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ABSTRACT 
Aims: The aim of this thesis was to increase understanding of how molecular processes influence 
the development and risk assessment of childhood leukemia. Studies I and II investigates whether a 
specific virus infection in utero could be involved in a “first hit” in leukemogenesis. Studies III and 
IV examine whether alterations in protein expression from cell cycle regulating genes may predict 
a relapse in children with myeloid malignancies undergoing hematopoietic stem cell 
transplantation (HSCT).   

 
Background: Genetic alterations, analyzed at time of diagnosis in children who develop leukemia, 
have been traced back to neonatal dried blood spots (DBS). This suggests that the majority of 
chromosome translocations occur in utero during fetal hematopoiesis, generating a “first hit”. A 
“second hit” is then required to generate a leukemic clone. Today, experiments in vitro, animal 
models, and clinical observations have revealed that several viruses are oncogenic and capable of 
initiating a genetic alteration. Smith M postulated the theory that an in utero infection might be the 
“first hit”, causing genetic aberrations that could later lead to the development of the leukemic 
clone, which is supported by the early age of onset and space-time clustering data, based on time, 
place of birth, and diagnosis.  
 
Leukemia develops as a result of hematopoietic or lymphoid tissue with uncontrolled cell division. 
Normally cell division is controlled by the cell cycle, the network of which is complex with 
numerous regulating proteins both up and down stream, but also containing several feedback 
loops. The important regulators of this process are tumor suppressor genes, essential for normal 
cell proliferation and differentiation as well as for controlling DNA integrity. Errors in these genes 
or their protein expression affect the ability of the cell to check for DNA damage, thus tumors may 
occur. Proteins from these genes could serve as prognostic markers and predict relapse. 

 
Methods: In studies I and II we investigated neonatal DBS by PCR for the presence of adenovirus 
DNA (243 samples) and the three newly discovered polyomaviruses (50 samples) from children 
who later developed leukemia but also from controls (486 and 100 samples respectively). In 
studies III and IV we explored the expression of one (p53) respectively four (p53, p21, p16 and 
PTEN) cell cycle regulating proteins in bone marrow at diagnosis as well as pre and post HSCT in 
myeloid malignancies in children. We retrospectively collected clinical data and bone marrow 
samples from 33 children diagnosed with chronic myeloid malignancies (MDS, JMML and CML), 
34 children diagnosed with AML as well as 55 controls. The samples were prepared by tissue 
micro array (TMA) as well as immunohistochemistry and examined for protein expression in a 
light microscope. 

 
Results: In study I we detected adenovirus DNA in only two patients who later developed 
leukemia, but in none of the controls. In study II all the samples were negative for KIPyV, WUPyV 
and MCPyV DNA in both patients and controls. In study III we found an overexpression of p53 
protein at diagnosis that significantly predicted relapse after HSCT in children with rare chronic 
myeloid malignancies. In study IV a significantly higher p53 expression was found in the relapse 
compared to the non-relapse group at six months post HSCT in children with AML, suggesting 
that p53 may be used as prognostic markers for predicting a relapse. In addition, the calculated cut 
off level for p53 at diagnosis (study III) and at six months (study IV) post HSCT was 
approximately 20%, which indicates that a p53 expression over 20% may predict relapse in 
children with myeloid malignancies. 

 
Conclusion: Although we did not find an association between adenoviruses or the three newly 
discovered polyomaviruses and the development of childhood leukemia, a virus could still be 
involved in this process; the virus may have escaped detection, other new viruses could be 
involved or a virus could precipitate the “second hit”.  

 
We suggest that evaluation of p53 protein expression may be used as a supplement to regular 
prognostic markers both pre and post HSCT. To further evaluate this, a prospective multicenter 
study has been started. 
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1 GENERAL INTRODUCTION 

Cancer, both solid tumors and hematological malignancies, is believed to occur as a 

result of genetic and epigenetic alterations in stem or precursor cells, where 

hematological malignancies develop in hematopoietic or lymphoid tissue with 

uncontrolled cell division. Alterations in tumor suppressor genes and oncogenes are two 

causes involved in this process, their protein function being essential for cell proliferation 

and differentiation [1,2]. In many cases the time point and etiology of the genetic changes 

that lead to leukemia are still unknown, making preventive actions more difficult. 

However, identified leukemic alterations can be traced back in neonatal dried blood spots 

(DBS) (also known as Guthrie cards) or cord bloods, indicating an early event, maybe 

even in utero [3]. Furthermore, in developed countries the early childhood peak of acute 

lymphoblastic leukemia (ALL) at 2-5 years of age also points to a primary event in utero 

and a second event in early childhood [4]. Several etiological factors have been suggested 

as possible triggers of a “first hit” in utero, including oncogenic viruses that can cause 

cancer both in vivo and in vitro [5-7].  

 

In Sweden, the annual incidence of childhood cancer is 16/100.000 (children <15 years), 

of which approximately 30% involves a diagnosis of leukemia [8]. Improved 

chemotherapy protocols, better supportive care, the prevention of infectious disease, as 

well as a stricter classification into different risk groups are factors that result in a better 

survival rate. Before 1948, the survival in pediatric blood malignancies was practically 

zero. Today the overall survival is 90 % for ALL and 70 % for acute myelogenous 

leukemia (AML) [9-12]. However, the outcome remains poor for relapsed patients in all 

childhood leukemic groups [13]. Prognostic markers are important tools for dividing 

leukemia into different risk groups with their own treatment protocols, but also for 

following the patient during and after treatment in order to prevent relapse. However, 

new prognostic markers are needed to further improve survival.  
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1.1 CHILDHOOD LEUKEMIA 

1.1.1 Acute lymphoblastic leukemia 

ALL, the most common type of childhood leukemia, originates in the lymphoid precursor 

cell and represents 75-80 % of all pediatric leukemias, with an incidence in developed 

countries of three to four cases per 100.000 children and an incidence peak at 2-5 years of 

age, where infant ALL accounts for 2.5-5% [8,11,14-16]. ALL is divided into B-cell 

lineage (80-85%), T-cell lineage (15-20 %), and few numbers of non-lineage ALL. Forty-

six percent of those diagnosed are female and 54 % are male [16]. Today, 80-90% of 

children with ALL survive, compared to the situation prior to 1948, when the survival 

rate was extremely low [9-11]. The difference was due to the revolutionary discovery of 

chemotherapy, which was groundbreaking for oncology, where most of the drugs were 

developed before 1970 [11]. Since then, complementary therapies such as intrathecal 

chemotherapy, radiation and hematopoietic stem cell transplantation (HSCT), coupled 

with enhanced supportive care, have continued to increase the survival rate [11,17]. 

Moreover, survival was further improved by better tools for identifying prognostic 

markers such as biological subtypes and response to treatment (minimal residual disease, 

MRD), in addition to distinctive treatment protocols enabling customized treatment for 

different risk groups [9,11]. Essential elements of diagnosis are morphological 

identification of lymphoblasts by microscopy as well as immunophenotypic evaluation of 

lineage commitment and stage by flow cytometry, complemented by chromosomal and 

genetic analysis. This is followed by assignment to different risk groups (standard, 

intermediate and high risk) by prognostic factors such as age, leukocyte count at 

diagnosis, T- or B-cell immunophenotype, genetic alterations, and response to initial 

therapy [11,17]. The standard treatment of ALL typically takes 2-2.5 years, including 

induction of remission, consolidation, and maintenance. All patients are initially treated 

with cytostatic drugs, but HSCT is required during the first remission if the child is 

diagnosed with specific unfavorable prognostic markers or has a persistent disease with 

high MRD levels after induction therapy [11]. 

 

1.1.2 Acute myelogenous leukemia 

AML, the second most common type of childhood leukemia, occurs in the myeloid cell 

precursor and accounts for 15-20% of all childhood blood malignancies with the highest 
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incidence peak at two years of age, followed by a decrease and a new peak at nine years 

of age [16,18,19]. Forty-four percent of those diagnosed are female and 56% male [16]. 

The incidence of childhood AML in the Nordic countries is 0.7 cases in 100.000 children 

[20]. The overall remission rate for all forms of AML is 92%, with an overall survival of 

70 % [12]. There are many AML subtypes with a different prognosis and sensitivity to 

treatment due to the variety of myeloid precursors as well as the diversity of genetic 

events that can create the leukemic clone [16]. Morphological identification of blasts 

from the myeloid cell lineage by both microscopy and immunophenotypic evaluation, 

complemented by chromosomal and genetic analysis, are essential for diagnosis, 

followed by assignment to different risk groups [12,21,22]. Although the prognostic 

significance of clinical and cell biological factors are interpreted differently by various 

treatment protocols, important prognostic factors include cytogenetic and molecular 

abnormalities in addition to initial treatment response, where post induction MRD seems 

to represent the new era of treatment stratification in the AML group. Chemotherapy is 

the standard treatment for AML, whereas the indications for HSCT have been debated. 

Around ten years ago, all children in Sweden with AML were transplanted if an HLA-

identical donor was available. Today, candidates for HSCT in first remission are patients 

diagnosed with cytogenetic or molecular genotyped unfavorable prognostic markers, or 

those with blasts >15% after first induction [12]. 

 

1.1.3 Rare clonal myeloid malignancies 

1.1.3.1 Myelodysblastic syndrome 

Myelodysblastic syndrome (MDS) is a clonal myeloid malignancy, accounting for <5% 

of leukemia in children, with an incidence of 1.8 per 106 children [23]. The median age is 

6.8 years and the gender distribution is equal [24]. Historically, myeloid leukemia in 

Down’s syndrome and juvenile myelomonocytic leukemia (JMML) were included in 

MDS, but are separated nowadays due to better diagnostic tools [23]. In contrast to AML, 

the bone marrow is not dominated by blast cells, as the malignant cells retain some 

differentiation potential and have a tendency to undergo apoptosis [16,23,24]. However, 

diagnosis is often complicated, as MDS with a high number of blasts is difficult to 

distinguish from AML, where the threshold for distinguishing between them is 20% of 

blasts [23,24]. Furthermore, MDS with a low blast count is hard to differentiate from 

nonclonal bone marrow disorders, such as aplastic anemia, where the risk of children 
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with aplastic anemia developing MDS is 10-15% [23,24]. The diagnosis of MDS is based 

on morphological and cytogenetic abnormalities and not always directly due to severe 

separable differential diagnoses. The treatment of choice is HSCT without prior heavy 

chemotherapy, which results in a five year survival of 60% [24,25].  

 

1.1.3.2 Juvenile myelomonocytic leukemia 

Another clonal myeloid malignancy is JMML, accounting for 2-3 % of childhood 

leukemia, with an incidence of 1.2 per 106 children [16,23]. The onset of JMML occurs 

in infancy or early childhood at a median age of 1.7 years and the gender distribution is 

67% male and 33% female [16,26]. The characteristics of JMML are high white blood 

count, monocytosis, elevated hemoglobin F, blasts in peripheral blood, and monocytic 

cell infiltration of organs [27,28]. The bone marrow contains < 20% blasts, which by 

itself is not diagnostic and must be negative for the Philadelphia positive chromosome 

(Ph+) [26,27]. Neurofibromatosis type1 is present in 14% of children with JMML and 

may strengthen the diagnosis [27]. An increased frequency of JMML has also been 

observed in children with Noonan´s syndrome [16]. The treatment of choice is HSCT, 

which results in a five year survival rate of 50 % [27-29].  

 

1.1.3.3 Chronic myeloid leukemia 

A third clonal myeloid malignancy is chronic myeloid leukemia (CML), accounting for 

<2  % of childhood leukemias, with an incidence of 1.0 in 106 [30,31]. The onset of CML 

often occurs later in childhood, at a median age of 12.5 years. Sixty percent of the 

children affected are male and 40 % female [30]. More than 95% express the Ph+, which 

results in an oncogenic BCR-ABL gene fusion. This gene encodes to BCR-ABL1 

tyrosine kinase, a dysfunctional membrane-associated protein, which is an important 

medical target [31]. The development from chronic phase to blast crisis is usually related 

to the appearance of additional chromosomal aberrations. The diagnosis is based on 

clinical characteristics such as hepatosplenomegali, extramedullary disease (infiltrated in 

skin or lymph nodes), Ph+, myelocytosis, and increased blast count in bone marrow (not 

exceeding 20% in the chronic phase) [31]. The treatment of choice is HSCT with a five 

year survival rate of 60-90%, but the introduction of specific BCR-ABL1 inhibitors may 

change this trend [31,32]. 
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1.2 ETIOLOGY 

During recent decades many theories about the cause of childhood leukemia have been 

discussed. Some are still relevant while others have been ruled out, although the etiology 

remains unknown in more than 95% of ALL and 80-90% of AML cases [14,15,33]. 

Specific constitutional and inherited syndromes as well as exposure to ionizing radiation 

or chemotherapeutic agents are some of the known causes of childhood leukemia [7,34-

41].  

 

Several constitutional syndromes are associated with an elevated risk of malignancies. 

For example, in patients with Down´s syndrome, the risk of developing ALL or AML is 

10-20 times higher and in the case of megakryoblastic leukemia 600 times higher [40-

42]. Other examples of constitutional diseases with an increased risk of childhood 

leukemia are inherited disorders such as Bloom’s syndrome, congenital neutropenia, 

neurofibromatosis, Dyskeratosis congenital, Shwachman syndrome, Noonan syndrome, 

Ataxia-telangiectasia, Fanconis aplastic anemia, Kostmann syndrome, familial monosmy 

7, and Li Fraumenis syndrome [43-53]. 

 

As a result of the atomic bomb dropped on Hiroshima in 1945, leading to a radiation 

level of over 200 mSv, we have learned that ionizing radiation can cause leukemia, as 

the incident rate of leukemia in Japan increased after exposure to the radiation [36]. 

However, there is no consistent proof that the Chernobyl reactor failure in 1986 increased 

the incidence of childhood leukemia either immediately or over time. Although some 

studies have considered the matter there is no conclusive evidence. On the other hand, the 

incidence of thyroid cancer, especially in children, increased dramatically [54]. From a 

historical perspective, blood malignancies have also been associated with work-related 

ionizing radiation where early radiologists suffered from leukemia, for example Marie 

Curie and her daughter [4]. However, even lower dose levels (10 mSv) due to diagnostic 

exposure of the fetus to X-ray pelvimetry during pregnancy are correlated with childhood 

leukemia [35]. Background radiation and non-ionizing electromagnetic fields as a cause 

of leukemia have been a debated extensively, but most epidemiological studies have 

found no correlation between childhood leukemia and background radiation or 

electromagnetic fields [7,55]. However, a weak correlation between long term exposure 

to high doses (above 0.3/0.4 microT) of magnetic fields and pediatric leukemia was 
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detected in two meta-analyses, although no experimental studies of the mechanism 

involved or causal link have been able to firmly establish this connection [7,55-57]. 

Finally, several studies reveled that children who received radiation therapy for various 

malignant diseases had a slightly elevated risk of leukemia, in particular AML [16].  

