibit a relatively mild phenotype with increased radiosensitivity, genomic 
instability, immunodeficiency, growth defects and male infertility (243, 244). 
Whereas H2AX-/- mice do not show increased tumor susceptibility, combined loss of 
H2AX and p53 increases cancer susceptibility and results in solid tumors as well as 
hematological malignancies associated with translocations (245, 246). H2AX is 
implicated in both HR and NHEJ repair, but is not essential for either of the two DSB 
repair pathways (247, 248). This indicates that γH2AX only regulates the repair of a 
subset of DSBs or serves to optimize repair efficiency. Consistent with the viability of 
H2AX-/- mice and the redundant role of γH2AX in HR directed repair, depletion of 
HR components all result in embryonic lethality (247). The focal accumulation of 
γH2AX has been used as an estimate of DNA DSBs and repair, since the numbers of 
γH2AX foci appears to directly correlate with the number of DSBs (241, 249). The 
assessment of γH2AX can also be used in the clinic, both as a cancer biomarker and a 
predictor of treatment (196, 250, 251).  
 
H2AX is also regulated on the level of dephosphorylation. In addition to serine 139, 
H2AX is also phosphorylated on tyrosine 142 (Y142). Dephosphorylation of Y142 
appears to be required for proper γH2AX-dependent recruitment of downstream DDR 
factors (252). Several phosphatases are involved in regulating γH2AX, including PP1, 
PP2A, PP4, PP6 and WIP1. Impairment of these phosphatases results in deficient 
γH2AX removal (253). γH2AX can also be evicted from nucleosomes, which together 
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with γH2AX dephosphorylation could represent a mechanism to terminate the DDR 
and restore chromatin organization to the pre-damaged state (254, 255).  

2.3.6 MDC1 
 
Specific binding to γH2AX requires protein domains that recognize phosphorylated 
amino acids. The FHA and BRCT domains mediate phosphorylation-dependent 
interactions and are frequently found within DDR proteins (248). One such protein is 
MDC1, which directly interacts with γH2AX via its tandem BRCT domain. At DSBs, 
MDC1 functions as an adaptor protein that via multiple interactions recruits 
downstream DDR proteins to damaged sites. MDC1 amplifies γH2AX signaling via a 
positive feedback loop, activates checkpoint responses upon IR treatment and might 
protect γH2AX from dephosphorylation (256-258).  
 
Besides the C-terminal BRCT domain, MDC1 also contains a N-terminally located 
FHA domain. The MDC1 FHA domain has been described to account for its 
interactions with ATM, Chk2 and RAD51 (259). Phosphorylation of MDC1 by ATM 
or CK2 regulates its association with RNF8 and NBS1, respectively. The interaction 
between MDC1 and NBS1 is important for MRN complex retention at DSBs (260-
263). By interacting with γH2AX, ATM and the MRN complex, MDC1 functions as a 
scaffold protein that enables further ATM-dependent phosphorylation of more distal 
H2AX molecules and thereby amplifies DNA damage signaling. Interestingly, 
MDC1-/- mice shows striking similarities to their H2AX-deficient counterparts, with 
chromosome instability, radiation sensitivity, immune defects, growth retardation and 
male infertility (264).  
 
MDC1 retention at DSB sites is regulated by proteasomal-dependent degradation, 
potentially via the SUMO-targeted ubiquitin ligase RNF4. The disassembly of MDC1 
foci appears to facilitate the access of other repair proteins to DSBs (265, 266). 

2.3.7 RNF8 and RNF168 
 
Over the past years, ubiquitylation in response to DNA damage has emerged as a 
central signaling pathway in the DDR. Ubiquitin is a small protein that is covalently 
attached to substrate lysine residues in a process termed ubiquitylation. Ubiquitylation 
is carried out in a stepwise manner by enzymes catalyzing the activation, conjugation 
and ligation of ubiquitin (mediated by E1, E2 and E3 enzymes, respectively). Due to 
the presence of lysine residues within ubiquitin itself, polyubiquitin chains with 
varying properties can be formed. For instance, ubiquitin chains linked at K48 
typically target proteins for degradation whereas K63-linked polyubiquitin chains are 
particularly important for signaling and in the recruitment of DNA repair proteins. 
Both classical ubiquitin-mediated degradation and non-proteolytic ubiquitin 
conjugation play fundamental roles in the DDR (253, 267).  
 
As mentioned above, RNF8 is a DNA damage-responsive interaction partner of 
MDC1. Due to the presence of a N-terminally located FHA domain commonly 
present in DDR proteins, RNF8 was postulated to participate in the DDR. Indeed, 
RNF8 was found to accumulate at sites of DNA damage. Interestingly, RNF8 also 
contains a C-terminal RING domain. The RING domain is found in over 600 human 
E3 ligases and mediates ubiquitin ligase activity by transferring ubiquitin from E2 
conjugating enzymes onto substrates (268). Several studies have substantiated an 
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important link between MDC1 and RNF8 in the DDR. The interaction between 
MDC1 and RNF8 is dependent on the FHA domain of RNF8, whereas the RING 
domain is dispensable. Strikingly, the localization of RNF8 to DSBs is also FHA-
dependent while RING-independent. Silencing of MDC1 disrupts RNF8 localization 
to DSBs, whereas MDC1 reconstitution restores RNF8 IRIF. Mechanistically, MDC1 
contains four TQXF clusters that are phosphorylated by ATM upon DNA damage, 
which in turn are recognized by RNF8. Thus, following DNA damage, MDC1 binds 
γH2AX and is subsequently phosphorylated by ATM. The ATM-mediated 
phosphorylation of MDC1 serves as a docking site for the FHA domain of RNF8, 
resulting in the targeting of RNF8 to DSBs. Although the RING domain of RNF8 is 
dispensable for its recruitment to DSBs, both the FHA and the RING domains are 
required for the accumulation of downstream DDR factors. RNF8 catalytic activity 
was shown to be required for ubiquitylation of histones H2A and H2AX at DSBs, 
which in turn allows for 53BP1, BRCA1 and RAD51 accumulation at damaged sites, 
representing an ubiquitin-mediated route of protein recruitment (Figure 5) (269-272). 
 
Another E3 ligase, called RNF168, was later identified to be involved in mediating 
DSB-associated ubiquitylation. RNF168 is mutated in the RIDDLE syndrome, which 
is characterized by radiosensitivity, immunodeficiency and an inability to recruit 
53BP1 to DSBs (273). RNF168 contains a RING domain and two types of ubiquitin-
binding domains, where the latter are required for RNF168 DSB targeting (274). 
RNF8 is the first E3 ligase targeted to DSBs and accumulates independently of 
RNF168. However, RNF8 silencing results in impaired RNF168 DSB recruitment, 
placing RNF8 upstream of RNF168. Nevertheless, DSB-ubiquitylation is impaired in 
the absence of RNF168, suggesting that RNF8 and RNF168 cooperate to maintain 
ubiquitylation and the downstream recruitment of repair factors. Due to the 
requirement of its ubiquitin-binding domains for DSB localization, RNF168 has been 
proposed to recognize ubiquitin chains on H2A and H2AX generated by RNF8 and 
then function in the amplification of these ubiquitin conjugates (275, 276). Recently, 
this hypothesis was challenged by a study demonstrating that RNF8 appears to lack 
ubiquitylation activity towards nucleosomal histones, whereas RNF168 promotes 
monoubiquitylation of histone H2A/H2AX on lysine 13 and 15. These 
monoubiquitinated sites are then extended into K63 polyubiquitin chains in an RNF8-
dependent manner. Since RNF8 localizes to DSBs prior to RNF168, it is believed that 
the catalytical activity of RNF8 is first directed towards a non-histone substrate 
forming the ubiquitin chains required for RNF168 recruitment. RNF168 then primes 
histones for subsequent RNF8-mediated ubiquitin chain elongation (277, 278). This is 
in line with previous studies arguing that RNF8 displays di- and polyubiquitylation 
activities without any substantial effect on monoubiquitylation (271, 279).  
 
E3 ubiquitin-ligating enzymes work in conjunction with E2 ubiquitin-conjugating 
enzymes. The E2 conjugating enzyme UBC13 functions together with both RNF8 and 
RNF168 to specifically catalyze K63-linked ubiquitylation at DSBs. RNF8 can also 
associate with the E2 enzyme UBCH8 to promote K48-linked polyubiquitination 
(280). Interestingly, the E3 ligase HERC2 was identified to promote the association 
between RNF8-UBC13 and weaken the binding of RNF8 to UBCH8, representing a 
regulatory mechanism in terms of paring RNF8 to a specific E2 enzyme (281, 282).  
 
A process termed chromatin remodeling-assisted ubiquitylation was discovered when 
the chromatin remodeling factor CHD4 was found to facilitate RNF8-mediated 
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ubiquitylation events. RNF8 recruits CHD4 to sites of DNA damage, which in turn 
triggers chromatin decondensation that allows for RNF8 ubiquitin conjugation and 
efficient recruitment of downstream DDR factors (230). Interestingly, MDC1 and 
RNF168 also promote chromatin remodeling at DSBs by associating with specific 
chromatin remodeling enzymes (283, 284). 
 
RNF8 deficient mice exhibit increased radiosensitivity, genomic instability, 
carcinogenesis, immunodeficiency and impaired spermatogenesis (285-287). Similar 
to the human RIDDLE syndrome, RNF168-/- mice are immunodeficient and radiation 
sensitive. Moreover, they also display defective spermatogenesis. In contrast to 
RNF8-/- mice, tumor predisposition is not increased in RNF168-/- mice. However, 
double knockout mice of both p53 and RNF8 or RNF168 display increased levels of 
genomic instability and tumor incidence compared to the respective single knockout 
mice. This indicates that RNF8 and RNF168 functions together with p53 to suppress 
genomic instability and carcinogenesis (288, 289). 
 
