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ABSTRACT 

Most human diseases have been shown to have a genetic basis that is linked to regulation of 

gene expression at the transcriptional or post-transcriptional level. In the central dogma of 

biology, deoxyribonucleic acid (DNA)  is transcribed to messenger ribonucleic acid 

(mRNA), and then translated into proteins; dysfunction in any of these processes may 

contribute to the development of disease. Sources of such potential irregularities include, 

but not limited to, the following: point mutations in DNA sequences, copy number 

alterations (CNAs) and abnormal mRNA and microRNAs (miRNAs) expression. MiRNAs 

are a type of non-coding RNA that inhibit the transcription and/or translation of specific 

target mRNAs. Current technologies allow the identification of biomarkers and study of the 

complex interplay between DNA, mRNA, miRNA and phenotypic variation. This thesis 

aims to tackle the statistical challenges that have arisen with the application of these 

technologies to investigate various genomic and transcriptomic alterations. 

In study I, modified least-variant set normalization for miRNA microarray, a new algorithm 

and software were developed for microRNA array data normalization. The algorithm 

selects miRNAs with the least array-to-array variation as the reference set for 

normalization. The selection process was refined by accounting for the considerable 

differences in variances between probes. Data are provided to show that this algorithm 

results in better operating characteristics than other methods.   

In study II, joint estimation of isoform expression and isoform-specific read distribution 

using multi-sample RNA-Seq data, a joint model and software were developed to estimate 

isoform-specific read distribution and gene isoform expression, using RNA-sequencing 

data from multiple samples. Observation of similarities in the shape of the read 

distributions solves the problem that the non-uniform read intensity pattern is not 

identifiable from the data provided by one sample.  

In study III, integrated molecular portrait of non-small cell lung cancers, molecular markers 

at the DNA, mRNA and miRNA level that can distinguish between different 

histopathological subtypes of non-small cell lung cancer were identified. Additionally, 

using integrated genomic data including CNAs and mRNA and miRNA expression data, 

three potential driver genes were identified in non-small cell lung cancer, namely MRPS22, 

NDRG1 and RNF7. Furthermore, a potential driver miRNA, hsa-miR-944, was identified. 

In study IV, integration of somatic mutation, expression and functional data reveals potential 

driver genes predictive of breast cancer survival. An analytic pipeline to process large-scale 

whole-genome and transcriptome sequencing data was created, and an integrative approach 

based on network enrichment analyses to combine information across different types of 

omics data was proposed to identify putative cancer driver genes. Analysis of 60 patients 

with breast cancer provided evidence that patients carrying more mutated potential driver 

genes had poorer survival.  
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1 CHAPTER 1 - INTRODUCTION 

It has been found that genetic variations and patterns of gene expression variability are 

associated with most complex human diseases, such as cancer, diabetes and Alzheimer’s 

disease (Stratton et al., 2009). Deoxyribonucleic acid (DNA) and messenger ribonucleic 

acid (mRNA) play fundamental roles in the central dogma of biology (Figure 1.1), in which 

DNA is transcribed to mRNA and then translated to protein. Irregularities at the DNA and 

RNA level would potentially disturb normal biological processes, and lead to a transformed 

phenotype.  

 

Figure 1.1 DNA is transcribed to mRNA and then translated to protein. In the transcription 

process, isoforms are generated due to alternative splicing. MicroRNAs, another type of 

RNA, bind to target mRNAs and negatively control their expression through both the 

transcriptional and post-transcriptional regulation. (Adapted from Jiang, 2009).  

 

The genome and transcriptome can ‘go wrong’ in many aspects. Variation at the DNA level 

can occur in a variety of ways, including a single substitution of a nucleotide, duplication or 

deletion of a large segment of nucleotide sequences, and other structural variations. DNA 

contains genes, which are templates to produce proteins. How much protein is produced is 

regulated by the level of gene expression, which is a measure of gene activity. An abnormal 

level of gene expression is thus an indicator of abnormal production of proteins, and 
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subsequent phenotypic changes. In recent years, the substructures of genes – isoforms – have 

attracted much attention in disease association studies. As shown in Figure 1.1, during the 

transcription process, introns are removed and exons are joined together to form the template 

to produce proteins. Due to alternative splicing, different combination of exons is used to 

form the isoform. So for a gene containing multiple isoforms, its expression level is in fact 

the sum of individual  isoforms expression. Studying the isoform level expression is useful 

for identifying the exact transcript associated with the phenotype. During the transcription 

process, microRNAs (miRNA; another type of RNA) are also transcribed. MicroRNAs have 

been found to negatively regulate gene expression, and are widely recognized as potential 

biomarkers of disease (Pasquinelli et al., 2005; Fabbri et al., 2008; Guarnieri and DiLeone, 

2008).        

Microarray technology has been widely used to simultaneously measure relative mRNA 

expression levels of tens of thousands of genes. The development of microarray technology 

has provided researchers and clinicians with a great opportunity to identify potential genetic 

features that show differential expression across subjects with different phenotypes. In 

order to accurately estimate the expression levels from raw intensity values, one of the most 

important steps is the selection of appropriate pre-processing methods which commonly 

entail background correction, summarization and normalization. While a huge amount of 

work has been done for well-known array platforms such as mRNA and comparative 

genomic hybridization (CGH) array data, miRNA platforms have only recently been 

investigated. High-throughput RNA sequencing is another advanced tool at the forefront of 

expression level measurement. However, there are also problems regarding the accuracy of 

absolute expression estimation using RNA-sequencing data.  

Currently, genetic molecules are identified through separate studies conducted on different 

platforms. Genetic profiles identified in a single study tend to be of the same class (for 

example, DNA, mRNA or miRNA). Different platforms are supposed to add different 
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information; however, methods that utilize biological knowledge to combine data from 

different measurements are lacking. When integrated properly, different types of signal 

detected from the increasing amount of genomic and molecular data could lead to 

investigations which may result in better understanding of the regulatory network of 

disease-causing pathways. Ideally, this could be used to study the way genes function and 

interact with each other.  

While microarray and sequencing technology has developed rapidly in recent years, 

comprehensively extracting information from different platforms and analysing data 

efficiently still pose statistical challenges. In projects I and II, we aimed to address the 

issues by developing a normalization method and an expression estimation method which 

adapts to the underlying data type and relies on few assumptions. Despite the great success 

of genome-wide mRNA expression analysis in biomedical research, current methods have 

focused on analysis of a single type of marker that accounts for only a small proportion of 

risk variants. We anticipated that the new statistical methodologies, proposed in projects III 

and IV, to utilize data from multiple platforms and to identify biologically plausible 

pathways would provide the tool and knowledge required to facilitate the joint discovery of 

genetic and molecular risk factors for various diseases.   

The development of new statistical methods and software is much needed, in order to detect, 

analyse and integrate genetic data. The main focus of this thesis was the development and 

application of computational analysis (1) to quantify expression levels accurately from raw 

array and sequencing data and (2) to distinguish between critical genetic alterations, which 

are potentially driving tumorigenesis, and functionally neutral mutational events.  

This thesis consists of six chapters. In Chapter 2 we provide a review of the genetic and 

transcriptional features studied in the four projects, explaining commonly used terms as 

well as discussing the platforms used to generate the data and potential statistical problems 
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arisen from the technology. The aim of the four studies is described briefly in Chapter 3. In 

Chapter 4 and 5, the motivation, methods and results of each study are outlined and 

discussed. Finally, in Chapter 6, our contribution to the field is summarized with 

concluding remarks. 
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2 CHAPTER 2 - BACKGROUND 

In this chapter, I will introduce the most commonly used terms and concepts in whole-

genome and transcriptome analysis, and provide an overview of existing methods and 

technologies used in data generation, pre-processing, analysis and integration. This may be 

helpful in understanding the following chapters.    