  

It has been demonstrated that secondary leukemia, especially AML, can be induced by 

treatment of earlier malignancies with cytotoxic drugs [33]. Chemotherapeutic agents 

eradicate cancer cells by damaging DNA, but can also cause DNA injuries in normal 

cells that could later trigger tumor development. The risk of secondary AML is for 

example, five times higher in a patient previously treated with cytostatic drugs, especially 

alkylating therapy, compared to the general population [58]. Alkylating drugs such as 

busulphan, cyclophosphamide, and melphalan are also commonly used as myeloablative 

induction therapy in HSCT [33].  Moreover, it is well known that leukemia can occur 3-4 

years after melphalan treatment of ovarian or breast cancer [58,59]. In addition, 

anthracylins, such as doxorubicin and topoisomerase II inhibitors, for example etoposide, 

are also reported to be possible triggers of secondary malignancies [33,58]. However, 

only a small group of patients treated with cytostatic drugs develop secondary 

malignancies, suggesting that they could have a genetic predisposition [58]. 

 

In addition to the known leukemogenesic triggers discussed in this chapter, several 

studies have investigated the etiology of pediatric leukemias, both in utero (described in 

chapter 1.2.1) and in childhood, but no obvious triggers were identified. For example, 

two different Meta-analyses suggest an increased risk of childhood leukemia due to 

contact with pesticides, both during pregnancy and childhood [60,61]. Other potential 

triggers investigated include vitamin K supplements, icterus at birth, solvents, industrial 

facilities, and obesity [16,62-65]. 

 

1.2.1 Prenatal origins of leukemia, a “first and second hit” 

While there is space-time clustering data based on time, place of birth, and the incidence 

rate of ALL has an early peak at 2-5 years of age, it has been hypothesized that the 

development of ALL in children occurs due to “two hits”, where the first may take place 

at an early stage, maybe in utero, leading to a chromosome aberration and a preleukemic 

clone that is activated in the postnatal period by the “second hit” [4,7]. The “first hit” 
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has been studied by analyzing genetic abnormalities in archived neonatal DBS, also 

termed Guthrie cards and in cord blood, as well as by performing twin studies [3]. 

Mutations found at diagnosis have been analyzed in DBS from children with leukemia, 

including t(4;11), mixed lineage leukemia (MLL), t(12;21), ETV6-RUNX1 (TEL-

AML1), t(8;21), RUNX1-ETV, and hyperdiploidy [66-72]. Some other studies indirectly 

support the prenatal origin of leukemia, although chromosomal aberrations were not 

found at the time of diagnosis. By analyzing rearrangement in the immunoglobulin heavy 

chain (IGH) and T-cell receptor (TCR), Taube et al. were able to trace rearrangement of 

the IGH from the time of diagnosis back to the DBS in 71 % of the leukemia cases 

[73,74]. In another study that investigated both the TCR and IGH in the same specific 

way, it was possible to trace back in all four cases [74]. Additional support for the in 

utero origin of some leukemias is the short latency period and high concordance rate 

(nearly 100%) of infant monozygotic twins with MLL [3,75]. On the other hand, in 

ETV6-RUNX1 fusion, one of the most frequent genetic lesions in childhood ALL, also 

found in DBS, the incubation time is longer (2-15 years) and the concordance rate lower 

(10%) among monozygotic twins, suggesting a postnatal “ second hit”, e.g. deletion of 

ETV6 from the other allele [3,7,75]. In addition, ETV6-RUNX1 fusion has also been 

found in one percent of 567 healthy newborns whose cord blood was analyzed, 

representing a 100-fold greater risk than the incidence of childhood ALL [76]. This 

further supports the theory of a “second hit”, where the first is necessary but not 

sufficient for leukemogenesis by itself.  However, one recent study of 1417 umbilical 

cord blood samples could not detect ETV6-RUNX1 fusion gene in any of them [77]. 

Genome-wide analyses by means of single nucleotide polymorphism (SNP) arrays have 

recently found copy number variations (CNVs) in ALL and in concordant ALL twins 

with ETV6-RUNX1 [78,79]. Additionally, the CNVs are matchless among the paired 

twins, further supporting the presence of a “second step”, verified by single cell clonal 

analyses [80,81]. Recently, the total genome sequencing from leukemic cells of two 

monozygotic twin pairs was analyzed, showing that shared prenatal coding-region SNP 

was restricted to assumed initiating lesions, whereas all other unidentical SNP differed 

between tumors and was thereby assumed to have occurred postnatally [78]. 

 

Although many studies have investigated the etiology in utero, no definite trigger has yet 

been identified. However, interestingly, MLL not only occurs in infant leukemias, but 

also in secondary leukemias induced by a topoisomerase II inhibitor [37-39]. 
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Topoisomerase II inhibitor is a common component of many different compounds, for 

example quinolone antibiotics, flavonoids in food and drinks, catechins, podophyllin 

resin, benzene metabolites, and estrogens. Hypothetically, if a fetus with an MLL 

rearrangement is exposed to this substance in utero, it could trigger the development of 

childhood leukemia. Moreover, a correlation has been found between exposure to DNA-

damaging drugs in utero and the development of infant leukemia with MLL gene fusion 

where the infant leukemia might be initiated by transplacental chemical carcinogenesis 

[4,37,82-85].  

 

Several other possible triggers in utero have been evaluated. A slightly increased risk has 

been seen for maternal age in large epidemiological studies as well as for alcohol 

consumption during pregnancy [86-89]. Furthermore, in two different Meta-analyses 

contact with pesticides during pregnancy was suggested as a cancerogenic agent that 

could cause childhood leukemia [60,61]. Moreover, use of marijuana in the year before 

or during pregnancy has been found to correlate significantly with AML, but the results 

could not be replicated [90,91]. Other suggested triggers include smoking, ultrasound, 

high meat consumption during pregnancy, as well as high birth weight, but due to 

conflicting or negative results none of these factors were found to have a definite 

correlation with childhood leukemia [92-97]. Several studies have been conducted in an 

attempt to find preventive factors, for example folate supplementation, maternal vitamin 

use during pregnancy, and a healthy diet including fruit, vegetables as well as beans, but 

with inconclusive results [92,98,99].  

 

1.2.2 Virus and leukemia 

In 1879, Gowers suggested infection as a possible etiology of childhood leukemia. This 

theory was further discussed, based on clinical observations in the early 1900’s 

[100,101]. However, Gowers’ theory was ruled out when it became clear that the disease 

was not contagious [102]. It was later discovered that a specific virus could be oncogenic 

and cause malignant blood diseases such as Epstein-Barr virus (EBV) that could induce 

Burkitt`s lymphoma (B-cell lymphoma) and Hodgkin’s lymphoma, human herpes virus 8 

(HHV8) that could transform lymphoid cells, and T-cell lymphotropic virus 1 (HTLV1) 

that could induce T-cell lymphoma as well as T-cell-ALL [7,103,104]. To preserve the 

integrity of the viral genome during viral replication, the virus must control the 
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machinery of the cell, by for example, suppressing cellular DNA repair and taking 

command of the cell cycle [105-107]. After the primary infection, some viruses, for 

example polyomavirus (PyV), adenovirus, and EBV, may remain latent in the 

lymphocytes or lymphoid tissue for many years, but can be reactivated in the event of 

immunosuppression, thereby theoretically inducing genomic instability [108,109]. 

Another theory is the hit and run mechanism described for several viruses, for example 

adenoviruses [110,111]. 

 

The early age of onset, space-time clustering data based on time, place of birth, and 

diagnosis as well as molecular studies of DBS, cord blood, and twin studies may 

correspond to a relationship between childhood ALL and early or in utero infection 

[112,113]. Three non-exclusive hypotheses have suggested infections as a trigger of 

leukoemogenesis. The first theory presented by Kinlen L occurred in response to 

clusters of leukemia in localities associated with rapid population growth, which led 

Kinlen to propose that childhood leukemia is due to infection in susceptible, previously 

unexposed individuals [114,115]. According to this “population mixing” model, 

childhood leukemia is a rare response to a common infection [115,116]. In the second 

theory, Greaves M proposed a “delayed infection” model, in which delays in exposure 

to common infections evolutionarily programmed to be met early in life, lead to an 

abnormal immune response, precipitating the “first and/or second hit” required to 

produce leukemia [104]. Interestingly, similar immunological arguments are presented in 

the hygienic hypothesis for childhood allergies and some autoimmune diseases 

[7,117,118]. The delayed infection theory is consistent with the incidence rate, which 

seems to be higher in richer societies, at least according to the few studies that have been 

conducted to date in developing countries [7]. To confirm the delayed infection 

hypothesis, several epidemiological studies have been performed. Some studies have 

suggested that daycare attendance during the first year of life may protect against 

childhood ALL, but other studies were unable to verify this theory [7,119]. A number of 

studies have investigated birth order, use of breastfeeding, and vaccinations but with 

contradictory and variable results [120]. Furthermore, diagnostic samples of leukemic 

cells from either peripheral blood or bone marrow were evaluated for the presence of a 

variety of viruses; JC-virus (JCV) and BK-virus (BKV), HHV-4, 5, 6, 7, and 8, bovine 

leukemia virus, and the circovirus-like TT virus, but none of these were associated with 

leukemia [121-124]. Additionally, a small study screened for non-human sequences in 
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childhood ALL by means of representational difference analysis, but without any positive 

results [125]. In the third model, Smith M proposed that a prenatal infection elicits pre-

leukemic changes in the hematopoietic cells without causing overt disease in the fetus 

[5].  This, “infection in utero” model is supported by space-time clustering studies from 

Sweden and the UK, where clusters of childhood ALL are accumulated both at time of 

birth and diagnosis [112,113,126,127]. According to Smith, the candidate virus requires 

certain properties to be oncogenic in utero such as; causing genetic instability, having a 

specific effect on B-lymphocytes, giving mild symptoms at primary onset, ability to cross 

the placenta, and not causing common malformations. PyV and adenovirus are among the 

viruses discussed [6]. Smith´s theory has been tested by analyzing DNA by PCR in DBS 

for the following viruses; HHV-6 and EBV, CMV, human parvovirus B19, JCV, and 

BKV, from children who later developed ALL and from controls, but none of these 

viruses could be detected [128-131]. Adenovirus DNA was detected in 13/51 Guthrie 

cards from the ALL patients, but only from 6/47 healthy controls (p=0.0122) [132]. 

However, in another study of pediatric ALL patients in California, adenovirus DNA was 

not found in DBS [133].  

 

1.3 ADENOVIRUS C AS A POSSIBLE PRENATAL ORIGIN OF CHILDHOOD 
LEUKEMIA 

In 1953, a virus was discovered in human adenoids when searching for the agent that 

caused the common cold [134]. One year later, acute respiratory disease was investigated 

in military employees and an agent, possibly a virus, was isolated [135]. It was later 

revealed that these viruses were related and they were given a name derived from initially 

isolated cell tissue [136].  

 

Adenovirus has been one of the keys to understanding both fundamental virological and 

cellular process as well as the interaction between them. It has also been important for the 

development of gene therapy, where a functional gene (DNA) is introduced to a target 

cell by a vector to replace a dysfunctional gene, and adenovirus is today the most 

commonly used vector [137].  

 

In humans 57 serotypes have been identified and organized into seven species (A-G). The 

serotype classification system is based on serology, hemagglutination configurations as 
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well as biological and oncogenic characteristics [138]. Adenoviruses can cause diverse 

clinical symptoms, from mild respiratory infections in children to severe multi-organ 

disease in immunocompromised patients [139].  

 

1.3.1 Structure and genomic organization 

 

 

 

 

  

 

Adenovirus is a medium-sized (70-100 nm) non-enveloped linear double-stranded DNA 

virus with an icosahedral nucleocapsid [140]. Hexon is the most frequent protein in the 

capsid. There are 12 prominent proteins/fibers around the capsid that mediate binding to 

the target cell [141].  

 

The adenovirus genome (30-40 kbp) contains five early transcription units (E1A, E1B, 

E2, E3 and E4), two intermediate (IX and IVa2), and five late mRNAs (L1-L5) that 

encode for over 40 different proteins due to effective organization and alternative splicing 

of the genome. Moreover, there are two virus-associated RNAs (VA RNA I and II) [142]. 

The early proteins are expressed before virus DNA replication and their function is to 

facilitate viral gene expression and disturb host anti-viral mechanisms, whereas the 

function of the late proteins, which are expressed after viral replication, is to assemble the 

virions and release them from the cell [142].  

 

1.3.2 Adenovirus in humans 

Adenovirus spreads by aerosol and the fecal-oral route of transmission. These infections 

are typically associated with self-limited respiratory, conjunctival and gastrointestinal 

Figure 1: The structure of the viral capsid and the genome of 
adenovirus    
                    
Reprinted by permission of the Nature Publishing Group. 
Transductional targeting of adenovirus vectors for gene 
therapy, Glasgow et al. Cancer Gene Therapy, 2006 
sep;13(9):830-44. Epub 2006 Jan 27 
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disease in immune competent children and adults [143]. The common endemic species C 

adenovirus (serotypes 1,2,5, and 6) normally infects young children and is responsible for 

5-15% of respiratory tract infections in children under the age of five years, with a 

seroprevalence of 40-60% in childhood [144,145]. In a seroepidemiologic study of 

various infections in young men, 98.7% were seropositive to adenovirus, indicating that 

most of them were infected at a young age [146]. Tonsillitis caused by adenovirus is very 

common and the peak of children undergoing tonsillectomies with adenovirus DNA 

detected in their mucosal lymphocytes are aged 2-5 years, which correlates with the peak 

presentation of childhood ALL [7,145,147]. After a primary infection, adenovirus 

remains latent in T cells [147]. In immunosuppressed patients, adenovirus infections are 

related to severe morbidity and mortality as a result of both the primary infection and 

reactivations [143].  

 

There are still no standard antiviral drugs available for treatment of adenovirus infection, 

but cidofovir and foscavir are used without a license [148]. Between 1971 and 1996 an 

oral, live, enteric-coated vaccine to prevent infections was used in the military, with good 

efficacy [149,150]. However, it has not been used commercially due to lack of 

prospective, large, randomized controlled trials [151]. 

 

1.3.3 Adenovirus and cancer   

In 1962, adenovirus type 12 was found to induce multiple tumors in newborn hamsters 

including sarcomas, neuroectodermal tumors, adenocarcinomas, retinoblastomas, and 

medulloblastomas [152,153]. Since then the oncogenic potential of adenovirus has been 

of interest to the scientific community. In a recent study by Kosulin, over 500 diagnostic 

samples from 17 different types of pediatric malignancy including solid tumors, 

leukemias and lymphoma were tested for adenovirus, with the majority of results being 

negative [154]. Adenovirus sequences were detected in different pediatric brain tumors, 

but also in healthy brain tissue. It was unclear whether the adenovirus had persisted from 

an earlier infection, had a tropism to brain tissue or if the virus was involved in the 

oncogenesis [154]. Furthermore, bone marrow or peripheral blood samples from 130 

pediatric leukemias including pre-B-ALL, T-ALL, AML, and CML were analyzed but 

only two samples were found positive for adenovirus DNA [154]. It could not be 

excluded that this finding was only an expression of occasional persistence of the virus in 
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peripheral blood, thus its role in human oncogenesis is still unclear [154]. Adenovirus has 

also been studied in adults with different types of tumor but no clear association was 

observed between the virus and tumor development [155,156].  