RNF168 can promote its own DSB accumulation by binding the ubiquitylation 
products catalyzed by itself, potentially generating a feed-forward mechanism of 
uncontrolled ubiquitin-spreading over undamaged chromatin. Several so-called 
deubiquitylating enzymes (DUBs) serve to limit and reverse RNF8/RNF168-mediated 
signaling. The DUBs POH1, BRCC36, USP3, USP16 and USP44 all catalyze the 
disassembly of RNF8/RNF168-generated ubiquitin chains. The DUB OTUB1 binds 
and inhibits UBC13, thus acting as a negative regulator of the RNF8/RNF168 
pathway. Moreover, histone ubiquitylation can be restricted from excessive spreading 
by the E3 ligases TRIP12/UBR5 that negatively regulate RN168 protein stability, 
which in turn can be counterbalanced by USP34 that stabilizes RNF168. An 
additional E3 ligase termed RNF169 can antagonize RNF168-mediated protein 
accumulation at DSBs by occupying their binding sites (290-292).  

2.3.8 Ubiquitin-mediated protein recruitment: 53BP1, BRCA1 and RAD51 
 
As mentioned above, RNF8- and RNF168-mediated ubiquitylation is associated with 
alterations in chromatin structure and results in the recruitment of downstream repair 
factors such as 53BP1, BRCA1 and RAD51 to DSBs. However, the precise mode of 
ubiquitin-dependent DSB accumulation differs between the different factors.  
 
53BP1 
 
The NHEJ protein 53BP1 contains a C-terminal tandem BRCT domain, an upstream 
tandem Tudor domain and an RG-rich sequence. 53BP1 localization to DSBs is 
dependent on its Tudor domain, the RG-rich motif and homo-oligomerization, 
whereas the BRCT domain is dispensable (293-295). The tandem Tudor domain of 
53BP1 specifically binds to a di-methylated residue on histone H4 (H4K20me2) 
(296). Since H4K20me2 is a constitutive chromatin mark that is not specific to DNA 
damage, it was long enigmatic how the DSB-targeting of 53BP1 ensued (297, 298). 
Moreover, the clear dependence of 53BP1 on RNF8/RNF168 for its DSB localization 
added an extra layer of complexity, arguing towards crosstalk between histone 
ubiquitylation and methylation. One study identified the methyltransferase MMSET 
to locally increase H4K20 methylation upon DNA damage, although the link to 
histone ubiquitylation and 53BP1 recruitment remained unexplained (299). It has 
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been hypothesized that the chromatin rearrangements associated with histone 
ubiquitylation results in the exposure of otherwise hidden methyl-groups. 
Interestingly, two H4K20me2-binding proteins, JMJD2A and L3MBTL1, were 
identified to physically block the access of 53BP1 to this site. Upon DNA damage, 
RNF8-mediated ubiquitylation of JMJD2A and L3MBTL1 leads to their degradation 
or VCP-dependent displacement, respectively, thus exposing H4K20me2 for 53BP1 
binding (Figure 5) (269, 300, 301). Recently, a C-terminal ubiquitylation-dependent 
recruitment motif was identified in 53BP1 that specifically recognizes H2A 
ubiquitylated on K15. Therefore, 53BP1 can bind nucleosomes modified with both 
H4K20me2 and the DNA damage-dependent H2AK15Ub, where the latter triggers its 
retention at DSBs (302). Although dispensable for most NHEJ repair events, 53BP1 is 
required for heterochromatin repair by promoting ATM chromatin retention (303).  
 
BRCA1 
 
BRCA1 forms at least three distinct sub-complexes by binding to Abraxas, BACH1 
and CtIP, forming the BRCA1-A, -B and -C complexes, respectively. Furthermore, 
BRCA1 interacts with BRCA2 via PALB2. In addition to BRCA1 and Abraxas, the 
BRCA1-A complex contains BARD1, BRCC36, BRCC45, MERIT40 and RAP80 
(304). RAP80 contains ubiquitin interacting motifs that bind to K63-linked 
polyubiquitin chains generated by RNF8/RNF168 and can therefore direct the 
BRCA1 complex to ubiquitin-modified DSBs (Figure 5) (305). RAP80- and Abraxas-
silencing leads to modest HR defects compared to BRCA1-depleted cells, suggesting 
that these proteins only mediate a subset of BRCA1 functions (306). RAP80-
containing BRCA1 complexes have also been demonstrated to restrict end resection 
and limit HR by competing with the other BRCA1 complex components (307-309). In 
agreement with this, depletion of RAP80 or the upstream factor MDC1 only results in 
BRCA1-dissociation from the DSB-flanking chromatin and does not affect the ability 
of BRCA1 to associate with single-stranded DNA generated at DSBs upon end 
resection (225, 308, 310). However, a single amino acid deletion within the ubiquitin 
interaction motif of RAP80 has been linked to breast cancer predisposition, 
suggesting functional importance of this BRCA1 recruitment pathway (311). BRCA1-
B and -C complex members also localize to DSBs independent of RAP80, suggesting 
the presence of several independent routes of BRCA1 recruitment (308). Moreover, 
the BRCA1-A complex component BRCC36 is one of the DUB enzymes identified to 
antagonize RNF8-dependent modifications, representing an elaborate regulation of 
DSB ubiquitylation events during DNA repair (312). 
 
RAD51 
 
The link between the assembly of the central HR protein RAD51 and RNF8-mediated 
ubiquitylation still remains fairly descriptive. RAD51 recruitment to DSBs has been 
shown to be RNF8-dependent and RNF168-independent. RIDDLE syndrome patient 
cells display defective 53BP1 recruitment, while RAD51 foci formation is unaffected 
upon IR treatment (273). Silencing of RNF8 results in deficient RAD51 DSB 
targeting and impaired HR, whereas RNF168-depletion only show modest RAD51 
recruitment defects with increased HR (269, 313). Accordingly, only RNF8 promotes 
RAD51 accumulation to DNA breaks induced by replication stress (314). The 
observed physical uncoupling between RNF8 and RNF168 has been attributed to 
differences in K48- versus K63-linked ubiquitylation activities. RNF8-dependent 
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generation of K48-ubiquitin chains is proposed to affect RAD51 accumulation, 
whereas the RNF8/RNF168-dependent K63-linked pathway does not (315, 316). By 
recruiting the proteasomal component PSMD4 to DNA damage sites, RNF8 together 
with RNF4 might promote the degradation of RPA, thus promoting the replacement 
of RPA with RAD51 at DSBs (266). However, others have reported that RNF8 
regulates the recruitment of RAD51 to DSBs only in the absence of 53BP1 and 
BRCA1 (317). Another mechanistic explanation as to how RNF8 mediates the 
assembly of RAD51 comes from studies on the E3 ligase RAD18. RAD18 is recruited 
to DSBs by interacting with RNF8-generated ubiquitin conjugates. In turn, RAD18 
promotes HR by interacting with the RAD51 paralog RAD51C. Since RAD51 IRIF 
formation depends on the RAD51 paralogs, both RAD18 and RNF8 deficient cells 
display impaired RAD51 DSB accumulation and HR repair (318). However, since 
RNF168 also appears to be required for proper RAD18 recruitment and UBC13 
knockdown results in deficient RAD51 foci formation, the mechanism underlying the 
ubiquitin-dependent assembly of RAD51 is not fully understood (314, 319). Figure 5 
summarizes the main steps of RNF8-mediated repair protein recruitment to DNA 
break sites.  

 
Figure 5: The classical view of RNF8-dependent assembly of DNA repair factors at DSBs. 1) DNA 
DSB induction, 2) The MRN complex assembles at DSBs, 3) MRN promotes ATM recruitment, 4) 
ATM phosphorylates H2AX (into γH2AX), 5) MDC1 binds γH2AX, 6) ATM phosphorylates MDC1, 
7) RNF8 binds to phosphorylated MDC1 and subsequently targets histones for ubiquitylation, 8) 
RNF168 binds ubiquitylated histones. DSB-associated ubiquitylation events result in BRCA1, RAD51 
and 53BP1 recruitment. RNF8 exposes H4K20me2 by JMJD2A degradation and VCP-dependent 
L3MBTL1 displacement, thereby generating 53BP1-docking sites.  

2.4 Cellular responses to DNA damage: survival or death  
 
Upon DNA damage, the DDR coordinates several cellular processes such as cell cycle 
progression with DNA repair or DNA-damage induced cell death in order to avoid 
genetic alterations and malignant transformation associated with unrepaired DNA 
breaks. DNA repair promotes cell survival, whereas various modes of cell death 
results in the removal of cells carrying damaged DNA. In either case, cell cycle arrest 
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conferred by activated checkpoints allows for DNA repair and prevents the 
transmission of damaged DNA to daughter cells.  

2.4.1 Homologous recombination 
 
HR constitutes several sub-pathways that serve to repair DNA lesions including DSBs 
and interstrand crosslinks. Moreover, HR functions at collapsed replication forks and 
maintains chromosome ends by promoting telomere recombination. HR is active 
during late S and G2 phases of the cell cycle when DNA has been replicated and an 
undamaged sister chromatid is available as a repair template. HR is therefore 
considered to be a relatively error-free pathway (190). The gene products of the 
RAD52 epistasis group are central HR players, originally identified in S. cerevisiae as 
being required for the repair of IR induced DNA breaks. These proteins are highly 
conserved among eukaryotes and the human orthologs include RAD51, RAD52, 
RAD54, the five RAD51 paralogs and all components of the MRN complex (320). 
 
The main steps of HR include homology search and DNA strand invasion into an 
intact DNA duplex. Homologous sequences used as correct repair templates can be 
located on a sister chromatid, a homologous chromosome or a non-homologous 
chromosome in the form of a repeated sequence. However, the sister chromatid 
appears to be the favored template since these recombination events normally are 
genetically silent, limiting loss of heterozygosity (LOH) (321). The invading DNA 
strand is produced from the DNA break by the action of nucleases. Consequently, all 
different HR sub-modules commence with the 5’ to 3’ processing of the DNA DSB to 
generate a 3’ ssDNA overhang, which serves as a substrate for the central HR 
recombinase RAD51. The HR machinery requires over 100 bp of sequence homology 
for strand invasion (320, 322-325). The combined nuclease activities of the MRN 
complex and CtIP initiates resection and degrades a stretch of the broken 5’ DNA 
ends. Further DSB processing involving DNA2, EXO1 and the BLM helicase result 
in the production of more extensively resected 3’ ssDNA segments (326-330). 
 