2.1 GENETIC VARIATION 

In humans, there are 22 pairs of chromosomes, termed autosomes, plus the X and Y sex 

chromosomes. Chromosomes carry genetic coding information, encoded as sequences of 

nucleotides A, T, C and G. The entire genetic information of an organism is termed the 

genome. There are more than 3 billion bases in the human genome (International Human 

Genome Sequencing Consortium, 2004).  

Genetic variations are differences in the DNA sequence of the genome relative to a reference 

genome. A genetic variation can occur in single or multiple nucleotides, and the latter can 

occur on a small or large scale. Small-scale variations are known as insertions or deletions 

while variations on a large scale, more than 1 kb, are known as copy number variations 

(CNVs) (Freeman et al., 2006). Healthy individuals can carry genetic variations; it is 

important to distinguish between variations among normal and abnormal biological samples. 

Conventionally, the term single nucleotide polymorphism (SNP) refers to a substitution in a 

single base pair at the general population level with a common frequency of at least 1%, 

whereas rare variants with a <1% frequency are often considered to be mutations. There are 

two types of mutations, germline and somatic. Germline mutations are inherited and passed 

from parent to child, whereas somatic mutations are not inherited; for example, mutations in 

tumour tissues are not passed to the next generation. Similarly, CNV refers to variations in 

the number of copies of a section of DNA that occur in the general population, and copy 

number alteration (CNA) usually refers to potentially harmful CNVs in diseased persons. In 
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this thesis, we focus on somatic mutations and CNAs, to investigate their relationship with 

cancer. Currently, microarray and sequencing technologies can simultaneously measure DNA 

changes in thousands to millions of loci in the genome (this is reviewed in section 2.4).  

2.1.1 Somatic mutation 

In human genetics, a mutation is an alteration in the nucleotide sequence of the genome, 

which may or may not cause phenotypic changes. Mutations can result in several different 

types of consequences in the subsequent biological process; mutations in genes can have no 

effect, prevent the gene from functioning properly if not functioning at all. Results from a 

study of genetic variations between different species of Drosophila suggest that 70% of 

protein changes produced by a gene mutation are likely to be harmful (Sawyer et al., 2007). 

Human cancer is caused at least in part by such mutations (Stratton et al., 2009).  

The occurrence and rate of somatic mutations are related to many factors. Mutations can 

occur during DNA replication and may be repaired by a biological pathway known as DNA 

repair. Thus if the function of DNA repair is damaged due to mutation, intuitively we know 

that the mutation rate may be increased. In fact, it has been established that DNA repair is an 

important pathway in the development of cancer. The number of somatic mutations can differ 

considerably between individuals, because some have a high background mutation rate 

(Conrad et al., 2011). Mutations may also occur because of external environmental factors, 

such as radiation or extreme heat. 

With rapid advances in DNA sequencing technology, a huge amount of sequencing data is 

generated and can be used for identification of mutations. The chi-squared test is probably the 

simplest method for detection of somatic mutations, by examining the allelic proportions in 

tumour and normal tissues. Various programs, such as MuTect (Cibulskis et al., 2013), have 

been developed to identify somatic point mutations in next-generation sequencing (NGS) 

data of cancer genomes.  
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2.1.2 Copy number alteration 

CNA is a form of large-scale alteration in the number of copies of one or more sections of 

DNA. In contrast to point mutations, which affect only a single nucleotide base, CNA affects 

a relatively large region ranging from 1 kb to several megabases in the DNA sequence. CNA 

either increases or decreases the normal number of nucleotides on the chromosomes, 

potentially resulting in abnormal cell function and thus a transformed phenotype, especially 

when the altered region contains certain genes (Hastings et al., 2009). CNA may also have an 

impact on expression level. Over-expressed genes in amplified or duplicated regions and 

under-expressed genes in regions of deletion are likely to contribute to cancer development 

(Santarius et al., 2010; Shridhar et al., 2002).  

Approximately 12% of human genomic DNA may contain CNVs (Stankiewicz and Lupski, 

2010). Comprehensive characterization of this type of genetic defect is necessary for 

understanding the molecular aetiology of cancer and contributing to the realization of 

targeted treatment. CNA profiling is mainly array-based to generate raw intensity data of 

DNA aberrations in tumour samples; recently sequencing has also become popular despite 

problems due to non-uniform sequencing coverage in CNA detection. In this thesis, only 

array-based comparative genomic hybridization (aCGH) data have been used. For detection 

we have used a combination of two R packages, MPSS (Teo et al., 2011) and CNVpack (Teo 

et al., 2010). Firstly, the former takes a robust smooth segmentation approach to identify 

whether a segment is a true CNA, then the latter identifies recurrent CNA regions that are 

found in at least 10% of individuals.  

Similar to mutations, it has been found that CNAs are also associated with the occurrence 

of cancer. Gene copy number can be increased in cancer cells. For instance, the EGFR copy 

number was found to be increased in non-small cell lung cancer (Sebat et al., 2004). By 

contrast, a deletion in exons 24 and 25 of the tumour suppressor gene RB can cause low-

penetrance retinoblastoma (Bremner et al., 1997).   
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The CNA regions most likely to contain genes central to disease initiation and progression 

are those that recur among diseased individuals (Pinkel et al., 2005). Such regions probably 

contain the so-called “driver” alterations, which are functionally important changes, rather 

than “passenger” alterations, which do not have pathological relevance.  

2.2 TRANSCRIPTIONAL BIOMARKERS 

2.2.1 Genes and isoforms 

The transcriptome is the entire repertoire of all transcripts in a species, and is a key link 

between information encoded in DNA and proteins. It is a challenge to fully quantify the 

large number of transcripts in the transcriptome. In humans, there are over 20,000 genes in 

total (International Human Genome Sequencing Consortium, 2004). Generated by the 

mechanism of alternative splicing, isoforms are mRNAs that are produced from the same 

gene  but are different in their protein sequence  thus potentially altering function.  Many 

isoforms are known to be implicated in a wide range of human diseases and functional roles 

(Nagao et al., 2005; Wang et al., 2010); for example, aberrant splicings of the PTCH gene 

have been detected in patients with autosomal dominant nevoid basal cell carcinoma 

syndrome (Nagao et al., 2005).  

As the importance of alternative splicing (which greatly diversifies the transcriptome) 

becomes clear, whole-transcriptome shotgun sequencing (RNA-Seq) is rapidly gaining 

popularity as it offers the possibility of detecting isoform expression. But the use of the 

technology requires much more effort in terms of statistical modelling in order to make 

accurate estimation of expression.  

During RNA sequencing, millions of reads are generated. The number of nucleotides in a 

read is termed the “read length”. These reads will be aligned to their genomic position on a 

reference genome. It should be evident that more reads will be mapped to a gene if its 

transcript is longer and the sequencing is deeper. So for gene expression estimation, we only 
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need to sum up the number of reads falling into a gene, as the number of reads coming from a 

gene is proportional to the number of copies of transcripts produced by a gene. However, 

isoform expression estimation is not that straightforward because which isoform a given read 

comes from is unknown. For example, Figure 2.1 shows a three-exon gene with two 

isoforms: a read mapped to exon 1 may come from either isoform 1 or 2. Thus, statistical 

modelling is required to estimate isoform-specific expression. Note that a read can also be 

mapped to a region that lies on the exon–exon boundary within an isoform; this is known as a 

junction read. A junction read may provide more information to quantify isoform expression; 

for example in the gene shown in Figure 2.1, a junction read between exons 1 and 3 can only 

come from isoform 2.  