 

Adenovirus is unique among human viruses because its genome persists in the infected 

cell as a linear double-stranded DNA. Furthermore, adenovirus suppresses cellular DNA 

repair in order to preserve the integrity of its genome during viral replication [105]. 

Adenovirus has unique potential to be mutagenic and is well known for its ability to 

transform rodent cells through sustained expression of oncogenes such as E1A and E1B 

[110]. E1A and E1B are transcription factors for viral and cellular genes interacting with 

important tumor suppressors, such as Retinoblastoma protein (pRB) and p53 proteins 

[110,157]. Studies have revealed that mutant adenovirus that does not express E1B 

protein is only able to replicate and lyse cells with defective p53 expression, but not those 

with wild type p53. Moreover, it was demonstrated that mice with a mutation of TP53 

had a reduction in tumor size when abnormal adenovirus was inoculated into the tumors, 

making mutant adenovirus a candidate for the treatment of tumors with aberrant TP53 

[158]. In addition, the E4 region of the virus includes three oncoproteins that cooperate 

with E1B to transform cells [105]. The viral E4 and E1B genes that block DNA repair 

have three distinctive tasks. First, the E4orf3 protein of species C adenovirus is able to 

disturb the MRN complex that controls both the signaling and repair activities of the 

DNA [159]. Second, cellular proteins, that are important for DNA repair are targets for 

degradation by a viral ubiquitin ligase created by E1B and E4 proteins [105]. Third, the 

E4orf6 protein blocks double-stranded DNA-break repair by inactivating other proteins 

that contribute to both repair and signaling [160]. Finally, studies have concluded that 

adenovirus is able to transform cells through a "hit and run" mechanism, making 

adenovirus C a candidate for causing the initial genetic aberration that may lead to 

malignancy [110,111].  

 

1.4 POLYOMAVIRUS AS A POSSIBLE PRENATAL ORIGIN OF 
CHILDHOOD LEUKEMIA 

In 1953 Ludwik Gross made the remarkable discovery that as a result of contamination 

by an unknown “agent”, extracts from mouse leukemia cells injected into newborn mice 

induced the development of salivary gland carcinoma instead of the expected leukemia 
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[161]. A few years later, Stewart and Eddy demonstrated that this “agent” could induce 

tumors not only in mice but also in rats and hamsters and they later isolated a small DNA 

virus [162-165]. This virus was named polyoma, known today as murine polyomavirus 

(MPyV), and belongs to the Polyomaviridae family [166,167]. Shortly afterwards simian 

virus 40 (SV40) was isolated from monkey kidney cells and together with MPyV 

contributed to some of the most important tumor cell biology models [168,169]. In 1971, 

BKV and JCV were isolated from kidney and brain tissue, respectively [170,171]. In 

2007, Karolinska Institute polyomavirus (KIPyV) and Washington University 

polyomavirus (WUPyV) were discovered in respiratory samples of children with acute 

respiratory symptoms, and the following year the Merkel cell polyomavirus (MCPyV), 

the fifth human PyVs (HPyV), was detected in Merkel cell carcinoma (MCC), a rare 

aggressive skin cancer [172-174]. Since then, ten new HPyVs have been discovered; 

HPyV-6, HPyV-7, HPyV-9, HPyV-10, HPyV-12, Trichodysplasia spinulosa-associated 

polyomavirus (TSPyV), Malawi polyomavirus (MWPyV) and Mexico polyomavirus 

(MXPyV), Saint Luis polyomavirus (STLPyV), New Jersey polyomavirus (NJPyV) 

[175-183]. The number of viruses belonging in the Polyomaviridae family has increased 

during the last decade and today (summer 2014) it has 15 human and 17 non-human 

members.  

 

1.4.1 Structure and genomic organization 

PyV is a small (40-45nm) non-enveloped circular double-stranded DNA-virus (5000 bp) 

with an icosahedral nucleocapsid [184].   

 

 
 

Figure 2: An electron microscopic photograph of JCV capsids 

 Reprinted by permission of the Protein Data Bank japan: PDBj 
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The genome of the PyVs family is divided into three regions encoding for early and late 

proteins in addition to the non-coding control region (NCCR). The early and late proteins 

are highly conservative, whereas the NCCR is more variable and contains the origin of 

replication, promoters, enhancers, and binding sites, which are important for replication 

and transcription [185].  
 

 
 

The early region includes one shared pre messenger RNA (mRNA) that generates two 

early mRNAs by alternative splicing, which are translated into two proteins; large T (LT) 

and small T (ST) [185,186]. By additional splicing, some types of polyomavirus express 

supplementary early proteins [187,188].  

 

The LT is a multifunctional protein necessary for both replication of the virus itself and 

stimulation of the host cell into DNA synthesis. The LT can bind to three specific NCCR 

sites, thereby regulating both early and late transcription [189-191]. Furthermore, the LT 

regions can bind to cell cycle regulating proteins (e.g. pRB and p53), blocking their 

growth suppressor function and forcing the host cell into the S phase. This enables 

uncontrolled viral replication and is important for the oncogenic potential of 

polyomavirus [167,185].  

 

Although the ST protein is expressed in all polyomaviruses, its role is less clear. It has 

been proposed that its main function is to block the protein phosphatase 2 A (PP2A) 

function, leading to the activation of numerous pathways including mitogen-activated 

protein kinas (MAPK), and Phosphatidylinositol 3-kinase (PI3K)/AKT, thereby 

intensifying the oncogenic effect of LT [192].  

 

Figure 3: Genomic map of prototype Polyomavirus 
 
Reprinted from Virology, Volume 437, Issue 2, Dalianis et al. 
Human polyomaviruses in disease and cancer, pages 63 – 72, 
Copyright © 2013, with permission of Elsevier. 
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The late region encodes the three capsid proteins VP1, VP2 and VP3, in addition to multi 

functional agnoprotein (LP1). These proteins originate from a common mRNA by 

alternative splicing [185]. VP1 is the most frequently expressed protein (90%) and 

creates the outer shell of PyV [193]. The VP1 amino acid sequences are highly preserved 

among HPyV.  

 

1.4.2 Polyomavirus in humans 

Known seroprevalence for 9/15 HPyV in adults is 35-99%, as presented in Table 1 [193].  

Respiratory and fecal-oral routes for transmission of HPyV have been suggested, while in 

the case of MCPyV transmission through skin-to-skin contact has also been proposed 

[108,185,194,195]. 

 
Table I 

Seroprevalence of HPyVs in adults. 

HPyV Seroprevalence in adults 

(%) 

Country Method References 

BKV 82–99 USA, 

Australia, Italy 

VLP ELISA and VP1 capsomer 

based ELISA 

Antonsson et al. (2010), Egli et al. (2009), 

Kean et al. (2009) and Viscidi et al., (2011) 

JCV 39–81 USA, 

Australia, Italy 

VLP ELISA and VP1 capsomer 

based ELISA 

Antonsson et al. (2010), Egli et al. (2009), 

Kean et al. (2009) and Viscidi et al. (2011) 

KIPyV 55–90 USA VLP ELIA and VP1 capsomer 

based ELISA 

Carter et al. (2009) and Kean et al. (2009) 

WUPyV 69–98 USA VP1 capsomer based ELISA 

Multiplex antibody binding assays 

Kean et al. (2009) and Carter et al. (2009) 

MCPyV 60–81 Italy VLP ELISA Multiplex antibody 

binding assay 

Carter et al. (2009) and Viscidi et al. (2011) 

HPyV6 69 USA VLP ELISA Schowalter et al. (2010) 

HPyV7 35 USA VLP ELISA Schowalter et al. (2010) 

TSV 70 The 

Netherlands 

Multiplex antibody binding assay van der Meijden et al. (2010) 

HPyV9 21–53 France, 

Germany 

VLP ELISA VP1 recombinant 

protein ELISA 

Nicol et al. (2012) and Trusch et al. (2012) 

MWPyV/HpyV10 ND⁎    

⁎ Not done. 

Complete references can be found in the published article 

Reprinted from Virology, Volume 437, Issue 2, Dalianis et al. Human polyomaviruses in disease and cancer, pages 63 – 72, Copyright © 
2013, with permission from Elsevier 
 

 

In healthy individuals the primary HPyV infection appears to be asymptomatic or with 

only mild respiratory symptoms and occurs often in childhood [108,196,197]. After the 

primary infection, the HPyV remains latent and may be reactivated by the occurrence of 
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immunosuppression [108]. Reactivation of JCV is associated with progressive multifocal 

leukoencephalopaty (PML), characterized by demyelinating plaques and a classic triad of 

symptoms; cognitive impairment, visual deficits, and motor dysfunction [198]. 

Reactivation of the BKV virus is associated with hemorrhagic cystitis in HSCT patients, 

the outcome of which is occasionally fatal [199]. In kidney-transplanted patients, 

reactivated BKV is associated with nephropathy and ureteral stenosis [185].  

 

KIPyV and WUPyV have been detected in the upper airways, tonsil tissue, blood, 

plasma and stool, but as yet there is no confirmed link between the disease and infection 

[172,173,194,200,201]. In a recent retrospective study, 222 bone marrow transplanted 

patients were followed up on a weekly basis for one year after HSCT, by monitoring 

clinical status and nasal aspirates. The results revealed a cumulative incidence of 26% for 

KIPyV and 8% for WUPyV. The infections were associated with wheezing and sputum 

production [202]. In another study of 200 patients with respiratory disorders, 89% of 

whom were immunocompromised, KIPyV was detected in 8% and WUPyV in 1%. In 

line with the previous study KIPyV was significantly more frequent in HSCT patients 

than in other immunocompromised individuals (17.8% vs 5.1%) [203].  

 

MCPyV was found in MCC in elderly and immunosuppressed patients, but has also been 

frequently detected in samples of healthy skin and in extracutaneous locations such as 

lymph nodes, esophagus, salivary glands, oral mucosa, as well as in breast and vaginal 

tissue [174,195,204,205].  

 

1.4.3 Polyomavirus and cancer  

It is well established that PyVs have oncogenic potential, evidenced by early animal 

studies [206]. SV40 is known to initiate a tumorigenic mechanism by interaction of the 

LT antigen with cell cycle regulating proteins such as p53 and pRB at an early stage of 

the infection process, but also by integration of viral DNA in the host genome. However, 

it has been postulated that SV40 does not cause tumors in its natural hosts [207,208]. 

DNA sequences of BKV, JCV and SV40 have been detected in different types of human 

malignancy, such as colorectal tumors, pancreatic cancer, prostate cancer, mesothelioma, 

non-UV light associated melanomas, pediatric and adult brain tumors, osteosarcoma, 

sarcomas and non Hodgkin lymphomas, but the significance of these findings is 
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controversial [167,193,209,210]. It has recently been shown that hematopoietic stem cells 

could go through neoplastic alterations when infected with JCV [107]. Despite discordant 

findings in human and experimental animal studies, the WHO International Agency for 

Cancer Research Monograph Working Group has recently classified BKV and JCV as 

“possibly carcinogenic to humans” [211]. 

 

A few studies have investigated the role of KIPyV and WUPyV in various malignancies 

including pediatric brain tumors and non-UV exposed melanomas with negative results 

[212,213]. However, it has been reported that VP1 sequences from KIPyV were 

identified in 9/20 lung cancers and sequences coding for the C terminal of the early 

region were detected in two of these cases [200]. 

 

To date, only MCPyV has been strongly linked to human tumors [174]. MCPyV DNA 

has been detected in the majority of MCCs (80%), in skin cancer as well as in primary 

gastric MCC [106,197,204,205]. In other types of skin tumor MCPyV DNA was not 

observed in non-UV light associated primary malignant melanoma, but was detected at 

low levels in keratoacanthoma and squamous cell carcinoma [213,214]. It is well known 

that patients with MCC are at risk of developing chronic lymphocytic leukemia and small 

lymphocytic lymphoma. Recently, Cimino et al. investigated the correlation between 

MCPyV and these two diseases and detected MCPyV DNA in 13% of T-cells from these 

patients [204]. Other studies have found no presence of MCPyV in pediatric brain, lung, 

prostatic, uterine cervix, large bowel, ovary, breast, bone and soft tissue tumors 

[213,215,216].  

 

1.5 PROGNOSTIC MARKERS OF LEUKEMIA 

The long time survival rates have increased dramatically in recent decades and are today 

90% in children with ALL and 70% in those with AML [9-12]. The five year survival 

rate has also improved for MDS (60 %), JMML (50%), and CML (60-90%) 

[25,29,31,32]. Improved survival is due to more effective chemotherapeutic agents, 

supportive care and protocols. However, approximately 20% of pediatric ALL patients 

and 30-40% of pediatric AML patients suffer a relapse and normally undergo a more 

intensive therapy and/or HSCT [9,10,12,217,218]. Nevertheless, the outcome of relapsed 

ALL and AML patients is poor, and the long-term outcome remains unsatisfactory with 
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cure rates of only 30–40% for children with ALL and 20-60% for those with AML 

[12,219-221]. Children who relapse, those with specific high-risk markers at diagnosis, 

and almost all children with MDS, JMML, and CML are candidates for HSCT 

[12,32,222]. Nevertheless, the relapse rate after HSCT is 30-60 % for AML and 

associated with a poor prognosis [223,224]. In order to decrease the relapse rate after 

HSCT, treatment must be more personalized, with better risk-group stratification as well 

as earlier identification of the risk of relapse [11]. 

 

Essential prognostic markers for ALL are age, leukocyte count at diagnosis, 

immunophenotype, chromosomal aberrations, and response to initial therapy (MRD) 

[16]. Examples of favorable chromosomal abnormalities in pre B-ALL are; high 

hyperdiploidy (>50 chromosomes), hyperdiploidi (47-50 chromosomes), and ETV6-

RUNX1. Examples of unfavorable chromosomal abnormalities in pre B-ALL are; Ph+, 

hypodiploidy (<45 chromosomes), intrachromosomal AM1 amplification (iAMP21), 

t(1;19) (E2A-PBX1), dic(9;20) (PAX5/various), and MLL rearrangements [11,17,225]. 

In addition, submicroscopic genetic alterations seem to contribute to leukemogenesis, 

where high-resolution microarray is used to analyze distinct gene expression profiles 

such as micro deletion or duplications, allowing new prognostic markers and therapeutic 

targets [11,17]. Due to the diversity of its precursors AML is a multifaceted disease that 

includes a spectrum of genetic changes [16]. The risk group assessment is mainly based 

on cytogenetics and response to treatment, where the new era seems to be MRD [12,226]. 

