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ABSTRACT 

This thesis deals with the importance of hepatic iron and fat deposition in the context of chronic 

liver disease, with special focus on the role of the S65C mutation in the hemochromatosis 

(HFE) gene, the association between non-alcoholic fatty liver disease (NAFLD) and 

cryptogenic cirrhosis (CC) in patients evaluated for liver transplantation, the expressions of  

innate and adaptive immunity in non-alcoholic steatohepatitis (NASH), and the role of the iron 

regulatory hormone hepcidin in dysmetabolic iron overload (DIO). 

  

NAFLD is the most common liver disease in the Western world. Some patients with NAFLD 

develop NASH and are then at risk for progressive liver disease, cirrhosis and hepatocellular 

carcinoma. NASH involves the innate immune system, but the role of the adaptive immune 

system in this context is less clear. A subgroup of patients with NAFLD develops DIO, the 

causes of which are unknown. Mutations of the HFE gene may be associated with DIO, but 

results are conflicting. The role of the most recently found HFE mutation, S65C, has not been 

known. Finally, in end-stage NASH cirrhosis, liver fat diminishes, and patients with CC may 

therefore have an underlying NAFLD. 

 

In study I the HFE S65C gene mutation was retrospectively studied in 296 patients with 

suspected iron overload and 250 healthy controls in order to determine the HFE S65C 

frequency, and evaluate whether this mutation would result in a significant hepatic iron 

overload or not. We found that the S65C allele was enriched in patients with high serum ferritin 

compared with controls, and half of the carriers of this allele had mild or moderate hepatic iron 

overload, but no signs of significant fibrosis. 

 

In study II, 39 patients with CC were compared with 431 patients having cirrhosis of other 

etiologies, to evaluate the presence of NAFLD in patients with CC and determine survival after 

liver transplantation. We found that 44% of the CC patients had an underlying NAFLD. CC 

patients had a higher frequency of diabetes, ascites, and hyponatremia compared with those 

having cirrhosis of other etiologies. Weight loss was significantly higher among patients with 

CC, but there was no difference in patient survival between the groups. 

 

In study III, liver biopsies from 49 patients with suspected NAFLD were classified according to 

the NAFLD Activity Score (NAS) and liver fat was assessed with morphometry. Biopsies were 

stained with various markers of T-cells, macrophages, apoptosis and cell adhesion molecules 

(ICAM-1). We found an increased number of regulatory T-cells (Tregs) and CD68 cells in 

NASH, pointing at an involvement of both the adaptive and innate immune systems. ICAM-1-

positive hepatocytes were only seen in NASH livers and localized in areas with microvesicular 

fat, and the ICAM-1 level in serum was increased in patients with NASH. 



Study IV aimed to determine the association between hepcidin and iron parameters, lipid status 

and inflammatory markers in NAFLD in relation to other chronic liver diseases. Serum hepcidin 

was analyzed in 85 patients with chronic liver disease (38 of which had NAFLD) and 38 

healthy controls. Liver biopsy was performed in 67 patients and hepcidin mRNA in liver was 

determined with real time-qPCR in 36 patients.  We found that hepcidin regulation was similar 

in NAFLD compared to other chronic liver diseases with various degrees of hepatic iron 

overload. In NAFLD hepcidin correlated to serum ferritin and liver iron, but not to BMI, CRP, 

NAS or steatosis. Transferrin saturation, but not hepcidin, could be used to discriminate 

between hyperferritinemic NAFLD patients with or without iron overload. 

 

In conclusion, we found that the HFE S65C mutation leads to mild to moderate hepatic iron 

overload, but neither to clinically manifest hemochromatosis, nor extensive liver fibrosis. Re-

evaluation of patient data in cryptogenic cirrhosis discovered underlying NAFLD in 44% of 

patients evaluated for liver transplantation. There was no difference in patient survival between 

cryptogenic patients and those having cirrhosis of a known etiology. In NASH, an involvement 

of the innate adaptive immunity is seen, and immunohistochemical markers of inflammation are 

localized to areas of microvesicular steatosis. Serum hepcidin levels in patients with NAFLD 

correlate adequately to iron parameters, but not to BMI, NAS or inflammatory markers. 
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1 INTRODUCTION  