 

Figure 2.1 A simplified diagram of alterative splicing events. (Adapted from 

http://en.wikipedia.org/wiki/Alternative_splicing). 

Additional difficulties may arise for example from annotation accuracy and counting 

duplicate reads. The complexity of the analysis may prevent many researchers from using 

sequencing techniques and benefiting from isoform expression quantification. Therefore 

reliable and user-friendly statistical tools need to be developed to advance the use of RNA-

sequencing techniques.  In paper II, we address the problem of non-uniform read 

distribution (Suo et al., 2014).  
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2.2.2 MicroRNA 

MicroRNAs (miRNAs) are short (~18 to 24-nucleotide) non-coding RNAs. Although 

relatively short in terms of nucleotide length, miRNAs play an important role in gene 

regulation as they negatively regulate mRNA expression by binding to the 3’ untranslated 

region of their target mRNAs. Both the transcriptional and post-transcriptional regulation of 

gene expression is mediated by miRNAs (Calin and Croce, 2006). The miRBase database 

(release 21) reported 1,881 human miRNAs, each of which may potentially regulate many 

target genes (Kozomara and Griffiths-Jones, 2014).  

It has been recognized that miRNAs have a significant role in human cancer (Pasquinelli et 

al., 2005; Fabbri et al., 2008; Guarnieri and DiLeone, 2008). Volinia et al. (2006) found 

that cancer cells showed distinct miRNA profiles compared with normal cells. In addition, 

recent evidence suggests that miRNAs might also function as tumour suppressors and 

oncogenes, damage of which may be selected for in cancer (Shenouda and Alahari, 2009). 

Much emphasis has been placed on studying the impact of genetic alterations and patterns 

of gene expression variability related to cancer (Akavia et al., 2010). Genomic aberrations 

and miRNA expression should also be studied simultaneously to obtain a comprehensive 

understanding of tumour formation. In paper III (Lazar et al., 2013), we proposed an 

integrative model that identifies the potential driving role of miRNAs and mRNAs in 

cancer. 

2.3 PATHWAYS AND FUNCTIONAL NETWORKS 

Gene-set enrichment analysis (GEA or GSEA) is commonly used to characterize 

experimentally derived altered gene sets (AGSs); for instance, features identified as having 

the top significant P-value in association studies, or a list of genes containing high-impact 

mutations in coding regions. Based on known functional databases, such as Gene Ontology 

or KEGG, GEA identifies previously known functional gene sets (FGSs) that are over-
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represented in AGSs, using a hypergeometric test. Although this is easy to understand and 

simple to compute, the fact that the majority of genes have not been assigned to a 

biologically informative category is problematic. The sensitivity of these analyses is related 

to the size of the AGS, but increasing the number of genes in the AGS, e.g. including genes 

that are less differentially expressed, is not always biologically meaningful, as it may also 

increase the number of false-positive results in the AGS. Moreover, it is not feasible to 

perform GEA if there is only one gene in the AGS.  

To overcome this problem, several network-based methods have been proposed to reveal 

network patterns that are enriched compared to those expected by chance, based on 

biological knowledge of gene and protein interaction (Huttenhower et al., 2009; Shojaie 

and Michailidis, 2010). To integrate the topological information in the gene network and 

the functional information about biological processes, Alexeyenko et al. (2012) presented a 

method of network enrichment analysis (NEA) that systematically implements the network 

approach to describe novel gene sets with biologically meaningful functional categories. 

The method integrates two types of biological data: functional information and network 

connectivity of nearly all protein-coding genes. In contrast to traditional GEA, the NEA 

method quantifies the over- and under-representation of the functional group members 

among the neighbours in the gene network rather than simply counting the number of AGSs 

in a known pathway or FGS. 

NEA provides the possibility of combining the results of molecular data from different 

experiments; for example, to investigate the relationship between genome-wide mutation 

analysis and gene isoform expression in order to identify whether mutations have a 

functional impact on the protein network. This method has been utilized in papers III and 

IV. It is a critical step to detect putative cancer drivers (Suo et al., manuscript) and to 

characterize identified potential driving genes (Lazar et al, 2013).  
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2.4 TECHNOLOGIES 

2.4.1 Microarray  

Microarray has been the most commonly used method to measure targeted loci or genes of 

interests for almost 20 years (Lashkari et al., 1997). It allows simultaneous profiling of 

thousands of genetic features, such as SNPs, CNVs, mRNAs and miRNAs. Typically an 

mRNA array measures the expression of over 20,000 genes, and an miRNA array measures 

the expression of ~1,000 microRNAs.  

However there are still problems in the preprocessing of the data. In addition to the true 

signal, raw microarray data may exhibit systematic differences between samples due to bias 

introduced by technical factors. Proper normalization is one of the critical steps in order to 

ensure downstream suitable comparative data analysis in terms of minimizing false 

negative and false positive results.    

Because array technology is based on the mutual and specific affinity of DNA strands, it 

relies on a known reference genome and transcriptome before the microarray platform can be 

designed. The technology also has limited probe density, especially in detecting SNPs or 

CNVs where the number of targeted loci can reach a few million; however this number is 

very low considering there are 3 billion base pairs in the human genome.   

2.4.2 First-generation sequencing  

First-generation sequencing was first developed by Frederick Sanger in 1977 (Sanger et al., 

1977) and is usually referred to as “Sanger sequencing”. Typically, read lengths are ~800-

1000 bases in Sanger sequencing (Hert et al., 2008). Sanger sequencing was the major 

sequencing method in general use for almost 30 years, until NGS was introduced about 10 

years ago.  

Although long reads reduce mapping error, Sanger sequencing is tedious and expensive; it is 

not able to process more than 96 sequence reads in a single run, limiting its application to 
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large-scale genome-wide sequencing efforts for many individuals (Mardis, 2008). For 

instance, using Sanger sequencing it would take more than 400 years to completely sequence 

the Drosophila melanogaster genome, which with only 120 million bases, is much smaller 

than the human genome (3 billion bases) (Schadt et al., 2010). 

2.4.3 Next-generation sequencing 

The use of NGS has grown rapidly during the last decade. This technology permits global 

measurement of the whole genome or transcriptome to produce large amounts of 

sequencing reads in a single run within a short time frame, in a cost-effective manner 

relative to traditional Sanger sequencing (Metzker, 2010). NGS allows a DNA fragment to 

be repeatedly sequenced (a procedure known as deep sequencing), delivers greatly 

increased sensitivity and accuracy, and has revolutionized the world of genomics. The 

technique has most recently been extended to the analysis of the transcriptome by what is 

known as RNA-Seq. Current commercial NGS systems include Illumina, Applied 

Biosystems Supported Oligonucletide Ligation Detection System (SOLiD), the Roche 454 

and so on. NGS has the potential to measure all known mutations, structure variants in the 

genome, genes and isoforms and miRNAs in the transcriptome and, furthermore, to 

discover novel variants. To facilitate and accelerate the process of identifying genetic 

variations at the population level, whole-genome sequencing of a large number of 

individuals was performed at great effort by the 1000 Genomes Project 

(http://www.1000genomes.org). To characterize disease-specific alterations in cancer 

genomes, the International Cancer Genome Consortium (ICGC; http://www.icgc.org/home) 

and The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/) sequenced over 

20,000 cancer genome in at least 50 types of cancer.      

In sequencing experiments, millions of reads are generated and stored in FASTA format. The 

aligned reads are usually saved as Binary Aligned Format (BAM), from which read count 
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information can be computed for downstream estimation and analysis. However, there are 

some technical problems in processing and analysing NGS data. Firstly, due to polymerase 

chain reaction (PCR) amplification bias and sequencing error, initial raw reads must be pre-

processed and filtered properly. Secondly, annotation is still incomplete. Inaccurate 

annotation on gene-isoform structure may cause bias in estimating isoform-level expression. 