Examples of favorable chromosomal abnormalities in AML are; t(9;11), t(8;21), and inv 

(16). Examples of unfavorable chromosomal abnormalities in AML are; MLL 

rearrangements other than t(9;11), a complex karyotype, monosmy 5, del (5q), and 

monosomy 7 [12,226]. In addition, a genetic FMS-like tyrosine kinase 3 (FLT3) internal 

tandem duplication without a nucleophosmin 1(NPM1) mutation has a very poor 

prognosis [12]. In children with MDS, clinical parameters found at diagnosis associated 

with unfavorable prognosis are; high blast count in bone marrow, elevated hemoglobin F 

(>10%), and thrombocytopenia [222,227]. To date, no chromosomal aberration found in 

childhood MDS is correlated with unfavorable prognosis with the exception of 

monosomy 7 and 5 [222,228]. In JMML, clinical parameters associated with poor 

prognosis are; age >2 years, thrombocytopenia, elevated bone marrow blast count, and 

hemoglobin F [228]. Prognostic factors in CML are; sex, age, spleen size at diagnosis, 

platelet count, number of myeloblasts, as well as eosinophil and basophil counts [16]. 
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Carcinogenesis is a multi-step event that occurs in stem or precursor cells, where genes 

that regulate cell growth, apoptosis, DNA repair, and other processes are altered and lose 

their function, or their protein is inactivated due to other mechanisms [1,2]. Tumor 

suppressor genes and oncogenes are required for normal cell proliferation as well as 

differentiation. Variation in protein expression may be present as new prognostic markers 

[1,2]. 

  

1.5.1 The cell cycle and its regulating proteins 

In 1855 Virchow discovered the ability of the cell to divide itself in order to create new 

cell copies, after which scientists studied this skill carefully, but without understanding 

the underlying mechanism [229]. In the late 1970s and 80s many fundamental 

discoveries concerning the cell cycle and its mechanisms were made and in 2001 

Hartwell, Hunt, and Nurse won the Nobel Prize in Medicine and Physiology for their 

discovery of the central cell cycle regulating genes and molecules such as cyclins and 

cyclin-dependent kinases (CDKs), which is the basis of today´s knowledge [230-232].  

 

The Cell cycle is essential for the cell fate and responsible for renewing and growing the 

cell population. Furthermore, it is also responsible for control and repair of damaged 

cells. It consists of two main phases, mitosis (M phase) and interphase (divided into gap 1 

(G1), the DNA synthesis (S), gap 2 (G2) and gap 0 (G0)) [233,234]. The M phase is the 

first step in the cell cycle and includes both the karyokinesis (division of the nucleus into 

two daughter nuclei) and the cytokinesis (split of the cells into two daughter cells). The 

next step is the G1 phase, which is characterized by an increase in cell size as well as the 

pRB pathway acting as a DNA checkpoint, before the S phase [234,235]. The G1 phase 

can last from hours to years. In a non-dividing cell it could persist for a “lifetime”, in 

which case it is called the G0 phase. Cells in G0 arrest are often differentiated, for 

example post mitotic nerve and skeletal muscle cells, but even stem cells are mainly 

inactive and non dividing in the G0 phase. They may be induced to re-enter the cell cycle 

in response to the natural need for cell renewal, but also as a reaction to injury of the cell 

population [234,236]. The pRB and the p53 proteins carefully monitor the step from the 

G1 to the S phase. The pRB pathway is a negative regulator of the E2F family, which is 

required for entering the S phase. Phosphorylation of the pRB family proteins by CDKs 
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during the G1 phase leads to separation from the E2Fs and thereby transcription of genes 

necessary for entering the S phase [237]. The S phase replicates the DNA of the cell and 

new chromatids are formed, preparing the cell for the next M phase. The last phase 

before entering a new M phase is the G2 phase, where the cell continues to grow and no 

DNA is synthesized. The G2 phase is also the last checkpoint for DNA control before the 

start of a new cycle [233,234]. 

 

 
Figure 4: In the cell cycle the pRB pathway strictly controls DNA, preventing damage and possible tumor development.       
 
Reprinted by permission of Rev Inst Med trop S Paulo, Molecular aspects of hepatic carcinogenesis, Nita et al. 2002 Jan-Feb; 44(1) 
39-48  
 

The movement through the cell cycle is strongly regulated and controlled by the two key 

classes of regulatory molecules; cyclins and CDKs [238]. Progression through the cell 

cycle is complex, where cyklins and CDKs are highly dependent on each other, acting as 

a complex in a heterodimer, in which the cyclins form the regulatory and CDKs the 

catalytic subunits. CDKs activated by a cyklin, activate/inactivate target proteins, thus 

regulating the cell cycle through phosphorylation. Different combinations of cyclin-CDK 

heterodimers regulate distinctive downstream proteins [233,234].  

 

Negative regulation of CDKs by CDK inhibitors (CKIs) is necessary to prevent 

uninhibited cell growth. For example, CKIs can arrest the progression from the G1 to the 

S phase by binding to the cyklin/CDK complex in response to various stimuli such as 

growth factors, DNA damage, cellular stress, differentiation, and senescence [234]. There 

are two CKIs families; the inhibitor of kinase 4 (INK4) family (p15, p16, p18, and p19), 

which blocks the activity of cyklin-D-CDK4/6 responsible for activation of pRB, and the 



 

 22 

p21 (also named CIP/KIP) family (p21, p27, and p57), the members of which are less 

specific and can inhibit several cyklin /CDK heterodimers [234,239-242].   

 

1.5.2 p53 and its role in tumor genesis 

TP53 is located on chromosome 17p13 and was discovered in 1979 by Lane, Crawford, 

Levine and Linzer as a host protein for the LT antigen from SV40 [243,244]. A decade 

later its property as a tumor suppressor gene was revealed [245]. Since then, more 

properties have been identified and today it is known that p53 protein can initiate cell 

cycle arrest, DNA repair, apoptosis and senescence through different signaling pathways 

(Figure 5) in response to cellular stress, such as DNA damage, hypoxia, and oncogene 

activation [246]. For this reason it is also called the “guardian of the genome”.  However, 

it is now clear that p53 has a broader role in the cell organism, and today there is 

evidence that p53 protein is involved in different mechanisms including; regulation of 

cell senescence, survival, invasion, motility, glycolysis, autophagy, oxidative stress, 

angiogenesis, differentiation, and bone remodeling [247]. Furthermore, the p53 protein is 

also a key factor for steady-state in normal hematopoiesis, regulating the regeneration, 

quiescence, and degradation of the hematopoietic stem cell (HSC), critical for preserving 

the lifelong pool [246,248].  

 
Figure 5: The tumor suppressor P53 acts as a transcriptional regulator. It has the capacity to activate diverse cellular processes. 
Stimulus and cell type-specific effects determine which particular effector pathway(s) will dominate. 
 
Reprinted from Cold Spring Harb perspec Biol 2012; 4: a 008789, with copyright to Cold Spring Harbor Laboratory Press. 
The role of the apoptotic machinery in tumor suppression, Delebridge et al.2012 Nov 1;4(11). 

The tumor suppressor P53 acts as a transcriptional regulator.  

Delbridge A R et al. Cold Spring Harb Perspect Biol 
2012;4:a008789 

©2012 by Cold Spring Harbor Laboratory Press 
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1.5.2.1 Protein expression of p53 

Normally the half-life of the wild-type p53 protein is short (20 minutes) and results in the 

low level of p53 protein in the nucleus under ordinary physiological conditions 

[249,250]. In steady-state the p53 protein is regulated by several E3 ubiquitin ligases 

(enzymes responsible for the stabilization of p53) in a feedback-loop, where murine 

double minute protein-2 (MDM2) is a key regulator [251]. Activation of TP53 is 

normally a consequence of cellular stress or oncogene activation [247,252,253]. 

However, mutations in TP53 may lead to a defective p53 protein with an extended half-

life that accumulates in the cell nucleus [254,255], and it has been suggested that 

immunohistochemistry of p53 protein expression can be used to find mutations of the 

TP53 gene [256,257]. However, accumulation of p53 can also be found without detected 

gene amplification and in non-malignant diseases, for instance other mechanisms that 

involve the wild-type p53, such as cellular stress during inflammation or hypoxia 

[247,257-260]. Finally, overexpression of wild-type p53 protein can also be initiated by 

abnormal functionality of the proteins responsible for deregulation of p53 protein, such as 

MDM2 [259,261].  

 

Inactivation of p53 leading to the loss of function is one of the most common events 

found in human tumors [262]. More than 90% of alterations in TP53 leads to ineffective 

p53 protein and reduced function as a transcription factor [263]. Furthermore, 

inactivation could also be a result of accumulation of p53 protein in the cytoplasm 

[264,265]. In addition, inactivation can be caused by inhibiting proteins like MDM2 and 

by tumor viruses such as adenoviruses, SV40 and human papillomaviruses (HPV) 

[106,107,110,157,251,266].  

 

1.5.2.2 p53 and cancer 

Alterations of TP53 leading to dysfunctional protein occur in more than 50% of human 

solid tumors in adults, where p53 mutations are most frequent in ovarian, esophageal, 

colorectal, head, neck, larynx, and lung cancers [267,268]. These mutations are generally 

inactivated by single-base replacement and/or loss of alleles, initiated by viral or cellular 

proteins [268,269]. Missense mutation is the most common alteration of TP53 and causes 

single amino-acid changes at many different positions, making it possible to recognize 

various mutation patterns related to the type of malignancy and etiology. Moreover, 
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tumors with TP53 alterations are generally associated with a more aggressive disease and 

poor prognosis [268].  

 

Early onset of cancer often occurs in conditions caused by hereditary TP53 mutations, 

where Li-Fraumeni’s syndrome is the best known [43]. In these families the TP53 

alteration is inherited in one allele, meaning that only one “hit” is required to inactivate 

TP53 [270]. Li-Fraumeni is characterized by multiple cancers in the family including 

breast cancer, osteosarcoma, and rhabdomyosarcoma but also AML [270,271]. However, 

germline mutations were also identified in 23% of children with rhabdomyosarcoma and 

in 3% in children with osteosarcoma, despite the fact that there was no family history of 

cancer [272-274]. Moreover, it was found that patients with TP53 germline mutations are 

more sensitive to alkylators and such treatment has been suggested to increase the risk of 

inducing AML or MDS [275-277].    

 

1.5.2.3 p53 in hematological malignancies 

Alterations in TP53 are less common in hematological malignancies than in solid tumors, 

with a reported frequency of 10-20% [257,267,278]. TP53 abnormalities are more 

frequently detected in adult hematological malignancies than in pediatric patients and 

have mainly been correlated with blast crisis in CML, ALL, Burkit´s Lymphoma, and 

with impaired disease in adult MDS [279-281]. Moreover, adult patients with TP53 

alterations are frequently more resistant to chemotherapy and have a relatively short 

survival [246,282].  

 

In the pediatric population the prevalence, knowledge, and impact of TP53 mutations are 

less known due to the lack of studies. Such mutations have only been found at diagnosis 

in 2% of children with ALL, but in 11-28% after relapse, suggesting that a TP53 

mutation is associated with an increased risk of superior relapse [283-288]. Furthermore, 

studies have indicated that TP53 alterations are more frequent at time of relapse 

compared to both time of diagnosis and non-relapsed patients as well as being related to 

an inferior probability of both event-free and overall survival [288,289]. Moreover, in a 

group of children with low-hypodiploid ALL (32-39 chromosomes), alterations in TP53 

were detected in 91.2%. Interestingly, 43% of those alterations were found in non-tumor 

hematopoietic cells, which may indicate an inherited origin, but might also signal a take 

over of the hematological compartment [290]. 
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Even less is known about TP53 alterations in AML, MDS, JMML, and CML in children 

as the sample groups are small and the results conflicting. Alterations of TP53 have been 

found in 11-95% of pediatric MDS patients [275,291,292]. However, no alterations were 

found in children with JMML in three minor studies [291-293]. Finally, there are few 

studies on the prevalence of TP53 mutations in children with AML and CML. 

 

Our group has previously reported an overexpression of p53 protein in bone marrow 

samples from different kinds of pediatric leukemia patients undergoing HSCT in 

comparison to non-malignant bone marrow disorders [294]. Moreover, we found an 

increased expression of p53 protein in bone marrow cells from pediatric high risk ALL 

patients treated with HSCT, both at diagnosis and pre HSCT, compared to samples from 

ALL patients in remission [295]. 

 

1.5.3 p21 

The p21 protein was discovered as a mediator of p53 tumor suppressor activity and is 

encoded by the CDKNA1A gene, located at 6p21.2 locus. p21 has many names including 

WAF1 and CIP1 but is also known as cyklin-dependent kinase inhibitor1 or CDK-

interacting protein 1. p21 is a CDK and  proliferating cell nuclear antigen (PCNA) 

inhibitor  activated by different pathways including the p53-p21 pathway, but also by 

pathways that are independent of p53. It regulates the cell cycle progression from G1 to 

the S phase, creating cell cycle arrest responsible for growth arrest, cellular sentences, 

differentiation, and DNA damage repair. In addition, p21 protein can interact with other 

proteins and influence the cellular mechanism independent of CDK and PCNA [296]. 

 

The half-life of p21 is short (20-60 minutes) and under normal physiological conditions 

cellular p21 protein is expressed at very low levels in the cell [296,297]. However, the 

protein activity is regulated by multiple mechanisms such as transcription factors, 

ubiquitin ligases, and protein kinases that regulate the transcription, stability, and cellular 

location of the p21[296]. In the p53-p21 pathway, an activated wild type p53 protein 

triggers p21 expression, whereas an altered TP53 may lead to overexpression of a 

defective p53, unable to increase the expression of p21 [254,255].  
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1.5.3.1 p21 and cancer 

It is believed that p21 does not act as a sole agent but collaborates with other tumor 

suppressor genes such as p53. Deregulated p21 was found in some tumors, e.g. 

colorectal, cervical, head and neck, and small-cell lung cancer [296]. Moreover, p21 is 

described as a potential oncogene due to its ability to block apoptosis and it was also 

found overexpressed in several types of human cancer such as cervical, breast, and 

prostate [296,298]. Furthermore, p21 was detected up regulated in AML patients and 

correlated with poor prognosis [299].  

 

1.5.4 p16 

The protein of p16 is encoded by the CDKN2A gene that was discovered in 1993, located 

at the 9p21 locus [242,300,301]. p16 is a CDK inhibitor, regulating the G1 phase by 

inhibiting phosphorylation of the pRB [300,301]. In normal young tissue, p16 is 

expressed at very low levels and increases with age in mammalian cells [302,303]. p16 is 

activated and mediates sentences due to cellular stress such as accumulation of DNA 

damaged cells caused by inactivated TP53 and seems to play an important roll in ageing. 

Thereby, it has been suggested that p16 is a stand-by tumor suppressor gene to p53 and 

was observed as up-regulated in p53 deficient mice [300].  

