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ABSTRACT  -   EPSTEIN-BARR VIRUS ENCODED DECONJUGASES 

 
 

 

The post-translational conjugation or deconjugation of proteins by ubiquitin (Ub) or ubiquitin-

like molecules (UbLs: e.g. SUMO, NEDD8, ISG15) has emerged as a major regulatory 

mechanism of various cellular activities. Viruses have developed mechanisms to exploit those 

pathways for their own benefit. RNA and DNA viruses express their own E3 ligases or 

manipulate cellular E3 ligases. Also several viral encoded DUBs or ULPs have been described, 

e.g. facilitating the suppression of ubiquitination and ISGylation mediated antiviral effects. 

Epstein-Barr virus (EBV) is a large double-stranded DNA tumor virus encoding 100 open 

reading frames (ORFs). EBV is associated with a variety of malignancies of lymphoid cells, like 

Burkitt´s lymphoma and Hodgkin´s lymphoma as also of epithelial cells, like nasopharyngeal 

carcinoma and gastric carcinoma.  

The overall aim of this study was to identify and functional characterize EBV encoded 

deconjugases. We screened an EBV-ORFeome library for their activity against Ub-, NEDD8-, 

SUMO-1,-2,-3 and ISG15-GFP reporter. As a result we discovered that the BSLF1- and BXLF1-

ORF comprised deubiquitinating activity. We could also detect that the large tegumental protein 

BPLF1-N cleaves the NEDD8-GFP reporter with similar efficiency as the Ub-GFP reporter. 

Following this observation we could show that BPLF1-N was able to process Ub- and NEDD8-

linked functional probes with similar efficiency suggesting equal affinities towards ubiquitinated 

and neddylated substrates. We could show that BPLF1-N binds to and deneddylates cullins, 

which are assembled in cullin-RING ligases (CRLs). This CRL deneddylation facilitated the 

stabilization of their substrates involved in cell cycle regulation. Those accumulated BPLF1-N 

controlled CRL substrates were essential for an S-phase like cellular environment and 

endoreduplication in BPLF1-N expressing cells. We further demonstrated that the impact of 

BPLF1-N expression on viral genome replication was dependent on stabilization of the DNA 

licensing factor CDT1. 

 

 

 

 

 

 

 

 



ABSTRACT  -   AMOTL2 IN CONTROL OF CELL TOPOLOGY 
 

 

 

During developmental morphogenesis, cells migrate, differentiate and organize into multicellular 

structures. As a distinct step in organ formation, epithelial cells join together via cell-cell 

junctions to form sheets of cells that separate cellular compartments from each other. 

Endogenous forces, generated by contractile actin, are transmitted over cell-layers in part by the 

connection to adhesion junctions and E-cadherin. These forces affect cellular geometry (cell size 

and shape) and topology (connectivity among cells in a tissue). Exactly how E-cadherin connects 

to the actomyosin network has been less clear.  

The Angiomotin protein family of scaffold proteins comprises three members Amot, AmotL1 and 

AmotL2, were each is expressed as two isoforms in mammalians. These proteins act as scaffolds 

in that they contain interaction sites enabling the formation of protein complexes. 

In our work, we show that AmotL2 p100 binds to the adherens junction components E-cadherin 

and MAGI1 and associates to contractile actin fibers which connect cells over multiple layers. 

Silencing of AmotL2 in epithelial cells in vitro and in zebrafish keratinocytes in vivo resulted in 

loss of actin filaments perpendicular to cellular junctions and dramatic changes in cellular 

geometry. As a consequence, the packing of epithelial cells in the typical hexagonal patterns was 

severely perturbed and the ability to form 3-D structures was lost. Cells depleted of AmotL2 also 

showed increased fluidity and elasticity when subjected to mechanical force. We propose that 

AmotL2 is a critical component in the adhesion junctions that controls intracellular contractility 

as well as relaying forces between cells. 
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1.1  INTRODUCTION  -  EPSTEIN-BARR VIRUS ENCODED DECONJUGASES 

 

 

1.1.1  The ubiquitin and ubiquitin-like modification system 

 

The post-translational modification of proteins by Ub (ubiquitin) or UbLs (ubiquitin-like 

molecules: e.g. SUMO, NEDD8, ISG15) has emerged as a major regulatory mechanism of 

various cellular activities. Those controlled processes include protein transcription, 

translation, trafficking and degradation, signal transduction, replication and apoptosis (1, 2, 3, 

4, 5). So far 13 UbLs are described in human. All of them have a size between 8-18 kDa and 

they all show a high secondary structure homology to ubiquitin (2).  

Conjugation of Ub and UbLs to their targets requires the sequential action of three enzymes: a 

modifier-activating enzyme (E1), one of several modifier conjugating enzymes (E2s), and one 

member of a large and diverse group of modifier-target ligases (E3s) that mainly determines 

target specificity (1). This enzyme cascade mediates the conjugation of the C-terminal glycine 

of Ub or UbL to the epsilon-NH2 group of a lysine residue (K) of the target protein. Ub and 

UbLs are produced as precursor proteins (Ub also as a polypeptide), and carboxy-terminal 

processing by specific proteases is required to generate an active modifier. Those specific 

deconjugating enzymes, called DUBs (deubiquitinating enzymes) and ULPs (Ubl-specific 

proteases), also cleave the modifier from its target protein by hydrolyzing the covalent 

bondage between substrate and modifier. The purpose of this reaction is to establish a 

sufficient pool of free Ub/Ubls and to determine certain signaling or functional alteration 

caused by the modification (6).  

An overview of the ubiquitin and ubiquitin-like modification system with examples for the 

non-proteolytic and proteolytic outcomes are visualized in figure 1. 
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Figure 1. Ub polypeptides or UbL pro-peptides need to be processed from DUBs or ULPs to make their terminal 

Glycin accessible for conjugation. Via an enzymatic cascade of activating enzyme (E1), conjugating enzyme 

(E2) and substrate ligase (E3) the modifier gets covalently linked to its substrate. This modification can either 

have a non-proteolytic or a proteolytic outcome. After signaling the modifier gets deconjugated from its 

substrate by DUBs or ULPs for possible recycling into the system.  

 

 

 

1.1.2  Ubiquitin modification 

 

Ubiquitin, a small globular protein composed of 76 amino acids, is highly conserved during 

evolution. The first discovered function of ubiquitin is its involvement in the UPS (ubiquitin-

proteasome system). This pathway is a major intracellular system for protein degradation. The 

connection of at least four K48 linked Ub molecules to a protein serves as localization signal 

to the proteasome where the labeled protein gets degraded (1). This pathway plays a crucial 

role in a wide variety of cellular function, including degradation of damaged or unneeded 

proteins, cellular trafficking, antigen processing, cell cycle regulation and apoptosis (7).  

Apart from the described K48 Ub chain mediated protein degradation several other Ub 

mediated function have been described. Ubiquitin contains seven lysine residues K6, K11,  

K27, K29, K33, K48, and K63. Formation of the ubiquitin chain can occur by linking the 
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 ubiquitin polymer to any of these lysine residues in homogeneous or mixed form. The length 

and the linkage construction of the created Ub chain determine the faith of the modified 

protein. Apart from modification via K48 Ub chains, monoubiquitination and K63 Ub chain 

conjugation are the best characterised Ub modifications. Many membrane receptors are 

monoubiquitinated, which serves in most cases as endocytosis signal and in many 

circumstances as signal for lysosomal degradation. Also histones are monoubiquitinated, 

which serves as signal for histone-mediated transcriptional regulation. Monoubiquitination 

has also been described to alter sub-cellular location or determine cellular interaction of the 

modified substrate (8, 9).  

For instance PCNA (proliferating cell nuclear antigen) is a homotrimeric replication sliding 

clamp that encircles DNA and provides a platform to recruit other proteins involved in DNA 

replication and repair. Monoubiquitinated PCNA recruits TLS (translation synthesis) 

polymerases, which display low processivity and reduced fidelity allowing DNA lesion 

bypass, to replace the high-fidelity polymerases. The monoubiquitination of PCNA can be 

further extended to K63-linked polyubiquitin chains. This polyubiquitination activates an 

alternative lesion bypass pathway called template switch, which recruits the undamaged 

strand of the DNA duplex as a template to direct DNA synthesis (10).  

Further described protein-protein interactions mediated via K63-linked polyubiquitination are 

important for kinase signalling activation (e.g. leading to NF-κB activation), receptor 

endocytosis and protein trafficking (11). The best characterized UbL- modifier in human are 

SUMO, NEDD8 and ISG15.  

 

 

1.1.3  SUMO modification 

 

The mammalian SUMO (Small ubiquitin-like modifier) family is comprised of three members 

with described physiological function. SUMOs have a size of about 95 amino acids and 

constitute a highly conserved protein family found in all eukaryotes. SUMO-1 share 50% 

sequence identity with SUMO-2 and -3. SUMO-2 and SUMO-3 share 95% sequence 

identity. SUMO-2 and -3 are able to form monomeric and heteromeric poly-SUMO chains 

like Ubiquitin. SUMO-1 in contrast, is not able to form poly-SUMO chains but may bind 

covalently to SUMO-2 and -3 conjugated chains and terminate them. Most SUMO-modified 

proteins, which have been characterized in human, are involved in transcription. The 

transcriptional effects of SUMO can be divided into two groups, those that involve PML 
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nuclear bodies and those that involve sumoylated transcription factors bound to DNA 

promoters (12).  

PML nuclear bodies are matrix-associated domains that recruit an ever-growing variety of 

proteins.  The PML-protein is the key organizer of these domains, which up on sumoylation 

facilitates the formation of PML nuclear bodies, recruiting among others transcription factors, 

which get activated via this association. Sumoylation occurring direct on the transcription 

factor facilitates in most cases transcriptional repression. This occurs either by altering the 

stability of a DNA bound transcription factor or by the recruitment of a transcriptional 

repressor. In general most sumoylated substrates are localized in the nucleus and many of 

those substrates require their NLS (nuclear localization sequence) for sumoylation (12).  

The most abundant SUMO-1 conjugate in vertebrate cells is RanGAP1. This protein is the 

GTPase activating protein for the small GTPase Ran, which plays a central role in nuclear 

transport. SUMO-1 modification of RanGAP1 facilitates binding of the modified protein to 

the nuclear pore complex. This tightly bound RanGAP1 was shown to be crucial in nuclear 

import assays in vitro and soluble RanGAP1 could not substitute for it. One way SUMO 

affects the function of its substrates is sumoylation on otherwise ubiquitination specific lysine 

residues. PCNA or IB are examples for this phenomena. In the case of PCNA sumoylation 

and ubiquitination compete for the same site whereas sumoylation was shown to alter PCNAs 

function by inhibiting ubiquitination dependent post-replication DNA repair. Also the 

sumoylation of ubiquitination sites of particular high molecular weight proteins after various 

cellular stress conditions with SUMO-2 and-3 chains was reported. This sumoylation pattern 

was reversed after normalization of the cellular stress stimuli, suggesting a role of 

sumoylation to inhibit those sites for ubiquitination mediated proteasomal degradation (12).  

 

 

1.1.4  NEDD8 modification 

 

The UbL-modifier NEDD8 (Neuronal-precursor cell-expressed developmentally down-

regulated protein 8) was originally discovered as a down regulated protein in neural precursor 

cells during the development of murine brain. The 76 amino acid big modifier is very similar 

to Ubiquitin in size, structure and charge distribution. Both modifiers share an almost 60% 

sequence identity. The most prominent neddylated substrates are the cullin family, which 

comprise in human six members (Cul-1,-2,-3,-4a,-4b,-5). Cullins serve as scaffold/bridge 

proteins in multi subunit ubiquitin ligase complexes also called CRLs (cullin-RING ligases). 
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The C-terminus of a cullin integrated in such a complex serves as binding site for Roc1 

orRoc2, which are E2 binding adaptors. Roc1 or Roc2 attract and bind an E2 conjugating 

enzyme, which brings ubiquitin to the complex required for CRL-substrate ubiquitination. 

The N- terminus of a CRL integrated cullin serves in most cases as binding site for a variable 

adaptor protein. On this adaptor protein (or direct to the cullin N-terminus) binds a substrate-

targeting module, which determines the pool of substrates connecting to the specific CRLs. 

Via the different composition of mainly those substrate recognition modules, 400 different 

CRLs have been described in human. It is believed, that 20% of all proteins targeted for 

proteasomal degradation are polyubiquitinated by CRLs. The C-terminal neddylation of 

cullins assembled in CRLs was shown to enable a sufficient polyubiquitination of the CRL 

substrate protein (13, 14).  

Also other neddylated substrates have been described. The E3 ligase MDM2, which 

ubiquitinates p53, may also neddylate p53, which inhibits its transcriptional activity (15).  

The VHL (von Hippel–Lindau) tumour suppressor protein is the cause of the familial VHL 

disease (cancer syndrome) and
 
most sporadic RCC (renal clear-cell) carcinomas. Needylation 

of VHL has been reported to be important for VHL binding to fibronectin and to promote its 

matrix assembly. A non-neddylateable
 
VHL mutant failed to bind to and promote the 

assembly of fibronectin. Deregulated ECM, as well as abnormal cell-matrix interactions
 
are 

hallmarks of solid tumors. Alterations in the fibronectin component of the ECM have been 

correlated with cellular transformation, like VHL-associated tumorigenesis (16).  

Also BCA3  (breast cancer associated protein 3) was shown to be a NEDD8 substrate and to 

function as a tumor suppressor upon modification. When NEDD8 is removed from BCA3, 

oncogenes are no longer suppressed, resulting in resistance to apoptosis and excessive cell 

proliferation. Neddylation of BCA3 suppresses NFκB-dependent transcription through its 

ability to bind to p65 and the cyclin D1 promoter (17).  

The EGFR (epidermal growth factor receptor) functions as a tyrosine kinase upon activation 

by its ligands, which triggers DNA synthesis and cell proliferation. It was shown, that EGFR 

neddylation enhances its subsequent ubiquitination, resulting in its endocytosis and sorting for 

lysosomal degradation (18). 