Thirdly, non-uniform read coverage is an important issue especially in RNA-sequencing 

experiments, because the coverage not only ensures adequate information but is also related 

to the expression level to be estimated. Several issues may further complicate the use of 

sequencing technology, for example counting reads that span more than one region, multiple 

mapped reads and the challenge of dealing with paired-end as compared to single-end reads.   

In this thesis, whole-genome sequencing data have not been analysed; instead, we analysed 

Exome-seq data, which is a less expensive alternative approach that only sequences the exon 

regions of the genome. It is known that exons comprise roughly 1% of the genome (Gilissen 

et al., 2011), so the compromised approach reduces the sequenced region by 99%, while the 

most informative sources of genetic variation remain. An important project to identify genetic 

variants in coding regions is the Exome Sequencing Project (ESP; 

http://evs.gs.washington.edu/EVS/).  This is a multi-cohort project on heart, lung and blood 

disorders, to discover novel genes and mechanisms contributing to the diverse phenotypes.  

2.5 NORMALIZATION ALGORITHMS FOR MIRNA ARRAY 

Microarrays measure relative expression level as intensity value for each arrayed feature, 

such as mRNAs and miRNAs. Subsequently these intensity values can be used to identify 

biologically relevant patterns of expression by comparing the intensities between biological 

conditions on a feature-by-feature basis. For example, comparing the expression level of 

particular genes between a diseased and a normal tissue can provide useful information 

about early diagnostic biomarkers. However, in addition to the true signals, observed 

expression levels usually include technical variation that is introduced at all stages of the 
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experiment, therefore direct comparisons of the raw intensity data are inappropriate. 

Obscuring variation may arise as a result of a number of potential sources (Hartemink et al., 

2001), including dye bias, hybridization bias and batch bias. Hence, to reduce these 

systematic technical sources of bias, a normalization step is needed before the expression 

levels can be appropriately compared. Different choices of normalization methods exist (all 

previously developed for mRNA arrays), but there is no consensus on their relative 

performance for miRNAs. Below, several commonly used methods for mRNA array 

normalization are reviewed.  

Global normalization  

The simplest method for mRNA array normalization is probably global normalization, 

which is applied to each array independently. The basic idea of this method is to centre the 

mean or median values based on total array intensities, resulting in the mean or median 

intensity among chips equal to an arbitrary target value T. For example, in Affymetrix 

Microarray Suite 5.0 (MAS5), the target value is 500. The following equation is used for 

normalization:  

  
     

 

 ́ 
        , 

where    is the raw intensity,  ́  is the mean intensity of array i,   
     is the intensity after 

normalization and k is the normalization factor. 

Lowess normalization 

Global mean normalization described above utilizes a linear scaling technique. However, 

due to different background intensities or dye effects in labelling, data from cDNA 

microarray studies may exhibit a banana-shape in an MA plot, where the x-axis is the 

average log intensity and the y-axis is the log intensity ratio. Yang et al. (2002) proposed 

that lowess smoothing, also known as locally weighted regression (Cleveland, 1979) and 

smoothing scatterplots, can correct for non-linear array-to-array variation. This method 
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assumes that changes of intensities between arrays are roughly symmetrical across all 

intensities instead of only around the mean or median. For two-colour arrays, the data 

points are commonly displayed in an MA plot. For single-colour platform, lowess 

normalization is also applicable in the sense that it corrects for pairs of arrays to be 

normalized to each other. The normalized intensity ratio is computed using the following 

equation: 

   (
  
  
)

    

    (
  
  
)   ( ) 

where    and   are intensity data points from two arrays and c(A) is the lowess fit to the 

MA plot.   

The procedure cycles through all pairwise combinations of arrays until convergence. An 

alternative to lowess is smooth spline normalization, which is also an intensity-dependent 

method. Thus, non-linear normalization correction compensates for intensity-dependent 

bias, and the results of a simulation study showed that it performs better than global 

normalization methods in terms of standard deviation between samples (Park et al., 2003).   

Quantile normalization 

The aim of quantile normalization is to equalize the distribution of intensities for all arrays 

(Bolstad et al., 2003). Simply forcing equal mean or median intensity for the arrays using 

global normalization, and likewise equalizing means at all intensities using the lowess 

technique, might not be sufficient because the entire distribution may vary. As explained by 

Bolstad et al. (2003), the algorithm for quantile normalization follows these steps: 

1. For n arrays of length m, a matrix with intensities as rows and samples as columns 

is formed. 

2. Each column is sorted. 

3. The mean intensity is computed in each rank across chips. 
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4. Each intensity value is replaced by the mean intensity of its rank and finally the new 

intensities are brought back to the original order. 

Using only the observation ranks and thus no particular distribution assumed, the algorithm 

is also able to manage quite nasty non-linear trends. It reduces variance slightly better than 

lowess, runs relatively fast and is easy to implement. 

Inv-P and housekeeping gene normalization 

A common feature of the above methods is that they use the whole set of genes with the 

assumption that the majority of genes do not vary across samples. But this assumption is 

not always satisfied, either in spike-in experiments or in many studies with real data where 

imbalanced regulation might occur (Porter et al., 2002; Haslett et al., 2003; Timmons et al., 

2005). To overcome this problem, a data-driven procedure to select genes that do not vary 

across arrays has been proposed (Li and Wong, 2001), thus providing a good subset of 

reference genes for normalization. To select the reference set, the procedure attempts to 

identify genes that are expressed at similar levels in the compared samples based on ranks, 

following the idea of using ranks in quantile normalization. An iterative procedure is used 

to select the so-called invariant set of probes: 

1. A reference array is selected, for example, a mean or median array, i.e. for each 

probe, an average among chips is computed to become the probe expression on the 

reference chip. 

2. Within each chip, each probe is ranked according to expression level and compared 

to the corresponding value in the reference array. If the change in ranks divided by 

the total number of probes on the array is smaller than a cutoff value, the probe is 

selected for the invariant set and excluded from the ranking list. 

3. Steps 1 and 2 are repeated until the number of invariant probes is sufficient. 
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4. All the arrays with the invariant set of genes are normalized towards the reference 

array created in step 1, based on a lowess or smoothing spline. The fitted curve is 

then used to map intensities of the non-invariant set of genes in each array to be 

normalized. 

The advantage of invariant set normalization is that it relaxes the assumption on the 

balanced proportion of over- and under-regulated genes. 

Similarly, housekeeping gene normalization chooses reference genes that express 

approximately the same across samples based on prior biological knowledge, instead of 

selection of the subset of genes that does not vary based on the dataset itself. But there are 

hardly any housekeeping genes practically, so this approach is generally deprecated  

Variance stabilizing normalization 

Briefly, the variance stabilizing normalization (VSN; Huber et al., 2002) procedure first 

makes sample-to-sample linear calibration so that data are on a common scale and have a 

common distribution. This step assumes that the data of all genes on an array are subject to 

the same systematic effects. More complex intensity-dependent calibration can also be used 

to correct for deviations from a linear line. 

Next, VSN based on a parametric arcsinh (inverse of hyperbolic sine) transformation is 

performed to address the dependence of the variance on the mean intensity. Under the 

assumption of a quadratic relationship between mean expression and variance, affine-linear 

transformation will transform the data to a scale where the variance of the data is almost 

independent of the mean. Overall, the total transformation is represented by the equation:  

 ( )           ((       (        )) 

where    and    are the scaling and shifting parameters, respectively, in linear 

transformation, and    and    are the parameters in the variance stabilization step. The 

parameter h can be estimated with a robust variant of maximum-likelihood estimation. 
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One advantage of VSN transformation is that the arcsinh function is continuous across zero 

and coincides with log-ratio values at high intensity. Compared to the more traditional log 

transformation, VSN is able to manage initially negative intensities. 