 

1.5.4.1 p16 and cancer 

The CDKN2A gene is frequently down regulated by promotor methylation, mutated or 

deleted in a wide variety of tumors such as; melanoma, breast, brain, ovarian, pancreas, 

osteosarcoma, head and neck, oropharyngeal squamous cell carcinoma, and esophagus 

cancer. It is used as a prognostic marker for several kinds of tumor [304,305]. Alterations 

of p16 are also found in atypical familial multiple mole/melanoma (FAMM), an 

autosomal dominant disease characterized by multiple familial melanoma [305].  

 

As mentioned above, p16 expression increases with age, but in AML, lymphoma, and 

glioblastoma patients the opposite is the case. Thereby, it is hypothesized that 

suppression of p16 that acts as a sentinel for DNA damage in aging cells supports cancer 

development in older individuals [306].  
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Mutations of p16 are present in about 20% of pediatric pre-B-ALL and in 70% of T-ALL 

[307-314]. Recently p16 mutations were studied in 73 pediatric pre-B-ALL patients, 

where the prevalence of homozygous deletion was 24.7% (n=18), hemizygous deletion 

6.8% (n=5) and no deletion 68.5% (n=50). The deletion was compared to a standard risk 

group, a high-risk group and a combined risk group. When comparing the risk groups 

with/without deletion, the event-free and overall survival were significantly lower when 

p16 deletion was found, except in the high-risk group. This result may indicate that 

deletion of p16 is associated with poor prognosis in childhood ALL, which is also 

confirmed by other studies [307,308,310,311,313-315]. The frequency of mutation in the 

Ink4-locus, including p16, has been further studied, where the Bi allelic deletions were 

detected in around 30% of pediatric pre-B- and T-ALL and mono allelic deletions in 

approximately 10-15%. The bi allelic deletion was associated with worse prognosis 

compared to mono allelic deletion or normal Ink4-locus expression [315].  

 

1.5.5 PTEN  

PTEN (phosphatase with tensin homology), a tumor suppressor gene located on 

chromosome 10, which is involved in apoptosis, induction of cell cycle arrest, regulation 

of cell adhesion, differentiation, and migration was identified in the 1990s [316-321]. The 

protein produced by PTEN, a lipid phosphatase, dephosphorylates phosphatidylinositol 

triphosphate (PIP3) into phosphatidylinositol biphosphate PIP2, which is the main 

negative controller of the PI3K/AKT signaling pathway, responsible for cell proliferation, 

metabolism, motility, and cell survival [317,318,322,323]. The occurrence of mutations 

and/or deletions of PTEN result in dysfunctional or decreased protein expression, leading 

to hyper-activation of the PI3K/AKT pathway and facilitating tumor development 

[317,322]. 

 

1.5.5.1 Protein expression of PTEN 

The protein from PTEN is comparatively stable and found in the nucleus but also in the 

cytosol, adhered to the membrane [318]. Mutations of PTEN lead to a dysfunctional or 

decreased protein expression [317,322]. However, not only alterations of PTEN affect the 

protein expression. PTEN can also be inactivated by different mechanisms affecting the 

protein transcription or translation, as well as posttranslational protein modifications, 
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leading to stabilization and overexpression of the protein, in addition to inhibition of its 

tumor suppressing function [317,318].  

 

1.5.5.2 PTEN and cancer 

Critically, PTEN is regularly deactivated by bi allelic alterations (thought to be a two-hit 

model), but mutations of one allele may also impair tumor suppression. Thereby, PTEN 

is very sensitive and important for cancer development [317,318]. Inactivated or 

deregulated PTEN is frequently found in human cancers such as breast cancer, 

carcinoma, gastric tumors, melanoma, prostatic carcinoma, and certain hematological 

malignancies [317]. Mutations of PTEN were also found in 80% of patients with 

Cowden’s disease, an inherited autosomal dominant disorder, characterized by multiple 

hamartomsas and the risk of breast, emdometrial, and thyroid carcinomas, but also other 

malignancies [318,324,325]. 

 

Although alterations of the PI3K/AKT pathway seem to be rare in hematological tumors, 

the pathway is frequently involved in leukemia and activated in a majority of AML 

patients, but also in other leukaemias [317,318,326]. Furthermore, activation of the 

PI3K/AKT pathway in AML patients is linked to tumor cell survival, proliferation and 

chemo resistance [317,327-329]. Despite the fact that the PI3K/AKT pathway is 

important and activated in several hematological malignancies, alterations of PTEN are 

not frequently found in adult hematological malignancies and relatively unexplored in 

childhood leukemias [317]. However, alterations of PTEN have been seen in 5-27% of T-

ALL and are associated with poor prognosis [317]. A study in a mouse model has 

reported that PTEN depletion could lead to a myeloproliferative disease that can rapidly 

develop into AML or ALL [330]. Although there are only a few studies on childhood 

leukemia, it has been found that PTEN protein expression was significantly lower in 

AML and ALL blast cells from eight children, compared to normal cells [331]. 

Furthermore, the PTEN promoter was inactivated in 20% of pediatric ALL [332]. 

However, in a recent study PTEN protein was found overexpressed at diagnosis in a 

group of children with a five year disease-free survival, when compared with a pediatric 

patient suffering from a non-malignant disease. Though, the relapsed patient presented 

with a lower expression of PTEN protein compared to non relapsed patients, indicating 

that PTEN could be a prognostic marker, although the sample group was too small for 

statistical analyze [333].  
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1.5.5.3 Interaction between PTEN and p53 

PTEN can interact directly with p53 by binding to it, thereby blocking MDM2 from 

attaching to p53. It has been further demonstrated that PTEN can regulate the cellular 

localization (from nucleus to cytoplasm) of MDM2 by inactivation of PI3K/AKT, 

thereby indirectly protecting p53 [322,334]. In addition, PTEN may influence the 

promoter activity of MDM2, suggesting that loss of PTEN function leads to decreased 

p53 function [335]. Moreover, overexpression of MDM2 in the absence of PTEN 

expression was associated with resistance to drug induced apoptosis [334]. Finally, p53 

can also up regulate PTEN expression through a p53 binding site at the promotor of 

PTEN [336].   
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2 AIMS OF THE THESIS 

The general aim of this thesis has been to increase understanding of how molecular 

processes influence the development and prognosis of leukemia in children. The thesis 

comprises two separate projects, where the first analyses molecular events that could 

influence childhood leukemia in utero, and the second investigates possible molecular 

prognostic factors for childhood leukemia. The first project (studies I and II) investigates 

whether specific oncogenic viruses can be detected in Guthrie cards from children who 

later develop ALL. The second project (studies III and IV) evaluates protein expression 

from cell regulating genes in bone marrow samples (by immunohistochemistry) from 

children with leukemia who were transplanted, at time of diagnosis, as well as before and 

after HSCT as possible prognostic markers for indicating relapse. In summary, the aims 

of my thesis are: 

 

 

-to investigate whether adenovirus, KIPyV,  MCPyV or WUPyV can be detected in DBS 

from children who later develop leukemia. Could an in utero infection with those viruses 

be associated with the subsequent development of childhood ALL? 

 

- to investigate  how the expression of the cell cycle regulating proteins p53, p21, p16, 

and PTEN is altered in bone marrow samples from time of diagnosis, as well as before 

and after HSCT. Could these proteins predict the prognosis and future relapse in children 

with leukemia before and after HSCT?  
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3 MATERIAL AND METHODS 

3.1 PATIENTS AND SAMPLES 

3.1.1 Studies I and II 

Since 1974, all infants in Sweden have been screened for several inborn errors of 

metabolism at the age of 2-5 days, and today 24 metabolic disorders are tested. Four 

bloodspots (14mm in diameter, each containing approximately 60 µL blood) are collected 

on filter paper, known as Guthrie cards or dried blood spots (DBS). Since 1981 the DBS 

have been stored side by side at 4°C with the humidity never exceeding 30% since 1996 

and are organized by date and place of birth.  

 

We randomly identified 417 childhood leukemia patients diagnosed between 1992-2006 

from the Nordic Society of Pediatric Hematology and Oncology (NOPHO) register and 

linked this information to the Swedish Medical Birth register. These two registers 

allowed us to gain access to the personal code numbers of both the mothers and children, 

which was necessary to identify the DBS. The samples were then depersonalized and 

received a passkey that was kept by the main supervisor.   

 

The patients were treated at six different oncological units in Sweden. Their clinical data 

was collected from the NOPHO register. Eight hundred and thirty-four controls were 

collected anonymously, but since they are stored side by side, the controls were collected 

two DBS apart from the patients’ DBS, in order to prevent contamination but still be able 

to match for date and place of birth. 

 

Study I included 243 patients and 486 controls. Two hundred and sixteen (88.9 %) 

children suffered from pre-B-ALL, 25 (10.3 %) from T-ALL and two (0.8) from 

undifferentiated childhood leukemia. The median age at diagnosis was 4.3 years (67 days 

–15), where 141 (58%) patients were male and 102 (42%) female. The cytogenetic status 

at diagnosis revealed that; 80 patients were hyperdiploid, three were hypodiploid, 32 had 

t(12;21), and 11 had  t(4;11) translocation, seven had t(1;19), six were Ph+ positive, four 

presented with dic (9;20),  36 had other kinds of alteration, 41 had no cytogenetic 

modifications and in the case of 23 children no data was available.  
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Study II included 50 patients and 100 controls, randomly selected from the children in 

study I. Forty-two (84%) of the patients were diagnosed as pre-B-ALL, six (12%) as T-

ALL and two (4%) as undifferentiated childhood leukemia. The patient population 

comprised 26 (52%) girls and 24 (48%) boys with a median age at diagnosis of 4.7 years 

(0.9- 14.5). The cytogenetic status at diagnosis was as follows; 19 patients were 

hyperdiploid, six had t(12;21), and three had  t(4;11) translocation, two were Ph+ 

positive, two presented with dic (9;20), seven had other kinds of alteration and two had 

no cytogenetic modification. The cytogenetic analyzes of nine children were unavailable 

due to missing data. 

 

3.1.2 Studies III and IV 

Paraffin-embedded bone marrow tissues fixed in formalin or Stieve’s solution were 

obtained retrospectively from all children who underwent a bone marrow transplant at 

Karolinska University Hospital between 1997 and 2010, due to a malignant bone marrow 

disease. Bone marrow specimens were collected at time of diagnosis, at HSCT, and from 

routine check-ups approximately three, six, and 12 months post HSCT. Twenty-three 

diagnostic samples were collected from Umeå University Hospital. In total, the material 

comprised 138 children aged between 0 and 18 years with the following diagnosis; pre-

B-ALL (n=50), T-ALL (n=17), AML (n=34), MDS (n=19), JMML (n=9), CML (n=5), 

and lymphoma (n=4). Diagnosis and staging were made according to standard criteria in 

the NOPHO protocols. Clinical data was collected from patient records. 

 

The control group comprised 55 children; healthy donors (n=2), children diagnosed with 

amegakaryocytic thrombocytopenia (n=3), aplastic anemia (n=13), chronic 

granulomatous disease (n=1), Fanconis aplastic anemia (n=7), glycogenosis (n=2), 

hemolytic anemia (n=1), idiopathic thrombocytopenia (n=8), Kostmann’s disease (n=4), 

Mb Hurler (n=1), neutropenia (n=1) thalassemia (n=4), severe combined 

immunodeficiency (n=1), Wiscott Aldrich syndrome (n=2), and suspected malignant 

disease due to pancytopenia, although no malignant disease was discovered (5).  

 

Study III included 33 children, 18 (55%) male and 15 (45%) female, with a median age of 

8.4 years (0-16.6) at diagnosis, suffering from rare chronic myeloid malignancies (MDS, 

JMML, and CML). All the calculations were based on the myeloid malignancies as a 
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group. The treatment was initially administered at different oncological centers in 

Sweden, with no or only mild cytostatic drugs. The median age at HSCT was 11 years 

(0.6-17.1). Prior to HSCT 12 children were conditioned with busulphan and 

cyclophosphamide, 17 with busulphan, cyclophosphamide and melphalan, three with 

cyclophosphamide and total body irradiation (TBI), and in one case the data was missing. 

Twenty-two children received stem cells from matched unrelated donors, ten from human 

leukocyte antigen (HLA) identical siblings and one from a haploid donor. The stem cell 

source was peripheral stem cells in one case, cord blood in five cases and bone marrow in 

27 cases. Ten (30%) out of 33 patients relapsed at a median of 2.9 (0-9.5) months post 

HSCT and 13 children died.  

 
Study IV included 34 children with AML, 14 (41%) female and 20 (59%) male, with a 

median age at diagnosis of 8.6 years (0.3-17.3). The treatment was initially administered 

at different oncological centers in Sweden, according to the NOPHO protocol. Between 

1997 and 2010 two NOPHO protocols were employed, with the more recent AML 

protocol being used since 2004. It should be noted that the indications for HSCT have 

changed over time. Initially, all patients diagnosed with AML were transplanted if an 

HLA identical sibling donator was available, while today, typical candidates for HSCT in 

first remission are patients diagnosed with cytogenetic or molecular genotyped 

unfavorable prognostic markers, or those with blasts >15% after first induction [12]. In 

recent years, MRD has become increasingly important as a marker for engraftment after 

HSCT, as well as for relapse, even for the AML patients. However, as this was not 

always the case some MRD data is missing from the first transplanted patients. The 

median age at HSCT was 9.4 (0.8-17.6) years. Prior to HSCT 26 patients were 

conditioned with busulphan and cyclophosphamide, while eight received 

cyclophosphamide and (TBI). Twenty-two children received stem cells from matched 

unrelated donors and 12 from HLA identical siblings. The stem cell source was 

peripheral stem cells in four cases, cord blood in three cases and bone marrow in 27 

cases. Thirteen (38%) out of 34 patients relapsed at a median of 8.4 (1.4-23.6) months 

post HSCT and 16 died.  
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3.2 METHODS 

3.2.1 Extraction of DNA 

Studies I and II 

Four spots, three mm in diameter, were punched out of DBS from 417 patients and 834 

controls, containing in total approximately 12 µL of blood, including a minimum of 

180.000 leukocytes and 120.000 lymfocytes. To prevent contamination, gloves were 

changed, the puncher was cleaned with 70% ethanol, and 30 stances were punched in 

clean filter paper between each sample.  

 

DNA was extracted at the Department of Clinical Micro Biology, Karolinska University 

Hospital, Stockholm, Sweden, using minimal essential medium (MEM) [131,337]; four 

spots of DBS were added to a tube with 100 µL MEM buffer. The tubes were incubated, 

first at 56 °C for 60 minutes, then at 96°C for ten minutes, and thereafter quickly cooled 

on ice. The tubes were subsequently centrifuged at 6000g for ten minutes and 

supernatants were rapidly frozen at -70 °C for at least one hour, after which they were 

stored at -20°C. For Study II, the samples were re-extracted using a QIAGEN® kit. 