 

 

 

 

 

http://en.wikipedia.org/wiki/DNA_replication


6 

 

 

 

 

1.1.5  ISG15 modification 

 

Human ISG15 (IFN-stimulated gene 15) has a size of 157 amino acids and consist of two 

domains, where each domain is structurally similar to ubiquitin. ISG15, like other ISGs, is an 

interferon-inducible gene product, which is strongly upregulated upon viral or bacterial 

infection. It was further described to be upregulated after LPS (Lipopolysaccharide) and 

double stranded RNA stimuli. The first discovered substrate of this modifier was Spi2a (serin 

protease inhibitor 2a), which regulates intracellular proteases in antigen-presenting cells. In 

general ISG15 is considered as a broad-spectrum inhibitor of virus production upon viral 

infection. Antiviral activity associated with viral or host protein ISGylation has been reported 

for DNA and RNA viruses, like HCMV (human cytomegalovirus), HSV (herpes simplex 

virus), SV (Sindbis virus) and HCV (hepatitis C virus). Mass spectrometric analysis has led to 

the identification of at least 200 putative ISG15 target proteins. Many of them have crucial 

functions in the type I IFN response, including JAK1 and STAT1. ISGylation of those 

signalling proteins was shown to increase their activity to enhance the cellular response to 

interferons (19). This was achieved by e.g. induction of the antiviral effector enzymes PKR 

and RNase L. Those protein activations trigger a global inhibition of protein synthesis and 

virus replication. This is achieved through the phosphorylation of eIF-2α (for PKR) and 

breakdown of RNA (for RNase L). It was also shown that up on activation of PKR and RNase 

L an upregulation of ISG15 mRNA levels was achieved (20, 21).  

Upon viral infection, ISG induction occurs in two intervals: first an IFN-independent 

induction of a subset of ISGs is induced and second an IFN-dependent induction via the 

production of IFN-α/β follows. In many viral infections, IFN-independent ISG induction is 

mediated by IRF-3 phosphorylation, homodimerization, and nuclear translocation. Activated 

IRF3, in turn, induces the expression of type I IFN genes, whose products trigger strong 

induction of a subsets of ISGs, including IFN-β which after its release and ligand-binding to 

its receptor initiates IFN-dependent ISG induction via the IFN receptor and JAK/STAT 

signalling pathways. ISG15 has been reported in HBV (hepatitis B virus) to prevent virus-

mediated degradation of IRF3 (interferon regulatory factor 3), thereby increasing the 

induction of IFNβ expression (22).  

ISG15 can also be secreted from stimulated cells by a yet not described mechanism and is 

believed to function as a cytokine to modulate the immune response. In this manner ISG15 

was shown to stimulate interferon γ secretion by monocytes and macrophages, proliferation of 

natural killer cells, and chemotactic responses in neutrophils (23).  



7 

 

 

 

 

Some viruses have developed specific strategies to counteract the activity of ISGs. The 

influenza B virus protein NS1B is able to bind to ISG15 and by doing so inhibits protein 

ISGylation (24).  

ISG15 overexpression in cell culture was shown to hinder efficient budding of Ebola VP40 

virus like particles. The Ebola virus matrix protein VP40 is a major viral structural protein 

and plays a central role in virus assembly and budding at the plasma membrane of infected 

cells. VP40 needs to be ubiquitinated to facilitate efficient viral budding. It has been reported, 

that the cellular E3 ligase Nedd4, which ubiquitinates VP40, gets ISGylated, which inhibits its 

enzymatic activity hindering efficient Ebola VP40 virus like particle budding (25).  

 

 

1.1.6  Human DUBs and ULPs and examples of their function 

 

All DUBs and ULPs are Cystein proteases, with the exception of the JAMM 

metalloproteases, which cleave the modifier from the substrates in a Zn
2+

- and ATP-

dependent manner. So far approx. 100 human DUBs have been identified, and based on the 

sequence similarities, they have been classified into five distinct subfamilies: USPs 

(Ubiquitin-specific proteases), UCHLs (Ubiquitin carboxyl-terminal hydrolases), OTUs 

(Otubain proteases), MJDs (Machado-Joseph disease proteases) and JAMMs 

(Jab1/MPN domain metalloenzymes) (6). The human ULPs are represented by the SENP 

(sentrin specific peptidase) family (12). 

 

 

1.1.7  USPs 

 

USPs (Ubiquitin-specific proteases) belong to the largest and most diverse DUB family. 

Those enzymes have specific substrates and can regulate distinct signaling pathways at 

various levels. Examples include USP7, which stabilizes p53 and MDM2 (E3 ligase of p53) 

in cells (26). CYLD is a K63-linked Ub chain specific USP in the NF-κB pathway that 

inhibits the activation of the IKK kinase complex (27). USP28 stabilizes the transcription 

factor c-myc (28), while USP8/UBPY affects endosomal trafficking (29). USP14 is associated 

with the proteasome and is required for ubiquitin recycling by removing K48-linked Ub 

chains from proteasomal substrates (30).  

Beside the main characteristic of USPs, to cleave ubiquitin linkages, members of this family 
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have also been described to have dual activities towards UbL-modifier. For example USP2, 

USP5 and USP14 are able to hydrolyze ISG15 conjugates. Those activities were previously 

elucidated by the ability of those USPs to bind to the suicidal probe ISG15-VS (31). Those 

chemical probes are widely used to characterize catalytic active cysteine deconjugases. Those 

probes contain besides Ub or a specific UbL a reactive compound, which binds and inhibits in 

most cases the catalytic site of the targeted enzyme (32).  

Several USPs have been described to comprise a dual specificity to Ub and NEDD8 (33). For 

instance USP21 has been described to recognize NEDD8 and to be able to deneddylate 

cellular substrates (34). Several USPs have been implicated in malignant transformation 

including for example the product of the cylindromatosis or turban tumor syndrome gene 

CYLD, which was identified as a regulator of the NF-kB pathway (2). Some USPs exert 

distinct growth regulatory activities by acting as oncoproteins or tumor suppressor proteins 

(3).  

The size of USPs ranges between 330 and 3500 amino acids and their catalytic domain 

comprising conserved cysteine and histidine boxes has a size between 300 and 850 amino 

acids. The N- and C-terminal extension domains of USPs determine their substrate specificity 

and are involved in protein-protein interaction and determination of cellular localization (35). 

Structural studies have defined the USP domain fold, and 5 crystal structures of mammalian 

USP domains have been published (36-40). USP domains share a common fold, which is 

conserved in almost all USPs. This structure was defined from the crystal structure of USP7. 

This USP domain resembles a three-domain architecture comparable to an open hand 

formation containing Thumb, Palm and Fingers. The Thumb consists of eight α helices, while 

the Palm contains eight central β strands and two helices. The fingers are comprised of four β 

strands in the center and two at the tip. The catalytic triad residues are located between the 

Thumb (Cys) and Palm subdomains (His/Asp) (37).  

 

 

1.1.8  UCHLs  

 

The UCHL (Ubiquitin carboxyl-terminal hydrolase) family is comprised of 4 members 

(UCHL1, UCHL3, UCHL37 and Bab1), which have generally small sizes (20-30 kDa). Their 

sequences are conserved among species with approximately 40% homology. UCHL1 is 

highly expressed in neurons and reduced levels have been observed in various 

neurodegenerative diseases. Mutations in the UCHL1 gene have been reported to be linked to 
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Parkinson’s disease and expression of UCHL1 was shown to rescue synaptic dysfunction in 

Alzheimer’s disease model mice (41, 42). Abnormal overexpression of UCHL1 has been 

reported to relate to several forms of cancer (43). UCHL3 is expressed in various tissues and 

cleaves beside Ub also neddylated substrates. Studies using UCHL3 deficient mice have 

suggested a role in growth and cell
 
survival (44, 45). UCHL37 specifically cleaves K48-

linked Ub chains and is associated with the 19S regulatory subunit of the 26S proteasome 

(46).  

 

 

1.1.9  OTUs 

 

OTUs (Otubain proteases) are a recently identified DUB family with so far approximately 15 

members. They belong to the ovarian tumor superfamily of proteins with more then 100 

members. OTU homologues in different species show a high degree of homology. Also their 

enzymatic cores are highly conserved but their substrate specificities appear to be quite 

diverse. Otu1 (otubain 1) has been shown in vitro to cleave K48-linked Ub chains and to 

decrease global Ub conjugate level after overexpression in vivo (47), (48). Otu2 (otubain 2) 

was shown to be inactive in vitro against ubiquitin peptide/isopeptide-linked substrates (49), 

but was able to cleave the flurogenic probe Ub-AMC (50).  

Other human OTU proteins known to have DUB activity are A20, Cezanne, TRABID, DUBA 

and VCIP135. A20 is a dual active enzyme comprising DUB and E3 ligase
 
activities, which 

are required for termination of TLR (Toll-like receptor) signalling resulting in NF- B 

activation and inactivation
 
of TNF (tumour necrosis factor) induced cytotoxicity and 

apoptosis (51, 52). Similar to A20, Cezanne has been shown to inhibit NF-κB through 

modulation of the ubiquitination state of two of its positive regulators, TRAF6 and RIP-1 (53, 

54). Cezanne was shown accumulate in acute lymphoblastic leukemia and Burkitt lymphoma 

(55). While the precise role of Cezanne in cancer is unknown, its inhibition of NF-κB 

suggests that Cezanne may act as a tumor suppressor. VCIP135´s DUB function was 

described to be required for Golgi membrane fusion (56) and DUBA1 was reported to 

deubiquitinate the E3 ligase TRAF3 resulting in negative regulation of IFN-1 signalling and 

down regulation of the innate immune response (57). 
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1.1.10  MJDs 

 

MJDs (Machado-Joseph disease proteases) are conserved cysteine proteases that include four 

human DUBs (Ataxin-3, ATXN3L, Josephin-1 and Josephin-2). MJDs are conserved 

throughout eukaryotes and share a common cysteine protease domain (Josephin domain) of 

approximately 180 amino acids. The first discovered and best characterized MJD is Ataxin-3. 

Insertion of a polyglutamine repeat in Ataxin-3 was shown to cause the neurodegenerative 

Machado-Joseph disease giving this DUB class its name. In contrast to ataxin-3, much less is 

known about the other three human MJDs (58).  NMR and crystallization based structural 

analysis has been published for Ataxin-3 but for no other MJDs (59). ATXN3L, Josephin-1 

and -2 have been shown to possess DUB activity but no substrates are described so far (58). 

 

 

1.1.11  JAMMs 

 

JAMMs (Jab1/MPN domain metalloenzymes) comprise 5 members with described DUB 

activity. With a big exception to all other DUBs, JAMMs are lacking a catalytic cysteine. 

Instead, they are metalloproteases, which coordinate a catalytically essential zinc ion within 

their active sites. The three best known JAMMs are Poh1, Jab1 and Brcc36. Poh1 is a subunit 

of the 19 S subcomplex which releases K48-linked polyUb chains from substrates targeted to 

the proteasome for degradation. It has been suggested that Poh1 functions as a proteasomal 

“proofreading” device that determines the fate of incoming substrates as to whether they will 

be rescued or degraded (60).  Jab1 is a component of the CSN (COP9 signalosome), a 

multisubunit complex very similar to the 19S proteasome lid complex, which cleaves NEDD8 

of the cullins assembled in CRLs (61). Brcc36 was shown to recognize and cleave particular 

K63-linked ubiquitin chains. Among others Brcc36 is a component of the BRCA1-A 

complex, which specifically recognizes K63-linked ubiquitinated histones H2A and H2AX at 

DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage 

at double-strand breaks (62).  
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1.1.12  ULPs 

 

Human ULPs (Ubl-specific proteases) comprised the SENP (sentrin specific peptidase) 

family, which consist of eight members. They are all homologues of the earlier discovered 

yeast ULP1 homologue. ULP1 and SENPs are classified as a large group of cysteine 

proteases, which catalyze cleavage of the peptide bond after the C-terminal glycine to activate 

the modifier as well as deconjugate them from their substrate. ULP1 and SENPs are 

comprised of a 200 amino acid long catalytic domain containing the active residue triad Cys, 

His and Asp. Their N- terminal domain has a variable length and sequence and is responsible 

for localisation, target interaction and specificity. One member, SENP8, also called NEDP1 or 

DEN1, is specific for NEDD8 activation and substrate deconjugation. SENPs have been 

shown to have distinct sub-cellular localizations controlled by their non-conserved N-terminal 

regions.  SENP1 and SENP3 are predominantly localized into the nucleus. SENP2 isoforms 

are found in the cytoplasm, binding to the nucleoplasmic side of the nuclear pore complex ore 

localize to PML nuclear bodies. SENP6 is localized in the cytoplasm (12). 

 

 

1.1.13  Human virus encoded DUBs and their described function 

 

Nairoviruses and Arteriviruses, two unrelated RNA virus families, have been shown to 

express OTU domain-containing proteases. The L-protein of Nairoviruses, e.g. from the 

highly pathogenic CCHFV (Crimean-Congo Haemorrhagic Fever Virus) has been shown to 

process Ub and ISG15 conjugates and pro-ISG15 and pro-NEDD8 in vitro. CCHFV was also 

able to cleave Ub and ISG15 conjugates in cells. ISGylation and ubiquitination mediate 

antiviral effects. The NF-κB immune pathway is regulated by ubiquitination. CCHFV-L was 

described to inhibit NF-κB activation by the inhibition of endogenous p65 nuclear 

translocation upon TNFα stimulation (63).  

The SARS corona virus encoded PLpro protein was described to show deubiqitinase and 

isgylase activity in vitro. It is an enzyme with dual function first described to carry out N-

terminal processing of the viral replicase polyprotein and then later also to cleave K48-linked 

polyubiquitin chains and ISG15 pro-peptides in vitro. Crystallization of PLpro revealed that it 

belongs to the USP family but its function as a DUB in the course of infection has not been 

demonstrated (64). Also the human corona virus NL63 was reported to encode the PLP2 

protein, an enzyme with dual function. PLP2 was also first described to be involved in viral 
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replicase polyprotein processing and later on found to posses DUB activity. PLP2 was able to 

cleave K48-linked Ub chains and bind to the Ub-VS suicidal probe in vitro (65).  

Also the adenovirus encoded protease adenain has been described as an enzyme with dual 

function. Adenain is a nuclear and cytosolic protein. It was first described to be involved in 

virion maturation by cleaving e.g. viral capsid precursor and to be involved in cell lysis and 

release of the virions by cleaving cytoskeletal proteins (66). Adenain was described to cleave 

K48-linked Ub chains and ISG15 pro-peptides in vitro. During adenoviral infection the 

overall levels of ubiquitinated proteins (especially in the nucleus) decreased with increased 

adenain expression levels. The involvement of the adenain comprised DUB activity in the 

viral life cycle is not elucidated and no substrates are described yet (67).  