2.6 EXPRESSION QUANTIFICATION ALGORITHMS 

Advanced computational methods are required for expression quantification with RNA-Seq 

due to sequencing bias and the large number of parameters that need to be estimated for all 

genes and their isoforms. A number of models have been derived and some typical examples 

are described below.   

In the score proposed by Mortazavi et al. (2008), the expression level of a transcript is first 

measured in reads per kilobase of the transcript per million mapped reads (RPKM), which is 

a normalized measure of counts against the sequencing depth and transcript length. This 

expression score allows a relatively fair comparison between measurements across genes and 

samples, compared to raw counts. However it is not possible to compute isoform-level 

RPKM because we cannot distinguish reads mapped to an exon shared by more than one 

isoform.   

Jiang et al. (2009) developed a Poisson regression-based approach to model the relationship 

between read counts mapped to exons and isoform-specific expression. This simple model 

has been developed and used in several subsequent RNA-Seq studies (Wang et al., 2010; Li 

et al., 2010) and is referred to as the standard method in this thesis. However, the method 

relies on the key assumption of a uniform sampling of reads across transcripts.  

To correct for the non-uniform read distribution, Cufflinks (Trapnell et al., 2010), one of 

the most commonly used tools, accounts for sequence-specific bias problems in isoform 

expression estimation and assumes uniform read distribution in its basic model, and 

providing an ad hoc correction of the bias step (Roberts et al., 2011). The model also 

estimates positional bias, which determines whether fragments are preferentially located 
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towards either end of the transcripts. Unlike the base-level bias correction method, NURD 

models both the read distribution and expression jointly. A global bias curve is estimated 

for all genes, and an approximate local bias curve for each gene is estimated using non-

parametric models (Ma and Zhang, 2013).  

In chapter 4.2, we describe in detail the method and software we propose for isoform-

specific read distribution and gene isoform expression estimation (Suo et al., 2014). In 

brief, the method assume the same read intensity distribution at isoform level across 

different samples, and the isoform expressions are estimated using Poisson model where 

the Poisson rates reflects the non-uniform read intensity, expression level and isoform 

length.    
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3 CHAPTER 3 - AIMS 

The overall aim of this thesis is to develop and apply statistical and bioinformatics tools to 

improve the accuracy of estimating expression levels when using microarray and sequencing 

technologies, in order to analyse and integrate biomarkers associated with cancer. The thesis 

is divided into four studies, as described below: 

I. A method was developed and implemented as an R package LVSmiRNA to 

normalize miRNA expression microarray data. In downstream analysis, 

normalized intensity values by LVSmiRNA resulted in a better performance in 

terms of sensitivity and specificity to detect differentially expressed miNRAs, 

compared to the values normalized by other methods.    

II. A method and software were developed to jointly estimate gene and isoform 

expression levels, as well as read intensity patterns, in RNA-sequencing 

experiments. This was challenging, considering the large number of parameters 

estimated, noise in RNA-sequencing data and the time consuming nature of 

dealing with large-scale datasets.     

III. The molecular profiles between adenocarcinoma and squamous cell carcinoma 

samples from non-small cell lung cancer were characterized. Potential driver 

genes were identified by integration of genomic data on copy-number alterations, 

mRNA expression and microRNA expression.  

IV. A pipeline for processing, analyzing and integrating genomic and transcriptomic 

sequencing data was designed. The pipeline incorporates existing bioinformatics 

tools, as well as a novel proposed method for integrating mutation and expression 

profiles based on network enrichment analyses. Real data from The Cancer 

Genome Atlas (TCGA) project was used to demonstrate application of the 

pipeline and investigate the prognostic value of the identified potential driver 

genes for the overall survival of patients with breast cancer. 
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4 CHAPTER 4 - PAPER SUMMARIES 

4.1 STUDY I: MODIFIED LEAST-VARIANT SET NORMALIZATION FOR MIRNA 
MICROARRAY 

4.1.1 Motivation 

Traditional normalization algorithms for gene expression arrays rely on the expression levels 

of a large number of genes/features not varying across samples. However, there is a 

substantially smaller total number of miRNAs and large numbers of miRNAs are 

differentially expressed (DE) between samples.   

4.1.2 Methods 

The main novelty of this algorithm is that it accommodates for the potential heterogeneous 

variance between probes, in order to select the most appropriate subset of miRNAs that have 

the least variation across arrays.  

The algorithm was built from the least variant set (LVS) normalization method, which was 

initially developed for RNA microarrays. The so-called modified LVS normalization method 

comprises three steps: 

1. Fitting of a robust linear model on the background-corrected raw probe-level data, 

where the mean and variance are modelled jointly. 

2. Selection of a subset of miRNAs that have the least variation across arrays, on the basis 

of the plot of the array-effect test statistics versus the residual standard deviations 

(SDs) provided by the model in Step 1. 

3. Normalization of the raw data at either the miRNA level or probe level, where the 

miRNA level normalization requires the data to be initially summarized. 
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4.1.3 Results 

Comparison to other algorithms using spike-in data 

To assess the performance of the modified LVS normalization method, four samples, for 

which 697 miRNAs were spiked-in and thus their fold-changes (FC) were known, were 

analysed. A set of 173 miRNAs having a true constant level of 1 provided the ideal reference 

set for normalization; however, in practice, the true expression levels of these miRNAs are 

not available. The four samples were organized into group A and B. The advantages of the 

LVS normalization method were evaluated in terms of the sensitivity and specificity for 

detecting differential expression between group A and B compared to various normalization 

procedures. The LVS normalization method achieved a similar level of sensitivity and 

specificity compared to the best possible normalization method based on FC1 miRNAs. The 

LVS normalization method was also superior to other normalization methods, including no 

normalization, the 75
th

 percentile shift, quantile, inv-P, global median, VSN and locally-

weighted scatter-plot smoothing (lowess) methods (Figure 4.1).  

 

Figure 4.1 Sensitivity and specificity of the normalization methods for spike-in data. 

Proportions of true discoveries are plotted against the proportion of false discoveries. 

Positives are defined as miRNAs both present and with FC not equal to 1. (Figure from Suo 

et al., 2010). 
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Comparison to other algorithms using RT-PCR data 

The expression patterns of brain and heart samples, which are considered to be very distinct 

tissues, and skeletal muscle and heart, which are expected to have a lower level of variation, 

were compared. True expression fold changes between the tissues were computed from qPCR 

data as an independent “gold standard” method. To assess the effect of different 

normalization algorithms, their ability to detect the fold changes computed from the 

normalized expression levels was evaluated in terms of sensitivity and specificity. The LVS 

normalization method performed better than the other procedures tested, regardless of 

whether relatively large FC were detected (brain vs. heart) or the expression levels in the 

tissues were similar, making detection potentially more difficult (skeletal muscle vs. heart; 

Figure 4.2). 

 

Figure 4.2 Sensitivity and specificity analysis of the normalization methods both in two 

extremely different tissues (brain and heart) and in two similar tissues (skeletal muscle and 

heart). Proportions of true discoveries are plotted against the proportion of false 



 

34 

discoveries. Positives are defined as miRNAs with a FC (FC = brain or skeletal 

muscle/heart) >3, either over- or underexpression. Panels (A) and (C) show OC curves for 

brain vs. heart comparisons for all the different methods considered. Similarly, panels (B) 

and (D) show OC curves for skeletal muscle vs. heart comparisons. LVS has the advantage 

of being flexible enough to successfully adapt to either situation. (Figure from Suo et al., 

2010).  