 

3.2.2 Real time PCR for detection of the human albumin gene 

Studies I and II 

To ensure the availability of DNA, all samples were tested for the human albumin gene 

(ALB) at the department of Clinical Micro Biology, Karolinska University Hospital, 

Stockholm, Sweden, by means of TaqMan real-time quantitative PCR. Five µL of each 

sample was added to 50 µL of PCR mix (primers presented in Table II). The cycle 

conditions were 50°C for two minutes followed by denaturation at 95°C for ten minutes, 

40 cycles at 95 °C for 15 seconds, and 65°C for one minute by which a product of 119 bp 

was amplified. The sensitivity of the PCR was ten DNA copies per reaction [338]. Eight 

samples were excluded from the study due to negative results for ALB.  

  

3.2.3 PCR assays for detection of virus DNA 

In study I, the samples were screened for species C adenovirus (serotypes Ad1, Ad2, 

Ad5, and Ad6) by nested PCR at Linda Gooding’s Lab, Emory University Hospital in 

Atlanta [147]. All the samples were first tested by nested PCR 2 (nPCR-2) for a fragment 
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of the conserved region of the hexon gene, as described by Garnett et al [147]. In short, 

five µL of extracted DNA sample was mixed with 45 µL of PCR reaction mix (primers 

are presented in Table II). The first round consisted of; one minute of denaturation at 

94°C followed by 45 cycles of 45 seconds at 94°C, 30 seconds at 58°C, 45 seconds at 

72°C and finally seven minutes at 72°C by which a product of 368 bp was amplified. The 

second round consisted of 30 cycles with the same temperature conditions except for the 

annealing temperature of 60°C and a product of 310 bp was amplified. As a positive 

control we used a cloned plasmid of species C adenovirus and as a negative control we 

included one sample of water per 12 sample run. Thereafter, the PCR product was 

visualized on ethidium bromid agarose gel. Samples positive for species C adenovirus by 

nPCR-2 were first retested by the same assay. Afterwards an additional nested PCR assay 

1 (n PCR-1) was used for detection of another fragment of the species C adenovirus 

hexon gene, amplifying a 852 bp product in the first round and a 286 bp product in the 

second (Garnett et al, primers presented in Table II) [147]. The sensitivities of both 

nested PCR-1 and -2 for species C adenovirus were five viral copies per reaction of 50 

µL. To confirm the serotype, samples positive in both reactions were sequenced at 

Eurofins MVG Opereon (Huntsville, Al, USA) and compared with species C adenovirus 

from the Gen Bank. 

 

 
Figure 6: Gel electrophoresis of PCR products from the hexon gene, 310 bp. From left; the loader followed by samples, two of which 
were positive, and at the end a negative and a positive control.  
 
Emory University, Atlanta, USA. Professor Gooding’s laboratory, summer 2008.  Professor Linda Gooding and Ganesh Talekar were 
my excellent teachers.  
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Table II. Sequence of primers used in PCR for detection of human albumin gene, adenovirus, KIPyV, WUPyV and MCPyV 

Primer name Sequence 5´-3´ DNA Region 

ALB. F GCTGTCATCTCTTGTGGGCTGT ALB Albumin  

ALB. R ACTCATGGGAGCTGCTGGTTC ALB Albumin  

ALB probe FAM-CCTGTCATGCCCACACAAATCTCTCCC-TAMRA ALB Albumin  

    
Nested outer primers 

 
Adenovirus 

 
P11 nPCR-2. F ATGGCTACCCCTTCGATGATGC Ad2 Hexon  

P12 nPCR-2. R GCGTTGTAGGCAGTGCC Ad2 Hexon  

P7 nPCR-1. F CATTGTCTTTACGCCA Ad2 Hexon  

P8 nPCR-1. R TTGGCGTAGAGAAGGTTTT Ad2 Hexon  

Nested inner primers 
   

P13 nPCR-2. F GATGATGCCGCAGTGGTCTTA Ad2 Hexon  

P14 nPCR-2. R GTCCAGCACGCCGCG Ad2 Hexon  

P9 nPCR-1. F GCCATTACCTTTGACTCTTCTGT Ad2 Hexon  

P10 nPCR-1. R CCTGCTGATACTCCTTGTATTTAGTACT Ad2 Hexon  

    
KIPyV2263. F TTGGATGAAAATGGCATTGG KIPyV VP1 

  
WUPyV VP1 

KIPyV2404. R TAACCCTTCTTTGTCTAAAATGTAGCC KIPyV VP1 

  
WUPyV VP1 

    
MCPyV Q-PCR 

   
LT.1 F CCACAGCCAGAGCTCTTCCT MCPyV LT 

LT1. R TGGTGGTCTCCTCTGCTACTG MCPyV LT 

LT probe FAM-TCCTTCTCAGCGTCCCCAGGCTTCA-TAMRA MCPyV LT 

VP1. F TGCCTCCCACATCTGCAAT MCPyV VP1 

VP1. R GTGTCTCTGCCAATGCTAAATGA MCPyV VP1 

VP1 probe FAM-TGTCACAGGTAATATC-MG-BNFG MCPyV VP1 

     

Table II: Primers, probes, sequences, type of virus, and genome regions for the PCRs used in our studies.   

 

In study II we analyzed DNA from DBS for the presence of KIPyV and WUPyV at the 

Tina Dalianis lab, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 

Sweden and for MCPyV at the Department of Clinical Micro Biology, Karolinska 

University Hospital, Stockholm, Sweden. Standard PCR on a fragment of the VP1 region 

of both KIPyV and WUPyV was performed as described by Giraud et al. [213]. There 

was a mismatch in the specific primer for KIPyV and WUPyV at base 20, compensated 

by an extended reverse primer (KIPyV2404.R; the primers are presented in Table II).  In 

short, five uL of the DNA sample was added to 45 µL of PCR reaction mix. The cycle 
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conditions consisted of denaturation at 94°C for one minute, followed by 40 cycles of 30 

seconds at 94°C, three seconds at 53°C, 45 seconds at 72 °C and finally five minutes at 

72°C, amplifying a 142 bp product. As a positive control we used a cloned section of 

KIPyV and as negative controls four samples of water were included per run of 12 

samples. Thereafter, the PCR product was visualized by ethidium bromide agarose gel. 

The sensitivity of PCR for both KIPyV and WUPyV was 10 viral copies per reaction of 

50 µL. 

 

To detect MCPyV DNA we used two real-time PCRs for the VP1 and LT regions, as 

previously described by Goh et al. [339]. Five µL of DNA sample was mixed with 45 µL 

of PCR reaction mix including two primer pairs and specific hydrolysis probes for either 

the VP1 or LT region (primers and probes are presented in Table II). The cycle 

conditions were 50°C for two minutes, denaturation at 95°C for 10 minutes followed by 

45 cycles at 95°C for five seconds and 60 °C  (LT assay) or 58°C (VP1 assay) for one 

minute, amplifying a 146 bp product for the LT and 59 bp product for the VP1. As a 

positive control we used a cloned plasmid of MCPyV amplified from a positive patient. 

The sensitivity of the real-time PCR assays was two copies of viral DNA per reaction of 

50 uL. To investigate for the presence of inhibitors in the reaction, we retested the 

samples after extra DNA extraction, by both real-time PCRs. Only samples that were 

positive for both VP1 and LT were considered positive for MCPyV in line with previous 

studies [174,339]. 

 
 

3.2.4 Tissue micro array (TMA) 

Studies III and IV 

Bone marrow stances were prepared by the tissue micro array (TMA) method at the 

Center for Molecular Pathology, Malmö University Hospital, Malmö, Sweden. Two 

cores of 1 mm in diameter were punched out from each sample by a manual arrayer and 

collected in a receiving block together with 120 other cores. Thereafter the blocks were 

cut into 4 um sections and the thin slices placed on a microscope glass, deparaffinized, 

and stained. This method allows many samples on the same glass, which enables the 

samples to be treated equally and reduces the risk of different staining. TMA is a tissue 
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saving and economical method as very little material is required. However, this could 

also be a disadvantage as smaller samples are more sensitive and permit fewer cells. 

 

 
 

 
 

3.2.5 Immunohistochemistry 

Studies III and IV 

Samples were stained by commercially produced antibodies (antibodies are presented in 

Table III). All staining was routinely performed in a Leica BOND-III machine, according 

to standardized procedures at the pathology laboratory at Karolinska University Hospital, 

Stockholm, Sweden. To visualize the antibody, diaminobenzidine-peroxidas reaction 

weakly counterstained with hematoxylin was used. A positive control on separate glass 

was included in all staining and negative cell lines in the patient samples were used as 

negative controls. The differences in quality and staining were controlled on each slide 

before evaluation of the samples. In addition, the final quality evaluation was made by an 

experienced hematopathologist.   

 

Table III. Antibodies used in study III and IV, their types, 
clones and designations 
Antibody Anti-human antibody Clone Company 
p53w monoclonal mouse DO-7 Leica 
p21 monoclonal mouse EA10 Calbiochem 
p16 polyclonal rabbit ab7962 Abcam 
PTEN monoclonal mouse 6H2.1 Daco 
Secondary multi link Goat° 

 
Leica 

wReacts with both the wild-type and mutant form of p53; °anti rabbit mouse 

Figure 7: A section of a microscopic slide with a total of 120 bone marrow samples from 60 patients, 
prepared by TMA. Each dot is one mm in diameter and four µm thick. 
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The p53, p21, p16, and PTEN protein expression was analyzed together in a microscope 

at high resolution (40X) by two PhD students who were blinded to the diagnosis as well 

as relapse status under the guidance of an experienced hematopathologist. A minimum of 

100 scored cells per patient was required for inclusion and the median number of 

calculated cells was 656.  

 

In study III ten samples were excluded due to; lost cores n =5 and poor representativity 

n=5. The final analysis included 86 samples from patients and 55 controls. In study IV 89 

samples were excluded due to; lost cores n=40 and poor representativity n=49. The final 

analysis included 83 (p53), 82 (p21) 79 (p16) and 77 (PTEN) patient samples and 55 

control samples. 

 

3.2.6 Mutation analysis by Sanger sequencing  

In study III we analyzed 12 samples from 12 patients (7 JMML and 5 MDS, where two 

had experienced relapse after HSCT), for mutations of TP53. Exon 2-11 mutations were 

analyzed by PCR and DNA Sanger sequencing with M13-tagged primers according to 

standard protocols at the Department of Molecular Medicine and Surgery, Karolinska 

Institutet, Sweden.  

 

3.2.7 Statistical analysis 

Studies III and IV  

All data was statistically calculated using Statsoft Statistica 11 and Microsoft Excel 2011. 

To investigate whether p53 (study III) or p53 p21, p16 and PTEN (study IV) protein 

expression could serve as a predictor of relapse, a nonlinear logistic regression was 

performed at each time point. In study III we tested for both uni- and multivariate models 

to exclude confounding factors. Based on the non-linear logistic regression analysis, a 

cut-off level in percentage was calculated at diagnosis in study III and at six months in 

study IV. 

 

In study IV an independent t-test was used to evaluate the difference in p53, p21, p16, and 

PTEN expression at all time points between patients who relapsed and those who did not. 
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A time to event curve was constructed to analyze the number of relapses in patients with 

p53 expression over and under the median of 13.6% at diagnosis (in study III), and under 

and over the cut off level of 21.3% at six months (in study IV).  To visualize possible 

statistical differences between the groups a Log-Rank test was preformed.  

 

Finally, in study III a Spearman’s rank-order correlation test was performed to analyze 

possible correlation between p53 and p21 expression. 

 

The results were considered significant if the p-value was <0,05.  
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4 RESULTS 

4.1 STUDY I 

The extraction of DNA was successful in 243/243 patients and in 484/486 controls. Two 

controls who were negative for the human albumin gene were excluded from the study. 

All samples were analyzed in duplicate by nPCR-2 and 9/727 samples revealed at least 

one positive result and therefore reanalyzed by nPCR-2 as well as nPCR-1. Samples were 

considered positive if the species C adenovirus hexon gene was detected in at least one of 

the two samples in each reaction (nPCR-2 and nPCR-1). Only two of these nine children 

were positive for the hexon gene in both reactions. However, these two positive samples 

were derived from the ALL patients and were sequenced and confirmed to encompass 

species C adenovirus when compared to a Gen Bank product.   

 

4.2 STUDY II 

The extraction of DNA was successful in all samples (50 patients and 100 controls). All 

samples yielded negative results when analyzed for the VP1 region of KIPyV and 

WUPyV by nested PCR. Twenty-three (12 ALL patients and 11 controls) samples had 

high threshold cycle (Ct) values when tested by real time PCR for the MCPyV VP1 

region. In 19/23 samples the Ct values were equivalent to two copies per reaction (the 

limit of detection) and 4/23 samples had Ct values corresponding to 4.45 copies per 

reaction. However, all the samples were negative for the MCPyV LT region and 

combined with very high Ct values for the VP1 region, the reactions were considered 

negative by the algorithm, where only samples positive for both VP1 and LT were 

deemed positive for the MCPyV [174,339]. No change observed in the VP1 results after 

retesting the samples following additional DNA extraction. 

 

4.3 STUDY III 

At diagnosis, the Odds ratio (OR) 1.19 (CI 1.02-1.4) for p53 protein expression was a 

significant (p = 0.028) predictor of relapse. The significance remained in a multivariate 

analysis adjusted for type of disease (MDS, JMML or CML), sex, cytogenetics, age and 

platelet count at diagnosis. The cut off level at diagnosis (based on nonlinear regression) 
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predicting a relapse (probability >50%), yielded a protein expression of 19% (modeled 

agreement of 75%).  

 

 

 

A time to event curve (Figure 8) demonstrated that six relapses occurred in the children 

with p53 expression over the median 13.6% at diagnosis and one relapse occurred in the 

group with p53 expression under the median where a Log Rank test indicated 

significance (p =0.033). 

 

 
        

 

 

 

Figure 8: Time to event curve based on diagnostic 
p53 protein expression at time of diagnosis, over 
(n=10) or under (n=10) the median of 13.6% p53 
positive cells. 
 
Honkaniemi et al, Pediatric Hematology-Oncology, 
Elevated p53 protein expression; a predictor of 
relapse in rare chronic myeloid malignancies in 
children? 2014 May;31(4):327-39, copyright © 
2014, Informa Healthcare.  Reproduced with 
permission of Informa Healthcare  
 

Figure 9: Range and median percentage of p53 protein expression in non-relapsed and 
relapsed patients at each time point investigated. 
 
Honkaniemi et al, Pediatric Hematology-Oncology, Elevated p53 protein expression; a 
predictor of relapse in rare chronic myeloid malignancies in children? 2014 
May;31(4):327-39, copyright © 2014, Informa Healthcare.  Reproduced with permission 
of Informa Healthcare  
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A box plot (Figure 9) was performed for the relapse and for the non-relapse group. A 

trend of higher p53 expression was found at each time point in the relapsed group 

compared to the non-relapsed group. The p53 protein was significantly over expressed in 

diagnostic ALL samples, compared to the nonmalignant group. However, the Sanger 

sequencing was negative for any pathogenic mutation and a positive correlation was 

detected at diagnosis between p53 and p21 expression indicating  a functional protein. 