In this thesis, we have aimed to characterize clinical features and underlying pathogenic 

mechanisms of iron and fat infiltration in the livers of patients with suspected iron overload 

and/or non-alcoholic fatty liver disease. Our patient cohorts include those with elevated serum 

ferritin, chronic liver disease, non-alcoholic fatty liver disease (NAFLD) with or without non-

alcoholic steatohepatitis (NASH), and/or cryptogenic end-stage cirrhosis. In the Western world, 

NAFLD has become the most common liver disease, possibly because the prevalence of obesity 

and type 2 diabetes is rising worldwide. Fatty liver was considered a benign condition, but 

today we know that patients with NASH are at risk of progressive liver disease, and NASH-

cirrhosis has become a common indication for liver transplantation. The problem of fatty liver is 

not limited to patients with NAFLD. Steatosis as a co-factor in chronic liver disease has been 

recognized in chronic hepatitis C, alcoholic liver disease, and hemochromatosis.1, 2 Hereditary 

hemochromatosis is an iron overload disorder caused by mutations resulting in insufficient 

hepcidin secretion which in turn leads to increased uptake of dietary iron. Excess iron is stored 

in parenchymal organs. The liver is particularly vulnerable to the toxic effects of iron since it is 

the main site of iron storage. If the excess iron is not removed there is a risk of oxidative stress 

and fibrogenesis.3 Iron overload has also proven to be a co-factor in other liver disease, not the 

least due to the link between iron stores and insulin resistance.4  In NAFLD, iron has been 

proposed as a pathogenic factor for NASH development, and iron reduction therapy suggested 

as a treatment option. Thus, steatosis and iron overload is not only important in NAFLD and 

hemochromatosis, but also in chronic liver disease in general.   

1.1 IRON HOMEOSTASIS  

Iron homeostasis requires coordination between tissues that export iron into plasma (duodenal 
mucosa, macrophages) tissues that utilize iron (mainly red blood cell precursors), and tissues 
that store iron (such as hepatocytes, pancreatic cells and cardiac cells). The iron storage protein, 
ferritin, reflects iron stores in normal conditions, but not in the case of inflammation or liver 
damage. The amount of iron in an average adult is 3–4 g. To support erythropoiesis and other 
metabolic processes about 25 mg iron/ day is needed. Aged erythrocytes stand for the 
predominant contribution, and only 1-2 mg of dietary iron is absorbed from enterocytes in 
normal conditions, equaling the amount of daily loss. Iron is distributed through blood plasma, 
where it is bound to the iron transport protein transferrin. The body is dependent on regulation 
of the dietary uptake of iron, since losses are not modulated by iron excess or deficiency. The 
small peptide hepcidin is the master regulatory hormone of systemic iron metabolism. It is 
expressed in the liver and inhibits iron recycling from macrophages and enterocytes, by binding 
to and inducing the degradation of the cellular iron exporter ferroportin, thus lowering iron 
levels in serum. Consequently, deficiency of hepcidin will lead to iron overload.5-7 Mutations in 
four different genes have been identified to result in hereditary hemochromatosis. These are the 
structural gene for hepcidin HAMP, and genes that are required for the expression of hepcidin 
through interaction with iron, hemojuvelin (HJV), tranferrin receptor 2 (TfR 2), and HFE. Iron 
regulation is also dependent on the Bone morphogenic protein (BMP) pathway, mostly BMP 6. 
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BMP 6 increases when liver iron concentration is high indicating that BMP6 could work as an 
indicator of iron storage.  The BMP6 co-receptor HJV enhances the BMP receptors affinity for 
its ligands and boosts hepcidin transcription. Mutations in HJV decrease hepcidin to levels as 
low as those seen in patients with mutations in HAMP. Mutations in these genes lead to juvenile 
hemochromatosis, the most severe form of genetic iron overload disease. Inflammation 
increases levels of hepcidin since its synthesis is induced by IL-6. Decrease of hepcidin 
synthesis is thought to be the cause of iron overload in chronic liver disease and alcohol 
overconsumption.8 In obesity, the low grade inflammation and expression of hepcidin in 
adipose tissue, might explain why iron deficiency is common in this condition.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. In normal iron homeostasis transferrin bound iron will stimulate hepcidin synthesis by 

interaction with HFE, TfR2 and HJV.  BMP is of crucial importance to hepcidin regulation and HJV 

acts as a co-receptor for BMP-6. Hepcidin causes ferroportin to be internalized and thus blocks the 