The nucleation of RAD51 onto the ssDNA that is created during resection is a slow 
process and the high affinity ssDNA-binding factor RPA will coat the resected DNA 
segment. Therefore, RPA has to be displaced from the ssDNA in order for RAD51 to 
form the nucleoprotein filament responsible for homology search and strand invasion. 
By physically blocking access of RAD51 to ssDNA and by removing ssDNA 
secondary structures, RPA can both inhibit and promote recombination, respectively 
(331). Furthermore, RPA plays an additional role in activating the central DDR kinase 
ATR via ATRIP, TopBP1 and Claspin by mediating its recruitment to resected DNA 
ends (322, 332). Eventually, by the help of so-called recombination mediator proteins, 
RPA is displaced and instead replaced with RAD51. These proteins are involved in 
the formation and stability of the RAD51 presynaptic filament and can interact with 
both with the recombinase and DNA. Several recombination mediator proteins assist 
in the displacement of RPA, including the five RAD51 paralogs (RAD51B, RAD51C, 
RAD51D, XRCC2 and XRCC3) and BRCA2 (333, 334). In yeast, RAD52 has been 
identified as one of the main factors responsible for the removal of RPA from ssDNA, 
however human RAD52 appears to lack mediator activity (335). The complete 
underlying mechanism as to how the recombination mediator proteins facilitate 
RAD51-ssDNA filament formation remains unsolved, although it is known that these 
factors are required for RAD51 IRIF formation (325). Presynapsis is the collective 
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term describing all events that result in the RAD51 filament assembly. Presynapsis is 
followed by synapsis, where the RAD51-ssDNA filament invades an intact DNA 
molecule in the search of sequence homology. RAD51 displays ATPase activity, 
which is necessary for catalyzing the DNA strand-exchange reaction during HR 
(336). The binding of the presynaptic filament to the homologous region in a duplex 
DNA molecule generates a three-way junction known as the displacement (D)-loop. 
The final step of HR is termed post-synapsis, where DNA is synthesized along the 
invading 3’ssDNA. DNA polymerase eta (Pol η) is proposed to be responsible for 
DNA synthesis extending from the D-loop intermediate during HR-mediated repair 
(337). After this step, separate HR models are described to repair the DNA break by 
different means (Figure 6).  
 
The double-strand break repair (DSBR) model continues by involving the second end 
of the DSB, which generates a four-stranded DNA structure called the double 
Holliday junction (dHJ) (338). The dHJ is resolved in two separate manners. The dHJ 
can be cleaved by structure-specific endonucleases such as GEN1, MUS81-EME1, 
SLX1-SLX4 and ERCC1-XPF into non-crossover or crossover products (339-341). 
Non-crossover products stay in the parental configuration, whereas crossover 
products entail an exchange of flanking genetic material between the duplex DNA 
molecules. The two junctions of the dHJ can also migrate towards each other in a 
process termed branch migration and be dissolved by the joint action of the helicase-
topoisomerase complex BLM-TOPOIIIα-RMI1/RMI2 with resulting non-crossover 
products (342, 343). During meiosis, DSBR is important for producing crossovers 
between homologous chromosomes to generate genetic diversity and to form the 
physical connections between homologous chromosomes needed for proper 
segregation (Figure 6A) (323). 
 
In synthesis-dependent strand annealing (SDSA), the invading strand primes DNA 
synthesis to restore the lost sequence information and forms a single HJ structure that 
can slide via branch migration. The newly synthesized DNA end is then detached 
from its template sequence and anneals with the second DSB end. DNA can then be 
synthesized from the non-invading 3’ end. In this process, only non-crossover 
products are generated and the donor sequence remains unaltered. RAD54 and BLM 
have been implicated in displacing the invading strand to dissociate the D-loop 
following DNA synthesis, thus promoting SDSA to limit potential LOH (344, 345). In 
somatic cells, the SDSA pathway is favored over DSBR since crossover products are 
not formed and therefore genetic rearrangements are avoided (Figure 6B) (338).  
 
Break-induced replication (BIR) is responsible for repairing DSBs that only have one 
free end, which can result from replication fork collapse or at uncapped telomeres. In 
the absence of telomerase, telomeres are maintained by recombination and BIR 
represents one mechanism for ALT. In BIR, the D-loop assembles into a replication 
fork that can copy the entire distal fragment of the invaded DNA strand or continue 
until it reaches a converging replication fork. If the template sequence is found in a 
homologous chromosome, long tracts of LOH can ensue upon BIR. A non-
homologous chromosome template can result in gross chromosomal rearrangements. 
Therefore, BIR is normally suppressed when two-ended DSBs arise, although how 
this is achieved remains unclear (Figure 6C) (346, 347).  
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Figure 6: Different modes of homologous recombination. Blue circles illustrate RPA, whereas green 
circles represent RAD51. The DSBR (A), SDSA (B), BIR (C) and SSA (D) models are illustrated. The 
dashed lines represent newly synthesized DNA. In (A), endonuclease-mediated resolution of the dHJ 
structure can result in either non-crossover (black asterisks) or crossover products (red asterisks). The 
products are marked by black boxes, where the ends of the non-crossover products stay in the parental 
configuration whereas the crossover products have exchanged flanking genetic material. In (D), blue 
boxes indicate direct repeat sequences.  
 
The single-strand annealing (SSA) pathway of HR repairs two-ended DSBs that are 
flanked by repeated sequences, such as Alu sequences. Instead of utilizing a template 
DNA molecule and strand invasion, this RAD51-independent mechanism operates via 
RAD52 and RPA to anneal homologous ssDNA sequences surrounding the DSB 
exposed during 5’ end resection (348). Annealing is followed by nucleolytical 
processing of the remaining 3’ flap overhangs by ERCC1-XPF (349). This process is 
highly mutagenic, since it results in deletion of one of the repeats as well as the 
sequences intervening the homologous regions (Figure 6D) (338).  

2.4.2 Non-homologous end joining  
 
NHEJ is the major DSB repair pathway in mammalian cells and is active throughout 
the cell cycle. By simply relying on the re-ligation of broken DNA ends, NHEJ is 
intrinsically error-prone. If the DNA break is a so-called clean break, with blunt ends 
or complementary overhangs, no end processing is required before end joining and 
the original DNA sequence can be restored. However, some DSBs cannot be directly 

DNA DSB 

3’ 
3’ 

Undamaged template 

5’ to 3’ end resection 
RPA ssDNA coating 

RPA displacement 
RAD51 filament formation 

DNA strand invasion 
D-loop formation 

Second end capture 
dHJ formation 

DSBR 

*"*"

Non-crossover 

Crossover 

*"

*"

A 

BIR C 

SSA D 

Non-crossover 

SDSA B 

RAD51 
RPA 



	
   36	
  

re-joined and demand nucleolytic processing and DNA synthesis to generate proper 
substrates for DNA ligation. For instance, IR-induced DSBs usually contain base and 
sugar damages that must be processed before end joining can proceed. The end 
processing steps of NHEJ can result in mutagenic events, with loss or gain of genetic 
material, rendering this DSB repair pathway erroneous (350-352).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Schematic illustration of non-homologous end joining. Blue circles represent the Ku hetero-
dimer. 
 
The core NHEJ machinery consists of Ku70, Ku80, DNA-dependent protein kinase 
catalytic subunit (DNA-PKcs), XLF, XRCC4 and DNA ligase IV. Ku70 and Ku80 are 
highly abundant proteins that bind to DNA in a non-sequence dependent manner and 
rely on the presence of DSBs. Interaction between Ku70 and Ku80 leads to the 
formation of a ring-shaped heterodimer, which rapidly binds and encloses both 
damaged DNA ends with high affinity (353, 354). The Ku70/80 heterodimer (referred 
to as Ku) bound to DNA is believed to function as a scaffold for the downstream 
recruitment of NHEJ factors to the break site, including the nuclease, DNA 
polymerase and ligase activities necessary for end joining (350). Ku targets the 
catalytic subunit of DNA-PK to DSBs and then moves internally along the DNA. This 
allows DNA-PKcs to directly contact DNA and the enzymatically active DNA-PK 
holoenzyme composed of Ku and DNA-PKcs is formed (355). DNA-PK tethers DNA 
ends and brings them in close proximity in a process termed synapsis, which is 
essential for end joining (356). DNA-PK is a serine/threonine kinase and this activity 
is important for the NHEJ process (357). DNA-PK phosphorylates most NHEJ 
components, including itself (358). Unphosphorylated DNA-PK protects DNA ends 
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from processing enzymes until they are aligned. Upon autophosphorylation, DNA-
PKcs interaction with DNA ends is weakened, thus increasing the access of 
processing enzymes to DNA ends (359-361). The final step of NHEJ is ligation, 
which is carried out by DNA ligase IV in conjunction with XRCC4 and the accessory 
factor XLF (Figure 7) (362, 363). 
 
As mentioned above, if the DNA ends produced from a DSB contain chemical 
modifications or secondary structures they are non-ligatable and require additional 
processing steps. To resolve incompatible DNA ends, nucleotides are either removed 
or replaced by cleaving or synthesizing DNA, respectively. The exo/endonuclease 
Artemis is a key processing protein in the NHEJ pathway. DNA-PKcs phosphorylates 
Artemis, which results in a conformational change that allows activation of Artemis 
endonuclease activity. Artemis cleaves DNA structures such as hairpins and 5’/3’-
overhangs (364, 365). Furthermore, two polymerases of the Pol X family have been 
identified to mediate gap filling during NHEJ: DNA polymerases µ and λ. These 
polymerases contain BRCT domains, which mediate their interaction with Ku and 
DNA ligase IV-XRCC4 (366, 367). Artemis and DNA pol µ/λ thus generates DNA 
ends suitable for ligation, which also occurs in conjunction with several other DNA 
end processing factors.  
 
The rejoining of IR-induced DNA breaks by NHEJ appears to proceed via a two-
phase kinetics with differing molecular requirements. The rapid phase of NHEJ 
repairs approximately 90% of all induced DSBs within 2 h of damage induction and 
requires DNA-PKcs, Ku and DNA ligase IV but operates independent of ATM and 
Artemis. However, there is also a slower component of NHEJ that rejoins 10-25% of 
DSBs dependent on ATM, γH2AX, 53BP1 and Artemis in addition to the classical 
NHEJ factors. This subset of DSBs appears to be associated with increased chromatin 
complexity, revealing differences between heterochromatic and euchromatic DSB 
repair (368, 369). Furthermore, NHEJ is essential for rejoining the physiological 
DSBs created during B and T cell receptor diversification (V(D)J recombination) and 
isotype switching between immunoglobulin classes during class switch recombination 
(CSR). As a consequence, mutations in NHEJ components result in immuno-
deficiency in addition to radiosensitivity (350, 358, 370). 