 

Implementation 

The method is implemented in an R package called LVSmiRNA. The package can be 

downloaded from the Bioconductor website 

(http://www.bioconductor.org/packages/release/bioc/html/LVSmiRNA.html). 

4.2 STUDY II: JOINT ESTIMATION OF ISOFORM EXPRESSION AND 
ISOFORM-SPECIFIC READ DISTRIBUTION USING MULTI-SAMPLE RNA-
SEQ DATA 

4.2.1 Motivation 

RNA-sequencing technologies provide a powerful tool for quantification of expression, 

especially for distinguishing between the expression levels of different isoforms of the same 

gene. Typically, to estimate isoform expression in a biological sample, the number of reads 

falling into a transcript unit with multiple isoforms is modelled as a Poisson process with 

uniform sampling across each isoform. However, the uniform sampling assumption is often 

violated due to, for example, the local nucleotide composition effect and 5` or 3` bias. The 

main challenge when estimating non-uniform read intensity patterns is that the pattern cannot 

be identified from data provided by a single sample. Additionally, the expression pattern 

could be isoform-specific (Kozarewa et al., 2009), which increases the number of parameters 

to be estimated. In our study, the interesting observation of similarities in the shape of the 

read distributions across samples makes it possible to estimate the read distributions.  

On this basis, a novel method for jointly accounting for non-uniform isoform-specific read 

distribution and gene isoform expression estimation was developed. Regularization via a 

smoothing penalty was imposed to control for the number of parameters when estimating the 

read distribution.     
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4.2.2 Methods 

A widely accepted model under uniform read distribution assumption is 

      ∑         
 
   . 

Our joint model incorporating isoform-specific read intensity     is 

      ∑ (        )   
 
   . 

The joint estimation of     and     can be performed iteratively via a block Gauss-Seidel 

method. In practice, to ensure a robust and high speed computational procedure, the 

estimation of     given     is realized via a generalized linear model with an identity link 

function, where iterative-weighted least squares with robust modification is employed against 

potential outliers (Pawitan, 2001; Chapter 6.7). In addition, when estimating     given    , 

we consider a model with smoothness penalty to allow the possibility of smooth transition 

between neighboring regions. This is done using a generalized linear mixed model with 

isoform-specific read intensity as correlated random effects (Pawitan, 2001; Chapter 18).     

4.2.3 Results 

Implementation 

The method is implemented in an R package called Sequgio for fast processing of RNA-Seq 

data and expression quantification. The package is freely available on the web at 

http://www.meb.ki.se/~yudpaw. 

Comparison to other methods with simulation 

Sequgio was compared to three existing methods: Standard method, Cufflinks (Trapnell et 

al., 2010) and NURD (Ma and Zhang, 2013) using simulated reads for 10 samples from two 

simulators: 1) a model-based simulator where the parameters are based on real data, and 2) a 

simulator called RNASeqReadSimulator that is fully independent of our model 

(http://www.cs.ucr.edu/_liw/rnaseqreadsimulator.html). For each simulator, both the aligned 
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and unaligned reads were generated and examined to determine whether expression 

estimation was affected by the alignment procedure.   

The median proportion error between the predetermined true expression values and the 

expression estimates are presented in Table 4.1. Overall, Sequgio performed better than the 

other methods, and provided consistent good performance across various simulation settings.  

Sensitivity in differential expression analysis 

Using simulated data based on information from a typical multi-isoform transcriptional unit, 

power analysis showed that larger numbers of true DE transcripts could be identified from the 

Sequgio estimates than the standard estimates. For genes with a fold change of approximately 

1.2, the gain in power was as much as 20%.  

Application on a real RNA-Seq dataset  

Sequgio and the standard method were applied to publicly available mouse tissue RNA-Seq 

data, comprising six samples from skeletal muscle, brain and liver tissue (Mortazavi et al., 

2008). After correction for multiple testing, 68.5% of the standard models had P-values < 

0.05 in the goodness-of-fit test, while using Sequgio, model fitting improved for 70.3% of the 

poorly-fitted standard models. Differential analysis of the tissues showed that analysis at the 

gene-level and isoform-level may lead to different conclusions. Taking brain versus liver 

tissues for example, 18.7% of the 30,140 transcripts exhibited differential expression at the 

isoform-level. Among genes containing these DE isoforms, 20.4% did not show a differential 

expression pattern when analysed at the gene-level, indicating that isoform-level analysis 

may reveal distinct patterns of expression. 
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Table 4.1 Results of comparing Sequgio, Cufflinks, NURD, the transcriptional-unit and 

gene-based standard method from four simulation settings. (Table from Suo et al., 2014).  

 

Implementation 

The algorithm is implemented in the R package Sequgio that can be freely downloaded from 

http://www.meb.ki.se/∼yudpaw. The package prepares an annotation file and design matrix for 

all transcripts given a specific version of annotation, for example hg19 and GRCH37. The 

main inputs are the annotation, design matrix and reads in BAM format mapped by an 

alignment program, such as Bowtie (Langmead et al., 2009), Tophat (Trapnell et al., 2009) or 

BWA (Li and Durbin, 2009). 
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4.3 STUDY III: INTEGRATED MOLECULAR PORTRAIT OF NON-SMALL CELL 
LUNG CANCERS 

4.3.1 Motivation 

Lung cancer accounted for 13% of all cancer cases and 20% of all deaths from cancer in 2012 

(Ferlay et al., 2012), and thus represents a significant social and economic burden. The 

histological subtype of lung cancer affects prognosis and is used to determine treatment 

planning and patient management. The two major subtypes of lung cancer are small cell lung 

cancer (SCLC) and non-small cell lung cancer (NSCLC), which together represent ~80% of 

all primary lung cancers. Currently, classification relies on surgical specimens, but in reality, 

small biopsies or cytology specimens can be obtained in only 70% of cases.    

4.3.2 Methods 

The samples used in this study were obtained from the CHEMORES initiative 

(Chemotherapy Resistance Consortium), which includes 19 academic centres, organizations 

for cancer research, and research-oriented biotechnology companies. Paired snap-frozen 

tumour and adjacent normal lung tissue samples were obtained from a total of 123 patients 

who diagnosed with NSCLC and underwent surgery. Copy number alteration profiling was 

obtained using an Agilent G2505C DNA Microarray scanner. Gene expression profiling was 

performed using a dual-colour 244K Human exon array from Agilent. MicroRNA expression 

was obtained using an Agilent G2565C DNA microarray scanner. Candidate gene sequencing 

reactions were performed using a 48-capillary 3730 DNA Analyzer
®
. Sequence analysis and 

alignment was performed using SeqScape
® 

software (Applied Biosystems).   

4.3.3 Results 

Using aCGH data, 34 genomic clusters were identified, of which several contained genes 

exhibiting a different profile of alterations between adenocarcinoma (AC) and squamous cell 

carcinoma (SCC), including the genes PIK3CA, SOX2, THPO, TP63 and PDGFB. Principal 

component analysis of the mRNA expression data revealed that AC could be separated from 
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SCC based on transcriptomic variability. Indeed, a 15-gene classifier achieved a cross-

validated area under the curve (AUC) of 96% for separating the two histological subtypes. 

Furthermore, gene expression profiling analysis identified SPP1, CTHRC1 and GREM1 as 

potential biomarkers for the early diagnosis of lung cancer, and SPINK1 and BMP7 for 

distinguishing between AC and SCC using small biopsies or blood samples.   