The HHV (human herpesvirus) family comprises eight members, which are subcategorized in 

-, - and - herpesviruses according to their site of latency. All human herpesviruses encode 

for a large tegumental protein. The N-termini of all of these proteins have been shown to 

contain a conserved region with comprised DUB activity (68). The first discovered member 

was UL36 of HSV1, which was detected by usage of the suicidal probe Ub-VME in HSV-1 

infected cell lysates. The crystal structure of a mouse herpesvirus homologue, MCMV 

(murine cytomegalovirus) suggests that the herpesviral DUBs represent a new family of 

deubiquitinating enzymes, which is called “herpesvirus tegument USPs”(69).  

Among the best characterized UL36 homologues in human herpes viruses are BPLF1 from 

Epstein-Barr virus, UL48 from human cytomegalovirus and ORF64 from Karposi Sarcoma 

virus. UL36 was shown in further investigation to cleave K48-linked Ub-chains in vitro (69). 

In earlier work a null mutant was generated in the UL36 gene to elucidate its role in the virus 

life cycle. Absence of UL36 lead to failure in targeting capsids to the correct maturation 

pathway resulting in accumulation of DNA-filled capsids in the cytosol not maturing into 

enveloped viruses (70). It remains unclear if this detected phenotype is due to elimination of 

UL36´s DUB activity because the UL36 null mutation, containing an internal deletion of 

amino acid 362-1555, does not eliminate the active site residues but may interfere with 

folding and enzymatic activity. Also UL48 was shown to bind to the DUB probe Ub-VME 

and cleave K48-linked Ub-chains in vitro as described for UL36. Its catalytic active Cys- and 

His- residues were characterized via mutation analysis (71). Orf64 from KSHV was shown to 

be capable of deubiquitinating cellular proteins in vitro and in vivo. Orf64´s DUB activity was 

detectable against K48- and K63-linked Ub chains in vitro. Also the catalytic active cysteine 

was characterized via mutation analysis. Cell fractionation studies revealed that Orf64 is 

localized in the cytosol and nucleus. To test the function of ORF64, siRNA (short interfering 
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RNA) knockdown studies on latently infected cell, which were induced into lytic replication, 

were conducted. The depletion of Orf64 by siRNA resulted in decreased lytic viral 

transcription and decreased lytic protein expression (72).  

 

 

1.1.14  The role of  Ubiquitin and UbL-modifiers in the life cycle of human viruses 

 

Given the central role of Ub- and UbL-modifications it is not surprising that many pathogens 

have devoted a considerable part of their genetic information to the production of proteins that 

mimic, block or redirect the activities of their host conjugating/deconjugating machineries. 

Modulation of those pathways is involved in virtually every step of the virus life cycle 

including virus entry, replication and assembly of new virus particles, immunity avoidance 

and virus exit. 

 

 

1.1.15  Viral entry 

 

Viral entry can be broadly defined as all events, leading to the arrival of the uncoated virus 

genome into the nucleus. HSV (Herpes simplex virus) entry into cells is a multistep process 

that engages the host cell machinery. In experiments, were the proteasome was blocked by 

usage of proteasomeal inhibitors, viral entry was disabled at an early step, after capsid 

penetration into the cytosol but prior to capsid arrival at the nuclear periphery. In addition, 

HSV successfully entered cells in the absence of a functional host ubiquitin-activating 

enzyme, suggesting that viral entry is ubiquitin independent. It was proposed, that 

proteasomal degradation of virion and/or host proteins is required for efficient delivery of 

incoming HSV capsids to the nucleus. The candidate proteins remain to be elucidated (73). 

 

 

1.1.16  Viral replication 

 

In the case of host replication interference, generally DNA tumor viruses modulate the cell 

cycle to enhance their own replication. A common mechanism shared by these viruses, is to 

target cell cycle regulator proteins for degradation, which often results in cell transformation. 

A classical example is the viral mediated down regulation of the tumor suppressor p53. The 
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HPV (human papillomavirus) -16 and -18, E6 proteins redirect the cellular single protein E3 

ligase E6AP to mediate proteasomal degradation of p53, which contributes to their 

oncogenicity by allowing uncontrolled cellular proliferation without induced apoptosis (74). 

A more common mechanism to control the turn over of particular cellular proteins is the 

manipulation of CRLs (cullin-RING-ligases). Examples for viral targeting of CRLs are the 

HPV-16 and -18, E7 proteins, which function as a substrate-binding module in a cullin 2 

based CRL. This assembled complex targets the Retinoblastoma protein (pRb), a tumor 

suppressor controlling G1-S-phase transition, for proteasomal degradation, shutting of this 

cell cycle arrest point (75).  

The Adenovirus proteins E1B55K and E4orf6 form a dimer, which functions as a substrate 

binding module in a cullin 5 based CRL, targeting the tumor suppressor p53 and the MRN- 

(Mre11, Rad50, Nbs1) complex, which is involve in DNA double strand break repair, for 

proteasomal degradation (76). E1B55K also contains a consensus site for sumoylation 

responsible for its nuclear localization. A sumoylation site mutant (K104R) showed altered 

localization and reduced ability to bind to p53, which also resulted in reduced cell 

transformation rates (77).  

The adenovirus E4orf4 and the HPV encoded E2 proteins were shown to inhibit the cell cycle 

by interfering with the APC (anaphase-promoting complex). APC is a cellular E3 ubiquitin 

ligase, which is essential for progression through the M-phase. Both viral proteins were 

additional described to inhibit the degradation of cyclin B resulting in a G2/M phase arrest 

(78).  

SV40 (Simian-Virus 40) expresses its LT (large T antigen), which binds to the SCF (Skp1, 

Cullin1, F-box)-complex (cullin1 based CRL) by inhibiting the substrate binding module F-

box protein Fbw7. Most of the Fbw7 targeted substrates are potential cell cycle regulator or 

oncogenes like cyclin E, c-Myc, c-Jun and Notch, which up on inhibition of Fbw7 get 

stabilized (79).  

The HPV encoded E2 protein and the adenovirus E4orf4 were shown to inhibit the cell cycle 

by interfering with the APC. Both viral proteins were additional shown to inhibit the 

degradation of cyclin B resulting to a G2/M phase arrest (80).  

Cytidine is a component of RNA, which is formed when cytosine is attached to a ribose ring. 

After infection of RNA retroviruses, host cells are trying to diminish cytidine to disturb viral 

replication. The cellular APOBEC- (apolipoprotein B mRNA editing enzyme catalytic 

polypeptide-like) family are mRNA editing enzymes, which edit cytosine to uracil essential 

for RNA synthesis. It has been shown that APOBEC3G was able to diminish the non-coding 

http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Ribose
http://en.wikipedia.org/wiki/Messenger_RNA
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strand of the HIV genome by converting deoxycytosin to deoxyuracil resulting in guanin to 

adenin hypermutations in the viral coding strand, restricting its propagation. To prohibit this 

pathway HIV encodes for the Vif protein, which functions as a substrate-targeting module in 

two described Cul5 based CRLs that target APOBEC3G for polyubiquitination and 

proteasomal degradation (81, 82).  

Instead of hijacking cellular E3 ubiquitin ligases several viruses have been described to 

encode their own E3 ubiquitin ligases within their genome. HSV-1 encodes for the ICP0 

(infected cell protein 0), an E3 ubiquitin ligase, which has been shown to induce 

polyubiquitination and degradation of a variety of proteins, including the PML protein, G1/S-

phase specific cyclin D3, p53 and the DUB USP7. ICP0 contains two E3 ligase sites. One of 

those sites recruits the cellular E2 ubiquitin conjugating enzyme UbcH5a as well as the DUB 

USP7. ICP0 has also been shown to undergo autoubiquitination, which was reversed by the 

recruited USP7. ICP0 was also shown to facilitate polyubiquitination and proteasomal 

degradation of USP4. When cells were infected with an ICP0 null mutant an enhanced viral 

replication was detected. Among all known targeted proteins of ICP0, the polyubiquitination 

and degradation of PML was suggested for the detected replication phenotype (83).  

Also KSHV (Kaposi sarcoma herpesvirus) was shown to encode a protein with E3 ubiquitin 

ligase function, called RTA (replication and transcription activator). RTA was earlier 

described to serves as transactivator protein, which is essential for activation of viral DNA 

replication upon initial infection and reactivation from latency. This viral multifunctional 

protein was shown to target several RTA repressor, like K-RBP (KSHV-RTA binding 

protein) and Hey1, a cellular transcriptional repressor, for polyubiquitination and proteasomal 

degradation. This RTA mediated repression of those two transcriptional repressors was shown 

to be essential for the reactivation of lytic DNA replication (84, 85) 

 

 

1.1.17  Immune response 

 

In addition to altering the cell cycle, viruses manipulate CRLs to interfere with the immune 

response of the host cells. HIV-1 (Human immunodeficiency virus 1) encodes the Vpu-

protein, which functions as a substrate-binding module in the SCF complex. The Vpu 

modified CRL induces the polyubiquitination of the CD4 receptor in the ER-membrane, 

which causes its cytosolic translocation and proteasomal degradation. CD4 functions as a co-

receptor for the TCR (T-cell receptor). Both receptors together mediate adaptive immunity by 
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binding to MHC class I (86).  

Viruses often activate the antiviral interferon response during infection. The JAK-STAT 

pathway is an interferon induced cytokine signaling pathway in mammals and a key player in 

antiviral defense. STAT (signal transducer and activator of transcription) proteins comprise a 

family of transcription factors important in cell growth, survival and differentiation, which get 

activated after pathway induction. The rubulavirus encoded V protein serves as a substrate-

targeting module in a Cul4a based CRL. It also binds directly to STAT2 (for human 

parainfluenza virus type 2) or STAT2 can be used to recruit STAT1 (for simian virus 5 and 

mumps virus). STAT2 or the heterodimer STAT1/STAT2 get connected to the CRL via the V 

protein and in following polyubiquitinated as signal for proteasomal degradation (87).  

The mumps virus encoded V protein was shown to target STAT3 directly via this above 

described composition, also as mechanism to diminish the antiviral response (88).  

There are also viral proteins known, which dislocate unwanted proteins from the ER. The 

HCMV (human cytomegalovirus) encoded US11 and US2 proteins dislocate MHC-I from the 

ER to the cytosol, were it becomes polyubiquitinated and proteasomal degraded (89).  

Also the KSHV (Kaposi's sarcoma herpes virus) encoded proteins K3 and K5 have been 

shown to down-regulate MHC-I mainly on the cell surface. K3 and K5 are membrane proteins 

containing an N-terminal located E3-ligase domain, which adds K63- linked Ub chains to 

MHC-I, mediating its endosomal sorting and lysosomal degradation (90). The destruction of 

MHC-I decreases antigen presentation to T cells, avoiding immune recognition. The CD4 

receptor is a co-receptor, which assists the TCR (T cell receptor) of helper T-cells by antigen-

presenting cell recognition essential for innate immunity activation. After cellular CD4 

synthesis, the protein gets located within the ER-membrane and sorted to the cell outer 

membrane. The HIV encoded Vpu protein is a transmembrane protein, which is also 

integrated into the ER-membrane. It binds to CD4 and TRCP, a substrate targeting module 

in the Cul1 based SCF complex. This CRL interaction modulates CD4 polyubiquitination and 

proteasomal degradation, resulting in inefficient antigen-presenting cell recognition of helper 

T-cells (91).  

As described above, induction of ISG15 expression upon viral infection appears to be a 

broad-spectrum inhibitor of virus production. Influenza B virus infection causes strong 

induction of ISG15 expression. Its viral encoded NS1 protein was found to bind to ISG15, 

preventing it from binding to its E1 activating enzyme UBE1L, causing inhibition of cellular 

ISGylation (92). 

 

http://en.wikipedia.org/wiki/Co-receptor
http://en.wikipedia.org/wiki/T_cell_receptor
http://en.wikipedia.org/wiki/Antigen-presenting_cell
http://en.wikipedia.org/wiki/Antigen-presenting_cell
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1.1.18  Viral budding 

 

RNA viruses, like HIV-1 and RSV (Rous sarcoma virus) complete their replication cycle by 

forming vesicles that bud from the plasma membrane. The Gag polyprotein has been reported 

to be necessary and sufficient for the assembly and budding of virus-like particle. A central 

located Gag protein domain, called L (late) domain, was reported to bind to cellular proteins 

involved in the host VPS (vacuolar protein sorting) pathway, a cellular budding process that 

formats multivesicular bodies, very similar to virus budding. Among those recruited cellular 

proteins are Nedd4-family E3 ligases, which have been shown to facilitate ubiquitination of 

the viral Gag-protein. Gag ubiquitination is correlated with successful virus release, also 

facilitating its own sorting into viral vesicles as they bud from the plasma membrane (93). 

Tsg101 (tumor supressor gene 101) is involved in vascular protein sorting and multivesicular 

body biogenesis by binding to monoubiquitinated proteins. Also Tsg101 was shown to bind to 

the ubiquitinated Gag protein by binding to Gag and ubiquitin. This interaction was shown to 

be essential for viral budding and release of HIV and Ebola virus (94).  

These above described findings emphasize the pivotal role of Ub/UbL 

conjugation/deconjugation in modulating critical aspects of the virus-host cell interaction. 

 

 

1.1.19  Introduction to EBV 

 

EBV is a 172 kb long double-stranded DNA tumor virus, which establishes latent infections 

in 90% of the human population worldwide. Infection occurs in most cases during childhood 

with no or mild symptoms. Infection occurring in adulthood is known to cause a benign 

lymphoproliferative disease called “infectious mononucleosis”. This viral illness is 

characterized by moderate symptoms like fever, sore throat and swollen lymph glands. EBV 

is associated with a variety of malignancies of lymphoid cells, like Burkitt´s lymphoma, 

Hodgkin´s lymphoma and NK- and T-cell- lymphomas as also of epithelial cells, like 

nasopharyngeal carcinoma and gastric carcinoma. Like other herpesviruses EBV has a latent 

and a lytic life cycle. Epithelial cells of the oropharynx are the site of primary infection and 

are also believed to be the major site for viral replication. B-lymphocytes have been shown to 

serve as sites for the viral latent cycle and life long persistence. The EBV-genome does not 

normally integrate into the cellular DNA but persists as circular episome in the host cell. The 

viral latency comprehends the expression of a subset of latent proteins and an array of  
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transcribed non-coding RNAs (EBERs) and microRNAs depending of the type of latency 

(Type I, II, III). Those nine latent proteins are comprised of six “EBV nuclear antigens”, 

called EBNA-1, -2, -3A, -3B, -3C and LP and three “latent membrane proteins”, called LMP-

1, -2, and -3. The viral latency is well studied and understood to a higher degree then the 

regulation of the viral lytic phase (95, 96).  