2.4.3 Regulation of repair pathway choice 
 
In accordance with their implementation over the cell cycle, cells deficient in NHEJ 
are sensitive to IR in all cell cycle phases whereas HR-deficient cells display 
increased IR-sensitivity in S/G2. However, although the template requirement of HR 
is fulfilled during G2, NHEJ appears to be the predominant repair mechanism during 
this cell cycle phase as well (371-373). This raises the question regarding why NHEJ 
would be preferred over the more accurate HR-mediated repair and how this decision 
is regulated.  
 
In contrast to humans, HR is the dominating repair pathway in simpler organisms 
such as S. cerevisiae. The discrepancies between lower and higher eukaryotes can be 
partially explained by the genomic organization of the respective species. 
Approximately 50% of the human genome consists of repetitive DNA sequences, 
which can be found in the form of Alu elements as well as in centromeric, telomeric 
and ribosomal DNA. Therefore, it is likely that a DSB would occur in such a 
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sequence, leaving the possibility of finding a homologous donor sequence in any non-
homologous chromosome. A highly repetitive genome can consequently not ensure 
HR repair to be exact and might direct most repair events to the mutagenic SSA 
pathway. Yeast genomes, on the other hand, contain almost no repeated sequences 
making HR a beneficial repair mechanism (351, 374). Budding yeast also lack the key 
NHEJ proteins DNA-PKcs and Artemis, suggesting that the NHEJ predominance 
observed in mammals could overlap with the evolutionary appearance of these factors 
(375). 
 
In mammals, HR is primarily responsible for the repair of replication associated-
DSBs (373). Proximity might in part explain why a certain DNA break is directed 
towards a specific DSB repair pathway. The free ends of a two-ended DSB are 
usually in close vicinity, thus allowing efficient NHEJ. One-ended DSBs arising 
during replication lack a second end available for simple re-joining, consequently 
promoting HR-mediated repair via the available sister chromatid. The multi-protein 
complex Cohesin provides sister chromatin cohesion following replication, thereby 
providing proximity between the damaged DNA molecule and the repair template to 
stimulate sister chromatid recombination (376).  
 
To counteract unwanted repair events and inappropriate repair templates, HR is 
coordinated with DNA replication. By keeping DNA end resection under strict cell 
cycle regulation, HR is only to be promoted in the presence of a sister chromatid. This 
is accomplished by CDK-dependent phosphorylation of resection-associated 
substrates. CDK enzymatic activity is limited to specific cell cycle phases due to their 
required interaction with fluctuating cyclins. CDK phosphorylates CtIP on S327 and 
T847, which promotes CtIP-BRCA1 binding and end resection in S/G2 (377-379). 
MRE11 has been demonstrated to directly interact with CDK2, thereby promoting 
CtIP phosphorylation (380). CDK-dependent phosphorylation of the MRN complex 
subunit NBS1 also promotes end resection and efficient HR (381). Resected DNA 
ends are poor substrates for NHEJ, whereas Ku bound to DNA ends prevents 
resection and promotes recruitment of core NHEJ factors.  
 
53BP1 and BRCA1 are two repair factors that appear to be essential for selection of 
DSB repair pathway usage. Carriers with BRCA1 mutations have highly increased 
risk of developing breast and ovarian cancer, which is thought to reflect a lack of 
functional HR. In the absence of BRCA1, replication-associated one-ended DSBs will 
be left un-repaired or aberrantly repaired by NHEJ. Interestingly, loss of 53BP1 
rescues the genomic instability, cancer predisposition and embryonic lethality 
associated with BRCA1-deficiency. The cell death observed upon PARP inhibition in 
BRCA1 mutant cells is also alleviated by concomitant loss of 53BP1 (382, 383). 
53BP1 has also been found to be lost in triple-negative and BRCA1/2-mutated breast 
cancers, which might negatively affect treatment response since 53BP1-loss protects 
these cells from DNA damage hypersensitivity (384). On the molecular level, deletion 
of 53BP1 restores RAD51 foci formation and HR repair on a BRCA1 mutant 
background, presumably due to increased DNA end resection. DNA ligase IV-
deficiency fails to rescue the HR defect in BRCA1 mutant cells, suggesting that the 
observed effect is specific to 53BP1 and not a general theme of NHEJ-inactivation 
(382, 383). Therefore it seems likely that the inhibition of 5’ end resection mediated 
by 53BP1 needs to be antagonized for efficient HR repair and that BRCA1 is 
involved in this process.  



	
   39	
  

 
RIF1 was recently identified as the effector of 53BP1-mediated DSB repair and is 
recruited to DSBs via its interaction with ATM-phosphorylated 53BP1. An intricate 
regulatory network exists between 53BP1-RIF1 and BRCA1-CtIP. 53BP1-RIF1 
prevents BRCA1 from accumulating into IRIF in G1, thus restricting BRCA1 
function to the S/G2 phases of the cell cycle. Conversely, BRCA1-CtIP inhibits RIF1 
in S/G2, probably by promoting resection of DSB ends (385, 386). Furthermore, 
super-resolution microscopy studies revealed differing spatial localization of 53BP1 
and BRCA1 in single IRIF over the cell cycle. In G1, 53BP1 localizes to the core of 
the focus. S phase progression results in exclusion of 53BP1 from the IRIF core to a 
more peripheral localization, while BRCA1 instead is enriched at the core. This 
suggests that BRCA1 impedes 53BP1 occupancy proximal to DSBs to promote HR 
(387).    

2.4.4 Cell cycle checkpoints 
 
DNA damage-induced cell cycle checkpoints arrest damaged cells at G1/S, intra-S or 
G2/M phases to provide time for completion of repair. The presence of DNA damage 
induces a signaling cascade initiated from the break site to the actual checkpoint 
effectors via the apical kinases ATR and ATM. Following their activation, ATR and 
ATM phosphorylates Chk1 and Chk2, respectively, which in turn modifies effector 
proteins to initiate cell cycle arrest.  
 
The G1 checkpoint is induced to prevent cells carrying DNA damage from entering S 
phase. To achieve this, activated Chk1/Chk2 phosphorylates targets such as the 
phosphatase CDC25A and p53. This results in SCF-β-TrCP-mediated ubiquitylation 
and proteasomal degradation of CDC25A, while p53 is stabilized. CDC25A can 
therefore not dephosphorylate and activate CDK2, which is required for G1/S 
transition and replication initiation. Phosphorylated and stabilized p53 maintains cell 
cycle arrest by inducing the transcription of p21, a negative regulator of cyclin-CDK 
complexes (388-390).  
 
The intra-S checkpoint serves to delay cell cycle progression in response to 
disturbances in DNA replication. Similar to the G1 checkpoint, ATM/ATR-
Chk2/Chk1-CDC25A-CDK2 signaling results in inhibition of DNA synthesis by the 
blockage of the DNA polymerase recruitment factor CDC45. An inability to reduce 
replication initiation upon IR-treatment, as observed in ATM deficient cells, causes 
radioresistant DNA synthesis (RDS) that might promote carcinogenesis (391). 
Furthermore, ATM-mediated phosphorylation of NBS1 also appears to contribute to 
the intra-S phase checkpoint (388-390).  
 
The G2/M checkpoint inhibits damaged cells from entering mitosis in order to prevent 
the transmission of damaged DNA to daughter cells. Activated ATM/ATR-
Chk2/Chk1 results in the sequestration or degradation of CDC25A, B and C, thereby 
inhibiting the activation of CDK1 that function in conjunction with cyclin B to 
promote G2/M progression. Prolonged G2/M arrest is partly p53-independent, since 
cells lacking p53 still accumulates in G2/M upon DNA damage. Chk1/Chk2 can also 
activate WEE1, which in turn inhibits CDK1. Upon accomplishment of DNA repair, 
checkpoint signaling must be terminated for the arrested cells to resume cell cycle 
progression. This can be regulated by different means, for instance via proteasomal 
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degradation and dephosphorylation. Both WEE1 and the Chk1-activating protein 
Claspin are ubiquitylated and degraded upon PLK1-phosphorylation, resulting in 
deactivation of Chk1-singaling and activation of CDC25 and CDK1. Similarly to 
γH2AX dephosphorylation upon DDR termination, phosphatases acting on Chk1 and 
Chk2 potentially reverse checkpoint events. As a result, the G2 arrest is removed and 
the cyclin-CDK complexes promoting G2/M transition can be activated (388-390, 
392). 

2.4.5 Apoptosis 
	
  
An inability to repair DNA DSBs results in cell death, which serves as a protective 
mechanism to avoid the potentially harmful consequences associated with unresolved 
lesions. Cell death associated with DNA breaks is clearly manifested by DNA repair-
deficient cells that display highly increased apoptotic responses to DNA damaging 
agents (393, 394). However, it is important to note that decreased cell survival upon 
exposure to IR is not strictly correlated to increased apoptosis in all cell types (220). 
Nevertheless, DSB-induction by restriction enzyme cleavage triggers apoptosis, 
where the frequency of DSBs correlates with the yield of apoptosis. The induction of 
apoptosis following DNA damage varies greatly between different cell types and 
depends on severity of the damage (395).  
 
DNA damage most often result in the activation of the extrinsic death receptor-
associated pathway or the intrinsic mitochondrial pathway (220). Apoptosis is 
characterized by morphological features such as cell shrinkage, membrane blebbing, 
chromatin condensation and DNA fragmentation. Both apoptotic pathways depend on 
the activation of a family of proteases termed caspases that induce apoptosis by 
cleaving protein substrates. The extrinsic apoptotic pathway is activated upon binding 
of extracellular ligands such as FasL/CD95L and TRAIL to death receptors, which 
triggers a cascade of events including the assembly of the death-inducing signaling 
complex (DISC) and the activation of caspase-8. In turn, caspase-8 initiates the 
activation of several so-called effector caspases resulting in protein and DNA 
degradation. A balance between pro-apoptotic and anti-apoptotic proteins of the Bcl-2 
family regulates the intrinsic mitochondrial pathway, which upon activation results in 
cytochrome c release from the mitochondria. Cytochrome c forms the apoptosome 
together with Apaf-1 and pro-caspase-9, which activates several caspases serving to 
implement the death-promoting responses (396). 
 
