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ABSTRACT 

The beneficial graft versus leukemia effect (GVL) and its detrimental counterparts, graft versus 

host disease (GVHD) and susceptibility to infections, are all coupled to a multitude of events 

during the immune reconstitution (IR) after hematopoietic stem cell transplantation (HSCT). 

The general aim of this thesis has been to learn more about the IR in HSCT with a particular 

focus on the impact of infections, natural killer (NK) cell mediated GVL effects and the 

possibility to apply GVL effects in adoptive cell therapy.  

In paper I, we identified factors interfering with the IR, thereby making the patients susceptible 

to late lethal infections. We found that cytomegalovirus (CMV) was an independent risk factor 

for death in late infections. NK cells are important for controlling CMV infections and patients 

lacking NK cells suffer from cyclic herpes virus reactivations.1-3 NK cells are also known to 

mediate GVL-effects and have been coupled to reduced relapse rates after HSCT. The results of 

paper I thus prompted us to study NK cell-mediated GVL effects and the interaction between 

CMV and NK cell repertoire dynamics. In paper II we examined NK cell-mediated alloreactivity 

in 105 patients with myeloid malignancies undergoing human leukocyte antigen (HLA )-identical 

sibling transplantation. A longitudinal analysis revealed maintained NK cell tolerance at all time-

points during the IR. In agreement with these experimental data, no clinically evident GVL effect 

was observed based on stratification of missing ligands to killer cell immunoglobulin-like 

receptors (KIRs ) in the recipients. In paper III we determined the size of the alloreactive subset 

and graded the ability of different donors to deliver GVL effects in HLA -mismatched 

transplantation. The educated subsets expressing KIRs in presence of a corresponding HLA -

receptor ligand varied between 12-68% (mean 33%) resulting in 0-62% (mean 8%) alloreactive 

NK cells depending on recipient HLA -ligands. This algorithm served as a template for studies 

conducted in paper IV, where we further dissected the role of pre-transplant NK cell repertoires 

in the donor and post-transplant repertoires developing after 9-12 months. Unsupervised 

hierarchical clustering was used to group donors and recipients based on their NK cell receptor 

repertoires. The result showed that donors with naïve receptor repertoires had less relapse and 

recipients with a tendency to reset their repertoires towards naivety had less relapse and better 

overall survival. 

In summary this thesis shed new light on the relationships between early and late infections and 

the recovery of the immune system after HSCT, linking specific NK cell repertoires to 

protection from relapse and increased overall survival. This knowledge may be useful for the 

development of new strategies utilizing NK cells in cellular therapies against hematological 

malignancies.  
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1 BACKGROUND 
1.1 ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION 

Implementation of hematopoietic stem cell transplantation (HSCT) during the 80´s, as a 

therapeutic option for patients with hematological malignancy and other disorders, was the fruit 

of decades of preclinical and clinical research with some of the most important milestones 

mentioned below. The continuous refinement of this effective but high-risk procedure has been 

constantly ongoing ever since.  

i. The pioneer animal studies by Medawar, Lorentz, first in irradiated mice4-6, dogs7 and 

monkeys8 followed by bone marrow infusion and the first patients with leukemia 

receiving bone marrow after irradiation and accidental irradiation exposure.9 

ii. The development of transplant immunology. Principles for graft rejection in 

transplantation delineated by Medawar10; the discovery of the major histocompatibility 

complex (MHC) system in mice by Snell and Gorer11, 12, the development of serological 

typing13 and recent advances within molecular typing. 

iii. Identification of transplant-specific complications such as graft versus host disease 

(GVHD) and morbidity caused by opportunistic infections.14  

iv. Systematic improvements of conditioning regimens leading to less toxicity, better 

engraftment and reduction of GVHD and the use of post HSCT immune suppressive 

therapy.15, 16 

v. Supportive care with prophylactic and pre-emptive treatment strategies against infections 

and development of new anti-viral and anti-fungal drugs. 

vi. The use of alternative donors haploidentical or cord blood transplantation. 

HSCT offers the possibility to cure patients with hematological malignancies incurable by 

conventional chemotherapy. The principal therapeutic effect is mediated by the immunological 

process termed graft versus leukemia effect (GVL). The GVL relies on both T and NK cells17, 18 

and is only present in the allogeneic setting. Despite considerable refinement of the 

transplantation procedures over the years19, HSCT is still a high-risk treatment associated with 

life-threatening complications. Several of the complications are coupled to a mismatch between 

the donor’s and the recipient’s transplant antigens. This may trigger acute or chronic graft versus 
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host disease (GVHD), lead to graft rejection or to incomplete immune reconstitution (IR), which 

in turn predispose for opportunistic infections.  

 

1.2 IMMUNE RECONSTITUTION 

1.2.1 General considerations 

Conditioning regimens are given to the recipient to hamper T cell mediated rejection, mediate 

successful engraftment of the stem cell graft and, and in malignancies, to suppress remaining 

disease. Cytotoxic chemotherapy, irradiation, and anti-T cell antibodies in different combinations 

all acts to create “immunological space”. The choice of regimen depends on the patient’s 

condition, age, and underlying disease. 

The reconstitution of the engrafting hematopoietic system can be divided into three different 

phases:  

i) The first (or aplastic) phase, with deficiencies in all immune cells, has a duration of 1-3 

weeks.  

ii) The second (or acute GVHD) phase lasts for approximately 3 months and is dominated 

by immature NK cells, granulocytes, monocytes and low numbers of T cells and B cells 

and a risk for developing acute GVHD. 

iii) The third (or late) phase is characterized by B cell deficiency with low levels of IgG2, 

IgG4 and IgA and functional defects of the T cell subsets and a risk for chronic GVHD. 

The T cell response to alloantigens is usually impaired for up to two years after HSCT. 

The duration of the late phase is determined by multiple factors including donor or 

recipient age, source of stem cells, occurrence of GVHD and residual thymic activity.20, 21 
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Figure 1. Cellular immune reconstitution after HSCT.  
Ref: Adopted from Storek J.Exp.Op.Bi. 20 

Reconstitution of different immune cell numbers is depicted in figure 1. Even when the number 

of cells in each immune subset is normalized, the immune system lacks full function for a long 

period of time, resulting in increased risk for infections.22-25 A number of factors reduce the 

response to antigens. Most T cells present during the first year after transplantation are generated 

from T cells transferred with the graft after which they expand to fill the empty T cell 

compartment. High levels of inflammatory cytokines early post-transplant26, 27and low T cell 

numbers favor a fast homeostatic expansion of a limited number of specificities28-30, lacking the 

full diversity of a normal T cell repertoire. Homing receptors directing the cells to different 

lymphoid compartments is downregulated impairing antigen presentation of newly 

introduced/reintroduced antigens in the host. This is one reason behind the long-standing 

reduction of B cell responses.31-34 The functional restoration has also been shown to be further 

impaired in older recipients.35, 36 
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Figure 2. Major immune defects and spectrum of infections post HSCT.  
Ref; Extrapolated from figures published in Transplant Infections by Bowden, R.A., Ljungman P, Snydman D.R., 2012. 

 

1.3 INFECTIONS 

The immune status of the different phases dictates the spectrum of infections that appears after 

HSCT (Figure 2). Bacterial infections are common during the aplastic phase. Opportunistic viral 

infections usually develop during the second phase. Mold infections remain an important 

problem and are most common during the second phase. Candida infections are today 

uncommon if prophylaxis is used. For patients with delayed IR and GVHD, the risks for 

opportunistic infection are prolonged for several months (or years) especially if continuous 

immune suppressive therapy is needed. The increasing rates of resistant bacteria will pose 

important management challenges for the future. 

Bacterial infections are most commonly seen during aplasia. In a recent large study with HSCT 

for mixed diseases, 21% developed blood stream infections detectable by culture.37 Gram-

positive bacterial infections (mainly alpha hemolytic streptococci and coagulase-negative 

staphylococci) were dominating in this cohort, in which quinolone prophylaxis was used, 

resulting in a mortality from these infections of 3.3%.  
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Common viral infections during the acute GVHD-phase are cytomegalovirus (CMV) and 

Epstein-Barr virus (EBV) that uncontrolled can cause severe disease with considerable mortality. 

However, CMV monitoring with use of preemptive antiviral therapy has been very successful as 

discussed later to prevent development of end-organ disease. EBV infections are common and 

may develop into post-transplant lymphoproliferative disease (PTLD) that is a life threatening 

condition with high mortality. Unrelated or mismatched donor, use of anti-thymocyte globulin 

(ATG), and splenectomy are some of the risk factors.38, 39 A preemptive strategy including early 

treatment with rituximab and, if possible, reduction of immunosuppression, may improve 

outcome.40, 41 Adenovirus infections are rare but serious infections more often seen in pediatric 

patients and can contribute to considerable mortality. Monitoring and early anti-viral treatment 

proposed as a possible management strategy especially in children undergoing HSCT from 

alternative donors.42, 43 BK virus may cause hemorrhagic cystitis and community acquired 

respiratory viruses such as respiratory syncytial-, influenza-, and parainfluenza viruses, can also 

cause considerable morbidity and to some extent also mortality.44 

Aspergillosis and other mold infections remain a major cause of infectious death after HSCT.45, 46 

These infections develop either during the initial neutropenic phase, if the patient was infected 

before transplantation, or during the acute GVHD-phase. The linkage to ongoing GVHD is 

strong.47 Reported incidences are 0-20% partly depending on geographical localization of the 

transplant center and the mortality rate is around 50%.46 The prognosis has improved with the 

introduction of new antifungal drugs used both for prophylaxis in high-risk patients and 

therapy.46, 48, 49 

Varicella-zoster virus can reactivate any time, but especially during the first year after SCT and in 

patients with chronic GVHD needing long-term immunosuppression, and may cause 

disseminated visceral infection with risk for fatal outcome.50, 51 Therefore long-term acyclovir 

prophylaxis at least for one year is today given routinely.52 The risk for Pneumocystis jirovecii is 

increased for at least 6 months and prophylaxis is indicated. Patients with chronic GVHD are 

also at increased risk for serious infections caused by pneumococci and H. influenzae. Vaccination 

with conjugated vaccines is the main prophylactic measure and is recommended by international 

guidelines.53, 54 

In paper I we examine how late developing infections contribute to the transplant related 

mortality and correlate this to a number of risk factors. 
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1.4 GRAFT VERSUS HOST DISEASE AND GRAFT VERSUS LEUKEMIA 
EFFECT 

Graft versus host disease (GVHD) is a major problem, lethal in approximately 15% of transplant 

recipients.55 Acute GVHD usually develops within the first 100 days, but can also occur later, 

especially after reduced conditioning and donor lymphocyte infusions. Chronic GVHD usually 

appears later than 100 days after HSCT. These conditions have classically been described as 

having two different underlying pathogenic mechanisms. Acute GVHD is dependent on a TH1 

and/or TH17 immune response with hyperinflammation causing a skin rash (81%), liver 

dysfunction (50%), and/or gut dysfunction (54%).56 Chronic GVHD is linked to a TH2-like 

response profile causing a slower, scleroderma-like disease affecting oral and ocular mucosal 

surfaces, the skin, muscles, lungs, liver and gut. However, the immunological mechanisms have 

in recent studies been shown to be more complex than previously anticipated.57-61  

The clinical severity of acute GVHD is determined by the extent of involvement of the three 

main target organs. Overall grades are I (mild), II (moderate), III (severe), and IV (very severe). 