pathway for iron transfer from enterocytes and macrophages into plasma. Hepcidin synthesis is induced 

by IL-6. Blood loss, anemia and hypoxia, leads to decrease in hepcidin production through erythropoetic 

stimuli. 
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1.2 IRON TOXICITY   

In switching between its ferric (FeIII) and ferrous (FeII) form, iron has the ability to easily 

donate and accept electrons. This makes iron essential for various processes, most importantly 

those of oxygen transport. However, iron can also be harmful. To prevent its harmful effects, 

iron is bound to transferrin in the circulation and stored by ferritin. In normal conditions there 

are hardly any notable levels of free or labile iron. In the case of iron overload disorders, free 

iron catalyzes the production of highly toxic hydroxyl radicals through the Fenton and Haber-

Weiss reactions. 

 

 

 

 

 

 

Figure 2. Iron catalyzes the production of hydroxyl radicals (OH.) from superoxide (O2-˙) and hydrogen 

peroxidase (H2O2). 

This, in turn may lead to peroxidation of organelle membrane lipids. Antioxidant defense 

mechanisms counterbalance this process, but as iron overload increases, they become 

insufficient.10-12 In hemochromatosis massive iron overload may cause cell death and the 

initiation of fibrogenesis. If the excess iron is not removed there can be a progress to cirrhosis.13 

1.3 HEREDITARY HEMOCHROMATOSIS  

Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder in 

Caucasians, affecting 1 in every 200-400 persons.14 It may lead to enhanced iron absorption and 

progressive iron disposal in parenchymal organs, most notably in the liver. With time, excess 

iron may cause damage to parenchymal organs with an increased risk of developing diabetes 

mellitus, arthropathy, liver cirrhosis, and hepatocellular carcinoma.15 HH is divided in four 

types. Type 1 is the HFE-related HH, also referred to as classic hereditary hemochromatosis. 

Type 2, also called juvenile hemochromatosis, is caused by mutations in the HJV gene (subtype 

A), and in the HAMP gene (subtype B). Type 3 is caused by mutations in the TfR2 gene. Type 

4 is an autosomal dominant condition with heterozygous mutations in the ferroportin 1 gene.14 

These different types of HH differ greatly in phenotypic expression, but types 1-3 share 

inappropriate hepcidin levels as a common pathogenetic factor.16  

Type 1 is the most common, responsible for more than 80% of cases in patients of European 

descent.17 Homozygocity for the substitution of cysteine for tyrosine at amino acid position 282 

Fe2+ + H2O2 → Fe3+ + OH˙ + OH¯ (Fenton) 

Fe3+ + O2-˙→ Fe2+ + O2 

Net reaction:  

                        Fe 
H2O2 + O2

-˙		→			OH˙ + OH¯ + O2 (Haber-Weiss) 
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(C282Y) in the HFE protein is the dominating mutation. In the H63D mutation aspartate 

replaces histidine at amino acid position 63 in the HFE protein.18 The H63D mutation does not 

by itself cause hemochromatosis, not even in its homozygous form. In combination with the 

C282Y mutation, i.e. compound heterozygocity, there is a risk of iron overload. However it 

tends to be milder compared to that of C282Y homozygocity, and comorbid factors such as 

alcohol overconsumption or steatosis are probably needed for clinical disease progression.19 

C282Y heterozygocity alone is not considered to be responsible for iron overload, but there are 

data supportive of a protective role against iron deficiency.20, 21 A third HFE-mutation, S65C, 

has been associated with mild to moderate hepatic iron overload. However, there are no studies 

that have associated the S65C mutation to extensive liver fibrosis.22-25  

Treatment of hemochromatosis consists of weekly phlebotomies, removing 400-500 ml each 

time until S-ferritin is about 50 µg/l. When iron stores are depleted patients continue treatment 

with phlebotomies 2-6 times a year. The prognosis in HH is good with adequate treatment.  In 

pre-cirrhotic, non-diabetic patients, life expectancy is normal.26 Early detection is desirable, but 

screening of the general population is often argued against because of low disease penetrance. 