One important link between DNA damage and apoptosis is p53. ATM, ATR, Chk2 
and Chk1 can all phosphorylate p53 following the formation of DSBs. This results in 
stabilization and increased transactivation activity of p53. Following activation, p53 
induces the expression of pro-apoptotic target genes that belongs to both the intrinsic 
and extrinsic apoptotic pathways resulting in the induction of apoptosis. However, 
p53 can also be a pro-survival factor by regulating a different set of target genes. 
There are also p53-independent means of inducing apoptosis upon DNA damage, 
which is clinically relevant due to the high rate of p53 inactivation in human cancers. 
For instance, the p53 homolog p73 is transcriptionally induced upon DNA damage in 
a Chk1/Chk2-dependent manner. Similar to p53, p73 functions as a transcription 
factor that can induce the expression of pro-apoptotic target genes. Other factors have 
also been indicated in the induction of apoptosis following DNA damage including 
caspase-2, PTEN, p38 and JNK, where the latter has been shown to be recruited to 
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tyrosine 142 phosphorylated H2AX (220, 252, 393, 394, 397-399). DNA damage may 
also activate cell death via mitotic catastrophe, autophagy and necrosis or cease 
cellular proliferation via senescence. However, the mechanisms governing which path 
cells pursue following DNA damage remains incompletely understood (397). 
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3. AIMS OF THIS THESIS 

The overall aim of this thesis was to characterize the function of WRAP53β and its 
association to cancer. The specific aims of each paper were: 
 
Paper I: To uncover the role of WRAP53β in Cajal body formation and maintenance. 
 
Paper II: To investigate the impact of WRAP53β on cancer cell survival.  
 
Paper III: To elucidate the involvement of WRAP53β in DNA repair.  
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4. RESULTS AND DISCUSSION  

4.1 Paper I 
 
WRAP53 is Essential for Cajal Body Formation and for Targeting the SMN 
Complex to Cajal Bodies 
 
Immunofluorescence staining of WRAP53β revealed that it is enriched within small 
nuclear bodies in addition to its cytoplasmic distribution. The subcellular localization 
of WRAP53β initiated the studies collected into Paper I.   
 
Given the size and numbers of the WRAP53β-containing nuclear bodies, we 
postulated that they might represent Cajal bodies. Indeed, immunofluorescence 
experiments demonstrated that WRAP53β co-localized with the Cajal body marker 
protein coilin and that WRAP53β was found in all coilin-positive Cajal bodies. 
Depletion of WRAP53β resulted in Cajal body disruption and nucleolar 
misslocalization of coilin and SMN. Similar to coilin, WRAP53β overexpression did 
not induce Cajal body formation. Ectopically expressed WRAP53β localized to Cajal 
bodies, however high levels of WRAP53β overexpression resulted in Cajal body 
disruption and loss of coilin-SMN complex formation. Thus, high levels of exogenous 
WRAP53β appears to adversely affect endogenous WRAP53β function, potentially 
via self-association or sequestration of other factors that may facilitate Cajal body 
formation.   
 
Further biochemical studies revealed that WRAP53β interacts with both coilin and 
SMN via its WD40-domain and a stretch of its C-terminal region. The same regions 
were found to mediate WRAP53β localization to Cajal bodies. Interestingly, while 
WRAP53β was required for efficient complex formation between coilin and SMN, 
WRAP53β interacts with coilin independent of SMN and with SMN independent of 
coilin. However, since previous studies demonstrated a direct interaction between 
coilin and SMN, we hypothesized that WRAP53β might be required for proper 
targeting of SMN to Cajal bodies and coilin. Since SMN is imported to the nucleus 
following cytoplasmic snRNP assembly, we examined the relationship between 
WRAP53β and SMN in the cytoplasmic compartment as well. Subcellular 
fractionation experiments disclosed that WRAP53β interacts with SMN both in the 
nucleus and cytoplasm. Knockdown of WRAP53β altered the subcellular distribution 
of SMN, resulting in an increased cytoplasmic accumulation and decreased nuclear 
localization. This suggested that WRAP53β could be involved in mediating the 
nuclear import of SMN. Mechanistically, WRAP53β was shown to mediate the 
interaction between SMN and the nuclear pore receptor importinβ, which is required 
for the nuclear translocation of SMN. WRAP53β is not essential for snRNP assembly, 
however the entire SMN complex and associated snRNPs are dependent on 
WRAP53β for their Cajal body localization.  
 
Furthermore, we found that SMA type I is associated with defects in WRAP53β-SMN 
complex formation, which could not be explained by reduced SMN protein levels. 
The SMA patient cells also displayed reduced accumulation of SMN in nuclear 
bodies. Deficient WRAP53β and SMN binding might therefore contribute to the 
nuclear body targeting defects associated with SMA pathogenesis.  
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Unlike SMN, knockdown of WRAP53β did not alter the nuclear and cytoplasmic 
distribution of Sm proteins. Sm proteins have previously been demonstrated to enter 
the nucleus even in the absence of ongoing snRNP assembly, suggesting that 
unassembled Sm proteins are imported into the nucleus without binding snRNAs (57). 
In WRAP53β depleted cells, the nuclear pool of Sm proteins might therefore 
represent Sm proteins that enter the nucleus independent of SMN or stable snRNPs 
remaining from previous import events.  
 
WRAP53β also directs scaRNAs, including the telomerase RNA, to Cajal bodies in a 
CAB box-dependent manner. Disruption of this binding by introducing CAB box 
mutations or depletion of WRAP53β results in scaRNA mislocalization to nucleoli. 
Deficient WRAP53β-mediated telomerase trafficking results in progressive telomere 
shortening (136, 137). Mislocalization of hTR to nucleoli is also observed in 
WRAP53β-associated DC. Interestingly, DC-associated mutations in WRAP53β are 
believed to impair the function of its WD40-domain. The WD40-domain might 
therefore be responsible for mediating the RNA-binding activities of WRAP53β, 
similar to the crucial function of the Gemin5 WD40-domain in snRNA binding. 
Moreover, WRAP53β DC-mutants display markedly reduced nuclear accumulation of 
WRAP53β, suggesting that the WD40-domain conveys nuclear translocation of 
WRAP53β or affects protein stability (58, 138). Therefore, it would be interesting to 
study whether the WRAP53β DC-mutants are defective in importinβ-binding and 
nuclear targeting of the SMN complex. Although DC has been associated with rRNA 
pseurouridylation and ribosome defects, the impact of snRNA modifications and 
splicing to DC pathophysiology remains to be studied.   
 
The reason why many Cajal body-associated factors accumulate in the nucleoli upon 
impaired Cajal body function remains unknown. However, scaRNA redistribution to 
nucleoli might represent a default pathway that emerges when the CAB box is not 
properly recognized, since the related snoRNAs that lack the CAB box mainly 
localize to nucleoli. Furthermore, several nucleolar proteins are also present in the 
Cajal body and might direct factors to nucleoli upon Cajal body loss. Moreover, coilin 
has been reported to shuttle to and from the nucleoli, which might be regulated via 
altered coilin phosphorylation or methylation status (400, 401). Interestingly, coilin is 
also targeted to the nucleoli in motor neurons of SMA type I patients. Nucleolar coilin 
is suggested to correlate with the degree of neurodegeneration and function as an 
indicator of severe motor neuron dysfunction (79).  
 
Northern blot analysis following WRAP53β immunoprecipitation revealed that 
WRAP53β has a strong preference towards binding CAB box-carrying scaRNAs. 
However, WRAP53β was also found to weakly associate with some snoRNAs and 
splicing snRNAs, which is likely since WRAP53β promotes Cajal body localization 
of the SMN complex and associated snRNPs (136, 137). Moreover, we have shown 
that the binding of WRAP53β to coilin, SMN and importinβ is RNA-dependent since 
the interactions are disrupted upon RNase A-treatment (data not shown). It is unlikely 
that scaRNAs are responsible for mediating all of these interactions, since they are not 
present in the cytoplasm.  
 
Furthermore, we demonstrated that WRAP53β and coilin knockdown results in 
complete loss of Cajal bodies, whereas cells depleted of SMN still display 
WRAP53β- and coilin-containing residual Cajal bodies. This suggests that WRAP53β 
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and coilin are essential for the structural maintenance of canonical Cajal bodies. 
However, coilin-/- MEFs are reported to contain two distinct types of residual Cajal 
bodies, one containing snoRNAs and nucleolar proteins and the other snRNAs and 
scaRNAs. Both types of residual Cajal bodies fail to accumulate the SMN complex, 
further highlighting the importance of coilin in SMN localization to Cajal bodies. 
Whether WRAP53β is the factor that promotes snRNA and scaRNA co-localization 
in residual Cajal bodies remains to be elucidated. The observation that Cajal body 
numbers are reduced in SMA patient cells while WRAP53β-coilin binding remains 
intact supports the idea that ongoing snRNP biogenesis is required for Cajal body 
integrity (40). Nevertheless, deficient snRNP biogenesis does not disrupt all nuclear 
bodies, since coilin and WRAP53β remain co-localized upon SMN knockdown.  
 
Although further studies are required to determine the precise involvement of 
WRAP53β in the pathogenesis of SMA, the zinc-finger protein ZPR1 exerts a similar 
function as WRAP53β in terms of regulating SMN. ZPR1 is localized both to the 
cytoplasm and Cajal bodies, interacts with SMN and is required for SMN targeting to 
Cajal bodies. Furthermore, the ZPR1-SMN interaction is disrupted in SMA type I 
patients. Subsequent mice studies revealed that ZPR1 is essential for survival and for 
the maintenance of motor neuron axons. Downregulation of ZPR1 in SMA mice leads 
to an increased loss of motor neurons and reduced lifespan. Thus, disrupted SMN 
interactions and nuclear targeting contributes to SMA disease progression (45, 402, 
403).  
 