Severe GVHD has a poor prognosis, with 25% long-term survival (5 years) for grade III disease 

and 5% for grade IV.62 A recent update of chronic GVHD clinical grading system includes only 

three grades (mild, moderate, severe).63 

Figure 3 

Three phases of GVHD.  
Ref; Adopted from. Reddy P. and Ferrara 

J.L.M. Mouse models of graft versus host 

disease (Feb, 2009) 
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1.4.1 Acute GVHD 

Acute GVHD is the major cause of mortality and morbidity before day 100 after 

transplantation.64, 65 The process has been divided into three phases. The initial phase in which the 

GVHD is triggered by tissue damage from the conditioning regimen or by infection that 

activates host antigen presenting cells (APCs) and innate immune cells. During the afferent phase, 

these cells activate and promote proliferation of alloantigen-specific T cells that during the efferent 

phase lead to cytokine production such as interleukin (IL)-1 and tumor necrosis factor (TNF)-α 

initiating tissue necrosis.66 

 

1.4.2 Chronic GVHD 

The pathophysiology of chronic GVHD is poorly understood, but several facts are known.57, 66, 67 

i) Damage of the thymus mediated by the conditioning regimen or by preceding acute GVHD 

can impair the negative selection of auto/allo-reactive CD4+ T cells. ii) TH2 cytokines are 

released including IL-4, IL-5 and IL-11. This in turn stimulates production of the fibrogenic 

cytokines IL-2, IL-10 and Tumor growth factor (TGF)-β1, activating macrophages producing 

Platelet derived growth factor (PDGF). iii) These cytokines stimulate proliferation and activation 

of tissue fibroblasts. iv) Regulatory T cells have been shown to be low in numbers. v) 

Dysregulation of B cells with high levels of B cell-activating factor (BAFF) and production of 

auto-reactive antibodies.57 

 

1.4.3 Recent Advances in GVHD Biology 

The microbiome and mycobiome of the gut can activate an innate immune response and to 

trigger acute GVHD.68 Pattern-recognition receptors (PRRs), such as toll-like receptors (TLR) 

and nod-like receptors (NLR), are sensors that can activate the innate cells. Bacterial 

lipopolysaccharide (LPS) and bacterial DNA can, via TLR-4 and TLR-9, trigger the innate 

immunity and cause a “cytokine storm”.69 Damage-associated molecular patterns (DAMPs) are 

released after tissue damage and trigger APCs.70, 71 Studies have shown that intestinal and skin 

GVHD can be diminished in mice by gut decontamination.72-74 The bacterial flora can also 

protect against GVHD75 and gut decontamination was not shown to improve overall survival.76 

In a recent study, we presented results showing that certain activated innate lymphocyte subsets 

with homing potential to the gut may mediate protection against acute GVHD.77 If this is 

affected by intestinal bacterial and fungal flora remains to be examined. 
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The presentation of minor histocompatibility antigens by MHC class I molecules on recipient 

hematopoietic APCs is important, and donor APCs can augment this response. However it was 

shown that there are only few residual regular APCs. Instead, parenchymal tissue cells can 

acquire APC functions and promote marked expansion of alloreactive donor T cell populations 

in the gastrointestinal tract.78 B cells also seem to interact in the development of both acute and 

chronic GVHD. Deletion of B cells before, but not after, conditioning reduced the risk for acute 

GVHD and B-cell dysregulation and CD20 deletion can be efficient in chronic GVHD.79,80 

GVHD is a mainly a result of naïve T cell responses. Central and effector memory T cells do not 

appear to induce GVHD, but can mediate GVL responses.81 TH1 cells and pro-inflammatory 

molecules such as IL-1, IL-6, IL-12, tumor necrosis factor (TNF) and nitric oxide are important 

factors in the induction of GVHD. TH2-type cytokines, such as IL-4, can reduce acute GVHD.57 

TH17 cells, which are characterized by the production of IL-17A, IL-17F, IL-21 and IL-22, have 

been suggested to have a direct role in GVHD pathobiology. In patients with acute GVHD, IL-

17-producing cells can be found in gut but not in the skin.58, 82, 83  

 

1.4.4 Graft versus leukemia effect 
The main therapeutic effect mediated by HSCT against malignancies is thought to be the GVL 

effect. GVL is tightly coupled to immunological allo-reactions causing GVHD where patients 

transplanted for leukemia that develop GVHD have reduced relapse rates and an increased 

overall survival. The GVL relies on both T and NK cells17, 18 and is mainly seen in allogeneic 

settings. T cell depletion from the graft eliminates GVHD, but at the expense of an increased 

leukemia relapse rate.18, 84 The major GVL effectors are cytotoxic T cells that recognize allogeneic 

histocompatibility antigens presenting tumor-specific peptides and unique tumor antigens. In 

addition, NK cells and NKT cells can directly recognize MHC class I molecules and stress-

induced peptides and mount anti-tumor responses. The magnitude of the GVL effect and 

thereby the efficacy of HSCT varies between diseases and seem to be greater against myeloid 

malignancies than lymphoid. The development of a strong GVL effect is linked to a successful 

immune reconstitution and tapering of the immune suppression, therefore the GVL effect will 

have more time to develop in slowly than in rapidly progressing diseases where the leukemic cells 

may cause relapse before the GVL is established.85, 86  

Even though GVHD and GVL are tightly linked, it has been shown that NK cells can mediate 

GVL without GVHD.87 Furthermore, IFN-γ can promote separation of GVHD from GVL by 

promoting apoptosis and suppressing proliferation of alloreactive T cells, by increasing 
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Programmed cell death protein 1 (PD-1) expression, leading to elimination of these cells in the 

affected organ (Figure 3).88 

 

1.5 CYTOMEGALOVIRUS 

Herpesviruses are DNA viruses that have coevolved with the human species over millions of 

years and exist in many vertebrates. The family Herpesviridae consists of three subfamilies of 

viruses (alpha, beta, and gamma), where CMV belongs to the beta subfamily. Herpesviruses 

particles consist of the core, the capsid, the tegument, and the envelope (Figure 4). During the 

acute phase of infection, CMV has been shown to infect multiple cell types; endothelial cells, 

epithelial cells, smooth muscle cells, fibroblasts, neuronal cells, hepatocytes, trophoblasts, 

monocytes/macrophages, and dendritic cells (DCs).89 The virus can thereafter establish 

latency/persistence in endothelial cells, cells of the myeloid lineage and CD34+ cells.90-94  

Figure 4. 

Cytomegalovirus. 

Schematic presentation. 

 

 

Innate, cellular and humoral 

immune responses are all 

involved in defeating and 

controlling CMV. T cells are 

considered most important 

in controlling latent/persistent infection explaining why CMV infections mostly develop during 

the first three month after HSCT. Both CD4+ and CD8+ T cells are crucial and mount broad 

responses against multiple CMV epitopes and approximately 10% of all memory T cells have 

specificity against CMV.95 CD4+ cells provide B-cell stimulation and production of CMV 

specific antibodies. These antibodies are protective, but cannot clear infected cells. Antibodies to 

different CMV antigens have been described, but few are effectively neutralizing the CMV. Some 

antibodies with neutralizing properties have, however, been identified with specificities against 

glycoprotein B, H/LUL-128-131 and the N–M complex. A pentameric complex consisting of 

gH/gL/UL128-131 is explored for vaccination and neutralizes infection of epithelial and 

endothelial cells in vivo.96 
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CMV is a strong inducer of type 1 immune responses where IL-2 and IFN-γ are dominating the 

cytokine profile, but it has been described that CMV also trigger type 2 cytokines such as IL-10 97 

producing a mixed response. The induction of an innate immune response is strong, rapid and 

does not require transcriptionally active viral particles.98 This may in part be due to the fact that 

the envelope glycoproteins B and H may interact with integrin heterodimers, toll-like receptors, 

and entry receptors, leading to early signaling and transcriptional events in infected cells and 

activating innate immune responses before the outset of viral replication.98 

The tegument contains most of the viral proteins important for entry, excretion and for 

triggering immune escape mechanisms.99-101 CMV has developed numerous mechanisms to avoid 

recognition by DCs, T and NK cells. In DCs, the infection causes an increase of the co-

stimulatory molecules CD40, CD80 and CD86, a down-regulation of both MHC class I and II. 

After that, surviving DCs have been described to mature rapidly, up-regulate Fas-ligand and 

TRAIL and thereby acquire capacity to kill peripheral blood mononuclear cells (PBMC) or T cell 

lines.102 CMV can also hamper the IL-12 and IL-2 –production by dendritic cells diminishing 

further stimulation.103 The monocyte lineage also plays a central role during the latent phase, 

where the virus can reside until differentiation to macrophages or DCs occurs. This can trigger 

reactivation of CMV.92, 104 

T cells can be avoided by the proteins US2, US3, US10 and US11 that increase degradation of 

HLA class I; US6 block TAP and UL83 inhibit the proteasome hindering antigen processing and 

presenting.101 To avoid NK cell elimination due to low HLA class I density, the UL18 can mimic 

HLA-class I and bind inhibitory LILR-1 receptors. The UL40-protein can mimic class I leader 

peptides and thereby maintain HLA -E expression. The latter promotes inhibition through 

signaling via inhibitory CD94/NKG2A receptors expressed by NK cells.105, 106 Another protein, 

UL16, UL 142 and the virus-encoded micro RNA, miR‑U L112, selectively retains stress-induced 

proteins ULBP1-4 and MICA/B inside the cell and thereby prevent recognition by the activating 

receptor NKG2D.107, 108  
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Interaction between NK cells and DCs in CMV infection 

A crosstalk between NK cells and DCs was described; NK cells can kill immature DCs or 

promote their maturation and mature DCs can in turn stimulate NK cell cytotoxicity and 

proliferation. The activating receptors NKp30 and DNAX Accessory Molecule-1 (DNAM-1) is 

important in this interaction and stimulation leads to increased production of IL-12, IL-15, IL-

18, and IFN-α/β.109-112 NK cells were shown to regulate CMV infection through interactions 

with autologous APCs. NK cells respond through stimulation of activating receptors NKp46 

and DNAM-1 via ligands expressed by infected monocytoid DCs.113 This early response is 

followed by a virus-mediated down-regulation of the DNAM-1 ligands CD155 and CD112, 

which dampens NK cell reactivity and leads to viral escape. 