Upon induction of the lytic phase the first detectable expressed proteins are the two 

immediate-early gene products BZLF1 and BRLF1. Both proteins transactivate viral 

promoters, which leads to an ordered cascade of viral early and late gene expression. Early 

gene products include proteins involved in viral DNA replication and DNA metabolism. The 

lytic phase of DNA replication is dependent on seven viral replication proteins: BZLF1, 

binding to the oriLyt (origin of lytic phase); BALF5, a DNA polymerase; BMRF1, a 

polymerase processivity factor; BALF2, a single-stranded DNA-binding protein and BSLF1, 

BBLF4, BBLF2/3 proteins comprising a primase-helicase complex. Viral lytic replication 

occurs in discrete nuclear sites, named replication compartments, in which viral replication 

proteins are assembled. Induction of the EBV lytic program results in inhibition of cellular 

DNA replication as well as explosive replication of viral DNA (97). 

 

 

1.1.20  The role of  ubiquitin and UbL-modifiers in the EBV life cycle 

 

Nedd4 ubiquitin ligase family members have been reported to have a function in the 

maintenance of EBV latency in B lymphocytes. The BCR (B cell receptor) is known to 

mediate reactivation of the lytic cycle from the latent state. This is achieved by BCR cross-

linking resulting in activation of signaling pathways, which initiates the viral transactivator 

BZLF1. Among others Lyn and Syk are two cytoplasmic tyrosine kinases, which upon 

binding to activated BCR mediate activation of BZLF1. The viral latent protein LMP2A 

contains two PPPY motifs, which were shown to recruit Nedd4 family members. After 

LMP2A binding to Lyn and Syc the recruited Nedd4 E3 ligases facilitate the 

polyubiquitination of those two tyrosine kinases, which causes their proteasomal degradation. 

The depletion of Lyn and Syk prevents signaling of activated BCR resulting in the 

maintenance of the latent cycle (98).  

The lytic switch gene BZLF1 was found to be modified by SUMO-1. Unconjugated SUMO-1 

level in cells are quite low. It has been shown, that BZLF1 competes with the PML-protein 

for SUMO-1 required for their both modification. By doing so BZLF1 degreases PML-protein 
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sumoylation, causing the inhibition of PML body formation. Among others PML body 

formation is induced by type I and II interferons, induced upon viral infection, suggesting a 

function with an antiviral capacity. The disruption of PML bodies, which was demonstrated 

by all classes of herpesviruses, suggests that this function is important for efficient lytic 

replication. It has also been shown, that sumoylation of BZLF1 decreases its transactivating 

ability (99). BZLF1 was also shown to serve as a substrate binding module in a Cul2 and Cul5 

based CRL. Those assembled CRLs were reported to target p53 for polyubiquitination and 

proteasomal degradation (100) as described already for other viruses above.  

EBNA3C is a critical component
 
for EBV immortalization of infected B lymphocytes. 

EBNA3C was found to be modified with SUMO-1 and upon this modification co-localized 

with PML nuclear bodies. This co localisation was shown to decrease the effect of PML body 

formation, possibly due to competition among PML and EBNA3C for limited free SUMO-1 

resources. The site of sumoylation was elucidated by usage of an EBNA3C truncated form. 

An EBNA3C 343-545 was not able to undergo sumoylation and did not co localize with 

PML nuclear bodies. Since EBNA3C transcriptional activation is mediated by amino acids 

365 to 545, which are
 
required for binding to SUMO, EBNA3C modification with SUMO 

could be important for EBNA3C described transcriptional
 
effects (101). EBNA3C was also 

shown to interact with the Rb protein and to facilitate its proteasomal degradation via the 

SCF-Skp2 complex. Overexpressed EBNA3C into EBV negative epithelial and lymphoid cell 

lines resulted in decreased Rb protein level. It has been shown, that the ability of EBNA3C to 

facilitate the degradation of Rb was down regulated by expression of a dominant negative 

SCF-Skp2 complex. No down regulation of Rb was detected in the absence of EBNA3C 

(102).  

Most intracellular proteins are destroyed via polyubiquitination mediated degradation in the 

proteasome. Resulting peptide fragments of degraded antigens are presented at the cell surface 

in association with MHC-I for immune recognition (103). EBNA1 is the most prominent 

latent protein of EBV with the broadest array of function. It is known to be essential for the 

maintenance of the viral genome, transcription and translation of the viral DNA, viral host 

persistence and cellular transformation. It has been demonstrated, that the internal Gly-Ala 

repeat domain of EBNA1 was able to interfere with the proteasome resulting in its protection 

from degradation. As a result, no EBNA1 peptide fragments are assessable for MHC-I 

binding and presentation on the cell surface, impairing immune recognition (104). EBNA1 

has also been shown to interact with the DUB USP7, which has also been described to 

deubiquitinate p53 and its E3 ligase Mdm2. EBNA1 and p53 compete for the same interaction 
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site on USP7. EBNA1 was shown to have a 10 fold higher affinity to the USP7 binding site 

then p53, being able to control p53 binding and deubiquitination. Functional studies were able 

to show, that binding of EBNA1 to USP7 was able to protect cells to undergo apoptosis by 

lowering p53 levels (105).  

Most substrates are ubiquitinated on lysine residues, although ubiquitination on Cysteine and 

Serine residues as the ubiquitination of N-termini has also been reported. A database search 

identified several lysine free viral proteins, with lysine rich cellular and viral homologues. It 

is believed, that the comprehension of Lysine less proteins could be advantageous to viruses 

to protect them from polyubiquitination mediated degradation. The EBV encoded BHRF1 

protein is a lysine less protein and a Bcl2 (B-cell lymphoma 2) family member. Bcl2 as 

BHRF1 are responsible for the release of mitochondrial cytochrome C, controlling cellular 

apoptosis (106, 107). It was shown in apoptotic cells, that Bcl2 was polyubiquitinated and 

degraded. To elucidate the impact of the lysine residues within Bcl2 concerning its described 

function, all lysines were removed via site-directed mutagenesis. It was demonstrated, that 

this lysine less Bcl2 mutant was resistance to degradation and was able to inhibit cell 

apoptosis (108). It could be speculated, that the lysine less BHRF1 is also able to escape 

ubiquitination and degradation with resulting pro-apoptotic conditions.  

LMP1 is one of the EBV gene products, which are essential for B-cell transformation. It is 

also the only EBV protein that has oncogenic potential in non-B cells. The family of IRFs 

(Interferon regulatory factors) comprise transcription factors, which are predicted to 

contribute to EBV oncogenesis through regulation of a spectrum of oncogenes or apoptosis 

related genes. IRF7 is a central regulator of type 1 IFN-mediated innate and adaptive immune 

responses. It has been shown that IRF7 is modified from TRAF6 with K63-linked 

polyubiquitin, which protects the protein from proteasomal degradation and also causes its 

transcriptional activation. TRAF6 is a member of the TRAF protein family, which are 

involved in signal transduction controlling both innate and adaptive immune responses. 

TRAF6 has also been shown to comprise E3 ubiquitin ligase activity. TRAF6 and its E3 

ligase activity are required for LMP1 stimulated IRF7 ubiquitination. A20 is an enzyme with 

dual function, comprising DUB and E3 ubiquitin ligase activity in one protein. Further it has 

been shown that LMP1 induces A20, which upon induction negatively regulates IRF7 

transcriptional activity by deubiquitinating IRF7. A DUB deficient truncation or point 

mutation reduced the ability of A20 to inhibit IRF7, a ligase mutant didn’t show any effect. 

Knockdown of A20 resulted in an increase in endogenous IRF7 K63-linked 

polyubiquitination and transcriptional activation (109, 110). 
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Upon EBV infection, several cellular DUBs are known to increase in activity including USP-

5, -7, -13, -15 and -22. Those DUBs recruited by EBV may stabilize -catenin in latently 

infected B-cells. -catenine is a key component of the Wnt signaling pathway that regulates 

growth and differentiation of cells. Wnt signaling deregulation has been implicated in cancer 

development and could also play a role in EBV associated cancer development (111).  

An overview of all the interactions of EBV with the cellular ubiquitin and ubiquitin like-

modification system introduced above, are visualized in figure 2. 

 

 

Figure 2. EBV encoded ORFs interfere with the ubiquitination and UbL-modification system at different sites.  
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1.2  INTRODUCTION – AmotL2 in control of cell topology  

 

 

1.2.1  Epithelia 

 

During embryonic development single cells join together to form functional units or organs. 

The Epithelium is a highly packed and dense tissue, which separates cavities and covers 

surfaces of newly formed organs. Epithelial tissues serve as a barrier against pathogens and 

support the structure of organs. The epithelium does not only protect from e.g. mechanical 

injury (skin) but also facilitates diffusion of oxygen and CO2 in lungs, produces milk in glands 

and absorbs nutrients in the intestine. Three major groups of epithelia can be classified [1] by 

their number of cell layer (one layer: simple epithelium; more than one layer: stratified 

epithelium), [2] by the form of their cells (columnar-, cuboidal-, and squamous-epithelium) 

[3] and by the form of the cells at the outer layer (stratified columnar-, stratified cuboidal-, 

and stratified squamous-epithelium).  The simple squamous epithelium which lines blood and 

lymphatic vessels is called endothelium. These different types of cell layers depend on the 

strict regulation of their cellular shapes and morphology for proper function (Cooper 2000, 

Guillot and Lecuit 2013). 

Studies of epithelial function are of importance as they may provide clues regarding the 

development of novel therapies against human pathologies. For example, the majority of 

human cancers arise in tissues of epithelial origin and account for more than 80% of all 

cancer-related deaths. A strong correlation between loss of epithelial organization and 

malignancy has been documented for most carcinomas. The loss of tissue organization may 

be attributed to the deregulation of the normal mechanisms that are essential for epithelial 

morphology. These include the control of apical-basal polarity, cell-cell contacts and the 

cytoskeleton (Wodarz and Nathke 2007, Muthuswamy and Xue 2012).  

In this section, I will describe the different components that are of importance for epithelial 

architecture and how the Angiomotin protein family integrates these pathways.  

 

 

1.2.2.  Cell polarity  

 

The generation of three-dimensional epithelial structures in organs such as colon, prostate and 

skin depends on the establishment of cell polarity. This complex cellular mechanism is the 
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result of the asymmetric distribution of different polarity protein complexes. The two main 

complexes PAR (Cdc42/Par3/Par6/aPKC) and Crumbs (Crb/Pals1/PATJ) are e.g. involved in 

the establishment and maintenance of apical-basal cell polarity and also facilitate a possible 

depolarization. The core protein complex Scribble (Srib/Lgl/Dlg) promotes the baso-lateral 

membrane formation (Bryant and Mostov 2008, Roignot, Peng et al. 2013). 

Polarity processes leading to a stationary epithelium are discussed below. During this 

development the small GTPase Cdc42 plays a central role. This protein is a member of the 

Rho-GTPase family and has an astonishing ability to control and coordinate several signal 

transduction pathways. It functions as a molecular switch, changing from its inactive state 

(bound to guanosine diphoshate, GDP) to its active state (bound to guanosine triphosphate, 

GTP). The recharging of GDP to GTP and therewith “switching on” of Cdc42 is facilitated by 

Guanine nucleotide exchange factors (GEFs) (Cooper 2000, Etienne-Manneville 2004).  

Filopodia are cytoplasmic extensions that elongate beyond the leading edge of lamellipodia in 

migrating cells. Filopodia formation is accomplished by Cdc42 binding to the WASp protein, 

which recruits and activates the Arp2/3 complex (Magdalena, Millard et al. 2003).  

In epithelial cells filopodia have been demonstrated to establish cell-cell contacts leading to a 

polarized morphology, by enabling cell-cell junction assembly (Vasioukhin and Fuchs 2001). 

In multicellular organisms, cell polarity is initiated mainly by external stimuli. Membrane 

receptors, which facilitate adhesion, such as cadherins, nectins and integrins, as well as 

chemokine receptors (soluble ligand receptors) sense their environment in order to establish 

polarity (Etienne-Manneville 2004).  

During the process of polarization and epithelial sheet formation, cells generate distinct cell 

membrane compartments, which are localized to the apical (facing the lumen), or baso-lateral 

(facing the extracellular matrix and neighboring cell) cell surfaces (Rojas, Ruiz et al. 2001). 

This process is initiated by adhesion proteins such as E-cadherin and nectin (Takai and 

Nakanishi 2003). Their ligation induces Cdc42 activation by e.g. the activation of the GEFs 

FRG and Vav2 ( Fukuhara, Shimizu et al. 2004).  

The establishment and composition of the two different apical and baso-lateral membrane 

domains is regulated by the endocytic and exocytic secretory pathway. Cdc42 has been 

proposed to regulate the exit of apical and baso-lateral proteins from the trans-Golgi network 

(Musch, Cohen et al. 2001). This process may involve the establishment of the Par6-aPKC 

and Lgl-scribble polarity complex components to the plasma membrane. Lgl has been shown 

to interact with the membrane integrated Q-SNARE protein t-SNARE syntaxis 4 and regulate 

baso-lateral exocytosis (Musch, Cohen et al. 2002). The activity of the apical polarity protein 
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Crb is needed for vesicle exocytosis at the apical surface (Myat and Andrew 2002). The 

Sec6/Sec8 polarity complex, which is located just below the tight junctions, is involved in the 

baso-lateral delivery of proteins in epithelial cells (Matern, Yeaman et al. 2001, Kreitzer, 

Schmoranzer et al. 2003). 

The p65PAK family of serine/threonine kinases is one of the best studied Cdc42 targets. 

p65PAK localizes to cell-cell adhesion contacts in epithelial cells and controls polarized actin 

polymerization. This process is facilitated by regulating LIM kinases which phosphorylate 

and inactivate the actin binding protein cofilin leading to a polarized actin rearrangement 

(Bokoch 2003, Edwards, Sanders et al. 1999).  

 

 

1.2.3  Cell-cell adhesion 

 

Epithelial cells are attached to eachother at contact points called cellular junctions. These 

contact points fall into different categories, the tight junctions, the adherens junctions, the 

desmosomes and the gap junctions, each with individual functions (Figure 1) (Cooper 2000). 