Using an integrated genomics approach, three potential driver genes: MRPS22, NDRG1 and 

RNF7 were identified in frequently altered regions, and correlated with as many as ~800 

genes across the genome, and also had a high predictive value for discriminating between the 

histological subtypes. Using the same procedure, the potential driver microRNA hsa-miR-

944 was found to frequently undergo copy number gains, and, on average, was also 

correspondingly overexpressed in tumor samples which showed copy number gains for this 

miRNA. The potential driver miRNA had a significant AUC of 88% and median AUC of 

78% for predicting AC and SCC in the validation dataset.   

4.4 STUDY IV: INTEGRATION OF SOMATIC MUTATION, EXPRESSION AND 
FUNCTIONAL DATA REVEALS POTENTIAL DRIVER GENES PREDICTIVE 
OF BREAST CANCER SURVIVAL 

4.4.1 Motivation 

Analysis of whole genome and transcriptome sequencing experiments provides a useful tool 

for comprehensively exploring human cancer, and may help to identify the genetic alterations 

that drive cancer development. However, no widely accepted standard protocols exist to 

integrate and fully utilize the complex information across the different types of omics data. 

Several algorithms for integrative analysis have been developed to distinguish driving genetic 

alterations from the vast number of ‘passengers’ that have neutral or less deleterious effects. 

However, many challenges remain in this new field, such as identification of the patient-

specific mutation events that may partially account for tumour heterogeneity.   
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4.4.2 Methods 

An analytic pipeline was created using existing bioinformatics tools, including GATK 

(McKenna et al., 2010), SnpEff (Cingolani et al., 2012), Sequgio (Suo et al., 2014) and 

NEA (Alexeyenko et al., 2012), and a novel method was proposed to integrate genomic and 

transcriptomic profiles based on network enrichment analyses. This pipeline provides 

statistical evidence for the functional implications of the mutated potential driver genes 

identified within and between patients, termed common driver genes and patient-specific 

driver genes, respectively. A so-called driver gene score (DGscore) was developed to 

reflect the cumulative effect of such genes. To contribute to the score, a driver gene has to 

be frequently mutated, have a high or moderate mutational impact, and exhibit extreme 

expression and functional changes linked to a large number of DE neighbours in the 

functional network.  

The samples used in this study are part of The Cancer Genome Atlas breast cancer project, 

which provided sixty matched tumor and normal samples from the same patients. Exome 

sequencing with a read length 100 bp was performed on Illumina at the Genome Institute at 

Washington University and the sequences were aligned to the human genome GRCh 37 

using BWA (Li and Durbin, 2009). The RNA samples were assayed via 50 bp HiSeq 

Illumina 2000 paired-end sequencing at the University of North Carolina.  

4.4.3 Results 

From analysis of the 60 patients whose samples were available from the TCGA, 17 

common driver genes were identified, which together with the identified patient-specific 

driver genes were summarized into a DGscore for each patient. A high DGscore, defined as 

larger than the median, was associated with poor survival (p = 0.001). The good 

performance of the DGscore for predicting patient survival is the result of the integration of 

mutation, isoform-level expression and functional data, a properly designed weighting 
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scheme for putative driver genes, and a mechanism for identifying driver genes in a 

generalized and patient-specific manner. Failing to incorporate any of these components 

decreases the P-values: using the crude number of non-functionally characterized mutations 

would not be able to predict the patients’ survival (p = 0.25), demonstrating the importance 

of the frequency of mutation pattern, expression level and the functional characterization by 

NEA; DGscore calculated at gene-level instead of isoform-level is not a significant 

prognostic factor (p = 0.12); an un-weighted DGscore predicts patient survival, but yielding 

a slightly less significant P-value of 0.005; an incomplete DGscore based on either 

mutation or extreme expression pattern only is not associated with patient survival (p = 

0.72 and p = 0.38, respectively); DGscore that summarizes either common driver genes or 

patient-specific driver genes alone cannot predict patient survival well (p = 0.08 and p = 

0.04, respectively). Therefore, purposefully ignoring parts of the informative data 

demonstrated that the performance of the DGscore method is dependent on each of the 

components assessed. 

DGscore is compared to two existing signatures, the MammaPrint 70-gene signature (van ’t 

Veer et al., 2002) and PAM 50-gene signature (Parker et al., 2009). It remains the most 

significant predictor, whereas MammaPrint and PAM50 have a P-value of 0.40 and 0.15, 

respectively, in predicting patient survival. 
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5 CHAPTER 5 – DISCUSSION 

5.1 CHARACTERISTICS OF A GOOD NORMALIZATION METHOD  

In order to compare data from different genomic expression arrays, it is inevitable that 

some biological information will be lost during the process of normalization, especially if 

the normalization method is not chosen carefully. To effectively separate the intrinsic 

biological variation in reported expression levels, a good statistical method should retain 

interesting variation information while at the same time account for systematic errors. A 

major assumption of most normalization procedures employed in mRNA pre-processing is 

that most genes are not differentially expressed, and that there is an approximately balanced 

proportion of over- and under-expressed genes. While this is generally acceptable for 

mRNAs, this assumption is unrealistic for miRNAs both biologically, as we expect most 

miRNAs to be differentially expressed, and technically, as the small number of features 

available on miRNA array chips makes the standard normalization algorithms highly 

unstable (Davison et al. 2006).  

In general, the modified LVS normalization method proposed in paper I of the thesis will 

have widespread utility for other platforms with replicated-probe design, such as Platform 

miRCURY that has just fewer numbers of probes and replicates for each miRNA compared 

to Agilent, and miRXplore that has two channels instead of one-colour design, where each 

miRNA is targeted by four repetitions; in such case, the colour effect can be included to 

correct for dye bias. 

The advantage of the LVS algorithm over other invariant-set based procedures is that it can 

extract more information as it operates on the raw signal prior to any processing, such as 

summarization, and does not rely on additional external data (Wang et al 2010). The basic 

concept of LVS algorithm is to simply compute a measure of between-sample variability 

accounting for heterogeneity in between-probe variances within a miRNA, thus exploiting 

all of the information content in probe-level data. The result is a more sophisticated version 
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of a variance filtering procedure, where low-variance features are used as a reference set for 

normalization. This rather straightforward method does not depend on any specific 

assumptions, such as the existence of mixing distributions, so it is applicable in most 

situations.  

An optimal pre-processing procedure maximizes the ability of any statistical test to identify 

a true signature and minimizes the burden of false discoveries. In the operating 

characteristic curves, the proposed LVS algorithm improved on existing normalization 

procedures in terms of sensitivity and specificity, especially for datasets with a relatively 

high number of differentially expressed features. Moreover, the LVS algorithm is flexible 

enough to successfully adapt to various scenarios. 

5.2 CHALLENGES IN DEVELOPING EXPRESSION QUANTIFICATION 
METHOD FOR RNA-SEQUENCING 

In paper II of the thesis, Sequgio is proposed for expression quantification in RNA-

sequencing experiments. In order to demonstrate its superior performance, a new method 

should be compared against a gold standard method. But gold standards for transcript-level 

expression are difficult to obtain experimentally. The improvements in model fitting 

offered by Sequgio are mainly demonstrated by empirical means via the goodness-of-fit χ
2 

statistics. Simulations and limited isoform-level RT-PCR data were also used to assess the 

accuracy of the results. In the simulations, both non-uniform distributions and slight 

deviations from uniformity were considered, and all parameter values were estimated from 

the real data, so the testing procedure was fair. One limitation of many current methods, 

including Sequgio is that it is assumed that all isoforms of a gene are known. However, the 

current annotation is incomplete due to the huge amount of information in different 

isoform-level annotation databases and the complex structure of the transcriptome; we 

suspect that these issues may lead to discrepancies during RT-PCR validation. Most 

biological annotation databases may be updated almost every week, whereas other 
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databases will be closed and merged with others, e.g. ASTD was integrated into the 

Ensembl database. Therefore, there is a need to develop a reliable and comprehensive mega 

annotation database. 