Approximately 50-90% of the European population (74% in Nordic countries) are CMV-

seropositive.114 The infection is transferred via body fluids and is often asymptomatic during the 

primary infection but can present as mononucleosis, kissing disease 115, with symptoms such as 

lymph cervical lymphadenopathy, splenomegaly, continuous fever, myalgia and rash.116 During 

the latent phase a persistent production of viral particles can occur in endothelial cells allowing a 

continuous stimulation and modulation of the host immune system.92 This continuous immune 

stimulation is thought to contribute to the increase of CMV-specific T cells detected in elderly 

and to contribute to an immune risk profile leading to increased susceptibility to infections.117, 118 

Interestingly, the NK cell immune compartment is also affected by age, but a correlation to 

CMV seropositivity has not been possible to show.119, 120 

 

1.5.1 CMV in HSCT 

For the purpose of this thesis, the two options of primary CMV infection (usually transferred 

from the donor) in a CMV seronegative recipient and reactivation of a persistent/latent virus in a 

CMV seropositive patient will be jointly described as CMV infection or episodes of CMV 

replication. CMV can cause severe disease in the immunocompromised host making CMV one 

of the most important opportunistic pathogens to control after HSCT.121-123 During active 

replication, the virus can be found in most tissues of the body. It can cause pneumonia, hepatitis, 

gastroenteritis, retinitis and encephalitis, and the disease can develop both early and late after the 

transplantation procedure.124, 125 

CMV-replication occurs most frequently during the acute GVHD-phase after HSCT and has 

been correlated to a reduced function of CMV-specific CD8+ and CD4+ T cells126 and reduced 
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signal transducer and activator of transcription 5 phosphorylation (STAT5) levels has been 

shown in response to IL-2 or IL-7 in patients with more CMV reactivations.127 

The CMV serological status of donor and recipient was in multiple studies shown to be an 

important factor for transplant outcome of HSCT. Early diagnosis and modern antiviral 

treatment have reduced CMV-induced morbidity and mortality128-134, but CMV seropositive 

recipients still have a poorer outcome than CMV seronegative patients.113, 131, 132 The best 

outcome is seen when using a CMV seronegative donor to a CMV seronegative patient. This 

combination reduces the morbidity in CMV infection but does also reduce the risk for severe 

bacterial and fungal infections.135 However, the effect of donor serostatus in CMV seropositive 

patients remains a controversial issue. A recent large study encompassing 49542 HSCT patients 

from the European Group for Blood and Marrow Transplantation (EBMT) was recently 

published.136 In this study it was confirmed that using a CMV negative donor to a negative 

recipient had better overall survival (OS) compared with CMV positive donor to negative 

recipient. Furthermore, having a CMV positive donor is beneficial in a CMV seropositive 

recipient, but only if myeloablative conditioning is used. These effects were also only seen in 

HSCT recipients with unrelated donors and were absent with sibling donors. 

1.5.2 CMV and GVL 
Besides the risk of developing hazardous CMV-disease, CMV infection has been coupled to 

reduction in relapse of leukemia. As early as 1984 there was a report from Lönnqvist et al. 

reported in a small study that CMV infection could lead to reduced relapse of leukemia.137 

Elmaagacli et al. have published similar results from AML patients undergoing myeloablative 

allogeneic SCT138 and Ito et al.139 also found a decreased relapse risk in patients with CML. Green 

et al. documented a reduction in relapse risk in a population of mixed diseases both at day 100 

and at 1 year after transplantation.140 The mechanism behind this effect is not yet clarified. The 

effect seems to be due to CMV replication by itself because there was no effect by CMV 

serological status. Instead, Green et al., found an opposite effect of recipient CMV seropositivity, 

with an increased relapse risk early after transplantation for acute leukemia and lymphoma. The 

effect was seen by CMV replication occurring early after SCT since there was no effect when a 

landmark analysis starting at 50 days after SCT was performed.140 These studies have also failed 

to find an increased overall survival despite a reduced risk for relapse since the non-relapse 

mortality was increased in patients with documented CMV replication resulting in no net benefit. 

One possible explanation is interplay between CMV and NK cells that could result in increased 

GVL. This possibility is examined in paper IV. 
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1.5.3 CMV treatment strategies 
Controlling CMV infection leads to an improved survival. Through modern strategies with CMV 

monitoring and pre-emptive antiviral therapy, the risk for CMV-disease have decreased from 20 

– 30% to less than 5% in many studies124, 125, 141 

The decision of preemptive therapy is usually based on either pp65-antigenemia or quantitative 

PCR measuring viral load. The latter is the most commonly used method today.142 Many centers 

have developed their own assays, creating a variability that makes comparisons between 

laboratories difficult. The level for initiation of antiviral therapy has been debated, but published 

data suggest that preemptive therapy can safely be initiated from 100 copies/ml to 10.000 

copies/ml, depending on the patient group studied.143, 144 Ganciclovir i.v., the p.o. prodrug 

valganciclovir, and foscarnet have all been effective as first line therapy.145-147 However, CMV 

remains a problem especially in patients experiencing repeated or prolonged CMV replication 

episodes. An important clinical parameter during treatment is that a slow decrease in viral load 

was shown to be a risk factor for later development of CMV disease.141 These patients have an 

increased risk for toxicity from the existing antiviral drugs and an increased risk for their CMV 

becoming resistant. Several groups have worked with CMV-specific T cell therapy for several 

years and finally two randomized controlled trials of this strategy were performed in the UK.148-151 

The results of these studies will be presented later this year. Prophylaxis regimens are used in 

some centers, but the toxicity is high with presently licensed antiviral drugs. Ganciclovir can for 

example inhibit lymphocyte proliferation152 and may cause lymphopenia and neutropenia. The 

use of foscarnet is limited by nefrotoxicity and electrolytic disturbances.153 New drugs with less 

toxicity such as letermovir, brincidofovir and maribavir are under development.154-156 An 

unresolved question is, however, if the described beneficial effects of CMV replication on relapse 

will be affected if a very effective prophylactic regimen against CMV is applied. The 

development of an adequate CMV control and anti-leukemic effects seen after reactivations may 

be hampered. 
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1.6 NK CELL BIOLOGY  

The field of innate immunity has expanded vastly during the last years, giving rise to a completely 

new nomenclature to describe its cellular components. Innate lymphoid cells (ILCs) have several 

common characteristics. They are developed from common lymphoid progenitors, lack 

recombined antigen receptors, myeloid and dendritic cell phenotypical markers.157, 158 They all 

have the ability to respond to APC cytokine stimulation, but NK cells are so far the only ILC-

type that can respond with cytotoxic degranulation. Organ specific NK cells have recently been 

found and in line with this finding159 most of the newly discovered ILCs in humans have been 

found in the mucosal immune system where they are thought to scan this environment and 

possess regulatory functions77, 159 They have been compared to T helper cells since they have 

specific cytokine production profiles.160 They are divided into three groups based on their 

capacity to mount a TH1-, TH2- or TH17 (IL-17 and IL-22)- type cytokine response and with 

specific requirement for transcription factors during ontogeny. In this new nomenclature NK 

cells belong to the ILC group 1 (Figure 5). 

NK cells were discovered by Kiessling, in parallel with Herberman in 1975161-164 and were defined 

by their natural ability to kill tumor cells without prior sensitization. Nearly four decades of 

research has broadened the view of the role played by NK cells, which are now considered to be 

key cellular components of the innate immune system acting at the interface between innate and 

adaptive immunity. NK cells produce IFN-γ in response to exogenous cytokine stimulation, 

display immunoregulatory activity by perforin-dependent killing of activated immune cells, and 

mediate immune surveillance of virus- and tumor transformed cells165, 166 through IFN-γ 

secretion, perforin and FAS-ligand-dependent target cell killing.167, 168 NK cell functions can 

complement T cell function by detecting targets having low or no expression of MHC class I 

molecules at the cell surface. This is called missing self-recognition and is determined by a family 

of inhibitory receptors called killer cell immunoglobulin-like receptors (KIRs) that specifically 

bind to different groups of MHC-I and by the dimeric receptor CD94/NKG2A, which binds to 

HLA –E.169 In recent years, it has become clear that NK cell function is regulated by the net sum 

of signals from a vast array of inhibitory and activating receptors.170 Several of the activating 

receptors bind to stress- or virus-induced molecules on infected or transformed cells. Hence, NK 

cell recognition is triggered by loss or alteration of HLA class I expression (missing self) in 

combination with increased expression of stress-associated ligands for activating receptors 

(induced self).171-173 
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Figure 5. New groups of innate cells and their developmental pathways. 
Ref: Spitz et al. (2013), Innate lymphoid cells - A proposal for uniform nomenclature, Nature Reviews Immunology 13, 145 

 

NK cells develop in the bone marrow from early lymphoid precursors to mature NK cells and 

can then develop further in lymph nodes, thymus, liver and spleen.174 Work by Caligiuri and 

colleagues showed that the early NK cell development in humans, from CD34+ hematopoietic 

precursor cells (HPCs) through discrete steps into CD56bright NK cells, occurs in secondary 

lymphoid tissues.175-177 Freud et al have proposed following model: Lymphoid progenitor cells 

that express CD34, CD45RA and integrin β cells are called stage 1 cells. Stage 2 is defined by 

acquisition of CD117 that is followed by CD161 and CD127 during stage 3.177 IL-15 has been 

shown to be central for NK cells differentiation from stage 2 to 4 (Figure 6).178, 179 Stage 3 cells 

are fully committed and do not differentiate into T cells or dendritic cells. From stage 4, NK 

cells are CD56bright CD94/NKG2A+ and are readily detected in peripheral blood. During further 

differentiation these cells down-regulate CD56 to become CD56dim. A special distinction can be 

made between CD56dim and CD56bright subsets where CD56dim cells express CD16 and have 

cytotoxic potential180 and CD56bright NK cells is CD16-, express IFN-γ and have 

immunoregulatory function181. In recent years, it has become clear that CD56dim NK cells also 
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produce a range of cytokines and chemokines, in particular following stimulation with cellular 

targets.182 The CD56bright NK cells can be attracted to inflammatory sites and are the dominating 

NK cell subset in lymph nodes.183 We and others have recently shown that CD56dim NK cells 

continue to differentiate.184-186 During this process they lose expression of NKG2A, sequentially 

acquire inhibitory KIRs and CD57, change their expression patterns of homing molecules 

including CD62L and display a gradual decline in proliferative capacity.175, 177, 185 

 

Figure 6. Overview; NK cell development and important markers at different stages.  
Ref: Cichocki et al. (2013) Epigenetic regulation of NK cell differentiation and effector functions. Front. Immunol. 4:55. 