 

 

1.2.4  Tight junctions 

 

In epithelia, tight junctions (TJ) are found at the most apical site of the lateral membrane, 

were they form an impermeable intramembranous barrier to fluid. This is of importance for 

e.g. the maintenance of the osmotic balance in tissues (Aijaz, Balda et al. 2006). Apart from 

facilitating cell-cell adhesion, TJ have been associated to intracellular signaling mechanisms 

which influence polarization, cell proliferation and differentiation (Zahraoui 2004, Shin, Fogg 

et al. 2006). TJ are assembled out of two different types of transmembrane proteins. Those are 

the tetraspan- (occluding, tricellulin and claudins) and the singlespan- (e.g. JAMs, CAR, 

CLMP and CRB3) transmembrane proteins (Bazzoni 2003, Aijaz, Balda et al. 2006). 

Towards those mentioned transmembrane proteins binds a so called “cytoplasmic plaque”, 

which are adaptor-, cytoskeletal or scaffolding proteins which mainly cross links the 

junctional transmembrane proteins to the actin cytoskeleton. Those “plaque” proteins regulate 

adhesion and paracellular permeability as they transmit signals from the junctions towards the 

cellular inner controlling gene expression and migration. The TJ plaque also recruits an array 

of signaling proteins, which includes kinases and phosphatases involved in gene expression 
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regulation. Some of the most prominent TJ plaque proteins are ZO1, PAR3, PAR6, Pals1 and 

PATJ (Assemat, Bazellieres et al. 2008, Balda and Matter 2008, Guillemot, Paschoud et al. 

2008, Paris, Tonutti et al. 2008). 

 

 

1.2.5  Adherens junctions 

 

Adherens junctions (AJ) are located below the tight junctions on the apical lateral side 

between two neighboring epithelial cells. During cell-cell contact formation AJ are the first 

junctions to be formed which then promotes the subsequent development of tight junctions. 

The main feature of AJ is to facilitate cell-cell adhesion via the establishment and 

maintenance of a circumferential actin belt, which connects single epithelial cells to tightly 

packed epithelial sheets. This actin belt, also called “adhesion belt” is involved in epithelial 

morphogenesis mediation as it also facilitates the transmission of subcellular force (Harris and 

Tepass 2010, Guillot and Lecuit 2013).  

The formation of AJ is mediated by homotypic interactions of the transmembrane adhesion 

molecule E-cadherin between two neighboring epithelial cells. Their extracellular domain is 

arranged into five repetitive domains, which contain calcium-binding sites (Overduin, Harvey 

et al. 1995). Calcium facilitates homotypic adhesive activity, enabling a dynamic regulation 

of adhesive contacts (Nagar, Overduin et al. 1996).  

The cytoplasmic tail of E-cadherin associates to plaque proteins like p120, α- , β- catenin and 

plakoglobin, which in return mediate binding to contractile actin fibers forming e.g. the 

adhesion belt (Baum and Georgiou 2011).  

AJ serve as a start and fixing point for cell polarity. Apical polarity proteins like Crb3, 

PALS1, PATJ, PAR3 and aPKC are found in high concentration just above the AJ as 

basolateral proteins like LGL, DLG and Scrib are found just below AJ (Georgiou and Baum 

2010).  

The mechanisms how cadherins connect to actin have been a subject of controversy. It was 

long thought that cadherins bind to β-catenin by associating to α-catenin which acted as a 

linker between the adhesion complex and the cytoskeleton.  This dogma was later revised 

based on the findings that α-catenin does not bind β-catenin and actin fibers simultaneously 

(Drees, Pokutta et al. 2005). Apart from the circumferential actin belt, a second population of 

contractile actin fibers was described to localize to the junctions (Zhang, Betson et al. 2005). 

How E-cadherin connects to contractile actin filaments that run perpendicular to the cell-cell  
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junctions is the topic of paper III in this thesis. 

Epithelia are very dynamic and underlie steady changes of tissue organization. Constant 

changes due to cell tissue reorganization, differences in cell packing and apoptosis requires an 

ongoing forming and disassembly of AJ. This procedure is e.g. carried out by a very active 

internalization and recycling back of E-cadherin from and to the plasma membrane. This 

process has been shown to depend on clathrin-mediated endocytosis (Bryant and Stow 2004). 

It has also been demonstrated, that the recycling of E-cadherin requires the octameric protein 

exocyst complex for the delivery of the protein to the AJ (Blankenship, Fuller et al. 2007, 

Baum and Georgiou 2011).  

The transmission of mechanical signals through AJ leading to intracellular signaling cascades 

will be discussed in the following chapter “mechanotransduction”.  

A further AJ component is the transmembrane protein family of the nectins which promote 

cell-cell adhesion in a calcium independent manner. Similar to E-cadherin, they undergo 

homophilic interactions between two neighboring cells with their extracellular regions. They 

connect via their cytoplasmic regions to the actin binding protein afadin, which in turn binds 

to actin fibers. Nectin mediated cell adhesion is involved in the induction of polarity, as it 

induces the formation of adherens junctions in epithelial cells, by the activation of Cdc42 and 

Rac small G proteins, which in turn reorganize the actin cytoskeleton. Nectins also bind to the 

polarity protein PAR3 with their cytoplasmic regions (Takai, Irie et al. 2003, Nakanishi and 

Takai 2004).  

 

 

1.2.6  Desmosomes and Gap junctions 

 

Desmosomes are intercellular junctions that connect cellular intermediate filaments to the 

plasma membrane. Those adherence platforms are primarily present in tissues with higher 

exposure to shear stress, like in epithelia, were they support stable cell-cell adhesion. The 

adhesive parts of desmosomes are assembled out of two different kind of transmembrane 

proteins, the desmogleins and desmocollins, which are calcium dependent members of the 

cadherin family. Towards the cytosolic tails of the adhesive proteins bind cytosolic adaptor 

proteins (desmosomal plaque) which are e.g. plakophilins and plakoglobin, which are 

members of the armadillo gene family. Those adaptor proteins bind to intermediate filament 

binding proteins like desmoplakin which link the desmosomal protein complex to the 

filaments (Delva, Tucker et al. 2009, Kowalczyk and Green 2013).  
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Gap junctions are clusters of intercellular channels that facilitate a direct transfer of ions, 

amino acids, second messengers and electrical signals between neighboring cells. Due to this 

direct shuttling mechanism gap junctions enable cellular key events like apoptosis, cell 

differentiation and tissue homeostasis (Nicholson 2003, Nielsen, Nygaard Axelsen et al. 

2012).  Gap junctions are found in all kind of adhesive tissue cells where they are assembled 

out of connexins (Cx) which are integral membrane proteins (Goodenough, Goliger et al. 

1996). Each gap junction is assembled out of two hemichannels, also called connexons, 

whereby each hemichannel is constructed out of six connexin molecules. The major gap 

junction regulating mechanism is phosphorylation, which is vital for gap junction assembly, 

turnover and function (Warn-Cramer and Lau 2004). 

 

 

 

Figure1. Polarized epithelial cells of a simple epithelium visualizing cell-cell adhesion sites. Kindly provided 

from Nature Publishing Group.  

 

 

 

 

http://en.wikipedia.org/wiki/Connexons
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1.2.7  Adhesion to the extra-cellular matrix 

 

The extra cellular matrix (ECM) is a complex composition of matrix molecules (e.g. 

collagens, fibronectin, glycoproteins, laminins, proteoglycans) and non-matrix proteins (e.g. 

growth factors, kinases, phosphatases, proteases) (Naba, Hoersch et al. 2012). The main 

functions of the ECM are the structural support (e.g. cell migration and polarization), the 

regulatory function (e.g. tissue organization and differentiation) and the supply of nutrients to 

the attached cells. Epithelial cells bind to the ECM mainly via integrins, which are membrane 

adhesion proteins located on the basal cell membrane (Berrier and Yamada 2007). Integrins 

are heterodimers built up out of an α- and β- subunit. In mammals 18 α-  and 9 β- subunits  

are expressed, assembling to 24 specific integrin receptors, which bind different ECM ligands 

(e.g. collagen, fibronectin and laminin) with various affinities (Luo, Carman et al. 2007). The 

main two functions of integrins are the attachment of the cell to the ECM and the signal 

transduction vice versa. Several integrins accumulate to clusters which are called “focal 

adhesions”. Towards the cytosolic cell site integrins are linked mainly to the actin 

cytoskeleton via a variety of adaptor proteins (vinculin, talin and α-actinin) (Brakebusch and 

Fassler 2003). Apart of that several signaling proteins bind to the cytosolic site of integrins 

which are involved in various signaling cascades controlling e.g. cell migration, 

differentiation, gene regulation, polarity and proliferation (Harburger and Calderwood 2009). 

These kinds of signaling events will be discussed further in the chapter 

“mechanotransduction”. Integrins are also involved in a process called “inside-out signaling” 

were intracellular signals are able to induce alterations in integrin conformation and activity 

leading e.g. to the loss of the cell from the ECM (Luo, Carman et al. 2007).  

Epithelia also exert adhesion structures called hemidesmosomes to facilitate cellular 

adherence from the cellular keratin cytoskeleton to the basement membrane, which is a 

specialized form of the ECM (Seltmann, Roth et al. 2013). Those adherence structures are 

assembled within the basal cell membrane via the two transmembrane proteins α6β4 integrin 

and BP180. The connection to the cellular keratin network is realized by the inner plaque 

proteins HD1/plectin and BP230. Apart from their function to master cellular adhesion, 

hemidesmosomes are also involved in mechanotransduction, by outside-inside signaling 

mainly via signal transduction trough the α6β4 integrin. Those mediated signals have been 

demonstrated to be involved in regulating vital cellular processes like apoptosis, 

differentiation and proliferation (Mainiero, Pepe et al. 1995, Nievers, Schaapveld et al. 1999). 

  

http://en.wikipedia.org/wiki/Collagen
http://en.wikipedia.org/wiki/Fibronectin
http://en.wikipedia.org/wiki/Laminin
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1.2.8  Cytoskeleton  

 

The cytoskeleton is a protein fiber skeleton imbedded within the cytoplasm of all kinds of 

cells (prokaryotes and eukaryotes). In eukaryotes it is constructed out of three different kinds 

of protein filaments, the actin filaments (also called microfilaments), the intermediate 

filaments and the microtubules. All three cytoskeletal fibers are homogenous structured 

polymers, constructed from individual monomeric protein subunits connected via non-

covalent bonds. The main function of the cytoskeleton is to physically enable a certain cell 

morphology and to allow morphological changes e.g. during cell division or migration. It also 

serves as a mediator of intracellular vesicle trafficking (Cooper 2000).  

 

 

1.2.9  Actin filaments 

 

The actin filaments are polar structures buildup of monomeric subunits called globular actin 

(G-actin). Those monomers are linear head-to-tail polymerized to flexible filamentous actin 

(F-actin) fibers, 6 to 9 nm in diameter and up to several micrometers in length. During 

assembly of filamentous actin, the G-actin monomers are rotated by 166
o
, creating a fiber 

form of a double stranded helix. Those created actin fibers are organize into two types of 

structures, actin bundles or actin networks, facilitated by different actin crosslinking proteins, 

determining the physical properties of those structures (Giganti, Plastino et al. 2005, Winder 

and Ayscough 2005).  

Actin bundles are parallel arrays of actin fibers tightly packed by actin crosslinking proteins. 

Three-dimensional actin networks are constructed out of loosely linked actin filaments 

obtaining the properties of semisolid gels. Actin filaments bind to the motor protein myosin, 

which enables them to contract. Myosin hydrolyses ATP to ADP to generate force and 

movement, e.g. used for cell migration or muscle contraction (Hill, Catlett et al. 1996). 

Contractile actin bundles, also called stress fibers, connect e.g. epithelial cells to the ECM by 

being linked to integrins assembled in focal adhesions. Most stress fibers are bound to myosin 

II motors, which enables them to contract making them to indispensable components to cell 

adhesion and morphogenesis (Tojkander, Gateva et al. 2012). 

In a polarized epithelium actin bundles, named adhesion belt, interconnect the adherens 

junctions within a cell. They are linked via a subset of actin binding proteins to the 

transmembrane adhesion protein E-Cadherin. Their main function is to connect single 
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polarized epithelial cells to tightly packed epithelial sheets, contributing to establish the 

needed mechanical strength and enabling the transmission of subcellular force (Harris and 

Tepass 2010, Guillot and Lecuit 2013).  

Contractile actin bundles, distinct from the adhesion belt fibers, were also described to 

localize to the junctions (Zhang, Betson et al. 2005).  

The apical side of epithelial cells can contain protrusions which are involved in absorption of 

nutrients. Those surface extensions are based on actin filaments arranged in bundles or 

networks. An example of those surface protrusions are microvilli, which are formed on the 

apical surface of epithelia lining the intestine. Each of those intestine epithelial cells contains 

ca. 1000 microvili structures increasing the nutrient absorbing apical surface by the factor 10 

to 20. Other actin based cell surface protrusions, like pseudopodia, lamellipodia or filopodia 

are formed on the leading edge of a moving cell and enable cell locomotion (Cooper 2000, 

DeRosier and Tilney 2000).  

 

 

1.2.10  Intermediate filaments  

 

Intermediate filaments (IFs) range in diameter between 10 – 12 nm and are assembled of a 

subset of proteins, which share common structural attributes. They are cytosolic filaments, 

except the lamins which form a nuclear lamina three-dimensional network (Goldman, 

Gruenbaum et al. 2002). Intermediate filaments are unpolar structures and assemble in most 

mammalian cells a network which fills out the entire cell. Keratin and vimentin based 

filaments connect to the nucleus, positioning and holding it in place. IFs interconnect also cell 

adhesion components in polarized epithelial cells.  Keratin filaments bind to the desmosomes 

and hemidesmosomes, thus mediating cell-cell and cell-matrix adhesion and thereby 

facilitating mechanical stability to the epithelium. IFs even connect to the other two 

cytoskeletal components, actin filaments and microtubules thereby enhancing the mechanical 

stability of the cell. IFs have also been described to modulate signals within a cell, e.g. by 

binding to the Fas cell surface receptor, modulating its density and function (Cooper 2000, 

Coulombe and Wong 2004, Herrmann, Bar et al. 2007). 
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1.2.11  Microtubule 

 

Microtubules are polar tubular structures, assembled by the globular protein tubulin. The 

inner diameter of a microtubule is about 12 nm and the outer diameter is about 25 nm.  