 

4.4 STUDY IV 

For p53 protein the mean percentage of positive cells was higher in the relapse group 

compared with the non-relapse group at all time points investigated. At six months post 

HSCT p53 was significantly overexpressed in the relapse (25%) compared to the non-

relapse group (4.6%) (p=0.01). A distinctly lower percentage of cells positive for p53 

protein was found at diagnosis in the non-malignant control group (3.5%) compared to 

the leukemic groups (32,5 %), (p<0.05).  T-tests were also calculated for p21, p16, and 

PTEN expression at all time points, where a statistical significance was found for p16 in 

the relapse (4.6%) compared to the non-relapse group (0.6%) at six months post HSCT 

(p=0.03). At 12 months post HSCT a bone marrow sample was only available from one 

patient in the relapse group, therefore the analysis will not be discussed in the present 

study 

 

 
 

 

 

 

Figure 10: Range and median percentage of p53 and p16 protein expression in non-relapsed and 
relapsed patients at each time point investigated. 
 
Mattsson et al. Elevated p53 protein expression could be a predictor of early relapse after 
hematopoietic stem cell transplantation in children with acute myelogenous leukemia. 
Submitted. 
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A boxplot of median and range of percentage positive cells at each time point was 

produced for p53 as well as for p16 protein expression. The group of patients who 

relapsed was compared to the group of patients who did not relapse and the control group 

was included at diagnosis (Figure 10). A slight trend of overexpression of p53 protein 

was found in the relapsed patients compared to the non-relapsed patients. This trend was 

not as obvious for p16, thus outliers and extremes may have skewed the results in this 

group, especially at six months post HSCT.   

 

The Non-linear logistic regression for p53, p21, p16, and PTEN protein expression did 

not predict relapse at any of the time points. The cut off level for p53 protein expression 

at six months predicting a relapse (probability >50%), yielded 21.3% (modeled 

agreement of 85.7%). Based on the cut off level at six months post HSCT, a time-to-

event curve was created where patients were divided into two groups; p53 protein over or 

under 21.3% (Figure 11). Two patients had an expression over the cut off level and both 

suffered a relapse within six months post HSCT. Three out of 19 patients in the group 

with expression under the cut off level relapsed within eight to 12 months. A statistical 

difference was found between the two groups based on the cut off value (p=0.005).  

 

 

 
 

 
Figure 11: Time to event curve over (n=2) or under (n=19) the cut off level calculated at 6 
months post HSCT of 21.3% p53 positive cells. Log rank test p=0,005 
 
Mattsson et al. Elevated p53 protein expression could be a predictor of early relapse after 
hematopoietic stem cell transplantation in children with acute myelogenous leukemia. 
Submitted. 
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5 DISCUSSION 

5.1 A POSSIBLE INFECTION IN UTERO AND CHILDHOOD LEUKEMIA 

Studies I and II 

One of the earliest theories of the etiology of leukemia was that it might be caused by a 

common infection, possibly a virus, but that was disregarded when it become clear that 

leukemia was not contagious [100,102]. Today, several viruses are known to be 

oncogenic as a result of experiments in vitro, animal models, and clinical observations [5-

7,103,104]. In 1997, Smith postulated the theory of an in utero infection as a first step in 

a genetic alteration that develops into leukemia later in life [6]. Such genetic changes are 

found at birth both in DBS and cord bloods and are more frequent in those children who 

later develop leukemia [3,70]. According to Smith, a possible virus initiating this “first 

hit” in utero must be able to produce mild symptoms, cross the placenta, and infect 

lymphocytes without inducing distinct fetal abnormalities. Several viruses are candidates 

for such in utero infection, including both adenovirus and polyomavirus [6]. In a pilot 

study, our group found a significantly higher frequency of adenovirus in DBS from 

children who later developed ALL compared to controls [132]. Our group has previously 

analyzed DBS for BKV and JCV DNA with negative results. However, new 

polyomaviruses have since been discovered that are also of interest [131]. 

 

Certain virus infections in utero could be lethal, result in malformation or be 

asymptomatic. Reddy et al. demonstrated that 13.5% of fetuses with normal karyotype in 

amniotic fluid at the second trimester were positive for a range of viruses. Furthermore, 

24% of cases with an abnormal ultrasound of the fetus were positive for different viruses 

compared to 8% of normal pregnancies. Adenovirus, enterovirus, CMV and parvovirus 

B19 were the most frequent and could be correlated with malformations, intra-uterine 

growth restriction, and hydrops, but also with mild infections [340].  

 

The negative results for virus in Guthrie cards do not exclude a virus infection in utero 

initiating the “first hit”. The primary infection or reactivation may have occurred early in 

pregnancy and the viremia could have disappeared. However, in cases of maternal 

reactivation of CMV or HSV infection during pregnancy, it has been reported that viral 

DNA was detected in DBS [341,342]. Furthermore, the viral infection could be latent in 
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cell tissues other than peripheral blood, making it more difficult to detect in DBS. 

However, adenovirus remains latent in T cells and polyomavirus has been found in tonsil 

tissue, blood, plasma, and could also persist in lymphocytes [147,201,343]. Finally, the 

virus may have lost or integrated only a part of its DNA in the cell genome, which 

complicates the choice of detection method [105,207,343,344].  

 

 

5.2 USE OF GUTHRIE CARDS 

Studies I and II 

The use of Guthrie cards is an established method for diagnosis of metabolic diseases, 

genetic alterations and viral infections such as CMV, hepatitis E, hepatitis A, measles, 

rubella and HIV [3,337,342,345-348]. DBS from children who later developed leukemia 

have previously been used to screen for HHV-6, EBV, CMV, human parvovirus B19, 

JCV and BKV and adenovirus [128-133].   

 

An important question is whether the sensitivity and specificity could be influenced by 

degradation of nucleic acid during a long time period of storage [349]. However, CMV 

DNA has been detected in up to 17 year old DBS and a recent study revealed that even 

RNA is conserved for up to 20 years in DBS [349,350]. A possible deterioration due to 

time and storage conditions cannot be excluded and may have influenced the amount of 

DNA at the time of testing [349]. Our Guthrie cards were stored between one and 16 

years before testing. Hopefully the excellent storage conditions with stable temperature 

and humidity preserved the DNA. Another important storage issue is the possible 

contamination from one DBS to another, as they are stored side by side in a plastic bag 

[349]. To minimize the risk of contamination, we collected the controls two Guthrie cards 

apart from the patients. We also took all necessary precautions during the collection 

process [131]. 

 

The choice of extraction method may influence the yield of DNA [349]. To ensure the 

validity of the method, our group previously tested a diluted JCV plasmid; DBS were 

spiked with JCV plasmid and tested by nested PCR to the detection limit of ten viral 

copies/sample. Additionally, blood from one known BKV positive patient was detected 

on an “artificial DBS” [131]. To ensure the presence of DNA and possibility to amplify 
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it, all samples were tested for the human albumin gene by TagMan real-time quantitative 

PCR where 1243/1251 yielded a positive result. 

 

The question concerning the presence of possible inhibitors in the extracted material may 

be raised. It is well known that the existence of hemoglobin from erythrocytes may 

inhibit enzymes in the PCR reaction [351]. To investigate possible inhibitors, we 

extracted DNA and reanalyzed it by means of the MCPyV VP1 assay, with no change in 

results. Another concern is whether the pink color of the MEM buffer could interact with 

TagMan real-time PCR reaction. As we tested our samples with real-time PCR for the 

albumin gene with successful results, we concluded that this was not the issue in our 

study. 

 

5.3 STUDY I 

Aims: to investigate whether adenovirus can be detected in DBS from children who later 

develop leukemia. Does an in utero adenovirus infection have an association with the 

subsequent development of leukemia? 

 

Two out of 243 samples were positive for species C adenoviruses DNA detected in DBS 

from children who later developed childhood leukemia, while all the controls were 

negative. This is in line with a report from California where neither 89 children who later 

developed childhood leukemia nor 99/100 controls were positive for species A, C or F 

adenovirus [133].  However, in a previous pilot study from 2007, our group found a 

significant difference in species C adenovirus DNA expression in DBS from patients 

(13/49) compared to controls (3/47) [132]. The same methods for detecting species C 

adenovirus with a sensitivity of five copies/samples were used in both studies. In the 

recent study we increased the number of patients and controls in addition to using four 

instead of three blood spots from DBS, in order to maximize the amount of viral DNA if 

present. Moreover, 2/10 of the patients who were included in both studies yielded a 

positive result in the first, which could not be replicated in the present study.  

 

As prenatal adenovirus infection is usually asymptomatic and difficult to identify, its 

prevalence is unknown [352]. The prevalence of detected adenovirus DNA in amniotic 

fluids from the second trimester of normal pregnancies was 5-10% [340,353]. This could 
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be compared to the estimated prenatal leukemic clone in the population (1-5%) [76]. 

Given the prevalence in the amniotic fluid studies and the genetic analyses of DBS we 

may underestimate prenatal adenovirus infection, which could still be a candidate for 

leukemogenesis in utero. Furthermore, adenovirus is not normally found in peripheral 

blood unless the child presents with an acute fulminant infection [354,355]. Instead, 

adenovirus is found in a majority of lymphocytes derived from adenoids or tonsils after 

tonsillectomy or adenoectomy in healthy children [145,147]. If that is also the case in an 

in utero infection, we may fail to detect adenovirus by using DBS. Another explanation 

as to why adenovirus cannot be detected might be a “hit and run” mechanism [110,111]. 

Even though we failed to find causality between species C adenovirus infection in DBS 

and childhood leukemia, adenovirus remains a “hot candidate”, as it has the capability to 

disturb the cellular DNA repair machinery.  

 

 

5.4 STUDY II 

Aims: to investigate whether KIPyV, MCPyV or WUPyV can be detected in DBS from 

children who later develop leukemia. Does an in utero infection with these viruses have 

an association with the subsequent development of childhood leukemia? 

 

We could not detect KIPyV, WUPyV, or MCPyV DNA by nested PCR in DBS from 

children who later developed childhood ALL or from the controls. Interestingly, for the 

VP1 MCPyV assay we found that 23 samples (12 patients and 11 controls) yield high Ct 

values, but all were negative by PCR for LT. However, the results were interpreted as 

negative based on the algorithm, which states that samples must be positive for both the 

VP1 and LT regions. This low reactivity may be due to a low viral load in the samples or 

a nonspecific reaction. 

 

Our methods for extraction and PCR-amplification have been previously used and 

described in other studies as well as functioning well on DBS samples [128-132]. All 

extracted DBS in this study were positive for human albumin DNA detected by highly 

sensitive real time PCR. As the sensitivity of PCR assays were high for both 

KIPyV/WUPyV (ten copies/sample) and MCPyV (two copies/sample), false negative 

results should not be an issue. However, the choice of PCR primers could also influence 
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the results. We used specific primers for the VP1 region for KIPyV and WUPyV 

detection that have been described as being successful in other studies [213]. The choice 

of primers for MCPyV has been discussed to a greater extent in the literature [174,356]. 

In line with several other studies we used specific primers for the VP1 and LT regions 

[174,213,339,344]. Moreover, we tried to rule out the possibility that the presence of 

PCR-inhibitors might influence the results. MCPyV VP1 assays were repeated on the re-

extracted DNA samples with the same results. Another possibility is that MCPyV could 

be truncated in the C-terminal without disturbing the transformation ability, but 

theoretically influencing the binding of the primer in the LT region [344]. Dolei et al. 

described the same phenomena for VP1 in immunocompetent individuals, where only 

33% of those positive for NCCR were also positive for VP1, although VP1 positivity 

seemed to decrease in line with age [343]. The authors suggested that VP1 may be lost 

during viral persistency or incorporated in the host cell DNA just within the VP1 region, 

thereby escaping detection.  

 

KIPyV, WUPyV, and MCPyV were only discovered recently, thus knowledge about 

symptoms, latency, and reactivation is still limited. Both JCV and BKV have been 

detected in peripheral blood, both in lymphocytes and monocytes, in immunosuppressed 

patients, but also at a lower frequency in immunocompetent individuals [343,357-359]. 

Moreover, JCV and SV40 have been detected in mesenchimal stromal cells from cord 

bloods in 1/35 and 3/35 respectively [107]. KIPyV and WUPyV have also been detected 

in peripheral blood from immunosuppressed patients [201]. The prevalence in pregnancy 

and symptoms of prenatal infections for these recently discovered polyomaviruses are 

still unknown. However, in a study of healthy pregnant women KIPyV and WUPyV 

DNA were not detected in urine, blood or respiratory samples during the whole period of 

pregnancy [360].  

 

Even though we failed to show an association between KIPyV, WUPyV or MCPyV 

infection in DBS and childhood leukemia, polyomavirus is still an interesting candidate 

due to its oncogenic properties recognized by the WHO International Agency for Cancer 

Research Monograph Working [211]. The other new polyomaviruses discovered in 

recent years may also be worthy of consideration. One interesting candidate is HPyV9, 

whose genome is closely related to LPV, and has been detected in the blood (2%) of 

women in the second trimester of pregnancy [193,360].  
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5.5 PROGNOSTIC CELL CYCLE REGULATING PROTEINS, TMA, 
IMMUNOHISTOCHEMISTRY, AND LIMITATIONS OF STUDIES III-IV   

The cell cycle is a complex network of regulating proteins both up and downstream with 

several feedback loops, and remains incompletely understood. New relationships and 

proteins are still added to the network. A decreased or inappropriate expression of one 

protein influences the expression of next protein in the chain. Gene alterations may also 

lead to different expressions of protein. One example is PTEN mutations that could result 

in a dysfunctional but normal/increased or decreased protein expression, whereas the 

protein from aberrant TP53 seems to be overexpressed [254,255,317]. Moreover, 

accumulation of the wild-type proteins can also be found without detected mutations and 

in non-malignant diseases, as other mechanisms such as cellular stress during 

inflammation or hypoxia could be involved [247,257-260]. It is important to consider all 

these factors when interpreting protein expression.  

 

An essential issue is the time aspect, since chemotherapy protocols and the indications for 

HSCT have changed over time. The indications for HSCT due to AML have changed 

during this study. Before 2001, all children with AML and a HLA identical sibling were 

transplanted. In our study 9/12 patients with HLA identical siblings were transplanted 

before 2001, 4/21 in the non-relapse group and 5/13 in the relapse group. This could of 

course influence the results of several studies, as the first transplanted patients could have 

a “milder disease”.   

 

Another concern in study III is the small number of patients included (n=33), of whom 10 

relapsed. However, MDS, JMML, and CML are rare diseases in children and to 

compensate for the small number of samples available between 1997 and 2010 we 

analyzed MDS, JMML and CML together as a group, based on the common origin of the 

myeloid lineage. Another limitation of studies III and IV that affects the power is that not 

all samples were available in the bio bank and some were lost during preparation. 