 

1.6.1 NK cell education 
For long it has been assumed that all mature NK cells are fully functional and ready to kill targets 

with aberrant expression of HLA class I. Based on characterization of large number of NK 

clones, it was proposed that every NK cell must express at least one self-specific inhibitory 

receptor to maintain self-tolerance.187, 188 However, more recent investigations of unperturbed 

polyclonal NK cells have found subpopulations of hyporesponsive NK cells lacking inhibitory 

receptors specific for self-MHC class I molecules (self-KIRs or self-Ly49s in human and mice, 

respectively.189, 190 Thus, instead of a selection process that delete potentially auto reactive subsets, 

NK cells have been shown to undergo an educational process where only NK cells expressing 

self-KIRs or NKG2A are endowed with functional competence.189, 191 This is a prerequisite to 

maintain NK cell tolerance. During education, CD56dim NK cells are functionally fine-tuned by 



 

  17 

interactions between cell surface receptors, including inhibitory and activating KIRs and 

NKG2A with their cognate HLA class I ligands.191-194 Given the stochastic expression of KIRs at 

the cell surface, this functional calibration is a prerequisite to maintain NK cell tolerance.195 

Several principles for the educational process have been suggested; The arming or licensing-

model196-198 proposing that NK cells are initially inert and get “licensed to kill” through ligation of 

inhibitory receptors by ligands expressed on other cells (trans-presentation) or by themselves 

(cis-interaction-model).199, 200 The disarming-model propose that NK cells are fully functional or 

“armed” from the beginning but become hypofunctional when they fail to get inhibitory input 

from neighboring cells, potentially due to overstimulation.201 More recently, education was 

suggested to be more of a dynamic process than an on/off phenomenon. This dynamic 

functional tuning is termed the rheostat model and does not exclude any of the previously 

suggested principles.202-205 The rheostat model is particularly useful in the context of NK cell 

adaptation to different milieus in different organs and immune responses without mediating too 

strong response or creating autoreactivity.206 

It is tempting to draw the conclusion that hyporesponsive NK cells do not exert any biological 

function, but this has been questioned in recent studies. Transfer of uneducated cells to 

immunodeficient mice where shown to provide a better protection against CMV than transfer of 

the educated fraction.207 Furthermore, it has been shown that high doses of interleukin-12 (IL-

12), IL-18191, 208 or infection with listeria209 can reverse the hypo-responsiveness of uneducated 

NK cells. In a therapeutic setting, uneducated NK cells were shown to be more advantageous in 

the context of antibody-based targeting of neuroblastoma cells.210 As we shall discuss in relation 

to paper II in this thesis, uneducated cells may under certain conditions become activated during 

the IR after HSCT.  

1.6.2 NK cell repertoire skewing and memory 
Until recently, NK cells were believed to be short-lived innate cells without any involvement in 

the immunological memory to encountered antigens. This dogma has been overthrown in recent 

years when it has been shown that viral infections may shape the NK cell repertoire in a way that 

provide protection against new viral challenges211-213 This has been taken as a proof for that NK 

cells also possess the capability to mount memory responses. There are many examples of this 

repertoire skewing. NK cells expressing the activating receptor CD94/NKG2C have been 

shown to proliferate in response to CMV-infection.214, 215 These NKG2C+ cells also expand in 

response to hepatitis C virus and hantavirus but only in CMV-seropositive individuals.216, 217 

CD94/NKG2C binds to HLA-E and the binding is influenced by the peptide bound to the 

grove.105, 169 It is therefore possible that the inhibitory receptor NKG2A and activating receptor 

NKG2C can distinguish between HLA-E expressing different leader peptides.218 Several recent 
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epidemiological studies have shown that the risk for CMV-reactivation is reduced if the donor 

possesses more activating KIRs219-222 suggesting that certain NK receptor profiles are associated 

with a better immunity to infection.  

There is evidence for NK cells involvement in the immune response against various infections. 

Their role in viral infections is the most established but there are also reports of NK cell activity 

being important against infections with other microorganisms, including Legionella pneumophila223, 

Mycobacterium tuberculosis224, Borrelia burgdorferi225, Toxoplasma gondii 226 and Plasmodium falciparum.227 

As yet, there is no clear evidence for direct, cognate recognition of bacteria, fungi or parasites by 

NK cells. Bacterial infections were shown to induce the expression of NKG2D ligands and the 

activation of myeloid cells by Toll-like-receptor ligands results in the production of the 

proinflammatory cytokines, IL‑12 and IL‑18, which are potent inducers of interferon-γ (IFN-γ) 

production in NK cells. A rapid secretion of IFN-γ by NK cells at the site of infection preceding 

the T cell response will cause an activation of macrophages and dendritic cells, and might be an 

important component of the immune response in many of these infections. 

1.6.3 Killer Cell Immunoglobulin-
Like Receptors 

KIRs have a central role for the function 
of NK cells. 15 KIR gene loci have been 
identified (KIR2DL1, KIR2DL2/L3, 
KIR2DL4, KIR2DL5A, KIR2DL5B, 
KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, 
KIR2DS5, KIR3DL1/S1, KIR3DL2, 
KIR3DL3 and two pseudogenes, 
KIR2DP1 and KIR3DP1). All are encoded 
within a 100-200 Kb region of the 
Leukocyte Receptor Complex (LRC) 
located on chromosome 19 (19q13.4).228 
KIRs are all membrane-bound receptors 
belonging to immunoglobulin superfamily. 
The KIRs can be either activating or 
inhibitory depending on if their 
intracellular motif is immunoreceptor 
tyrosine-based inhibitory motif (ITIM) or 
immunoreceptor tyrosine-based activating 
motif (ITAM).229 

Figure 7. KIR gene cluster localization on chromosome 19q13.4   
Ref: Robinson J et al.. IPD-the Immuno Polymorphism Database. Nucleic Acids Research (2005), 331:D523-5  
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KIR genes are narrowly placed and the linkage disequilibrium230 is high with combinations of 

KIRs being inherited in haplotypes. According to EMBL-EBI Immune Polymorphism Database 

there are today over 40 haplotypes identified.231 All haplotypes include 4 framework genes and 

can be broadly divided into two different groups A and B, where haplotype A only includes 

inhibitory KIRs and the activating KIR2DS4 and haplotype B is more variable and can include 

KIR2DL2, KIR2DL5A/B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5 and KIR3DS1 genes that 

are absent in group A.232, 233 By studying individual gene motifs in the centeromeric (Cen) or 

telomeric (Tel) end the different haplotypes can be further classified234 based on their Cen/Tel 

A/B content (Figure 8). 

 

Figure 8. Schematic presentation of A and B haplotypes and definition of the telomeric 

(Tel) and centromeric (Cen) part.  
Ref: Adopted from Malmberg et al. Killer cell immunoglobulin-like receptor workshop. Immunity 2011.  
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1.6.4 Evidence for NK cell-mediated graft versus leukemia effect in 
allogeneic stem cell transplantation 

Valiante et al. first conceived the concept of NK cell alloreactivity in transplantation based on the 

stochastic expression of KIR.187 NK cells have strong alloreactive capabilities that can be 

triggered by a mismatch between KIRs and their corresponding HLA class I ligands87, 235-241 or 

through activating receptors.242-245  

The first clinical evidence showing that NK alloreactivity had a role in tumor surveillance in 

humans, came in 2002. Ruggeri et al reported that outcomes from a cohort of AML- and ALL 

patients, receiving KIR-HLA mismatched, CD34 enriched peripheral stem cell grafts, effectively 

depleted from T cells.87 The clinical results were impressive with 0% AML-relapse in the KIR-

ligand mismatched group versus 75% in the non-mismatched group. A KIR-ligand mismatched 

effect was absent in the ALL-group. Furthermore, acute GVHD grade II-IV and rejection was 

not seen in a single patient in the KIR-ligand mismatched group. The observations were 

strengthened by the identification of anti-recipient alloreactive clones only in the mismatched 

setting and by demonstrating the capability of mouse NK cells to eradicate host APC:s and 

thereby diminishing presentation of alloantigens to T cells and preventing the development of 

GVHD. In the end of the article, they postulate: “Alloreactive NK cells emerge as a form of cell 

therapy that might be used in conditioning regimens for host immune suppression and leukemia 

ablation”. These findings triggered a cascade of studies, during more than a decade, engaging 

many transplant centers around the world to study outcomes based on stratification of KIR 

HLA genotypes in donors and recipients in different transplantation settings. They have also lead 

to the definition of a number of distinct framework models to describe NK cell alloreactivity 

(Figure 9). 