Apart from giving the cell mechanical support, microtubules enable cellular mitosis, were 

they form the mitotic spindle, responsible for the separation of the chromosomes (Fourest-

Lieuvin, Peris et al. 2006). Microtubules are able to develop directed force by assembling and 

disabling its own structure and by attaching to motor proteins like dynein and kinesin. Due to 

this characteristic microtubules are actively engaged in the cellular transport of membrane 

vesicles in the endocytic and secretory pathways as they also transport organelles, like Golgi 

apparatus, lysosomes and mitochondria within eukaryotic cells (Hirokawa 1998). Microtubule 

structures are able to assemble or disassemble in the shortest timeframe compared to the other 

cytoskeletonal structures, the actin filaments or intermediate filaments. In order to increase 

the stability of microtubules in certain regions of the cell, they bind to microtubule-associated 

proteins (MAPs). MAPs interconnect microtubule to intermediate filaments or other 

microtubule via a phosphorylation regulated mechanism. This microtubule stabilization at 

specific sites within the cell serves as an important step facilitating cell polarity and certain 

cell shapes (Cooper 2000, Siegrist and Doe 2007).  

 

 

1.2.12  Mechanotransduction 

 

Mechanotransduction describes the mechanisms by which cells translate mechanical cues into 

electrical or chemical based cell signaling events. Cells within multicellular tissues are 

exposed to an array of physical cues, like compression, expansion, shear stress and 

hydrostatic pressure. The exposed cells have to adapt to mechanical forces, resulting in e.g. 

changes in cell differentiation, growth, morphology and polarity (Huveneers and de Rooij 

2013). The way cells respond to the exposure to physical stimuli depends on the physical 

properties of the individual cell type and of the physical characteristics of the tissue they are 

imbedded in. The transfer of the mechanical stimuli towards the cell can occur from different 

locations. For epithelia those loci are mainly the ECM and cell-cell adherens junctions 

(DuFort, Paszek et al. 2011).  

Mechanical stimuli transmitted via the ECM are received mainly by integrins. They sense the 

nature and changes of the ECM surrounding and transmit signals via conformational changes 

http://en.wikipedia.org/wiki/Nanometre
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to cytosolic associated integrin plaque proteins like TALIN or BCAR1. Those sensor proteins 

paired with growth factor signalling (e.g  EGF)  are able to start specific cellular signalling 

events leading to cellular fate decisions influencing cell attachment, differentiation or 

migration (DuFort, Paszek et al. 2011).  

Elevated tension around focal adhesion contacts e.g. increases the clustering of integrins and 

the phosphorylation and activation of focal adhesion kinases (FAKs). This leads to the 

initiation of several cellular signalling events, like activating the Rho-family GTPases RhoA, 

which stimulate its effector RhoKinase/ROK/ROCK resulting in the assembly of new 

stressfibers by connecting actin filaments with myosin motors (Arthur, Noren et al. 2002).  

A further integrin mediated signalling pathway that is activated in response to mechanical 

force within the ECM is the MAPK–ERK pathway, which influences tissue development by 

regulating cell differentiation and proliferation (Yee, Weaver et al. 2008). The physical 

characteristics of the ECM are determined by the organization of its components and their 

degree of intramolecular crosslinking (DuFort, Paszek et al. 2011).  

Epithelia sense via intergrins the rigidity of the ECM, which they are attached to and adjust 

the tension they exert themselves accordingly (Saez, Buguin et al. 2005). When epithelia 

attach to stiff matrices they format larger focal adhesion clusters, binding to more actin 

stressfibers resulting in higher stabilizing traction forces within the cell. It also results in the 

destabilization of cell-cell adhesion points like adherens junctions, leading to the disruption of 

the actin “adhesion belt” (Tsai and Kam 2009, DuFort, Paszek et al. 2011). 

Cell attachment to stiff matrices also affects the microtubule rearrangement dynamics 

resulting in slow growing and long lasting microtubuli (Figure2b) (Myers, Applegate et al. 

2011) When epithelial cells attach to soft matrices, less integrin molecules are clustered 

leading to fewer establishments of integrin connected stressfibers and lower established 

traction forces. Also cell-cell junctions like tight and adherens junctions are fully matured 

including the successful formation of the adhesion belt, resulting in the establishment of a 

functional epithelium (Figure 2a) (DuFort, Paszek et al. 2011). 

Mechanosensing properties were also described at cell-cell adhesion sites. E-cadherin 

complexes were shown to be functional mechanosensors which transmit force between E-

cadherin and F-actin. This detected intercellular force overlapped with vinculin accumulation 

at actin-anchored cadherin adhesions, shown in imaging experiments. Vinculin potentiates the 

E-cadherin mechanosensory response, which was demonstrated by using E-cadherin based 

cell bead adhesion assays (le Duc, Shi et al. 2010).  

The motor protein myosin II is required for actomyosin contractility and for maintenance of 

http://en.wikipedia.org/wiki/Epidermal_growth_factor
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adherens junctions. In endothelial cells an increase of AJ size was detected after stimulation 

with activated myosin II and increasing tugging-force at the AJ. In those experiments myosin 

II level were downregulated via siRNA, which resulted in decreased traction force and AJ 

size. The tugging force was evaluated with a retooled version of elastomeric microneedles. 

Their data suggests that mechanosensitive growth is a basic mechanism for controlling AJ 

size and is similar to the observed growth of focal adhesions after applied force (Liu, Tan et 

al. 2010). 

Apart from the involvement of the actin cytoskeleton in the cadherin mechanoresponse, also 

the plakoglobin connected intermediate filaments towards cadherin based cell-cell junctions 

were described to facilitate mechanoresponces. Local pulling force was applied to 

Xenopus mesendoderm cell cadherin adhesions via C-cadherin coated magnetic beads and 

possible changes in cell polarity or migration were analyzed. This applied tension to the 

cadherin based adhesions induced traction forces directed to the opposite site of the applied 

force. This effect was induced by start of cellular migration caused by the new formation of 

polarized protrusions. Cadherins are associated to actin- and intermediate- filaments (IFs). By 

incorporating GFP labelled keratin into the Xenopus mesendoderm cells, strong GFP signals 

were detected at the cadherin cell - beads cadherin junctions. By impairing Keratin 

intermediate filament assembly through usage of antisense morpholinos, the before detected 

protrusive activity was perturbed (Weber, Bjerke et al. 2012).  
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Figure 2. Physical characteristics of the extracellular matrix (ECM) control cytoskeletal and junctional properties 

of polarized epithelial cells. Figure adapted from DuFort, Paszek et al. 2011, Nat Rev Mol Cell Biol. 

 

 

1.2.13  Angiomotin family 

 

The Angiomotin protein family of scaffold proteins comprises three members (Bratt, Wilson 

et al. 2002). The founding member angiomotin (Amot) was initially identified as a receptor 

for the angiogenesis inhibitor angiostatin. It was first described to be essential for endothelial 

cell migration (Troyanovsky, Levchenko et al. 2001). Amot sequence analysis showed that 

this protein was not similar to any known protein at the time and was found to belong to a 

novel protein family including AmotL1 (or JEAP) that was identified in a screen for 

endothelial junction proteins and AmotL2 (or LCCP) identified by homology searches in 

GenBank (Bratt, Wilson et al. 2002, Nishimura, Kakizaki et al. 2002). 
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Angiomotin family members have been found in human, mouse and zebrafish but not in 

Drosophila, yeast or bacterial genomes (Bratt, Wilson et al. 2002). These proteins act as 

scaffolds in that they contain interaction sites enabling the formation of protein complexes. 

The most conserved domain is the central coiled-coil domain which serves as an 

oligomerization site. Amot proteins form homo-oligomers and it has also been shown that 

Amot and AmotL1 can associate to form hetero-oligomers (Ernkvist, Birot et al. 2008, Zheng, 

Vertuani et al. 2009). 

Furthermore, the coiled-coil domain also allows the binding of the tumor suppressor Merlin 

which displaces Rich1, a small GTPase Activating Protein, and a positive regulator of Rac1, 

resulting in inhibition of Rac and Ras-MAPK pathways. These data indicate that Amot plays 

a critical role in mediating tumorigenesis caused by NF2 inactivation and could be exploited 

as a target in NF2-related cancers (Yi, Troutman et al. 2011). 

An important role in regulating cell polarity was indicated by the findings that Amot proteins 

associate to the Par3 and Crb3 polarity protein complexes via a C-terminal PDZ binding motif 

(Wells, Fawcett et al. 2006, Ernkvist, Luna Persson et al. 2009). Deletion of this motif 

abrogates protein-protein interaction resulting in loss of pro-migratory activity of Amot 

(Levchenko, Aase et al. 2003).  

The N-terminal domain of all three proteins contain conserved WW-binding motifs mediating 

the interactions to the tight junction protein MAGI1, the transcriptional co-activator YAP and 

the E3 ligase NEDD4 (Patrie 2005, Wang, Huang et al. 2011, Wang, An et al. 2012).  

Furthermore Amot has been demonstrated do bind F-actin in endothelial cells controlling 

cellular shape and AmotL1 has been shown to bind F-actin in epithelial cells promoting actin 

cytoskeleton remodelling (Ernkvist, Aase et al. 2006, Gagne, Moreau et al. 2009). The 

interaction partners of the Amot family suggest a role in coordinating and integrating polarity, 

cell-cell adhesion and cytoskeletal signalling pathways, which is of course of interest in 

understanding morphogenic events during normal and cancer development.  

Strategies to inactivate Amot in endothelial cells in vitro, as well as zebrafish and mouse in 

vivo have shown that Amot is essential for normal angiogenesis. The primary role appears to 

be the control of directional migration in response to angiogenic factors such as VEGF and 

bFGF. Knock-down of Amot in zebrafish results in loss of migration of inter segmental 

vessels which lack polarized protrusions of filopodia (Aase, Ernkvist et al. 2007).  

Similar findings have been observed in conditional inactivation of the Amot gene during 

retinal vascularization of postnatal mice. Here, migration and the extension of filopodia are 

also affected (Zheng et al., unpublished data). 

file:///F:/Downloads/Angiomotin%20chapter%20(2).docx%23_ENREF_22
file:///F:/Downloads/Angiomotin%20chapter%20(2).docx%23_ENREF_28


36 

 

 

 

 

Furthermore it has been reported, that Amot, AmotL1 and AmotL2 bind via their C-terminal 

located PDZ binding motif the RhoA GTPase exchange factor Syx. This binding was essential 

for endothelial cell migration, as the knockdown of Amot lead to inhibition of intersegmental 

vessel migration during zebrafish angiogenesis. Syx is expressed in endothelial cells and is 

dependent on Amot for spatiotemporal targeting of RhoA to the leading edge of migrating 

cells (Ernkvist, Luna Persson et al. 2009). 

It has been long known that tumor growth, invasion and metastasis are depending on the de-

novo formation of blood vessels. Different strategies have been employed to target Amot and 

tumor angiogenesis. The Holmgren and Cavallo labs have shown that Angiomotin DNA 

vaccination could prevent breast cancer outgrowth in a transgenic breast cancer model 

(Holmgren, Ambrosino et al. 2006, Arigoni, Barutello et al. 2012).  

 

 

 

 

Figure 3. Primary domain structure of AmotL2 p100 included binding sites and interacting proteins. 
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2.1.  AIMS OF THIS STUDY- EPSTEIN-BARR VIRUS ENCODED DECONJUGASES 

 

The general aim of the work presented in this thesis, was to elucidate and characterize novel 

deubiquitinating enzymes (DUBs) or ubiquitin-like proteases (ULPs) encoded within the 

genome of Epstein-Barr virus (EBV).  

 

More specifically, we wanted to: 

 

- develop a bacterial screening assay based on usage of Ub/UbL-modifier reporter constructs,     

to test the EBV-ORFeome for encoded functional DUBs and ULPs 

 

- characterize the discovered DUBs and ULPs via mutation analysis and usage of functional 

reporter and probes 

 

- elucidate the functional role of EBV encoded DUBs or ULPs in the viral life cycle,      

including detection of interaction partners  

 

 

2.2  AIMS OF THIS STUDY- AMOTL2 IN CONTROL OF CELL TOPOLOGY 

 

The general aim of the work presented in this thesis, was to elucidate the function of AmotL2 

p100 in epithelial cells.  

 

More specifically, we wanted to: 

 

- construct AmotL2 shRNA and produce AmotL2 shRNA carrying lentiviruses to produce 

stable transfected epithelial knockdown cell lines 

 

- investigate changes on cell shape and polarity in stable transfected AmotL2 KD´s in MDCK 

and CaCo2 cells, detected in 2D- and 3D- assays, assayed by fluorescence microscopy 

 

- investigate and detect AmotL2 p100 involved cellular pathways, using fluorescence imaging 

and Co-IP/pull-down strategies to detect pathway interacting proteins. 
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3.  RESULTS AND DISCUSSION 

 

3.1  Publication I  

 

"Epstein-Barr Virus encodes three bona fide ubiquitin-specific proteases" 

 

This publication was divided into a bioinformatics part and a biochemical orientated 

experimental part. The overall aim was, to predict in silico EBV encoded ORFs with distant 

functional homologues of human deubiquitinating enzymes (DUBs) using sequence analysis 

methods. Candidate ORFs were further characterized by detecting their functional ability to 

process an ubiquitin conjugated reporter and probe construct. In following the in silico 

detected catalytic active cysteines were confirmed via mutation analysis.  

 

Bioinformatics approach: 

EBV encodes approximately 100 ORFs were most of them remain to be functional 

characterized. Given the essential role of DUBs within a cell, as described in previous 

chapters, a bioinformatics orientated strategy was developed with the aim to predict viral 

DUBs with distant functional human homologues. Four search strategies based on sequence 

analysis were used to identify putative DUBs encoded in the EBV genome. 

(i) Sequence alignment with the conserved C- and H-boxes of known DUB families. As 

mentioned before, all DUBs contain conserved regions within their catalytic domains, which 

are for most of them located around the catalytic active cysteine and histidine, also called C- 

and H-boxes. In the case of the JAMM DUB family, which are metalloproteases, only H-

boxes are present. A data set containing the sequences of human DUBs was aligned to the 

EBV ORF-eome by using the program CLUSTAL W. This widely used multiple sequence 

alignment program starts by doing a pair wise sequence alignment. Afterwards it generates a 

phylogenetic tree, a branching diagram showing the evolutionary relationships among species. 

Thereafter the program uses the phylogenetic tree to carry out a multiple alignment. 