Especially critical was the time of diagnosis, as many of the patients were diagnosed at 

other hospitals. To compensate for this, we requisitioned those diagnostic bone marrows 

from one of the largest oncologic centers for children in Sweden. However, in study III 

ten samples were excluded due to; lost cores (n=5) and poor representativeness (n=5). In 
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study IV 89 samples were excluded due to; lost cores (n=40) and poor representativeness 

(n=49). 

 

Another concern is the small size of TMA, which makes the sample vulnerable and may 

miss the leukemic clone. However, a strength is the tissue saving feature and that all 

samples were collected on only a few glasses, thus eliminating differences in the sample 

due to staining and other treatment. Finally, it is very difficult to distinguish between the 

various shades of staining, e.g. strong or weak, because it is very subjective and the 

grades are to a large extent determined by the viewer. However, we also analyzed all the 

shades of staining and the outcome was in line with the results presented (data not 

shown).  

 

5.6 STUDY III 

Aims: to investigate how the expression of the cell cycle regulating protein p53 is altered 

in bone marrow from diagnosis to before and after HSCT. Could overexpression of p53 

predict a future relapse in children with chronic myeloid malignancies before and after 

HSCT?  

 

We found that elevated p53 protein expression at diagnosis was a significant predictor of 

relapse, OR 1.19 (CI 1.02-1.4). Furthermore, a time to event curve demonstrated that 

relapse was more frequent in the group of patients with p53 expression over the median 

value (13.6%) at time of diagnosis, than in the group with p53 expression below 13.6% 

(Figure 8). Moreover, a descriptive study visualized a trend of higher p53 expression in 

the relapse group compared to the non-relapse group at all the time points investigated 

(Figure 9). In line with previous studies, this indicates that pediatric patients with a more 

aggressive disease may overexpress p53 protein, predicting a future relapse [290,295].  

 

Since mutation of TP53 is known to stabilize the p53 protein, some reports have 

suggested that immunohistochemistry of p53 protein expression maybe used for 

screening for such mutations [256,257]. Importantly, overexpression of wild-type p53 

may also be observed without detectable mutations, for instance increased apoptosis or 

due to blockades of proteins responsible for deregulation of p53 [257,259]. We did not 

find any mutations in 11 analyzed samples, although our Sanger sequencing method had 
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a high specificity (99.99%), but a relatively low sensitivity, meaning that mutations will 

only be detected if present in 20-25% of the cells. Nevertheless, the leukemic clone may 

be small, especially in MDS and JMML, thus we cannot exclude the possibility that we 

missed a potential clone. However, we have sequenced exons two to 11, which provide 

greater coverage compared to many other studies using exons 4-8 or 5-9 [275,291,292]. 

Despite several trials we were unable to detect any sequence for exon three and thus 

could not exclude possible alterations in this exon. The prevalence of TP53 mutations in 

pediatric MDS, JMML, and CML is unclear, due to few studies and conflicting results 

[275,291,292]. However, our findings of a positive correlation between p53 and p21 

together with no detectable mutations in the sequencing may indicate a functional p53 

protein. We suggest that overexpression of p53 in this study is due to enhanced 

expression of wild-type p53 in response to increased apoptosis and cell cycle arrest, in an 

attempt to overcome the emerging leukemic clone.  

 

Further limitations of the study are discussed in 6.4   

 

5.7 STUDY IV 

Aims: to investigate how the expression of the cell cycle regulating proteins p53, p21, 

p16, and PTEN are altered in bone marrow from diagnosis to before and after HSCT in 

children with AML. Could overexpression of these proteins predict a future relapse in 

children with AML before and after HSCT?  

 

The non-linear logistic regression was non-significant at all time points for p53, p21, p16, 

and PTEN. However, in a descriptive analysis we revealed a significant difference in 

means for both p53 and p16 protein expression at six months post HSCT between the 

relapsed group and the non-relapsed patients. Moreover, the two children who expressed 

a very high number of p53 positive cells also had a high p16 expression suggesting that 

p53 and p16 could be important for early identification of relapse. Notably, p16 is known 

to be activated due to inactivated TP53, but also due to cellular stress such as 

accumulation of DNA damaged cells. Thereby, p16 is suggested to be a stand-by tumor 

suppressor gene to p53 [300]. This may indicate a dysfunctional p53 protein in those two 

patients rather than overexpression of wild type TP53.  
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The significantly higher p53 protein expression in the relapse group compared to the non-

relapse group at six months post HSCT (25.0% vs. 4.6%) is in line with the cut off level 

of 21.3% at six months for separating relapses and non-relapses. It is also consistent with 

the cut off level at diagnosis of 19%, estimated in study III [361]. Furthermore, a time to 

event curve demonstrated that both patients who had > 21.3% p53 positive cells at four 

and six months post-HSCT, relapsed shortly after transplantation, while the three who 

had expressions of < 23.1% relapsed later (Figure 11). The cut off level also differs from 

the mean value for the non-malignant control group (3.5%).  

 

No significant values were revealed at any time points for t-tests comparing the relapse 

group to the non-relapse group of AML patients for p21, p16, and PTEN, with the 

exception of the p16 values at six months. 

 

Finally, it would be interesting to analyze the alteration of TP53 as a comparison to the 

protein expression in this study. However, since the study is retrospective we had no 

opportunities for that. The prevalence and significance of mutations of TP53 in childhood 

AML is to our knowledge still unknown and should be investigated prospectively.  

 

Further limitations of the study are discussed in 6.4   

 

5.8 ETHICAL CONSIDERATIONS  

The Regional Ethical Review Board, Stockholm, Sweden, approved all the studies in this 

thesis. Study I was also approved by the Institutional Review Board of Emory University, 

Atlanta, USA.  

 

Childhood leukemia is an unusual, but serious disease and the etiology is in most cases 

still unknown. If we could find an origin, such as a viral infection in the fetus, maybe we 

could prevent it by early screening or vaccinations. However, screening of potential 

harmful viruses in asymptomatic infants may raise ethical and psychosocial concerns.  

 

All the studies were conducted without permission from the patients or their parents. In 

studies I-II we examined samples that in many cases were collected a long time ago and 

in studies III-IV some patients were treated many years ago while others were still 



 

 54 

undergoing treatment. Asking permission from families who had lost a child can also 

evoke strong feelings. In the second scenario, in which the child recovered and returned 

to everyday life, it can also affect them by reminding them of the past.  

 

Finally, samples from patients must always be retained for future tracking of diseases or 

comparison with later samples. After collecting our samples, material must always be left 

for future use. In studies I-II we only used four stances of three mm in diameter of the 

DBS. In studies III-IV we used the TMA method, known as a tissue saving method. 
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6 CONCLUSION 

Studies I and II 

In studies I and II we could not detect adenovirus, KIPyV, WUPyV, or MCPyV in DBS 

from newborns that later developed childhood leukemia. However, identified leukemic 

alterations can be traced back in neonatal DBS from children who later developed 

leukemia, indicating an early event in utero. Despite several studies no clear etiology has 

been found, thus common infections remain a very interesting candidate. If a virus could 

be identified as the cause of the genetic changes, it could lead to strategies for prevention 

such as neonatal screening and vaccination. 

 

Studies III and IV 

In study III we found that an increased p53 protein expression at diagnosis was associated 

with risk of relapse in children with rare chronic myeloid malignancies (OR 1.19, 95% 

CI: 1.02-1.40, p=0.028). In study IV we found a significant difference in p53 and p16 

expression in the relapse compared to the non-relapse group at six month post HSCT, 

indicating that p53 and p16 could be used as a prognostic marker at that time. The 

evaluated cut off level at diagnosis and at six months post HSCT for p53 was around 

20%. A p53 expression > 20% may suggest a future relapse in children with chronic 

myeloid malignancies and AML. We suggest that an elevated p53 protein expression 

may be a complement to standardized prognostic factors such as chimerism and MRD as 

an indicator of children at risk of relapse both pre and post HSCT and may signal that 

these children would benefit from a more intense therapy before transplantation or if 

increased p53 expression occurs after HSCT, be an indicator to withdrawal of 

immunosuppression or infusion of T-cells. To evaluate this further, a prospective, 

multicenter study has been started. 
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7 POPULÄRVETENSKAPLIG SAMMANFATTNING 

 

Syftet med mina studier är att försöka öka förståelsen för hur specifika 

molekylärbiologiska processer skulle kunna påverka utvecklingen och prognosen för 

leukemi hos barn. I studie I och II analyserar vi om vissa virusinfektioner under 

graviditeten, kan överförs till barnet och därmed initiera leukemiutvecklingen, s.k ”first 

hit”. I studie III och IV undersöker vi om förändringar i proteinuttrycket från 

cellcykelreglerade gener kan förutspå ett återfall hos barn som genomgått hematopoietisk 

stamcellstransplantation (HSCT) på grund av myeloisk leukemi. 

 

Studie I och II: Specifika genetiska förändringar som hittats vid diagnos hos barn med 

leukemi, har kunnat spåras till PKU-blodprov, men även kunnat påvisas i 

navelsträngsblod hos barn som aldrig insjuknar i leukemi. Detta tyder på att vissa 

mutationer, exempelvis translokationer i MLL-genen, ETV6-RUNX1 och hyperdiploidy 

kan uppstå under fosterlivet, av idag okänd orsak. Eftersom alla barn med genetiska 

förändringar från födseln inte utvecklar leukemi, krävs ytterligare en händelse ”second 

hit”, som leder till att en leukemiklon bildas. Etiologin till leukemi har studerats i många 

vetenskapliga arbeten, där man bland annat analyserat exponeringar av den gravida 

kvinnan såsom kemiska ämnen, alkohol och strålning vilka kan korreleras till 

leukemiutveckling, medan rökning, ultraljud och hög köttkonsumtion under graviditeten, 

samt hög födelsevikt, inte har kunnat påvisas ha ett samband med leukemiutvecklingen. I 

dag känner vi till flera onkogena virus, d.v.s. virus som har förmågan att förändra cellers 

DNA. En teori som diskuterats är om en virusinfektion in utero skulle kunna vara ”first 

hit” vid leukemiutvecklingen. Viruset skulle då ha specifika egenskaper såsom; mild 

symtombild hos modern, kunna passera placenta, kunna påverka lymfocyter och inte leda 

till missbildningar hos barnet. Ett virus med sådana egenskaper skulle kunna ge upphov 

till mutationer i fostrets benmärgsceller, som senare kan leda till utvecklingen av akut 

lymfatisk leukemi (ALL). Polyomavirus är ett av de virus som föreslagits, men dessa 

beskrivningar passar även in på gruppen adenovirus.  

 

I studie I och II har vi retrospektivt samlat in PKU-blodprov och klinisk data från 243 

barn med ALL. PKU-blod prov samlades också in från 486 friska kontroller. DNA har 
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extraherats och kontrollerats med PCR för human albumin gen för att säkerställa att DNA 

fanns tillgängligt i alla prover. 243 patienter och 486 kontroller har analyserats med PCR 

för adenovirus samt 50 patienter och 100 kontroller för de tre nyupptäckta 

polyomavirusen (KIPyV, WUPyV och MCPyV). I studie I var två patienter positiva för 

adenovirus DNA, vilket också bekräftades genom sekvensering. I studie II, var alla 

prover negativa för polyomavirus. Även om vi inte kunde påvisa ett samband mellan 

adenovirus, KIPyV, WUPyV eller MCPyV och barnleukemi, så kan ett virus fortfarande 

vara ”first hit” i leukemiutvecklingen; viruset kan ha undkommit detektion, viruset kan 

ligga latent i andra celler än i blod, eller nya virus kan vara involverade. Ett virus kan 

också vara involverat senare i en s.k ”second hit” av leukemiutvecklingen.  

 

Studie III och IV: Leukemi uppstår ur stamceller som förlorat kontrollen över 

celldelningen. Normalt regleras celldelningen av cellcykeln som fungerar som ”gas, 

broms och kontrollstation” för DNA kvalitet. Nätverket i cellcykeln är komplext med 

många olika reglerande proteiner både upp och nedströms, men även med flera 

”feedback” kedjor. Tumörsupressorgener är viktiga ”övervakare” i denna process och 

kontrollerar att allt är korrekt med cellens DNA, tillväxt, mognad och utveckling. p53 

genen som är mest känd kallas för ”the guardian of the genome” och mutationer av denna 

är kopplat till flera cancertyper och kan påvisas som ett förhöjt proteinuttryck. I dag 

drabbas 16/100,000 barn varje år av cancer, där ca 30 % får diagnosen leukemi. Fram till 

1940 talet var leukemi en dyster diagnos, då barnen i praktiken inte överlevde. 

Behandlingen av leukemisjukdomen har utvecklats sedan dess och idag överlever ca 80-

90% av barnen med ALL och 70 % av dem med akut meyloisk leukemi (AML). Den 

förbättrade långtidsöverlevnaden är ett resultat av bättre diagnosverktyg som möjlig gör 

uppdelning i riskgrupper, skräddarsydda intensivare behandlingsprotokoll, tidig 

infektionsbehandling, nutritionsbehandling, samt bättre omvårdnad. Barn som svarar 

dåligt på primär behandling, får återfall (recidiverar), de med specifika riskmarkörer vid 

diagnos samt nästan alla barn med myelodysplastiskt syndrom (MDS), juvenil 

myelomonocytic leukemi (JMML) och kronisk myeloisk leukemi (KML) genomgår 

HSCT. Barn med återfall efter HSCT har dålig prognos och därför är det viktigt att kunna 

identifiera ett recidiv tidigt. De främsta markörerna för att följa barnets prognos efter 

HSCT är idag chimerism och minimal residual disease (MRD).  
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I studie III och IV har vi insamlat benmärg från 33 barn MDS, JMML och KML samt 34 

barn med AML som transplanterades på Karolinska Universitetssjukhuset, Huddinge 

1997-2010. Som kontroller har vi insamlat 55 benmärgpreparat från barn som genomgått 

benmärgsundersökning men ej diagnostiserats med malign blodsjukdom. 

Benmärgspreparaten och klinisk data insamlades retrospektivt från diagnos, samt före 

och efter HSCT. Preparaten preparerades med tissue micro array (TMA), som är en 

vävnadsbesparande metod och färgades sedan in med antikroppar för p53 och p21 (studie 

III) samt p53 p21, p16 och PTEN (studie IV). Preparaten analyserades i ljusmikroskop, 

där examinatorerna var ”blindade” för diagnos och utfall. Därefter jämfördes procent 

andelen av positiva celler, vid de olika tidpunkterna, för de olika proteinerna mellan två 

grupper; de med återfall samt de som blivit friska. I studie III fann vi att ett ökat uttryck 

av p53 protein vid diagnos hos barn med kroniska myeloiska sjukdomar predicerade för 

relaps efter HSCT. I studie IV fann vi ett signifikant högre uttryck av p53 hos 

återfallsgruppen sex månader efter transplantationen. Proteinuttrycket av p53 kan vara ett 

komplement till de etablerade markörerna för återfall, för att möjliggöra tidigare åtgärder 

som förhindrar relaps. För att studera sambanden närmare har vi startat en prospektiv 

multicenter studie. 
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