  



 

  21 

 

 

Figure 9. Models of NK cell mediated alloreactivity. As explained in 1.6.4-1.6.5. 
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1.6.5 Dissecting the beneficial effects of KIR-HLA mismatch  

Delineating the conditions that promote NK-alloreactivity has been more complex than first 

expected, with many conflicting results (references collected in Table 1). However, after more 

than a decade of research examining NK cell alloreactivity from multiple angles, some 

conclusions can be drawn. NK cells do have strong alloreactive capabilities that can be triggered 

by a mismatch between KIRs and their corresponding HLA class I ligands87, 235-241 or through 

activating receptors.242-245  

The clinical effects mediated by KIR-ligand mismatch have been most prominent in the 

haploidentical HSCT setting, where several other groups, besides Velardi, have shown decreased 

relapse rate for adult AML (Table 1).87, 235, 236 There are also reports with positive results from 

HSCT with unrelated and sibling donors, where most have the common denominator of using 

effective T cell depletion (TCD) either through CD34 selection or the use of anti-thymocyte 

globuline (ATG).237, 238, 240, 241, 243, 246, 247 This is in line with observations that T cells in the graft can 

interfere with NK cell maturation. In TCD transplantation, NK cells express more KIRs and 

express less IFN-γ, suggesting a faster maturation and more cytotoxic phenotype.248 This 

difference could be mediated by the lack of regulatory T cells, which may inhibit NK cells both 

through direct inhibition and by a competition of IL-2.249-252 Another piece of evidence 

supporting the interference of T regulatory cells with NK cells comes from a recent study by 

Bachanova et al, where adoptively transferred haploidentical NK cells show a better in vivo 

expansion and also a better clinical effect after IL-2 diphtheria toxin treatment depleting the host 

T-regulatory cells.252 The influence of T cells on NK cell alloreactivity is one of the focuses of 

paper II in the present thesis. Another factor coupled to a better NK cell mediated effect is the 

high stem cell doses often used in haploidentical transplantation. This notion is supported by 

experiments in mouse models, where high stem cell doses may overcome rejection of grafted 

cells253, something also described in early studies of NK cell tolerance in the context of hybrid 

resistance.254 A third factor that may contribute to promote NK cell mediated alloreactivity in 

haploidentical transplantation and other TCD settings to use no or less immunosuppressive 

therapy is used post-transplant allowing NK cells to deliver full cytotoxicity.255 

In recent years, the focus has shifted from KIR-ligand mismatch or missing ligand to studies of 

the clinical effects of activating KIRs. Two early studies including patients with mixed diagnoses 

showed that donor-recipient pairs with KIR genotypes containing more activating receptors 

(haplotype B) could affect the outcome.256, 257 In 2009 Cooley et al presented data from 448 

patients with AML showing that patients with at least one group B haplotype have 42% better 

relapse free survival and 50% improvement in overall survival.258 In a second study, including 
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1086 patients with AML and 323 with ALL, the strongest prediction was made by Haplotype B 

motifs in the centromeric part of the group B haplotype (Cen B) of the KIR locus. The relative 

risk for relapse was 0.34 when comparing homozygosity for the Cen B versus the Cen A KIR 

gene content. Cooley et al recently dissected effects of the Cen A/B prediction system further 

and showed that all individual KIR-genes in the haplotype B may influence the outcome as long 

as the recipient was not C2 homozygous.259 It was proposed that KIR2DL2 might mediate at 

least a part of the effect.259 The cellular mechanism behind this observation remains unclear but it 

is possible that it relates to the strong educating impact of the KIR2DL2-C1 interaction260. 

Interestingly, seven haplotype B genes were independently linked to better outcome of C1+ 

patients in the HLA mismatched situation. No such effect was seen in the HLA-matched 

situation, which may infer that a mismatch may potentiate these effects, maybe trough a breaking 

of tolerance. 

 

1.6.6 Downtuning of NK cell responses by KIR2DS1 

Among the activating KIRs, KIR2DS1 is the only receptor that shows significant functional 

interactions with a constitutively expressed ligand, HLA -C2.260 Chewning showed in 2006 that 

KIR2DS1+ NK cells from C1+ donors mediated alloreactive responses against C2+ targets. In 

2009 Giebel published results from a small cohort showing that the use of a KIR2DS1+ donor 

into C2+ recipients resulted in worse outcome.261 Moreover, Venstrom et al showed 2012 in a 

large cohort of 1277 patients transplanted for AML that use of a KIR2DS1+ donor could 

mediate protection against relapse in C1+ recipients.245 This is also well in line with in vitro results 

showing that KIR2DS1 tune down NK cell-mediated killing in the presence of C2 homozygous 

donor cells262. The biological function of an activating receptor with weak binding affinity to 

HLA-C2 remains to be solved. It is not impossible that stronger binding and activation may be 

mediated by altered ligands caused by pathogens as suggested for other activating receptors.262, 263 

It has also been proposed that activating receptors are needed for education that suggest that 

KIR2DS1 could have a function even in the absence of C2 ligand.264 

Although the binding to the proposed cognate ligand HLA-Bw4 is less well documented, the 

effect of KIR3DS1 has also been examined in several studies.243, 245, 265, 266 In a study with mixed 

diagnoses the presence of KIR3DS1 was linked to less relapse in Bw4+ recipients 265 and in 

larger studies of AML patients it was coupled to a lower risk for acute GVHD II-IV and an 

increased overall survival.243, 245 These effects were further potentiated when carrying one or two 

copies of KIR3DS1 indicating a dose-dependent effect. A direct correlation to copy number 
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variation of KIR3DS1 was described for controlling HIV-infection267, suggesting that a higher 

expression of this activating receptor may influence the functionality of the NK cell repertoire. 

Delineating the impact of individual KIR genes is complicated because of the strong linkage 

disequilibrium between the narrowly placed KIR-genes.230 Furthermore, mismatches of HLA-B 

and -C may trigger T cell alloreactivity, which may be hard to separate from NK cell-mediated 

GVL. Although it remains an outstanding task to decipher the conditions that foster NK cell 

alloreactivity in the context of HSCT, the accumulated data permit some conclusions to be 

drawn: 

• NK cells can mediate clinically relevant responses against AML and MDS. 

• Responses are most commonly seen when T cells or at least T regulatory cells have been 

inhibited, probably because NK cells more easily can undergo expansion and mediate 

their cytotoxic function without inhibition. 

• KIR-ligand mismatched donors in don+/rec- direction is preferable in TCD-transplant 

settings. 

• Activating KIR2DS1+ or Cen B+ donors are preferable for C1/X recipients both in 

matched and mismatched unrelated T cell-replete (TCR) settings. 
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2 GENERAL AIMS 
The general aim of this thesis was to examine new aspects of the immune reconstitution after 
HSCT by using the latest techniques within multicolor flow cytometry and try to learn more 
about the role of NK cells in infection and GVL-processes. 

More specifically we wanted to gain knowledge about NK biology for the purpose to develop 
NK cell-based cellular therapies against malignancy. 

Since NK cell repertoire formation is influenced by CMV, and CMV is partly controlled by NK 
cells, we wanted to focus on this interplay after HSCT. 

To enable these studies, we established a biobank from patients transplanted at, Karolinska 
University Hospital, Huddinge. The regional ethics board in Stockholm and at National 
Institutes of Health, Bethesda, MD, approved all studies. Patients were included between 2005-
2011 and were sequentially sampled for serum and peripheral blood. Samples were taken from 
the donor and at 11 time points after the transplantation in the recipient. Extended HLA and 
KIR-genotyping of donors and recipients were performed and patient data was collected 
prospectively. We also collected lymphocytes from a cohort of healthy donors that were HLA 

and KIR-genotyped. These biobanks were used for the studies reported in paper II-IV. 

 

3 DISCUSSION 

3.1 FACTORS COUPLED TO DELAYED IMMUNE RECONSTITUTION ARE 
ASSOCIATED WITH LETHAL INFECTION LATE AFTER HSCT 

Besides relapse of the underlying disease or GVHD, infections are the most common causes of 

death in HSCT patients.268-270 A mixture of viral, bacterial and fungal infections contributes to 

this increased mortality, indicating that defects in both the innate and adaptive immunity are 

involved. The early mortality due to infections has been extensively studied. In paper I, we 

therefore concentrated on the contribution of infections developing later than 6 months after 

HSCT on the transplant related mortality (TRM). 

We showed that the spectrum of the lethal infections was similar as described in earlier studies. 

These results stress the fact that prolonged prophylaxis against varicella, fungal, and bacterial 

infections is warranted in patients with ongoing chronic GVHD and immune suppression even 

late after HSCT. These patients should therefore be under careful observation, liberally 

examined, and early treated when developing signs of infection. It is of course of outermost 

importance that these patients are vaccinated according to internationally recommended 

guidelines.271 
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The primary objective of this study was to identify risk factors coupled to late lethal infection and 

as expected, we found that chronic GVHD and a mismatched/unrelated donor increased the 

risk for late lethal infection. These factors are known to have a profoundly negative influence on 

the IR.272-274 Total body irradiation (TBI) is also known to cause lifelong splenic impairment 

increasing the risk for encapsulated bacterial infections.275, 276 We also found that previous acute 

GVHD grade II-IV, even when not followed by chronic GVHD, was an independent factor 

increasing the risk seven-fold for late lethal infection. This could in part be due to the direct 

effects on the IR and cellular function mediated by acute GVHD.277, 278 The immunological 

imprint made by treatment with high doses of steroids279-281 or a need for prolonged treatment 

with cyclosporine A may also contribute to the increased risk. Further investigation of 

differences in IR and function of specific lymphocyte subsets may reveal why the risk for late 

lethal infection is increased in this group of patients. 

More surprising was the finding that CMV infection, usually occurring early during the IR after 

HSCT, could leave an imprint that increases the risk for death in infection years after the 

transplantation. CMV infection increased the risk five-fold for dying in a lethal infection. As we 

point out in paper I, it is known that acute GVHD increases the risk for CMV infection50, 282, 

increases the CMV viral load141 and the risk for subsequent chronic GVHD.283-287 The use of 

unrelated/mismatched donors increases both the risk of CMV infection and acute GVHD. 

Cytomegalovirus infection has also been associated with an increased risk for chronic GVHD121, 

137, 288, and vice versa.289 However, when we corrected for all these potential confounding factors 

in a multivariate analysis, CMV still remained an independent risk factor for late death. 

This captured our interest since CMV, the most clinically important virus infection post HSCT, 

has several known immunomodulatory properties and display heterogeneous reactivation 

patterns among patients. CMV can suppress T cells, NK cells, macrophages, neutrophils and 

dendritic cells290-296, but little is known about the long-term effects of CMV infection on the IR 

after HSCT. Clinical studies have shown correlations between CMV replication and development 

of severe bacterial and fungal infection.47, 285, 297, 298 Here we confirm and extend those findings 

and show that even an early CMV infection can influence late outcome. 

An interesting approach would be to use an early vaccination strategy against CMV, which could 

improve early CMV immunity and thereby potentially diminishing uncontrolled replication. After 

decades of research, there are now promising vaccines reaching phase III trials.299-301 Our findings 

support the need for continuous efforts to develop such vaccines possibly able to reduce the risk 

for late lethal infections. 
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At the time of our first study, a few reports had shown a correlation between CMV infection or 

donor CMV seropositivity and an increased GVL effect against hematological malignancies; 

findings that have been verified in several recent studies. Since NK cells play an important role in 

the control of CMV infection302, 303 and also are coupled to GVL effects in HSCT, we decided to 

further study NK cells after HSCT with focus on NK reconstitution, NK-mediated GVL-effects 

and the interplay between the NK cell compartment and CMV. 

3.1.1.1 Conclusions paper I.  

The risk to die from late infections is not negligible. Mismatched or unrelated donor, chronic 

GVHD, previous TBI, acute GVHD or CMV infection increases the risk significantly. We 

speculate that CMV infection can affect the IR, increasing the risk for developing late infections. 