 

The main assumption of the joint Sequgio model is that non-uniform read distributions can 

be identified using information across samples, assuming that the observed read distribution 

is consistent across samples. In developing Sequgio, evidence has been presented to 

demonstrate that the sample-to-sample similarity generally holds across the genome, even 

between different tissues. In practice, it is recommended that users to check consistency of 

read distribution across samples, especially when pooling information from two biological 

groups, e.g. diseased versus healthy tissues. If the read distribution is inconsistent, then 

estimation should be performed separately. 

When applied to human brain tissue data, Sequgio performed fairly well based on the 

correlation with Cufflinks and RT-PCR estimates, although only three samples were 

available. When there are fewer than ten samples, it is recommended using all of the 

samples in the estimation. On the other hand, if a large number of samples are available and 

the computational system is limited, it would be useful to consider a two-staged procedure: 

(i) in the first stage, the read intensities are estimated from a random subsample, and (ii) in 

the second stage these intensities are fixed, so only the expression levels need to be 

estimated. 

5.3 VALIDATION OF INTEGRATIVE ANALYSIS 

In practice, it is never easy to find a perfect method to validate findings especially for 

integrative analysis. It is difficult to obtain a validation dataset that has the exact same types 

of molecular data profiled as the discovery dataset, and raw data files are usually not 

accessible to public. Therefore, validated results should be interpreted carefully. 
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In paper III, to validate the three candidate driver genes predictive of adenocarcinoma and 

squamous cell carcinoma of the lungs, an independent dataset published by Chitale et al. 

(2009) are used to get a bioinformatics validation. Agilent 44K CGH arrays are used to 

assess copy-number alteration profiles; these arrays are much less dense than the 244K 

arrays used in Chemores which is the discovery dataset. As the sensitivity of CNV 

detection algorithms is limited by the resolution of the array, it was decided to directly 

validate the frequency of copy number gains for the candidate driver genes, as well as their 

properties including the number of correlated genes and the relationship between the copy 

number status and gene expression. Significant copy-number gains were observed for the 

identified driver genes. Using a threshold P-value of < 0.001, the frequency of copy 

number gains profiled by the Agilent 44K CGH arrays in Chitale et al. was 11.6%, 28.1% 

and 7.5% for MRPS22, NDRG1 and RNF7; these values are similar or exceed the values 

reported for patients in Chemores. A one-sided Welch t-test was performed to compare the 

gene expression levels in patients with copy number gains vs. the patients without 

mutations in these genes; The P-values were 0.07, 7.5 × 10
-6

 and 0.2 for MRPS22, NDRG1 

and RNF7, respectively. If a P-value threshold of 0.05 was used to define copy number 

gains, all three candidate driver genes exhibited significantly upregulated gene expression 

in the samples with amplifications, with corresponding P-values of 0.002, 6.7 × 10
-7

 and 

0.0009, respectively, suggesting that expression of the three potential driver genes exhibited 

the expected positive correlations between copy number gains and up-regulated gene 

expression.  

In paper IV, the proposed integrative algorithm was applied to identify potential driver genes 

in a validation dataset of 671 samples from the TCGA, and the association between the 

derived DGscore and the overall survival of the patients was tested. The resulting 

insignificant P-value was consistent with the observations in the discovery dataset, in which 

we intentionally tested at the gene-level. Therefore, the insignificant association between the 



 

46 

DGscore and overall survival is probably due to a lack of isoform-level resolution. In 

addition, a completely independent microarray dataset based on 17 common driver genes was 

tested; the negative result (p=0.75) was also in line with expectations as the mutation status 

and isoform-level information was not available.  

Some differences were observed in the survival curves when MammaPrint and PAM50 were 

applied to the TCGA expression profiles, although none of the P-values for these methods 

were as significant as those of the DGscore method. The reasonable performance of these two 

previously established signatures also implies that the TCGA data was pre-processed in an 

appropriate manner using the proposed integrative pipeline. It is noted that 67% of the 70 

gene identifiers in MammaPrint mapped to RefSeq gene names in the TCGA dataset, 

whereas the unmapped gene identifiers are genes not annotated in ResSeq. It is possible that 

the lower number of genes mapped to RefSeq relative to the original study of MammaPrint 

(van ’t Veer et al., 2002) may have resulted in the suboptimal performance of MammaPrint. 

5.4 NEW CHALLENGES OF NEW TECHNOLOGIES  

Third-generation sequencing (TGS), also referred to as single-molecule sequencing, is a new 

generation of technology with the aims of producing longer read lengths of potentially more 

than 1,000 bp, and of reduced cost and time relative to first- and second-/next-generation 

techniques (Schadt et al., 2010). The major innovation of TGS is that it does not rely on PCR 

to amplify a specific DNA template; instead, it examines single molecules of DNA, therefore 

problems due to PCR amplification can be avoided such that duplicate sequencing reads are 

largely reduced (Whiteford et al., 2009). However TGS can still be much improved, and 

whether data generated using this sophisticated methodology are superior to those from 

previous technologies remains to be determined. For example, the raw read error rate is 

generally in excess of 5% for the first commercially available sequencing instrument, the 

Helicos Genetic Analysis Platform (Harris et al., 2008). 
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Another cutting-edge technique is single-cell sequencing (SCS; Macaulay et al., 2014). As 

the name implies, SCS amplifies DNA from single cells, thereby enabling identification of 

the heterogeneous pattern of genomic or transcriptomic profiling between cells. Utilizing 

SCS, it has been demonstrated that the tumour cells in bladder cancer are derived from a 

single ancestral cell, but subsequent evolution leads to two distinct tumour cell 

subpopulations (Li et al., 2012). This finding is important to study specific genetic mutations 

that are critical in different aspects of tumour development. The technology is also 

particularly useful for profiling individual circulating tumour cells which are scarce even in 

cancer patients.  

Technology has played a major role in revolutionizing research, and will continue to motivate 

biostatisticians to develop and apply statistical methodologies that have resulted from the 

application of technological advances for additional improvement in data acquisition, 

processing, detection, analysis and integration of biomarkers of interests.   
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6 CHAPTER 6 – CONCLUSIONS 

 Copy number alterations, somatic mutations, and differential microRNA, gene and 

isoform expression are important sources of variation in the human genome and 

transcriptome, and are associated with many complex phenotypes.   

 Novel statistical methods and data processing pipelines are required for the 

detection and analyses of these variants.  

 In study I, a normalization method that relies on fewer assumptions and applies joint 

modeling was developed, enabling optimal performance in the downstream analysis 

of miRNA expression levels.  

 In study II, a novel method was introduced that allow users to use RNA-Seq data 

from multiple samples to estimate isoform expression levels as well as non-uniform 

read distributions.  

 Histopathological classification of NSCLC using small tissue samples is difficult. 

Identification of differentially-expressed sets of secreted and non-secreted genes 

may help in the diagnosis and classification of NSCLC using serum or tissue 

samples. These issues were addressed in study III.  

 The novel driver-gene search algorithm for integrating genomic data, mRNA and 

miRNA expression was used to identify potential driver genes, which may be useful 

for follow-up experimental validation. 

 A practical pipeline was developed to perform somatic variant calling, quantification 

of gene and isoform expression, and integrate genomic and transcriptomic profiles 

based on known biological networks and the functional impact on protein coding. 

 Putative driver genes that were frequently mutated across multiple patients and 

patient-specific putative driver genes were identified on a basis of a network-based 

enrichment method.  
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 It was demonstrated that patients with breast cancer who carry more mutated potential 

driver genes with functional implications and extreme expression patterns had poorer 

survival than patients with lower numbers of mutated potential driver genes.   
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