In conclusion, we demonstrated that WRAP53β is a constitutive and essential 
component of the Cajal body. By mediating the interaction between SMN-importinβ 
and SMN-coilin, WRAP53β promotes SMN nuclear import and localization to Cajal 
bodies, respectively. Moreover, WRAP53β is involved in targeting additional factors 
to Cajal bodies. WRAP53β is essential for telomere maintenance, which is one of the 
established functional roles of Cajal bodies. As such, WRAP53β emerges as a crucial 
regulator of Cajal body-related processes. However, the functional involvement of 
WRAP53β in the splicing process remains to be determined.  

4.2 Paper II 
 
WRAP53 promotes cancer cell survival and is a potential target for cancer 
therapy  
 
One of the earliest observations regarding the functional consequences of WRAP53β 
depletion was the resulting cancer cell death. In paper II, we set out to characterize the 
anti-apoptotic properties of WRAP53β and determine the mode of cell death induced 
by its functional absence. 
 
To this end, we studied the expression levels of WRAP53β in a panel of non-
transformed primary cells, immortalized but non-cancerous cells and cancer cell lines. 
Strikingly, WRAP53β expression was significantly higher in all cancer cell lines 
compared to the primary cells. To investigate if high WRAP53β expression was 
related to oncogenesis, we performed soft agar colony formation assays to determine 
if WRAP53β overexpression could promote anchorage-independent cell growth. 
Indeed, WRAP53β overexpression promoted NIH 3T3 anchorage-independent colony 
formation, indicative of malignant transformation.   
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Next, we continued by knocking down WRAP53β expression in several different 
cancer cells lines. As observed by time-lapse microscopy, WRAP53β-depleted cells 
displayed morphological alterations associated with apoptosis. To confirm this, we 
studied the activation of caspase-3. Cells lacking WRAP53β demonstrated caspase-3 
activation and cleavage of the downstream caspase-3 target PARP. WRAP53β 
depletion also resulted in the activation of the pro-apoptotic proteins Bax/Bak and 
mitochondrial release of cytochrome c. Overexpression of the anti-apoptotic protein 
Bcl-2 rescued the apoptosis induced by WRAP53β depletion. In contrast, WRAP53β-
depleted primary or immortalized cells did not display any significant increase in 
apoptosis induction. Altogether, we have shown that cancer cells activate the 
mitochondrial apoptotic pathway upon WRAP53β silencing, whereas normal cells are 
not dependent on WRAP53β expression for their survival.  
 
Next, we studied WRAP53β expression in primary tumors of the head and neck. High 
WRAP53β expression was correlated to poor patient prognosis and low intrinsic 
radiosensitivity, whereas low WRAP53β levels was associated with disease-free 
survival and high intrinsic radiosensitivity. Taken together, this indicates that 
WRAP53β might be a prognostic biomarker of head and neck squamous-cell 
carcinoma (HNSCC), as well as a predictive marker of radiotherapy response.    
 
Although WRAP53β is clearly differentially expressed between primary and cancer 
cells, the regulation of WRAP53β expression remains largely unknown. WRAP53β 
expression might be induced at the transcriptional level or display altered mRNA or 
protein stability in cancer cells. Alternatively, WRAP53β expression might be 
actively downregulated in normal cells. Either way, WRAP53β expression is essential 
for cancer cell survival. WRAP53β might promote cancer cell survival by elongating 
telomeres. However, telomerase-deficient cells still die upon WRAP53β knockdown 
and apoptosis associated with progressive telomere shortening is usually a slower 
process (404). Furthermore, the apoptosis induced by WRAP53β silencing is p53 
independent, since cell lines differing in their p53 status die to the same extent. Cajal 
body numbers are generally increased in transformed cells, suggested to account for 
increased splicing demands of highly proliferative cells (11). Therefore, higher 
WRAP53β expression might represent its involvement in processes associated with 
cancer and increased cellular demands. However, the induction of NIH 3T3 
anchorage-independent growth upon WRAP53β overexpression suggests a direct 
involvement of WRAP53β in cellular transformation.  
 
The SMN protein has been suggested to display anti-apoptotic properties that prevent 
the neuronal cell death associated with SMA pathogenesis. For instance, p53 has been 
found to accumulate in Cajal bodies upon stress and interact with SMN. SMA is 
associated with a disrupted p53-SMN interaction and p53 accumulation in nucleoli. It 
has been suggested that SMN functions to sequester and inhibit p53, while SMNΔ7 
fails to associate with p53 thus allowing p53-dependent apoptosis (405). Moreover, 
SMN prevents caspase-3 activation and interacts with the anti-apoptotic protein Bcl-2 
to synergistically protect against apoptosis (406). SMN has been shown to specifically 
protect neurons from apoptosis, whereas SMNΔ7 displays pro-apoptotic activity. 
However, how the anti-apoptotic function of SMN is related to snRNP biogenesis and 
the neuronal phenotype of SMA remains incompletely understood (407). WRAP53β 
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might also protect neuronal cells from cell death via proper SMN association, 
however this has not been studied.   
 
In conclusion, WRAP53β expression is clearly linked to cancer. WRAP53β 
expression is elevated in cancer cell lines and silencing of WRAP53β is associated 
with cancer cell-specific apoptosis and may therefore be a potential target for cancer 
therapy. Moreover, WRAP53β may serve as a prognostic marker in HNSCC. 
However, further studies are required to elucidate the exact anti-apoptotic properties 
of WRAP53β.  

4.3 Paper III 
 
The Cajal body protein WRAP53β regulates RNF8-mediated repair of DNA 
double-strand breaks  
 
Several collective observations implied that WRAP53β might play a role in the DDR. 
Two large-scale proteomic screens identified WRAP53β to be enriched in the 
chromatin fraction upon DNA damage and as a potential DNA damage-responsive 
ATM/ATR substrate (408, 409). Furthermore, SNPs in the WRAP53 gene is linked to 
increased breast and ovarian cancer risk and with benzene-induced hematotoxicity 
associated with deficient DNA repair and genomic maintenance (184-187). Finally, 
mutations in WRAP53 cause the premature ageing and cancer susceptibility syndrome 
DC, two phenotypes commonly linked to deficient DNA repair (138). 
 
In order to investigate if WRAP53β is involved in the DDR, we initially performed 
laser micro-irradiation experiments that induces local DNA damage. Indeed, 
WRAP53β rapidly accumulated at DNA breaks, reaching a maximum already 5 
minutes post-damage. However, the DSB accumulation of WRAP53β was transient 
and no longer visible after 30 minutes. ATM and PARP inhibition decreased 
WRAP53β accumulation at damaged sites. Furthermore, we found that WRAP53β 
interacts with γH2AX at DSBs in an ATM/ATR-dependent manner. Inhibition of 
DNA-PK or PARP did not affect the WRAP53β-γH2AX interaction and neither did 
depletion of MDC1, RNF8, RNF168, 53BP1 or RAD51. We also found that 
WRAP53β bound to the serine 139-phosphorylated C-terminal tail of H2AX rather 
than the non-phosphorylated variant. By using a series of GFP-tagged WRAP53β 
deletion constructs, we found that both the N- and the C-terminal regions of 
WRAP53β were required for mediating binding to γH2AX. In addition, the 
previously identified ATM/ATR target site located on serine 64 of WRAP53β was 
required for proper γH2AX interaction. We also validated that WRAP53β was 
phosphorylated on serine 64 in a DNA damage- and ATM-dependent manner, with a 
minor contribution of ATR. Depletion of WRAP53β induced spontaneous DNA 
breaks as observed by an elevated number of γH2AX foci and increased DNA 
fragmentation in alkaline and neutral comet assays.  
 
Given the previous involvement of WRAP53β in the intracellular trafficking of Cajal 
body-associated factors, we wanted to see if WRAP53β could promote the 
accumulation of repair proteins at DNA breaks. WRAP53β silencing did not affect 
γH2AX or MDC1 IRIF formation, whereas 53BP1, BRCA1 and RAD51 all displayed 
severely diminished DSB accumulation. Since RNF8 acts downstream of γH2AX and 
MDC1 to mediate ubiquitylation events required for 53BP1, BRCA1 and RAD51 
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recruitment, we next studied the impact of WRAP53β silencing on RNF8 
accumulation. Strikingly, RNF8 was not efficiently recruited to DSBs in the absence 
of WRAP53β and neither was RNF168, resulting in impaired DSB-associated 
ubiquitylation. 
 
Biochemically, WRAP53β was shown to interact with both MDC1 and RNF8 in a 
DNA damage-, phosphorylation- and ATM-independent manner. Moreover, 
WRAP53β associated with MDC1 independent of H2AX and RNF8 and with RNF8 
independent of H2AX and MDC1. Interestingly, MDC1 could not interact with RNF8 
in the absence of WRAP53β even though ATM-mediated MDC1 phosphorylation 
was not impaired. As a result, WRAP53β depletion resulted in deficient HR and 
NHEJ repair and decreased clearance of IR-induced γH2AX foci. Moreover, 
WRAP53β depleted cells displayed prolonged G2/M cell cycle arrest following 
irradiation. Conversely, WRAP53β overexpression promoted HR and NHEJ repair 
and decreased cellular sensitivity to a range of DNA damaging agents. Finally, we 
demonstrated that WRAP53β expression was correlated with ovarian cancer survival. 
Low levels of WRAP53β mRNA and protein associated with reduced patient survival 
and lower expression of other DDR factors. In contrast, patients with tumors that 
expressed higher levels of WRAP53β had a more favorable outcome that clustered 
with active DNA repair processes.  
 