 

3.2 FUNCTIONAL TUNING OF NK CELLS IN TRANSPLANTATION 

One important question addressed in the present thesis is how the alloreactive NK cells behave 

in vivo during the IR after transplantation. By gaining further insights into how NK cells function 

in the early phase after transplantation, we might be able to delineate why clinical effects are 

observed in certain transplantation settings but not in others. Beneficial effects have been evident 

in murine experimental systems, but are harder to reproduce in clinical transplantation. In the 

haploidentical setting Ruggeri et al found that alloreactive NK cell clones from the patients, 

expanded in vitro, could be detected up to three months after the transplantation. Thereafter 

these cells disappeared304, leading to the assumption that tolerance was obtained. In unrelated 

KIR-ligand mismatched TCR transplantation, educated alloreactive NK cells have been 

identified up to three years after transplantation as determined by flow cytometry.305 The 

continuing education was fully dependent on donor KIR-ligands and followed earlier stipulated 

principles of education306, indicating that the cells maintaining the education may be provided 

with the graft.  

The cellular and molecular mechanisms underlying education are still unknown, but it is likely 

that bone marrow stroma190 and other donor cells take part in the process.307-309 A hot candidate 

for the conductor position could be the dendritic cell. Activated monocytoid DC were recently 

shown to induce KIR and NKG2A-expression on immature NK cells in a IL12-dependent 

manner310. There is also evidence that education is maintained by cis-interactions, within each 

individual cell, without the need for interactions with stroma or other cellular components.311, 312 

A role for cis interactions does not exclude additional tuning by the local milieu.313 A major 
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contribution by one or more donor-derived hematopoietic cell types in education seems likely 

given that NK cells transferred in isolation rapidly adapt to the MHC environment.314, 315 

 

3.3 ARE UNEDUCATED CELLS ABLE TO BREAK THEIR TOLERANCE? 

In paper II we focused on NK cell maturation in HLA-matched sibling transplantation. Since 

the KIR-locus in chromosome 19 is uncoupled from the HLA -locus on chromosome 6, KIR-

mismatches can occur even in the HLA-matched situation (figure 9). There had been earlier 

reports about beneficial clinical effects of receptor-ligand mismatch in HLA -matched unrelated 

and TCD HLA-identical sibling transplantation.240, 241 Stimulated by these findings, we examined 

the impact of KIR-HLA genetics in our own TCR HLA -identical sibling cohort of 105 patients 

transplanted for AML and MDS at Karolinska University Hospital between the years 1988-2008. 

We could first verify that the NK cell KIR reconstitution in our cohort mimicked that reported 

in earlier studies.316-319 The dynamics of NKG2A+ NK cells also followed previously described 

patterns with high numbers detectable early after transplantation.185, 320, 321 The KIR expression 

was gradually acquired over time, resulting in a mature NK cell repertoire, where the frequency 

of triple KIR expressing cells detectable after six months was similar to those present in the 

donor.190, 318, 322-324 Notably, in our cohort, the NK cells had a slight decline in function during the 

first month but recovered full functionality after 2-3 months. NKG2A+ KIR- NK cells 

represented the major responding cell population during the first two months. In contrast to a 

previous report, NK cells expressing non-educating KIRs remained hyporesponsive at all time 

points; a finding that recently has been corroborated by others.208, 305 Given the proposed role for 

T cells in interfering with NK cell reactivity, we started collaboration with Prof. John Barrett at 

the NIH, since his group could kindly provide us with patient material from TCD, CD34+ 

enriched, HLA-matched sibling transplantations. Importantly, NK cell responses in patients 

undergoing TCD transplantation were similar to those in the TCR setting (paper II). Thus, our 

results suggested that discrepancies in the outcomes between different studies might depend on 

many other factors than T cell content of the graft. 

Our results were in contrast to a study by Yu et al.325 In their cohort NKG2A did not educate the 

cells whereas non-self single-KIR expressing cells were highly functional early after HSCT as 

determined by monitoring IFN-γ and CD107a responses early. This subpopulation of NK cells 

expressing non-self KIRs gradually became tolerant at later time-points after transplantation, 

suggesting a window of opportunity for NK cell-mediated alloreactivity by uneducated NK cells. 

The major differences between the two studies were the following: i) In the cohort examined by 
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Yu et al. no immune suppression was given after the transplantation while in our TCR setting 

cyclosporine A was given for three months and also for the first three weeks in the TCD setting. 

ii) Yu et al. examined a larger group of TCD patients and it is possible that factors increasing 

cytokine levels, such as GVHD or infections in some patients, could influence the education of 

NK cells, making the non-self single-KIR expressing NK cells prone to overcome the lack of 

KIR-mediated education. iii) The mode of stimulation and the read-outs were different in the in 

vitro assays used in the two studies. We used K562-target cells while Yu et al. used 721.221-cells, 

which might have caused slightly different results since 721.221 cells usually elicit less robust 

responses than K562 cells. iv) We monitored CD107a expression but did not examine IFN-γ 

production that is known to require a higher degree of stimulation.182  

In 2011, Foley et al. presented a study that shed further light on differences between TCD and 

TCR settings.208 Target cell-induced IFN-γ production was generally lower in the TCD setting. 

NKG2A was shown to only educate the cells for cytotoxicity and not for production of IFN-γ, 

something that educating KIRs were capable of. Furthermore, they found discrepancies in the 

type of response of discrete NK cell subsets to stimulation by different cytokines. IL-12 and IL-

18 did promote IFN-γ production but not degranulation, while stimulation with IL-15 could 

promote both functions. These findings may have implications for whether GVHD or infection 

can stimulate NK cells to mediate GVL via breaking of the tolerance. Bacterial infections and 

GVHD may for example primarily cause an increase in IL-12 and viral infections may promote a 

response where IL-15 production is higher but these mechanisms need further studies before any 

conclusion could be drawn. 

The major differences between keeping the tolerance and breaking it seems to be the T cell 

depletion and the absence of immune suppressive therapy, factors that also have shown to speed 

up the NK cell reconstitution, with early expression of more KIRs and less CD56bright 326, which 

would favor strong cytotoxicity.326, 327 These differences are important to bear in mind when 

trying to optimize NK cell-mediated GVL effects in clinical transplantation and/or cellular 

therapies. T cell depletion seems to be crucial for letting the NK cell work freely and avoidance 

of IS may also be preferable. Several studies have now shown convincing GVL-effects in the 

HLA matched settings why even HLA -matched siblings may be considered as donors for 

adoptive cell therapy, especially if they have CenB KIR motif and the cells are pre-stimulated with 

cytokines that favor breaking of tolerance. 

In our cohort of 105 patients transplanted with sibling donor for AML and MDS, there was no 

correlation between having a missing ligand and OS or RI. The only statistically significant 

correlation was a 2.8-fold increase in acute GVHD II-IV if the C2 ligand was missing (HR 2.87 
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(1.29-6.37) p=.01). In addition, there was a trend towards increased TRM (HR 4.01 (0.98-16.40) 

p=.05) in the same group; a finding we at the time for the analysis interpreted as false positive 

since patients with combination of missing Bw4 and C2 or C1 fell out in the same way. 

However, several investigators have now reported a similar pattern with higher acute GVHD in 

the C1/C1 situation.328 McQueen et al. propose a reasonable explanation for this. C2-KIR2DL1 

has a stronger interaction resulting in stronger inhibition than C1-KIR2DL2/3257, thereby 

inhibiting NK cell responses more efficiently and likely also provides less cytokine stimulation to 

T cells that could augment GVHD. Cook et al. found that C2 homozygous donor/recipient-

pairs had a decreased OS.329 There are also indications from other studies of activating KIRs that 

a ”missing C2 effect” could lead to less relapse after transplantation for AML. The effects of 

donor activating KIRs or CenB haplotypes are potentiated in C1+ recipients and Venstrom et al. 

found increased relapse rate in C2 homozygous recipients having KIR2DS1 bearing donors that 

could be explained by the previously mentioned down-tuning of NK cell education mediated by 

KIR2DS1.245, 259, 262 

3.3.1.1 Conclusions paper II 

We could not verify any evident GVL effect of having a missing ligand in our sibling cohort, a 

finding that in cellular cytotoxicity-assays correlated with intact tolerance of uneducated NK cells 

during IR. However, reinterpreting our results in light of recent studies give support to the 

emergence of NK cell-mediated alloreactivity that increases the risk of acute GVHD in patients 

missing C2. 

 

3.4 DETERMINING THE ALLOREACTIVE POTENTIAL AT THE SUBSET AND 
POPULATION LEVEL 

In paper III we examined NK cell repertoires in 31 healthy donors in an attempt to determine 

their overall potential to deliver alloreactivity in an allogeneic transfer or HSCT setting. To this 

end, we examined donors homozygous for the group A haplotype to be able to distinguish all 

KIRs phenotypically, without cross reactivity of the commercially available antibodies. As a point 

of departure, we set out to calculate the size of functionally educated NKG2A- NK cells. 

However, to do this, we first needed to sort out the prerequisites. The education process is well 

described for the C1/C2/Bw4330 interaction but less well examined for the KIR3DL2-A3/11 

receptor ligand pair. KIR3DL2 is one of the framework genes included in all KIR-haplotypes 

and binds to HLA A3/A11. This binding has been shown to be dependent on peptides.331 For 

example was the EBV-derived peptide, EBNA3A was shown to promote the binding of 

KIR3DL2 to HLA -A3. Self-peptides are thought to be able to play the same role. We studied 
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KIR3DL2 single positive cells in all HLA A3/A11 individuals and found the cells to be 

hyporesponsive. This suggested that the KIR3DL2 – HLA A3/A11 interaction was not strong 

enough to provide education. KIR3DL2 may confer education during active a primary EBV-

infection. However, based on the experimental data in healthy donors, we concluded that 

KIR3DL2 should not be included in the algorithm for calculating the alloreactive subset. 

The frequency of educated NK cells in this cohort of healthy donors ranged from 12 to 68% 

(mean 33%) (paper III). This vast variability translated into very different potential as allogeneic 

NK cell donors in HLA mismatched settings. As an example, the size of the alloreactive 

repertoire in a C1/C2 to C2/C2 transplant ranged from 1 to 9 % and in the full cohort between 

0-62 % (mean 8%).  