Screening of first degree relatives, especially in siblings, is usually recommended.17, 27  

1.4 NAFLD AND NASH 

Nonalcoholic fatty liver disease (NAFLD) is a common condition that defines a spectrum of 

alcohol-like liver disease in the absence of significant alcohol use, genetic, viral and 

autoimmune etiologies.28 Within this spectrum patients with NASH (Nonalcoholic 

steatohepatitis) are at risk of developing progressive liver disease, cirrhosis and hepatocellular 

carcinoma.29 It has also been suggested that NASH could be a leading cause of cryptogenic 

cirrhosis.30, 31 Among factors that are predominantly described to be associated with NASH are 

insulin resistance or non-insulin dependent diabetes, obesity, and dyslipidemia.32 Today 

NAFLD is generally regarded as the liver manifestation of the metabolic syndrome.33 The term 

NASH was first used in 1980 to describe histopathological findings indistinguishable from 

those of alcoholic liver disease in obese subjects without significant alcohol use.34 Coining of 

this term likely helped to put more focus on the condition in the coming years. 

The common definition of NAFLD is presence of at least 5% steatosis in the liver. The 

histological diagnosis of NASH is dependent on multiple lesions within the liver parenchyma 

which has prompted the development of scoring systems. Kleiner has presented a validated 

histological feature scoring system addressing the lesions of NAFLD and proposed a NAFLD 

activity score (NAS) for use in clinical trials. This score is defined as the unweighted sum of the 

scores for steatosis (0-3), lobular inflammation (0-3), and ballooning (0-2); thus ranging from 0-

8. Fibrosis is separated from other features of activity. A NAS of 5 or more correlates with 

NASH, scores of 2 or less are not diagnostic of steatohepatitis. The term “borderline NASH” is 

used for scores of 3-4.35 Hence, NAFLD is a clinicopathologic diagnosis, and one cannot 

overlook the sometimes thin line between NAFLD and alcoholic fatty liver disease. Most 
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studies allow for a daily intake of alcohol of less than 30 grams for men and 20 grams for 

women.36 In everyday clinical practice the distinction between NASH and ASH is not always 

clear. Studies have shown association between moderate alcohol use and the progression of 

hepatic fibrosis in NAFLD. Contrary to these results, several studies have attributed light to 

moderate alcohol use a protective role in NAFLD.37-39  

The prevalence of NAFLD has been estimated to 20-30% in the western world, and that of 

NASH to 2-3%.  As obesity and diabetes in the population increases fatty liver also becomes 

more frequent, constituting a major health problem. However, since fatty liver is very common 

(in some studies up to 50% of the population) there are those who propose that the term NAFL 

(non-alcoholic fatty liver) should be used instead of NAFLD in many cases to avoid that such a 

widespread condition with a predominantly benign course will be regarded as a disease state.40  

The pathogenesis of NASH was initially described as a two-hit process starting with the 

accumulation of fat in the liver. The second hit involves oxidative stress which can promote 

lipid peroxidation in the hepatocytes membrane causing secretion of proinflammatory cytokines 

(such as TNF-α and IL-6), and stellate cell activation, which results in fibrosis.41 Insulin 

resistance is probably the most important factor in the development of NASH. In recent years 

new insights have expanded the original theory on the pathogenesis of NASH in to a multiple-

hit process in which parallel events are thought to interact. This theory comprises dietary 

factors, gut microbiota as well as host genetics. It adds detail as well as complexity to the 

mechanisms underlying the progress from steatosis to steatohepatitis.42   

1.5 INFLAMMATION AND IMMUNITY 

When the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants, it 

will respond with inflammation. Inflammation can be classified as either acute which occurs 

over seconds to days, or chronic, which occurs over longer times. Acute inflammation is the 

body´s initial response to harmful stimuli and is achieved by increased movement of leukocytes 

such as plasma cells and granulocytes from the blood into the injured tissues. This recruitment 

of inflammatory cells is mediated through production of chemical factors including cytokines. 