In this study, we demonstrated that WRAP53β is dependent on both PARP and ATM 
activity for proper targeting to laser-induced damage. Upon binding to DNA, PARP 
catalyzes the synthesis of PAR-chains that are attached onto protein substrates, 
including PARP itself. The PARylated proteins can be recognized and bound by 
factors, thereby promoting their PARP-dependent accumulation at DSBs. 
Interestingly, WRAP53β displays similar dynamics at DSBs as PARP itself and the 
PARylation-dependent factors ALC1 and CHD4 (410, 411). This suggests that 
WRAP53β binds PAR-chains, although this has not been studied. However, 
WRAP53β interacts with both PARP and CHD4 (data not shown). The enzyme 
PARG primarily governs the short-lived nature of PARylation by rapidly degrading 
PAR polymers and might regulate WRAP53β DSB dissociation (412). Therefore, it 
would be interesting to study the effect of PARG on WRAP53β retention at DSBs. 
ATM mediates the phosphorylation of WRAP53β on serine 64, DSB recruitment and 
interaction with γH2AX. Due to the fact that ATM inhibition also blocks γH2AX 
phosphorylation it is hard to draw a conclusion from the interaction studies. However, 
WRAP53β serine 64 phosphorylation is clearly ATM-dependent and the 
phosphorylation-deficient S64A WRAP53β mutant is defective in γH2AX-binding. 
How WRAP53β phosphorylation mediates its interaction with γH2AX remains 
unknown. In order to specifically interact with γH2AX, WRAP53β has to be able to 
recognize the phosphorylated epitope. The WD40-domain has been suggested to 
recognize phosphorylated sequence motifs. For instance, many F-box proteins contain 
WD40-domains that are implicated in the recognition of phosphorylated substrates in 
the form of phosphodegrons (413). However, an intact WD40-domain was not 
sufficient to mediate WRAP53β-γH2AX binding, since the N-terminal and C-terminal 
regions of WRAP53β was determined to promote their interaction. Moreover, it is 
unlikely that the C-terminal tail of H2AX specifically recognize phosphorylated 
WRAP53β. Therefore, phosphorylation of WRAP53β on serine 64 might result in 
altered structural properties, for instance by inducing a conformational change that 
exposes regions required for efficient WRAP53β-γH2AX interaction. However, we 
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do not know if the interaction between WRAP53β and γH2AX is direct. 
Phosphorylated WRAP53β might interact with an unidentified factor that mediates its 
interaction with γH2AX. Furthermore, since PARP inhibition only affected 
WRAP53β recruitment to DSBs and not WRAP53β-γH2AX interaction, there appears 
to be two parallel paths of WRAP53β recruitment. PARP has previously been linked 
to DNA damage-associated ubiquitylation responses. PARylation of RNF168 
promotes its interaction with the chromatin remodeler SMARCA5, which in turn 
facilitates RNF168-mediated ubiquitylation and repair factor assembly (283). 
Furthermore, BBAP and the E3 ligase BAL1 are suggested to promote early DSB 
ubiquitylation and repair factor recruitment in a PARP-dependent but RNF8-
independent manner (414). Finally, CHD4 is recruited to DSBs by two distinct 
pathways, one dependent on PARP and the other on RNF8. Interestingly, CHD4 is 
required to promote RNF8-mediated ubiquitylation at DSBs by creating a permissive 
chromatin environment (230). Accordingly, the short retention time of WRAP53β at 
DSBs should not affect its ability to facilitate RNF8-mediated events.   
 
WRAP53β recruitment to DNA damage sites is MDC1-independent and WRAP53β 
depletion does not affect the ability of MDC1 to form foci. On the contrary, RNF8 is 
dependent on WRAP53β for DSB accumulation. Nevertheless, WRAP53β binds both 
MDC1 and RNF8 in a DNA damage- and phosphorylation-independent manner. This 
observation might suggest that WRAP53β forms a rigid constitutive complex with 
MDC1 and RNF8 that is recruited as a tertiary unit to DSBs. However, this is unlikely 
given the varying interdependence of the three factors and since MDC1-RNF8 
interaction is induced upon DNA damage. Furthermore, stable complex formation 
would inhibit the transient nature of WRAP53β at DSBs and instead promote its 
prolonged retention. Thus, the WRAP53β-MDC1-RNF8 complex must be dynamic 
and subjected to further regulation. ATM inhibition resulted in a marked reduction of 
MDC1-RNF8 association, while WRAP53β still bound to a similar amount of MDC1 
and RNF8. The constitutive nature of the WRAP53β-MDC1-RNF8 interaction might 
therefore represent a fraction of the proteins forming complexes independent of DNA 
breakage. This is further supported by the fact that the S64A mutant of WRAP53β, 
which is deficient in γH2AX-binding, still associates with similar amounts of MDC1 
and RNF8. However, since ATM inhibition and WRAP53β depletion gave a 
comparable negative effect on MDC1-RNF8 complex formation, WRAP53β clearly 
plays an important role in mediating the DNA damage-associated interaction between 
MDC1 and RNF8. Exactly how WRAP53β promotes efficient MDC1-RNF8 binding 
remains uncertain, however following DNA damage WRAP53β might alter the 
allosteric properties or allow for an as of yet unidentified protein modification of 
MDC1 or RNF8 that results in efficient FHA-mediated recognition of the ATM-
phosphorylated MDC1.   
 
Although WRAP53β is recruited to laser-induced damage, it cannot be detected in 
foci upon whole cell irradiation. This is probably due to low local concentrations of 
WRAP53β or the transient nature of its interaction with DSB sites. However, 
WRAP53β is detected both over the entire region of laser-induced damage and found 
enriched in microfoci representing resected ssDNA. A similar distribution has been 
reported for NBS1 and BRCA1 (225). Moreover, we do not detect WRAP53β at the 
damaged sites in all laser-irradiated cells. However, PLA experiments demonstrated 
WRAP53β-γH2AX interaction in 100% of cells and although the association between 
WRAP53β and γH2AX was transient, it was slightly delayed as compared to 
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WRAP53β DSB dissociation. Therefore, PLA might provide increased sensitivity that 
allows for improved WRAP53β detection, although on the level of WRAP53β-
γH2AX association.  
 
WRAP53β depletion results in the accumulation of spontaneous DNA breaks. This is 
consistent with a role of WRAP53β in mediating HR. For instance, RAD51 deficient 
cells accumulate spontaneous DNA breaks prior to cell death (415). Although γH2AX 
is induced upon DNA fragmentation during apoptosis, apoptotic fragments are not 
detected by the comet assay implying that WRAP53β depletion indeed induces 
apoptosis-independent DNA breakage (416, 417). Moreover, the induction of γH2AX 
precedes the apoptotic phenotype associated with WRAP53β silencing.   
 
WRAP53β overexpression protects against a variety of DNA damaging agents, 
suggesting its involvement in additional repair events. Interestingly, MDC1 and 
RNF8 have been implicated to induce H2A ubiquitylation upon UV-treatment 
associated with nucleotide excision repair (418). Furthermore, the Fanconi anemia 
pathway plays an important role in repairing DNA crosslinks as those induced by 
MMC treatment. Defects in this pathway cause Fanconi anemia, a syndrome with 
striking similarities to DC, associated with bone marrow failure, premature ageing 
and cancer predisposition (419). Therefore, it would be interesting to determine 
whether WRAP53β-mutant DC cells display increased sensitivity to any genotoxic 
agent. The degree of cell death following IR exposure is generally correlated to the 
levels of induced and unrepaired DSBs (420, 421). Since we did not detect any 
differences in γH2AX induction between control cells and WRAP53β overexpressing 
cells, we postulated that WRAP53β overexpression increases DSB rejoining capacity. 
Indeed, NHEJ and HR repair was found to be more efficient upon WRAP53β 
overexpression. Similarly, RNF8 overexpression also promoted more efficient DSB 
repair, suggesting that it is enough to enrich for one factor involved in this cascade to 
increase the cellular repair capacity. However, we did not study the effect on DSB 
repair upon overexpression of any other repair protein, so certain rate-limiting factors 
may still exist in the repair process.   
 
In summary, we have identified WRAP53β as an essential factor in the DDR. 
WRAP53β is phosphorylated upon DNA damage and is recruited to DSBs in an 
ATM/PARP-dependent manner. By facilitating the interaction between MDC1 and 
RNF8, WRAP53β promotes the downstream targeting of repair factors to DNA 
breaks. WRAP53β depletion results in deficient DSB repair, whereas increased 
WRAP53β expression can promote these processes. Finally, we identify WRAP53β 
as a potential tumor suppressor gene in epithelial ovarian carcinoma.   

4.4 General discussion and concluding remarks 
 
In this body of work, we have identified the functional involvement of WRAP53β in a 
variety of biological processes including Cajal body maintenance, cancer cell survival 
and DNA repair. Many questions remain to be answered, for instance if there are any 
overlapping properties between these processes, their relative contribution to the 
phenotype associated with dysfunctional WRAP53β and how WRAP53β itself is 
regulated to coordinate these processes. Furthermore, the cancer-related properties of 
WRAP53β might appear inconsistent, with findings suggesting that it both promotes 
and suppresses carcinogenesis. Clearly, many future studies are needed to address the 
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specific function of WRAP53β, however in this section some of these issues will be 
discussed.  
 
Cajal bodies, RNA processing and the DDR 
 
First of all, some Cajal body-components have been linked to the DDR. Coilin has 
been reported to interact with Ku70/Ku80. The binding of Ku to coilin occurred in a 
competitive manner with SMN and Sm proteins. Coilin was shown to inhibit NHEJ, 
presumably by preventing Ku protein recruitment to DNA ends. This was suggested 
to represent a function related to nucleoplasmic coilin, since Ku70 or Ku80 are not 
found within Cajal bodies. However, coilin and Ku might interact at telomeres since 
they are both described to associate with chromosome ends (422). Some DDR factors 
have also been found to localize to Cajal bodies. For instance in Drosophila, PARP 
shuttles from chromatin to Cajal bodies upon automodification (2, 423). Similarly, 
WRAP53β might shuttle between chromatin and Cajal bodies.  
 
Interestingly, UV, cisplatin and IR treatment all result in Cajal body disruption and 
coilin mislocalization to microfoci and nucleoli. Coilin depletion also results in 
enhanced cell viability upon cisplatin treatment (424, 425). These observations 
highlight the Cajal body as a stress-responsive organelle. Coilin and WRAP53β 
appears to have opposing functions in terms of cell viability and NHEJ repair. On the 
other hand, the SMN complex members SMN and Gemin2 have been shown to 
promote RAD51 assembly at DSBs and HR (426). Interestingly, SMN is a chromatin-
binding protein that interacts with methylated H3K79 via its Tudor domain, a site 
previously identified to target 53BP1 to DSBs (427, 428). 
 