Thus, we conclude that genetic algorithms for predicting NK cell alloreactivity needs to be 

complemented by phenotypic assessment of the alloreactive subset. In a study of adoptively 

transferred NK cells, in an autologous transplantation setting, against relapsed myeloma, the 

number of infused alloreactive cells were quantified. However, since the NK cells didn’t expand 

in vivo, no conclusions regarding clinical effects could be drawn.332 This points towards the 

importance to keep track of the number of alloreactive cells in adoptive cell therapy settings. 

However, in light of recent studies showing the complexity of KIR-KIR-ligand interactions, 

phenotypic and functional tests of the donor repertoire may be the best way to reveal the actual 

alloreactive potential. A recently described method for examining the donor alloreactive 

repertoire, by co-culturing of donor and recipient or target cells expressing specific KIR-ligands, 

may be a good way to determine the true alloreactivity capacity of each donor-recipient 

combination333. Larger clinical studies considering the alloreactive subset are warranted to see if 

this relates to a better outcome before this could become clinical praxis. 

 

3.5 DIVISION OF LABOR BETWEEN NKG2A AND KIRS  

It is well established that KIR expression and NKG2A expression are inversely correlated, which 

has been interpreted as a buffering mechanism to maintain a tolerant and functional repertoire. 
187, 334 Extending those findings, we showed that this inverse correlation also exists at the single 

cell level. Thus, cells expressing more KIRs at the cells surface expressed less NKG2A than 

those with fewer KIRs (paper III). Interestingly NK cells only expressing the non-educating 

KIR3DL2 also had higher NKG2A than NK cells expressing educating KIRs. Taken together, 

these data support the notion that functional NK cells always express an inhibitory receptor to 

self and that the tuning of the cell is dependent on the net strength of the binding that the 
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receptors can provide.202 Well in line with these rules are also the findings that activating 

receptors can down-tune the response in presence of a stimulating ligand to avoid strong auto-

reactivity.262, 263 The inverse correlation of NKG2A and KIR at the single cell level may have 

consequences extending beyond the buffering of the NK cell repertoire. It was recently 

described that the HLA-E molecule present other peptides than the HLA-leader-sequences and 

that CD94/NKG2 receptors can discriminate these HLA-E-peptide complexes.335, 336 

Furthermore, Kuldeep et al. suggest that NKG2A and KIRs may have complementary functions 

as NKG2A can provide inhibition when HLA-levels are low and KIRs can sense and 

discriminate changes in environments with denser HLA-levels.335 The change in receptor profiles 

from NKG2A- to KIR-dominant during NK cell differentiation may thus lead to division of 

labor between naïve and more mature NK cells. How these findings should be interpreted in the 

context of HSCT is not yet clear but one may speculate that a blockade of the CD94/NKG2A 

or KIR receptor system by monoclonal antibodies would be very beneficial by triggering 

cytotoxicity against tumor cells with low HLA-expression. 

3.5.1.1 Conclusions paper III 

The number of alloreactive NK cells may vary considerably between donors 0-62% (mean 8%) 
alloreactive NK cells depending on recipient HLA -ligands. This important to consider when 
studying NK cell mediated GVL effects in the context of HSCT. 

 

3.6 INTEGRATIVE PROFILING OF MULTIPLE PHENOTYPIC PARAMETERS 
AND ITS IMPACT ON OUTCOME IN HSCT 

NK cell populations are extremely diversified, both between populations and individuals, 

because of the large variation in KIR-alleles, KIR gene copy number giving rise to a high number 

of haplotypes.337 This diversity is reflected in phenotypic differences and variations in the NK cell 

repertoire between individuals. Environmental factors, for example latent viruses, have been 

shown to further skew these repertoires causing differences in maturation status and by memory 

like responses.216, 338, 339 

We hypothesized that the constitution of the NK cell repertoire in the donor could affect the 

outcome after HSCT and at the same time we wanted to examine how common clinical events in 

the recipient after the transplantation could interfere with repertoire development. We defined 

NK cell repertoires based on five phenotypic characteristics coupled to NK-repertoire maturity 

and memory and used these data to cluster all individual profiles with statistically similar 

repertoires. The correlation of these groups with clinical outcomes where thereafter examined. 
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The parameters were selected based on the differentiation model described by Björkström et al, 

where immature CD56bright, NKG2A+ NK cells differentiate to become CD56dim NK cells and 

thereafter lose NKG2A, start expressing KIRs and CD57.185 To cover the key steps of this 

process we included the overall frequencies of CD56bright NK cells, the frequency of NKG2A+ 

NK cells, the frequency of CD57+ NK cells as the three first parameters. As a fourth parameter, 

we established the size of the educated repertoire based on the algorithm described in paper III. 

Furthermore, NK cells that expand in the response to CMV have been shown to express 

educated KIRs together with the activating receptor NKG2C 216, 302, 340, which was included as the 

fifth and final parameter. This approach was applied on one cohort of 106 peripheral stem cell 

donors to study the impact on outcome mediated by the donor repertoire and 65 donor-recipient 

pairs to be able to study the impact of dynamic changes in the repertoire after transplantation. 

 

3.7 CORRELATION BETWEEN DONOR PHENOTYPE AND CLINICAL 
OUTCOME 

When analyzing the donor cohort, three major cluster groups with different receptor expression 

became apparent. The clinical outcome was different in one of the groups. Somewhat 

surprisingly we found that the second cluster consisting of donors characterized by having more 

naïve NK repertoires had significantly less relapse (paper IV). This finding was opposite to what 

we had anticipated based on the biological data. More mature repertoires, dominated by NK cells 

with a higher differentiation status and thereby more potent in mediating ADCC and natural 

cytotoxicity, might be expected to provide better anti-leukemic activity. The strong impact on the 

NK repertoires mediated by CMV and the triggering of memory like responses has also been 

suggested to protect against relapse341, 342, especially since CMV reactivation in several studies has 

been shown to mediate protection against relapse.138, 140, 343 Important to note is that the 

protective effects of CMV reactivation are only visible in large cohorts and seem to be more 

pronounced in patients having myeloablative conditioning and not in their cohort undergoing 

reduced conditioning.343 

  

This raises the question about which NK subset that best mediate the GVL effect? NKG2C+ 

NK cells expressing self-KIRs, expanded in vitro, have a potent function but are incapable of 

killing HLA-matched AML-blasts (Liu et al., manuscript in preparation). If these educated, 

differentiated and maximally responsive NK cells are shown not to mediate the most beneficial 

clinical effects, alternative explanations have to be considered. It has been shown in several 
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studies that uneducated NK cells can provide effector functions. Furthermore, antibody-

dependent cell-mediated cytotoxicity (ADCC)-stimulation via CD16, also providing very strong 

stimulation in vitro, can override weak education.344, 345 In vivo transfer studies in mice have 

demonstrated that the KIR-negative, uneducated NK cells mediate a stronger protection against 

CMV infection than the educated KIR+ cells.207 The same authors propose that uneducated NK 

cells also could be responsible for mediating GVL effects in transplantation. Our results suggest 

that the more immature fraction of the NK cells may be more important than previously thought 

in terms of promoting GVL-effects. In support of this notion, Foley et al. showed that NKG2A 

provides strong educating stimuli for cytotoxicity indicating that this “immature” subset may 

provide GVL and that stimulation through educating self KIRs are needed to acquire IFN-γ 

production. 

Another factor that could affect the terminally differentiated cells more than the naïve cells is 

induction of senescence or exhaustion. Exhaustion has been well described in the T cell 

compartment, where CMV has been shown to contribute to increased senescence346, but this is 

less well established for NK cells. Since NK cells are rapidly renewing, compared to T cells, one 

could speculate that this is less important, but exhaustion markers as; cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4), PD-1 and T cell immunoglobulin- and mucin-domain-containing 

molecule-3 (Tim-3) has been described to be expressed also on NK cells and shown to block 

function in presence of tumor.347-349 Provided that a tumor or an inflammatory environment 

more easily turns terminally differentiated NK cells into exhaustion, one could speculate that 

there might be an advantage to have stem cell donors with more naïve repertoires which are 

more resistant to these effects.  

  

3.8 CORRELATION BETWEEN CHANGES IN RECIPIENT PHENOTYPE AND 
CLINICAL OUTCOME 

Since CMV can promote NK cell differentiation, towards more mature repertoires, we examined 

the impact of CMV infection on the NK cell pool in our cohort. Extending earlier studies,341, 350 

we found that the increase in NKG2C and educated KIRs correlated with the number of 

replication episodes the patients had experienced. Thus, a less controlled and prolonged infection 

seems to provide a stronger stimulus for NK differentiation.  

When applying unsupervised hierarchical clustering on the recipient repertoires at 9-12 months 

after HSCT, the strong impact of CMV became apparent. 38 % of the recipients had a more 

mature repertoire characterized by hi NKG2C, educated KIRs, and CD57 combined with low 
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frequencies of NKG2A and CD56bright NK cells. Recipients belonging to this cluster had 

received more CMV treatment and had more complicated/prolonged CMV episodes. 

Importantly, the statistical examination of the outcomes of the recipients belonging to this 

cluster corroborated the findings in the donor cohort. Hence, recipients with more naïve 

repertoires at 9-12 months had a less relapse and increased overall survival. The non-naïve group 

had a nine-fold higher risk to die after 9 months; and a six-fold increased risk for developing a 

relapse later than 9 months after HSCT compared to the larger group having more naïve 

repertoires. The causes of death were a combination of relapse (n=5) and late infections caused 

by aspergillus (n=2). 

To analyze the dynamic changes in the repertoires, we clustered donor-recipient delta values 

determined by subtracting the values of the individual parameters in the recipient with those in 

the donors. Again the patients switching to more naïve repertoires had a better outcome. The 

group consisting of 36 (of 65) patients that lowered their number of CD57+ NK cells had 6 

times lower relapse incidence and 5 times lower OS.  

Since we are studying changes to the NK cell repertoire induced by clinical events after the 

transplantation, and thereafter make correlations to later outcome, there is a risk for bias. A main 

concern for the analysis in the recipient cohort is to what extent these results are influenced by 

other factors. But notably, there was no statistical difference with regards to the length of time 

on immune suppressive therapy, acute GVHD, chronic GVHD or disease risk index (DRI)351 

between the compared groups. Corroborating the clustering algorithm, the need for CMV 

treatment was strongly associated with the groups developing a more mature repertoire. 

3.8.1.1 Conclusions paper IV 

In paper I we found that CMV reactivation causes an increased risk for late lethal infections 

uncoupled from GVHD and donor status. In paper IV we verify that the patients having 

viremia above the threshold for treatment skew their NK cell repertoire towards a more mature 

phenotype, something that is further enhanced by having multiple reactivations. The patients 

having larger positive skewing against terminally differentiated repertoire, judged by changes after 

9-12 months, had a significantly decreased survival, mainly caused by relapse. The fact that the 

two only cases of late deaths occurred in the same group may suggest that the immune defect 

caused by CMV reactivation may at least in part be coupled to skewing of NK cell repertoire. 