Subsequently, sequence alignment with the BLAST (Basic Local Alignment Search Tool) 

program was performed. BLAST belongs to the most used sequence analysis methods and 

enables homology detection using pair wise sequence comparison. The characteristics of this 

program are short running times with a minimal sacrifice to distant sequence relationships. 

The resulting scores from a BLAST search have a well-defined statistical interpretation, 

making it possible to discriminate real matches from background hits (112). 

 

http://en.wikipedia.org/wiki/Multiple_sequence_alignment
http://en.wikipedia.org/wiki/Multiple_sequence_alignment
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Species
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(ii) Pattern search of conserved catalytic domains is a family based method, which uses as 

search criteria the conserved sequence information assembled in a set of homologue proteins 

(113). Patterns are the occurrence of distinct amino acids, which are conserved throughout 

members of a certain protein family. In our study, family based search pattern were derived 

from the aligned C- and H-box sequences of the known human DUBs. Pattern search with 

those conserved boxes accomplishes a more stringed assessment of the possibility that 

identified domains might be true C- or H-box homologues.  

(iii) Hidden Markov Model (HMM)-based searches involve two steps. At first a statistical 

model from the sets of aligned sequences has to be build and second that model has to be 

compared to query sequences. HMM is a profile-based model, which is in general more 

sensitive than pair wise methods like described above. HMMs are “trained” to make use of 

position specific scoring matrices, which represent the distribution of amino acids at each 

position in the conserved domains of particular protein families (114). In our studies family 

specific HMMs were trained from the aligned C- and H-boxes of the different human DUB 

families.  

(iv) Identification of Cys and His residues that are conserved in homologues encoded by other 

members of the HHV (human herpes virus) family, followed by an HMM search was the last 

step of investigation. This analysis was based on the assumption that amino acid residues, 

which are critical for protein function, like enzymatic activity, may be conserved in the HHV-

family. In our studies we were able to locate conserved Cys and His residues in identified 

HHV-family ORF homologues by sequence comparison. In following the patches surrounded 

by the detected conserved Cys and His residues were searched for known DUB, C- and H-box 

patterns by using the DUB family specific trained HMMs.  

Via the above described search strategies several viral candidate ORFs were identified to 

comprehend possible DUB function. To select the most potential ORFs for following 

functional studies, scoring criteria were devised for each search, which were compiled in a 

global DUB score (see publication I for details). In total 16 EBV ORFs, which achieved the 

highest global DUB score, were selected for following functional studies.  

 

Biochemical approach: 

In order to evaluate the possible DUB function of the viral candidate ORFs we developed a 

bacterial screening assay. We cloned the candidate ORFs or ORF-domains in GST bacterial 

expression vectors and designed a reporter construct, which is comprised of Ubiquitin C-

terminal covalently linked with the N-terminus of GFP. Afterwards the Ub-GFP reporter 



40 

 

 

 

 

construct and one of the GST-tagged EBV-ORFs at the time were transformed into E.Coli. 

The enzymatic activity of the candidate ORF was assayed by co-expression of the Ub-GFP 

reporter construct. Cleavage of the Ub-GFP reporter was detected via SDS-Page and Western 

blotting by usage of a specific antibody against an epitope located on the GST protein. To 

check the positive cleavage of the reporter during each assay, a GST fused USP19 (human 

DUB) was used. Via this method three EBV candidate ORFs could be identified, which were 

able to cleave the Ub-GFP reporter significantly above background. The N-terminal fragment 

of BPLF1, a large tegumental protein with earlier described DUB activity conserved amongst 

the HHV-family (68) was able to cleave the Ub-GFP reporter to the highest degree. The EBV 

ORFs BSLF1, known to function as an EBV primase (117), and BXLF1, known to function 

as an EBV thymidine kinase (118), were also able to cleave the reporter.  

In order to further characterize their DUB activity, those three proteins were overexpressed in 

bacteria and in following purified. The purified proteins were assayed by detection of 

cleavage of the flurogenic substrate Ub-AMC. This substrate contains the flurophore AMC, 

which upon 380 nm wavelength excitation and cleavage of the conjugated Ubiquitin starts to 

emit fluorescence with a wavelength of 460 nm (115). All three EBV ORFs hydrolyzed Ub-

AMC with different kinetics suggesting different affinities for the substrate.  

The ability of BSLF1 and BXLF1 to cleave Ub-AMC was significantly improved when equal 

amounts of immunoprecipitated proteins expressed in mammalian cells were taken for the 

assay. This circumstance may be explained by the impact of possible posttranslational 

modifications in increasing the activity of BSLF1 and BXLF1, which are not achieved in 

bacteria.  

In order to further characterize the DUB activity of BPLF1-N, BSLF1 and BXLF1, the 

predicted catalytic active cysteine residues were mutated to alanine residues to obtain 

catalytic inactive proteins. These mutations were created by PCR mediated site-directed 

mutagenesis. Via this method the catalytic inactive protein mutants BPLF1_C61A, 

BSLF1_C819A_C824A and BXLF1_C491A were generated.  

According to the annotated functions of BPLF1, BSLF1 and BXLF1 those proteins are 

involved in DNA replication and nucleotide metabolism pathways (68, 69, 117, 118) that are 

known to be regulated by ubiquitination and UbL-modification (2, 8, 9, 10). The following 

publication (II) will discuss the essential role of BPLF1_N in virus replication. The DUB 

functions of BSLF1 and BXLF1 within the virus life cycle need to be investigated in further 

studies. 
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3.2  Publication II  

 

“A deneddylase encoded by Epstein–Barr virus promotes viral DNA replication by 

regulating the activity of cullin-RING ligases” 

 

The overall aim of this work was to elucidate the functional purpose of the discovered 

deneddylase activity comprised in the N-terminal fragment of the viral encoded BPLF1 ORF. 

We were able to confirm the deneddylase activity of BPLF1-N in different assays with 

different NEDD8 conjugated functional probes. We identified members of the cullin family as 

substrates of BPLF1-N´s deneddylase activity. We further elucidated the consequence of 

BPLF1-N binding and deneddylating cullins assembled in CRLs, which was the stabilization 

of CRL substrates involved in cell cycle regulation. We could show that this BPLF1-N 

controlled accumulation of replication regulating proteins was essential for an S-phase like 

cellular environment and endoreduplication in BPLF1-N expressing cells. We further could 

demonstrate that the impact of BPLF1-N expression on viral genome replication was 

controlled by one stabilized CRL substrate, the DNA licensing factor CDT1. 

 

In order to extend the scope of the bacterial screening assay we designed new reporter 

constructs. Apart from the Ub-GFP reporter, we further constructed NEDD8-GFP, SUMO1-

GFP, SUMO2-GFP, SUMO3-GFP and ISG15-GFP reporter by linking the C-terminus of the 

UbL-modifier covalently to the N-terminus of GFP. We used an EBV-ORF library, were the 

entire ORF or ORF-domains were cloned into GST-bacterial expression vectors. The assay 

was performed by expressing the particular Ub/UbL-reporter construct together with one of 

the GST-tagged EBV-ORFs in E.Coli bacteria. The possible cleavage of the Ub/UbL-GFP 

reporter was detected via SDS-PAGE and Western blotting by usage of a specific antibody 

against an epitope located on the GST protein. The most striking outcome of this assay was, 

that the N-terminal fragment of BPLF1 was able to process the NEDD8-GFP reporter with 

similar efficiency as the Ub-GFP reporter.  

In order to characterize further the novel discovered deneedylase activity of BPLF1, we 

performed further functional assays. We detected, that bacterial expressed GST-BPLF1-N 

processed the flurogenic substrates Ub-AMC and NEDD8-AMC with equal efficiency. We 

compared the ability of eukaryotic expressed BPLF1-N to bind to the Ub-VS and NEDD8-VS 

functional probes. Those probes are used to characterize catalytic active cysteine 

deconjugases (32). The interaction of the probe towards the enzyme can be visualized by a 
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shifted enzyme protein band in a Western Blot. As a result we detected, that BPLF1-N was 

able to bind both probes with comparable efficiency.  

Taken together all three functional assays with the functional reporter and probes 

Ub/NEDD8-GFP, Ub/NEDD8-AMC and Ub/NEDD8-VS suggest similar affinities for 

BPLF1-N towards ubiquitinated and neddylated substrates.  

Next we addressed the question, if BPLF1-N was able to deneddylate cellular proteins in vitro 

and in eukaryotic cells. We expressed V5-tagged NEDD8 in eukaryotic cells and captured 

neddylated conjugates on anti-V5-conjugated sepharose beads. Those beads were incubated in 

vitro with purified GST-BPLF1-N, resulting in hydrolysis of cellular NEDD8 conjugates. The 

same experiment was repeated with the difference, that Flag-BPLF1 was co-expressed in the 

V5-NEDD8 expressing eukaryotic cells. After lysing the cells and detecting the V5-NEDD8 

conjugates in a Western blot, we observed that BPLF1-N was able to hydrolyse the 

neddylated cellular conjugates. Thus, BPLF1-N appears to be a true deneddylase.  

After this indication we were wondering which cellular neddylated substrates are targeted by 

BPLF1-N. The best characterized neddylated cellular proteins are the cullin family, which 

comprise in human six members: Cul-1,-2,-3,-4a,-4b,-5. The C-terminal neddylation of 

Cullins assembled in cullin RING ligases (CRLs) was shown to enable a sufficient 

polyubiquitination of the particular CRL substrate protein (13, 14). In our studies we could 

show, that BPLF1-N was able to deneddylate Cul1 and Cul4a. We co-expressed in eukaryotic 

cells Flag-BPLF1-N with V5-NEDD8 and Myc tagged Cul1 and Cul4a, which are two 

representative members of the cullin family. After lysing the cells and running their lysate on 

a SDS-PAGE, we were able to detect BPLF1-N´s ability to hydrolyze V5-NEDD8 conjugated 

Cul1 and Cul4a.  

After showing this effect we wanted to investigate, if the enzyme also binds to those two 

cullins. We transfected eukaryotic cells with Flag-BPLF1-N and Myc-Cul1 or Myc-Cul4a and 

performed co-immunoprecipitations (Co-IPs). Cell lysates were separated and the Co-IPs 

were conducted in both ways, using the Flag- and Myc- antibody. Both cullins were shown to 

bind to BPLF1-N in both Co-IP´s (Flag- and Myc- antibody).  

After showing this interaction for overexpressed Cul1 and Cul4a, we repeated this Co-IP 

experiment performed with endogenously expressed Cul4a. We transfected eukaryotic cells 

with Flag-BPLF1-N and separated again the cell lysates, for Co-IP experiments in both ways, 

with an anti-Cul4a and an anti-Flag antibody. Endogenous Cul4a was able to bind Flag-

BPLF1-N, detected in the anti-Cul4a and anti-Flag Co-IP.  

Neddylation of cullins integrated in CRLs enables the E3-ligase complex to polyubiquitinate 
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its specific substrate, which leads to its proteasomal degradation (13). We were wondering, if 

we could stabilize known CRL substrates by overexpressing BPLF-1-N. By knowing that 

BPLF1 is a nuclear protein expressed in the early phase of the productive virus cycle, we 

assumed an involvement of the protein in DNA replication. Several CRL regulated substrates 

are involved in cell cycle control, like the licensing factor CDT1 and the tumor suppressor 

p21 and p27 (120, 121). All those proteins are targeted by Cul1 and/or Cul4 based CRLs 

(119). Expression of those CRL substrates together with BPLF1-N lead to their stabilisation 

detected via Western blot. The accumulation of those cell cycle regulators was reversed in a 

dose dependent manner by overexpression of V5-NEDD8, whereas a mutant V5-NEDD8-VV, 

lacking the C-terminal Gly residue required for conjugation, and HA-ubiquitin had minor or 

no effects.  

As described in earlier chapters, viral modulation of CRLs is a common mechanism to control 

pathways essential for the virus life cycle, like viral replication or hiding from the immune 

surveillance. Several DNA viruses, like HPV (75), Adenovirus (76), SV40 (79) and now also 

due to our studies EBV, have been described to manipulate CRLs to insure their undisturbed 

genome replication.  

After overexpression of BPLF1-N in various eukaryotic cell types it could be shown, that the 

enzyme localises predominately to the nucleus, detected via immunofluorescence. The effect 

of this nuclear accumulation of BPLF1-N was an increased size of the nucleus and on 

prolonged expression, extensive cell death. Those detected effects were not due its 

overexpression but due its catalytic activity, because a catalytic inactive mutant, BPLF1-N 

C61A missed to establish this phenotype. 

To investigate the cause of the nuclear enlargement, BPLF1-N transfected cells were stained 

with propidium iodide, a fluorescent agent, which binds to DNA. After this treatment the cell 

cycle profile and DNA content was assessed. Taken together the compiled results of those 

experiments indicated a deregulation of the S-phase and an ongoing re-replication of cellular 

DNA without mitosis (endoreduplication). Almost all BPLF1-N expressing cells died within 

4-5 days. This phenotype was reversed in a dose-dependent manner by overexpression of 

NEDD8 but not by overexpression of ubiquitin. This result suggests that BPLF1-N´s 

deneddylase activity rather then its DUB activity seems to be responsible for this here 

described  phenotype. Further BPLF1-N overexpression experiments in different eukaryotic 

cell lines elucidated the stabilisation of several CRL substrates or activation of certain 

regulator proteins, essential for DNA synthesis and cell cycle progressing. The composition of 

those activated or stabilised proteins favours the earlier described S-phase like 
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environment and endoreduplication in BPLF1-N expressing cells (see for details publication 

II). Among those stabilised proteins was the DNA licensing factor CDT1 (chromatin licensing 

and DNA replication factor 1). CDT1 functions as a regulatory protein of the pre-RC (pre-

replication complex), which is essential for the initiation of DNA replication. The pre-RC 

binds to the oriP (origin of replication) and “licenses” the initiation of replication during the 

S-phase. Cdt1 is tightly regulated through ubiquitin-dependent proteolysis facilitated by Cul1 

and Cul4 based CRLs (122). The involvement of the cellular DNA replication machinery in 

replication of the viral genome is poorly understood for the HHV-family.  