Prolonged, or chronic, inflammation causes a shift in the type of cells present at the site of 

inflammation, mainly to macrophages and lymphocytes i.e. mononuclear cells, and leads to 

simultaneous destruction and healing of the tissue. With intense or chronic inflammation comes 

the risk of scarring and organ dysfunction. Inflammation is one type of the body´s response to 

pathogens. It is non-specific and therefore often described as the dominating mechanism of 

innate immunity, as compared to adaptive immunity, which is a specific response. Innate 

immunity is the first line of host defense. It is rapid and has a broad impact. It includes 

epithelial barriers, complement protein and release of cytokines which in turn regulate the 

function of other cells. Innate immune responses also have the ability of recognizing molecular 

patterns that are shared by many microbes, for example the recognition of lipopolysaccarides by 

toll-like receptors. Adaptive immunity has the ability of assembling antigen-binding molecules 
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with specificity for individual microbial and environmental structures. It also includes immune 

memory. It produces long lived cells that can persist in an inactive state. Effector functions can 

be re-expressed rapidly when these cells encounter their antigens for a second time.43, 44 The 

cells of the adaptive immune system are T and B lymphocytes. B-cells produce antibodies and 

can form memory cells with the ability of rapid antibody production in future encounters with 

the same pathogen. T-lymphocytes can be divided into subtypes according to their functions 

and lineage markers, such as CD4 and CD8. CD4+ cells recognize antigens through 

presentation of major histocompatibility complex (MHC) class II molecules and produce 

cytokines as helper-T-cells. CD8+ cells are activated by antigens presented by MHC class I 

molecules and form cytotoxic T-cells to destroy virally infected cells and tumor cells. Memory 

T-cells are a subset of T-cells that persist after an infection is gone, and may be either CD4+ or 

CD8+. Regulatory T-cells or Tregs are CD4+ cells that inhibit immune responses and prevent 

autoimmunity.45 

1.6 INFLAMMATION AND CELL INJURY IN NASH 

As stated above NAFLD is a clinicopathologic diagnosis, and liver biopsy is mandatory for the 

diagnosis of NASH. Hepatocytes are organized into plates, separated by sinusoids within the 

lobule. In the middle of each lobule is a central vein. Portal tracts are situated in the corners of 

the roughly hexagonal lobule. The inflammation in steatohepatitis is predominantly lobular, but 

portal inflammation may also occur. In lobular infiltrates a mix of polymorphonuclear cells and 

chronic inflammatory cells (including lymphocytes, monocytes, plasma cells and eosinophils) 

are seen. The portal infiltrates, which are not always present in adults, are composed of 

mononuclear cells. The inflammation in NASH may also include lipogranulomas. 

Hepatocellular injury may result in ballooning or acidophilic degeneration.46   

The mechanisms of NAFLD development are not fully understood. An early model is the two-

hit hypothesis presented by Day and colleagues. Accumulation of fat renders the liver 

susceptible to a second hit. There have been various candidates for the second hit. Since 

NAFLD often is described as the liver manifestation of the metabolic syndrome, insulin 

resistance might be the cause of both hits,28 but as stated above, current opinion stress the 

probable interactions of various underlying mechanisms. There have been proposals that 

increased endotoxin levels could be a second hit. Obesity has been associated to gut 

permeability leading to increased levels of bacteria and endotoxins in portal circulation. Toll-

like receptors (TLR), as part of the innate immune response, can recognize microbes as well as 

respond to free fatty acids and might be of importance in the pathogenesis of obesity related 

inflammation and insulin resistance. It has been shown that activation of TLR-4 can induce the 

production of pro inflammatory cytokines in macrophages and epithelial cells.47 Much evidence 

supports a key role for interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) in NASH.  

These pro inflammatory cytokines has been found to be increased in human fat cells from 

patients with obesity and insulin resistance.48, 49 Regulatory T-cells (Tregs) seem to be of 

importance in hepatic immune regulation. Tregs have been identified as CD4 (+), CD25 (+), 
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and forkhead box protein 3 positive (Foxp3 (+)). Tregs are thought to have a positive effect on 

tumor growth by suppressing antitumor immune cells.50 Inadequate Treg regulation contributes 

to chronic hepatitis B/C virus infection and autoimmune liver disease.51-53 Whether or not Tregs 

play a role in the pathogenesis of NASH had not yet been investigated at the time of our study. 

Tregs as well as other T-lymphocytes express lymphocyte function associated antigen-1 (LFA-

1) to adhere to endothelial cells expressing inter cellular adhesion molecule-1 (ICAM-1). 

ICAM-1 is important for leukocyte endothelial transmigration. A positive correlation between 

inflammation and the levels of ICAM-1 has been shown in NAFLD.54 

1.7 DYSMETABOLIC IRON OVERLOAD 

Iron accumulation in the liver is considered to be a co-factor for progression of liver disease. 