A number of large-scale screens aimed at identifying DDR factors have revealed an 
enrichment of proteins involved in RNA processing, although their exact involvement 
in the DDR remains incompletely understood. One potential link between 
transcription, splicing and the induction of DNA damage is the formation of the 
highly mutagenic R-loop. R-loops are formed when the nascent RNA transcript 
anneals to the DNA template strand thereby forming RNA-DNA hybrids. The R-loop 
structure can block DNA replication fork progression and leaves the unpaired DNA 
strand susceptible to insults. The splicing factor ASF/SF2 is implied to prevent R-loop 
formation by binding to mRNA precursors and inhibit their association with template 
DNA during the co-transcriptional splicing process. Depletion of ASF/SF2 results in 
the accumulation of DSBs (429, 430).  
 
Finally, the neurodegenerative disorder SMA is associated with defective WRAP53β-
SMN complex formation. Although WRAP53β remains functionally intact, potential 
disruption of its nuclear function and organization might associate to deficient DNA 
repair. Indeed, accumulation of DNA damage in neurons is associated with 
neurodegeneration (431). 
 
Further studies are required to determine if specific Cajal body components can 
contribute to DNA repair or if they are involved in mediating WRAP53β-associated 
DNA repair events. Moreover, we do not know if the RNA-related activities of 
WRAP53β impact its involvement in the DDR or the phenotypes associated with its 
deficiency. We also have to determine if SMA cells show signs of increased DNA 
damage or deficient DNA repair. However, similar to available literature regarding 
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coilin and DNA damage, we did not observe any repair defect upon coilin depletion. 
Therefore, structural maintenance of the Cajal body is not directly linked to DNA 
repair. 
 
Telomeres and DNA damage 
 
Telomeres provide an additional important link between WRAP53β, Cajal bodies and 
the DDR. DDR proteins can be found both at functional and dysfunctional telomeres. 
At functional telomeres, associated DDR factors promote telomere homeostasis and 
protect telomeric ends from end joining events. For instance, DNA-PKcs is associated 
with telomeres and appears to promote telomere capping, since inhibition of DNA-
PKcs results in telomere fusions (432). Moreover, Ku70/80 have been shown to 
directly interact with hTR and promote telomere maintenance (433). Dysfunctional, 
uncapped telomeres are recognized as DSBs by the DDR machinery and factors are 
assembled into specific foci associated with telomeres termed TIFs (telomere 
dysfunction-induced focus) (434). However, we did not observe any apparent co-
localization between the spontaneous γH2AX foci induced upon WRAP53β depletion 
and the telomeric marker TRF2, suggesting that WRAP53β is involved in DNA repair 
events unrelated to its previously established role in telomere maintenance (data not 
shown).  
 
HR and NHEJ repair events at telomeres results in chromosome fusions and genomic 
instability. For instance, RNF8 promotes repair protein assembly at telomeres by 
ubiquitylating telomeric ends, thereby facilitating chromosome fusion upon telomere 
dysfunction (435). Moreover, 53BP1 has been identified as an essential regulator of 
end joining events at dysfunctional telomeres. By increasing the mobility of 
dysfunctional telomeres, 53BP1 brings chromosome ends into close proximity 
thereby allowing NHEJ (436). As such, normal DNA repair is associated with 
genomic stability, whereas DNA repair at telomeres results in genomic instability. 
Interestingly, similar to telomeres being recognized as DSBs, random DSBs can be 
detected by telomerase. Although rare, it has been reported that telomerase can 
generate a telomere at DSBs. Telomere addition to DSBs have to be prevented in 
order to maintain genomic stability (437).  
 
Telomerase-independent ALT cells are characterized by very long and heterogeneous 
telomeres that are maintained by HR-mediated events. Analogous to the role of Cajal 
bodies in telomerase-dependent telomere elongation, a specific subset of telomere-
associated PML bodies has been suggested to promote the recombination events of 
ALT cells. These ALT-associated PML bodies (APBs) contain many DDR proteins in 
addition to the conventional PML body components (438). NBS1 is essential for their 
assembly and depletion of NBS1 results in decreased numbers of APBs and telomere 
shortening in ALT-cells, whereas the telomeres of telomerase-positive cells are 
unaffected (439, 440). This reveals an interesting link between nuclear body 
compartmentalization, telomere elongation and DDR proteins.  
 
Regulation of telomere length is important in several aspects of cancer biology; 
telomere shortening induces chromosomal instability and cancer, whereas cancer 
progression requires telomere maintenance (441, 442). Therefore, it might appear 
controversial that DC patients are predisposed to cancer although they exhibit 
functional loss of the enzyme responsible for cancer cell immortalization. The 
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inadequate telomere lengths in DC do not allow for proper tissue renewal and results 
in premature telomere shortening that can lead to genomic instability. Even though 
DC cells do not completely lack telomerase activity, they may maintain their 
telomeres via ALT upon malignant progression (166). Since DC-associated mutations 
in WRAP53β are associated with its nuclear exclusion, all nuclear activities of 
WRAP53β must be diminished in DC, including its role in DNA repair. Therefore it 
would be interesting to study DC cells carrying the pathogenic WRAP53β in relation 
to DNA damage. Cells carrying a DC-associated dyskerin mutation was shown to 
display an increased number of γH2AX foci upon DSB-induction compared to control 
cells, which was independent of telomere lengths. Although a fraction of these foci 
localized to telomeres, the majority of the γH2AX foci localized elsewhere (166, 
443). DNA damage accumulation might not be a general theme of DC pathology, 
although it could explain the clinical diversity between patients with different disease-
causing genes.  
 
Oncogenic vs. tumor suppressing properties 
	
  
High WRAP53β expression has been related to both decreased and increased patient 
survival, radioresistance, malignant transformation and tumor suppression. This could 
represent the importance of a fine tuned DDR in many aspects of carcinogenesis.  
 
For instance, both RAD51 deficiency and overexpression promotes genomic 
instability (205, 415). Moreover, RAD51 is overexpressed in many cancers and can 
potentiate survival after DSB induction (210-212). Similarly, MDC1 has been 
identified as an oncogene in cervical cancer due to its increased expression in cancer 
tissues. In this study, MDC1 knockdown in cancer cell lines resulted in 
mitochondrial-dependent apoptosis and increased sensitivity to DNA damage (444). 
Furthermore, classical DSB repair deficiency can promote the usage of more 
mutagenic alternatives (203, 204). Moreover, the oncogenic properties of the DDR at 
telomeres can also result in genomic instability rather than genomic maintenance. The 
DDR has profound consequences for carcinogenesis and therapeutic response since 
the induction of DNA breaks can both cause and treat cancer. 

Although limited sample size, high WRAP53β expression clearly correlated with poor 
prognosis and radioresistance of HNSCC patients. This could potentially reflect an 
enhanced DNA repair capacity of these patients, similar to what we observed upon 
ectopic WRAP53β overexpression. In epithelial ovarian carcinoma, high WRAP53β 
expression instead correlated with increased overall survival. Low WRAP53β levels 
might coincide with more chromosomal instability, which is generally associated with 
drug resistance and poor prognosis (194). It is important to note that the levels of 
WRAP53β in cancer patient material are compared internally and we do not know 
how the levels of WRAP53β are correlated between the HNSCC and ovarian cancer 
samples. In this light, decreased or increased DDR capacities can regulate cancer 
progression, patient prognosis and response to therapy both positively and negatively. 
However, the DDR is generally considered to be a protective response that serves to 
eliminate damage.  
 
WRAP53β is recruited to DNA damage sites in fibroblasts, however WRAP53β 
depletion does not significantly affect spontaneous or residual γH2AX foci (data not 
shown) or apoptosis in these cells. This might suggest that normal cells have better 
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backup systems for DNA repair, whereas cancer cells are DDR-deficient and sensitive 
to the depletion of single factors. SMN, coilin and RNF8 are all expressed at higher 
levels in cancer cells compared to normal cells (data not shown). This might reflect 
the increased metabolic demand and DNA damage load of cancer cell lines and not a 
direct oncogenic property of the specific proteins. However, we did observe that 
WRAP53β overexpression transforms NIH 3T3 cells. The signals governing this 
process remain unknown, although it highlights the need for proper regulation of 
WRAP53β expression in carcinogenesis. 
 

 
Figure 8: Model figure of the various roles of WRAP53β. Green arrows represent WRAP53β-mediated 
events and interactions. Red inhibitory marks reflect WRAP53β dysfunction and the red arrow 
represents one consequence of WRAP53β-deficiency. The blue boxes state the potential outcomes of 
defective WRAP53β function. 
 
Findings that inherited mutations in WRAP53 cause the cancer predisposing syndrome 
DC argues that WRAP53β mainly functions as a tumor suppressor gene. Further 
insights into the physiological role and contribution of WRAP53β to cancer 
development might come from the generation of WRAP53β knockout animal models. 
Nevertheless, WRAP53β could be an important target in the treatment of cancer. 
Cajal body disruption is expected to decrease the production of mature snRNPs 
resulting in inefficient splicing. Indeed, compounds targeting the spliceosome have 
shown anti-tumor activities (445). Moreover, inhibition of proper snRNP assembly by 
interfering with SMN and Sm protein interaction results in decreased cell proliferation 
and apoptosis induction (446). Telomerase may serve as a cancer-specific target and 
deficient WRAP53β-mediated telomerase trafficking would result in telomere 
shortening (137, 447, 448). Inhibition of DNA repair pathways can be used as 
monotherapy or in combination with DNA damaging agents (206). Although 

Cajal body 

Telomere 

Nucleus 

Cytoplasm 

WRAP53β 

RNF8 
SMN 

complex 

scaRNA 

Telomerase 

Telomere shortening 
DC 

Deficient DNA repair 
Cancer? 

MDC1 
P 

Deficient splicing? 

Coilin 

WRAP53β 

Nucleolus 

Coilin scaRNA 

Telomerase 

SMN 
complex 

Mislocalization DNA DSB 

SMN 
complex 

WRAP53β 

SMA 



	
   55	
  

silencing of several DDR factors results in severely deficient DNA repair, we have 
not observed the same amount of apoptosis as compared to WRAP53β knockdown 
(data not shown). Moreover, coilin depletion does not induce significant cancer cell 
apoptosis. Therefore, the combined inability to repair DSBs, dysfunctional telomere 
elongation, Cajal body disruption and additional undiscovered functions of 
WRAP53β might contribute to the cancer cell-associated death observed upon its 
depletion (Figure 8). 
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