To elucidate whether the detected S-phase like environment and endoreduplication in BPLF1-

N expressing cells has an impact of viral replication we used the Akata-Bx1 cell line. This B-

cell lymphoma cell line carries a recombinant EBV genome within, which can be induced to 

start its lytic cycle by crosslinking of cell surface immunoglobulins. Entrance into the viral 

replication state can be visualised by the expression of a viral early protein substituted with 

GFP (green fluorescent protein). EBV replication in those cells caused the same phenotype as 

in BPLF1-N overexpressed cell lines, an S-phase like environment and endoreduplication, 

detected via cell cycle diagram assays.  

The same milieu of activated or CRL stabilised proteins essential for DNA synthesis and cell 

cycle progressing was detected in those EBV reactivated cells as in BPLF1-N expressing 

cells. Among them also the stabilised Cul1 and Cul4 based CRL target CDT1. Upon silencing 

BPLF1 expression in those induced Akata cells via shRNA (short hairpin RNA) against 

BPLF1 mRNA, the normal cell cycle diagram could be reconstituted. After overexpression of 

CDT1 in those BPLF1 knock downed cells, the BPLF1-N detected S-phase like phenotype 

could be reconstituted to a certain extend. This result demonstrates the big impact of the 

BPLF1-N stabilized CRL substrate CDT1. It also indicates the essential involvement of 

probably other stabilized CRL substrates to reconstitute the BPLF1-N overexpression 

phenotype.  

In order to investigate the impact of BPLF1 expression towards viral genome replication, we 

assayed the viral DNA contend in BPLF1 knock down induced Akata cells via RTq-PCR (real 

time quantitative-PCR). The knock down of BPLF1 resulted in an almost complete inhibition 

of virus DNA replication. Thereafter, we also wanted to investigate the impact of  

overexpressed CDT1 in BPLF1 knock downed, induced Akata cells. Overexpression of CDT1 

let to reactivation of viral replication to an almost full degree.  

To summaries, this data demonstrates that stabilisation of CDT1 is critical for the introduction 

of an S-phase-like cellular environment, and the driving factor for viral replication. 



45 

 

 

 

 

To investigate whether BPLF1-N´s deneddylase activity and caused induction of cellular 

DNA re-replication are conserved among the HHV-family, we tested the BPLF1 homologues 

UL36 of HSV and M48 of MCMV. GST fusions of the N-termini of UL36 and M48 cleaved 

the Ub-GFP and NEDD8-GFP reporter constructs with comparable efficiency in the above 

explained bacterial screening assay. Also Flag tagged UL36-N and M48-N reacted with the 

Ub-VS and NEDD8-VS suicidal probes as described earlier for Flag-BPLF1-N. 

Overexpression of Flag-UL36-N and Flag-M48-N also introduced an S-phase cellular 

environment and endoreduplication, as seen after Flag-BPLF1-N expression. Taken together, 

those results suggest that the function of BPLF1 is conserved among members of the HHV-

family.    

 

 

3.3  Publication III  

 

“AmotL2 links E-cadherin to contractile actin filaments and controls cell topology” 

 

The general aim of this work was to elucidate the function of AmotL2 p100 in epithelial cells. 

In this study, we describe that the longer AmotL2 isoform, AmotL2 p100, localizes to the 

adherens junctions of polarized epithelial cells and controls cell geometry and topology.  

We stably knocked down AmotL2 in MDCK and Caco-2 epithelial cells as in HaCaT 

keratinocytes by using shRNA carrying lentiviruses targeting AmotL2. After polarizing those 

AmotL2 shRNA cells we detected a loss of actin filaments that run perpendicular to the cell-

cell junctions. This loss of actin filaments destabilized the cellular architecture so 

dramatically, that cells were not able to maintain their typical cuboidal architecture. Instead 

cells collapsed and grew flat on their substrate leading to a ~6-fold increase of cellular surface 

area. This effect was due to the depletion of AmotL2 level as overexpression of human 

AmotL2 p100 in AmotL2 shRNA MDCK cells rescued normal cell surface area.  

Confluent grown polarized epithelial cells predominately adopt a hexagonal or pentagonal 

cell shape which is lost in AmotL2 shRNA cells. After polarizing AmotL2 depleted MDCK 

and Caco-2 cells their cellular shape was changed which resulted in cells bordering 

predominately to only four other neighbors. To confirm that the loss of contractile actin fibers 

was responsible for the seen effect we treated cells with the actin contractility inhibitor 

blebbistatin which affected epithelial cell geometry similar to the phenotype observed after 

AmotL2 depletion. 
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MDCK and Caco-2 cells form cyst-like structures when grown in soft matrix in vitro. Cyst 

formation was almost completely abrogated in AmotL2 shRNA cysts, which grew as clumps 

of cells with no distinguishable apical or basal compartments. The loss of the ability to form 

cysts may result from the lost capacity to establish normal epithelial cellular geometry. 

However, AmotL2 depletion in MDCK cells did not affect cell polarity, as detected by 

analyzing polarity markers as E-cadherin, β-catenin, Ezrin and podocalyxin. 

After detecting the loss of actin fibers causing alterations of cell geometry in different 

AmotL2 shRNA epithelial cells in vitro we were able to detect the same phenotype in 

AmotL2 knock out zebrafish embryos in vivo. We targeted the translation initiation site of 

AmotL2 using an anti-sense morpholino (MO) approach. Skin keratinocytes of AmotL2 MO 

zebrafish embryos showed an almost complete removal of cytoplasmic actin filaments. The 

cell surface area was doubled and the cell shapes shifted from predominately hexagonal 

towards preferential pentagonal shaped cells in AmotL2 MO skin keratinocytes. 

Co-immunoprecipitation strategies revealed that AmotL2 p100 binds to E-cadherin, MAGI1 

and actin. By mutating the first PY-motif of AmotL2, (precisely the LPTY-motif) we were 

able to disrupt the binding from AmotL2 to MAGI1 and actin. The binding towards E-

cadherin still needs to be elucidated. 

As we detected a loss of contractile actin filaments that run perpendicular to the cell-cell 

junctions we addressed the question if AmotL2 depletion would render epithelial sheet 

topology. AmotL2 shRNA keratinocytes were grown on flexible silicon matrices to 

confluency and in following stretched. AmotL2 shRNA cells broke at the sites of junctions 

due lack of supporting actin fibers whereat Ctrl shRNA could withstand the mechanical stress 

and keep attached to each other. 

The Hippo pathway is involved in organ size control by regulating cell proliferation, 

differentiation and apoptosis. The only downstream targets so far described are the 

transcriptional co-activators YAP and TAZ (Chan, Lim et al. 2013). By comparing AmotL2 

and YAP/TAZ activated gene levels in various tissues of various patient samples 

(GeneSapiens database) we found a clear correlation between YAP target genes and AmotL2 

expression across tissues.  

To analyze whether AmotL2 knockdown affected proliferation rates and contact inhibition we 

conducted cell-doubling assays. Analysis of the resulting growth curves showed that AmotL2 

shRNA cells had a slower growth rate and reached the stage of contact inhibition at a lower 

density than the Ctrl shRNA cells.  

Upon cell-cell contact YAP1 was described to re-localize to the cytoplasm explaining why 
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cells stop proliferating upon cell-cell contact (von Gise, Lin et al. 2012). By investigating 

YAP1 subcellular localization in response to increased cell density we could show that 

AmotL2 shRNA cells localize YAP1 earlier to the cytoplasm than the Ctrl shRNA cells. This 

effect was due to the increased cell size and thereby premature cell-cell contact inhibition in 

AmotL2 shRNA cells. These data were consistent with our findings in zebrafish where the 

skin of AmotL2 morphants exhibited a lower cellular density than the control morphants. 

We concluded that AmotL2 is a critical component in the adhesion junctions that controls 

intracellular contractility as well as relaying forces between cells. 

 

 

4.1  FURTHER PERSPECTIVES - EPSTEIN-BARR VIRUS ENCODED DECONJUGASES   

 

In previous experiments we could show, that BPLF1-N was able to bind to Cul1 and Cul4a. In 

order to address the question, if BPLF1-N was able to bind to the whole cullin family, we 

overexpressed all Myc-tagged cullins (Cul-1,-2,-3,-4a,-4b,-5) together with Flag-BPLF1-N in 

eukaryotic cells. In following we performed Co-IP experiments with Flag- and Myc- 

antibodies and were able to Co-IP Flag-BPLF1 with all Myc-cullins and also all Myc-cullins 

with Flag-BPLF1. These results indicate that CRLs comprised of the entire cullin family may 

be target of BPLF1-N.  

We were also interested to investigate on which cullin domain BPLF1-N binding occurs and 

if the binding is direct or if cellular adaptors are involved. To address this question we 

generated different GST tagged Cul4a domains. In following pull-down assays with 

eukaryotic cell lysates containing overexpressed Flag-BPLF1-N, we could identify its site of 

interaction towards the cullin C-terminus, closely located to the neddylation site. In order to 

investigate, if cellular adaptors are involved in this binding, the experiment was repeated with 

bacterial expressed and purified His-BPLF1-N. Also this attempt resulted in binding of 

BPLF1-N to the same C-terminal located Cul4a domain, showing that this interaction is direct 

and no cellular adaptors are involved.  

In order to elucidate the BPLF1-N residues involved in binding towards cullins, in silico 

sequence alignments among all human virus homologues of BPLF1_N were conducted. The 

alignment result revealed a conserved -helical structure located on the enzymes surface. A 

high degree on conservation was detected on two charged residues Asp86 and Asp90 pointing 

outwards of this -helix. After mutating those two residues into opposite charged residues 
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Asp86Arg and Asp90Arg the interaction of Flag-BPLF1_D86R_D90R towards Myc-Cul1 

and Myc-Cul4a could be reduced to 90%, detected via Co-IP experiments. To insure that 

this degrease in binding was not due possible structural changes caused by the mutation, the 

conserved - helical structure containing Asp86 and Asp90 were cloned into a bacterial His-

expression vector. In following the same mutations D86R_D90R were applied on this 

BPLF1-N helical fragment and pull down assays were conducted with GST-Cul4a. The result 

was showing again a 90% reduction in binding compared to the wild type BPLF1-N helical 

fragment. The outcome of those binding experiments strongly suggests that the two conserved 

residues Asp86 and Asp90 located within the conserved - helical structure are the essential 

residues involved in the interaction towards Cul1 and Cul4a and possibly to all cullins.  

 

 

 

4.2  FURTHER PERSPECTIVES - AMOTL2 IN CONTROL OF CELL TOPOLOGY 

 

In the third report of this thesis, we have identified a novel link between cell contacts and the 

cytoskeleton. The connection of E-cadherin to the actin filaments have been a point of great 

controversy (Drees, Pokutta et al. 2005). Our data shed light on this aspect as it identifies 

AmotL2 as a specific linker between E-cadherin and the cytoskeleton. However, a number of 

questions remain. For example, the exact composition of this complex is unclear. Future 

experiments using deletion constructs will provide evidence about which exact domains of 

AmotL2 mediate binding to E-cadherin and whether these are direct or indirect interactions.  

Another issue is how the ternary complex of AmotL2 and E-cadherin specifically orchestrates 

the development of actin filaments that run perpendicular to the cell membrane. The physical 

coupling of MAGI1 to AmotL2 is essential for the binding to actin. MAGI1 has been shown 

to bind GTPase exchange factor PDZ-GEF1 which in its turn activates RAP1 (a small GTPase 

known to regulate the actin cytoskeleton) (Sakurai, Fukuhara et al. 2006). It is therefore 

conceivable that the homotypic interaction of E-cadherin leads to the activation of RAP1 in an 

AmotL2 dependent manner and thus regulates actin fiber formation. Future experiments will 

address whether AmotL2 is required for RAP1 activity during cell contact formation. 

We present evidence that AmotL2 associates to actin filaments, which mechanically connect 

cells with each other and which are essential for maintaining epithelial geometry and 

topology. It is tempting to speculate that AmotL2 is part of a mechanotransduction complex 
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that can relay signals over multiple cell layers in epithelial sheets. Future experiments will 

perhaps provide evidence on whether mechanical and biochemical signals can be transduced 

via AmotL2. One possible effector is clearly YAP1, however, our experiments indicate that 

AmotL2 indirectly controls YAP1 cellular localization by regulating cell shape.  

Is AmotL2 essential for normal organogenesis? Parallel studies in the lab by Hultin, Zheng et 

al. show that AmotL2 is required for the expansion of the dorsal aorta. This was shown in 

zebrafish and in mouse. Using conditional AmotL2 KO mice it will be possible to address 

whether AmotL2 is required for normal skin development and function. This should be also 

tested in models of wound healing and tumor development. Taken together, the data presented 

in paper 3 will perhaps provide the grounds for further studies on how epithelial cells connect 

mechanically and how force may be translated to biochemical signals. 

We could show in our experiments that AmotL2 depleted keratinocytes (HaCaT) were able to 

undergo cell-cell contact inhibition leading to a termination of proliferation. AmotL2 shRNA 

cells undergo earlier inhibition than the Ctrl shRNA cells due to their increased cell size 

leading to lower cell counts per defined cell area. As a readout of proliferation termination we 

used the cytoplasmic localization of the transcriptional co-activator YAP1 towards the 

cytosol. The relocalization of YAP1 from the nucleus to the cytoplasm in confluent cells has 

been suggested to explain why cells stop proliferating upon cell-cell contact (von Gise, Lin et 

al. 2012). We would like to confirm the end of proliferation via the more established BrdU 

cell proliferation assay. BrdU is a chemical dye, which substitutes for thymidine in newly 

synthesized DNA. A later used BrdU antibody visualizes the compound, detecting cells which 

are still proliferating (Waldman, Dolbeare et al. 1988). We also want to confirm our data by 

reproducing the conducted proliferation assays with other epithelial cell lines, like AmotL2 

shRNA MDCK and Caco2 cells. 

We could detect via co-immunoprecipitation strategies, that AmotL2 p100 binds to the 

adherens junctions components E-cadherin, MAGI1 and actin. We pinpointed the site of 

interaction from MAGI1 and actin towards the N-terminal located LPTY-motif of AmotL2 

p100 by substituting the tyrosine to alanine on that conserved binding site. To elucidate the 

site of interaction towards E-cadherin, we want to repeat our co-immunoprecipitation 

experiments by overexpressing truncated AmotL2 p100 fragments covering the whole protein 

length. We detected a vanishing of contractile actin fibers which run perpendicular to cell-cell 

junctions causing alterations of cell geometry in different AmotL2 shRNA epithelial cells in 

vitro as well as in AmotL2 KO zebrafish embryos in vivo. We generated AmotL2 KO mice 
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and want to evaluate cell geometry in mice skin to verify our data.  
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