Whether this is mediated by a direct effect dependent on the NK cell repertoire per se or if the 

skewed repertoire is a marker of a global defect in the full immune network towards worse 

control of infection and tumor cells remain to be examined. For example NK cells have recently 

been suggested to be important as rheostats controlling the T cell response to viral infections.352 
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In a mouse model it was shown that NK cells delete CD4+ T cells, thereby hindering lethally 

strong CD8+ T cell responses against murine-CMV (MCMV) and promoting the persistence of 

MCMV. This mechanism points toward the importance of a having a well-functioning NK cell 

compartment, in order to be able to maintain adequate immunity at least against viruses and 

highlights the interplay between chronic CMV-infection and the immune network. 

Of note, in this smaller cohort, we could not detect any impact of CMV reactivation on the 

incidence of relapse, when analysed in isolation. The use of peripheral stem cell grafts may have 

contributed to this outcome.343 
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4 PROSPECTS OF USING NK CELLS IN CANCER 
THERAPY 

In 2005 Miller et al published a study where adoptive transfer of haploidentical NK cells were 

used against refractory AML.353 In this study they used conditioning with cyclophosphamide and 

fludarabine (Flu/Cy) followed by IL-2 stimulation in vivo, a conditioning similar to the one used 

for adoptive T cell therapy.354 Adoptive transfer was possible without major complications and 

NK cells could sometimes expand and persist in the donor for a couple of weeks. Furthermore 

this resulted in a more efficient leukemia clearance.353 Five of 19 patients responded with 

complete remission and later a CR rate of 21% was shown.252 However, to date, the responses 

after a single treatment with NK cells have not been durable and the duration of the response 

has varied between 2-18 months. To be curative, the treatment needs to be combined with stem 

cell transplantation. In more recent work from Miller et al the standard conditioning regimen has 

been combined with myeloablative TBI and stem cell support given after the NK-transfer. This 

resulted in much better expansion rates and in better clinical responses. (Miller personal 

communication) In their most recent publication the Flu/Cy regimen was combined with T 

regulatory cell depletion that resulted in a complete response rate of 52% at day 35, something 

that stress the fact that the inhibition of regulatory cells is crucial. 

 

4.1 ONGOING CLINICAL EXPLORATION 
Inspired by early trials of adoptive NK cell therapy 353 we launched our own study in 2012. The 

study was designed as a Phase I/II clinical trial with 3 + 3 + 3 patients receiving escalating doses 

of total lymphoid irradiation (TLI) 2 Gy vs 4 Gy and in third dose level receiving cyclosporine A. 

The choice of conditioning was based on the previous experiences made by Rosenberg and 

Miller353 but using TLI instead of total body irradiation (TBI) to be able to treat the patient 

without stem cell support since it is less myelotoxic. TLI is non-myeloablative and does not 

markedly influence myeloid diseases.355-357 In addition, we use lower doses of fludarabine 

(25mg/m2 for four days) and cyclophosphamide (25 mg/kg for two days) than in previous 

studies. This lower dose regimen was selected to allow inclusion of patients with myelodysplastic 

syndrome (MDS), who tend to have few healthy stem cells to regenerate after myelotoxic 

treatment, thereby hopefully avoiding prolonged aplasia. Fludarabine and cyclophosphamide are 

two drugs that have high ability to lymphodeplete the recipient thereby allowing space for 

transferred lymphocytes to expand, eliminating rejection and regulatory cells that could hamper 

the cytotoxicity of transferred NK cells. Donors were chosen among relatives. Haploidentical  
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donors mismatched for KIR-ligands, with a high number of alloreactive cells and activating KIRs 

were chosen when available. To date thirteen patients with either refractory AML or high risk 

MDS not eligible for standard therapy regimen or suitable for allogeneic stem cell transplantation 

have been included so far. The current results are presented in table 2. Eight of the 13 patients 

had reduced tumor burden or complete remission 1 month after the treatment. Six patients 

stabilized their disease enough to be accepted for HSCT and five had suitable donors and 

proceeded to HSCT. The duration of the response after HSCT is too early to evaluate. 

The criterion of expansion of NK cells to 100 cells/µl at day 14 was not reached. Instead donor 

NK cells were detected by quantitative PCR, termed microchimerism. A positive microchimerim 

was correlated to a complete response with 4/6 patients with detectable donor NK cells at day 7-

14 achieved CR while 5/5 patients without detectable donor cells did not achieve CR indicating 

that NK cells expanding above the threshold for detection by PCR may be sufficient to mediate 

an effect. 

Another question is raised by the fact that responses were seen even in the KIR-ligand matched 

situation. One explanation could be that the conditioning is effective by itself even though both 

fludarabine and cyclophosphamide are drugs that have been proven effective against lymphoid 

malignancies and are here used primarily for their immune suppressive effects. Besides their 

cytotoxic properties effects, fludarabine inhibits STAT-1 signaling 358 and cyclophosphamide can 

beside its lymphodepletion properties inhibit T-regulatory cells. 359-361 TLI is also mainly affecting 

the lymphoid compartment leaving the myeloid compartment untouched357, 362, 363 In several MDS 

and MDS-AML patients a rapid disease-progression was halted by the NK cell therapy and the 

course of the disease was stabilized for several months. Although direct killing of MDS blasts by 

infused NK cells may be one contributing mechanisms of the current therapy364, other effects 

may also be considered including a general immunomodulatory effect affecting the T cell 

compartment and perhaps also myeloid cells including DC and myeloid derived suppressor cells 

(MDSC).365-368 It is possible that the treatment in parallel with targeting rapid progressive tumor 

cells also target pathogenic immune cells and thereby changing the tumor microenvironment.  

Preliminary conclusions: Our protocol had tolerable toxicity in high-risk MDS- and AML-patients. 

NK cells did not expand to the predetermined level but were detected by PCR day 7-14. The 

majority of clinical responses were seen in the group with positive microchimerism. 
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5 CONCLUSIONS 

1) Infections are important contributors to late death and the risk factors are unrelated donor, 

GVHD, TBI and CMV reactivation.  

2) CMV infection is a statistically independent risk factor for late death indicating that early 

CMV viremia may skew the immune network leading to a prolonged or persistent immune 

defect. 

3) CMV infection per se does not provide protection against relapse in our cohort of HSCT with 

peripheral stem cell donors after transplantation. 

4) CMV infection after HSCT alters the NK-repertoire to a more differentiated state and the 

magnitude of this response correlates with the severity of the CMV reactivation pattern  

5) Phenotypic differences in the donor NK cell repertoire can lead to differences in outcome 

after HSCT 

6) Transplantation with donors having a more naïve NK cell repertoire, defined with 

unsupervised hierarchical clustering, may provide protection against relapse of AML and 

MDS.  

7) A more naïve donor NK cell repertoire confer a decreased relapse risk but increases the risk 

for dying by infection early after transplantation. 

8) NK cell tolerance is maintained early and late after HLA-matched HSCT in both TCD and 

TCR settings. 

9) NKG2A is a strong educating stimulus dominating the NKR repertoire early after 

transplantation. 

10) KIR3DL2 does not provide functional education of NK cells in healthy donors. 
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6 FUTURE OUTLOOK:  

In this post Hugo-project era, the scientific community has come to the conclusion that genes 

are not everything… The focus has instead been directed against proteomics and epigenetics, 

since the study of gene products, rather than the genes, was shown to describe biological 

processes more accurately. We have chosen to study phenotypically defined NK cell repertoires 

with multicolor flow cytometry; a technique that soon has reached its maximum number of 

parameters possible to analyze on one single cell. The most recent development in single cell 

analysis platforms, including the mass cytometry CyTOF369, in combination with softwares for 

automated analysis such as SPADE370 and ACCENSE371 hold promise to embrace and visualize 

the complexity of the almost endless number of subclones that exists within the immune cell 

compartment. These technological advances provide a framework for more comprehensive 

approaches to study the immune system. We may now be able to refine the present knowledge 

to better understand the full complexity of interactions and communication between immune 

cells. It is now time to bring these techniques into the clinic. 

Exploiting such technologies may also allow us to determine the “immune profile” of each 

patient, which will make it easier to study and identify functional immune deficiencies in regards 

to tumor development, autoimmunity and other diseases coupled to inflammation. With this 

information it may be possible to explore new methods for intervention and correcttion of the 

defects with immunomodulatory techniques such as; immunomodulatory drugs, cytokines such 

as IFN, IL-2/15 or by targeted cell therapies or a full transplantation.  

A similar development is ongoing in the emerging field of tumor profiling. This knowledge in 

combination with immune profiling could make it possible to find ways to circumvent tumor 

immune escape mechanisms. We have to learn how to hit the cancer cell from the right angle 

and how to combine several strategies to eradicate or control the most resistant tumors. 

Understanding tumor heterogeneity may aid in defining ideal targets, both for new small 

molecular compounds, and for immune therapy. It is also of uttermost importance to examine in 

which sequence therapies are delivered. For example the tumor mass may have to be reduced to 

small numbers before immunomodulation is used and short acting single doses of short acting 

cells (as in current adoptive transfer settings) have to be used at the right “window of 

opportunity” to potentiate and maximize the effects.  

New knowledge about tumor heterogeneity and about which stem cells that drives the tumor will 

make it possible to direct the effector cells, both NK cells and T cells, towards the most central 

targets by using for example common or bispecific (BIKEs) monoclonal antibodies or 
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permanently transduced chimeric antigen-receptors (CARs). To maximize these effects the 

knowledge about how the target tumor can be sensitized to killing by up-regulate ligands for 

activating ligands or setting them in a state where the cells become prone to self-destruction by 

apoptosis. 

To reach these goals we need to relate the above gained knowledge to environmental factors, 

such as infections and ageing, that shape and intervene with the immune network both on the 

phenotypic, epigenetic and genetic level. 

The knowledge how to select the right donor for adoptive cellular therapy and transplantation 

have to be developed in combination with methods to expand the cells to sufficient numbers 

without exhaustion keeping the selective killing properties without risk for severe side effects in 

the patient. 

Strong connections between clinical doctors and specialized pre-clinical researchers will therefore 

be instrumental to catalyze the translation of modern immunology into the clinic. A key element 

is to build biobanks and running prospective sampling of large patient cohorts including immune 

profiling along with conventional and new treatments. 
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