Hyperferritinemia and positive liver iron stains occur frequently among patients with NAFLD. 

This condition was originally named “Insulin-resistance associated iron overload”. Today the 

term dysmetabolic iron overload (DIO) is commonly used. Since oxidative stress seem to 

explain liver injury in relation to iron overload as well as in NASH there has been proposals 

stating that iron might be an important pathogenetic factor in NASH.55 The role of the 

hemochromatosis mutation C282Y in relation to NASH has been investigated. George et al. 

found that this mutation was responsible for most of the mild iron overload found in NASH.56 

In a study by Bonkovsky et al. the prevalence of HFE-mutations (C282Y and H63D) was 

significantly higher in patients with NASH compared to controls. They also found that patients 

with C282Y mutations had more hepatic fibrosis than those without.57 There are also 

contradicting studies that have failed to prove the association of HFE-mutations and NASH,58, 59 

indicating that the high prevalence of these mutations among NASH patients might be due to 

selection bias. Bugianesi at al. found that increased ferritin levels were a marker of severe 

histologic damage in NAFLD, but not of iron overload. Iron overload and HFE-mutations did 

not significantly contribute to hepatic fibrosis in the majority of patients with NAFLD.60 Thus, 

even though the importance of HFE-mutations in the development of DIO is debated, 

hyperferritinemia with or without mild to moderate iron overload is still a common finding in 

NAFLD.61, 62  Although it is still not known if iron reduction therapy in NAFLD-patients with 

iron overload can improve clinical endpoints such as fibrosis or complications of type 2 

diabetes, there are studies that are supportive of such treatment due to its beneficial effects on 

insulin sensitivity, and observations of a tendency towards histological improvement.63-65 

Treatment in NAFLD and NASH is aimed at improvement of metabolic control and thus the 

cornerstone ought to be life-style interventions (which sometimes are difficult to implement). 

Pharmacotherapy has not yet provided the clinician with so many options.66 In clinical practice 

iron reduction therapy is often employed in patients with NAFLD and concurrent DIO. 

Elevated serum ferritin seems to be a marker of histologic severity in NAFLD,60, 67  but cannot 

be used for detection of patients with iron overload. Magnetic resonance imaging is a non-

invasive alternative to liver biopsy in diagnosing hepatic iron overload that has proven useful,68 
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but still, the search for new markers of iron overload is important, since they would be of great 

use in a clinical setting.  

The possible contribution of iron in disease progression in NAFLD has focused attention on the 

iron regulatory hormone hepcidin. Depressed hepcidin synthesis has been described in other 

chronic liver diseases. Alcohol may induce down-regulation of hepcidin, causing iron overload 

in alcoholic liver disease (ALD). Hepatitis C virus infection seems to suppress hepcidin, also 

causing iron retention.69, 70 There are several studies on hepcidin in NAFLD but the results are 

not conclusive. Aigner et al. found increased hepatic expression of hepcidin as well as a down 

regulation of the iron export protein ferroportin-1 and the iron sensing molecule hemojuvelin in 

iron overloaded NAFLD patients.71  Nelson et al. investigated the relationship between serum 

hepcidin levels, histology, including iron deposition, and HFE genotype in patients with 

NAFLD. They found an association between lower hepcidin levels and increased hepatocellular 

iron overload in patients carrying the C282Y mutation. However they also found that the HFE-

genotype did not affect the physiologic up regulation of hepcidin in accordance to hepatic iron 

overload, thus concluding that body iron stores are the determining factor of hepcidin regulation 

in NAFLD.72 There are studies, however, that come to different conclusions. Zimmermann et al. 

studied patients with the metabolic syndrome, with or without NASH, but no iron overload. 

They found higher hepcidin levels in patients compared to healthy controls. Hepcidin correlated 

with ferritin and lobular inflammation in all patients, and with small dense low density 

lipoproteins and insulin resistance index in NASH. They suggest hepcidin as a potential marker 

for hepatic inflammation with possible linkage to lipid and carbohydrate metabolism in 

NASH.73 Barisani et al. studied iron related gene expression in DIO patients. No alternations 

were found as hepcidin mRNA correlated with the expression of its regulators. A significant 

correlation between hepcidin and indices of lipid metabolism was observed leading to 

speculations on interactions between hepcidin and dyslipidemia.74 This is in line with the work 

by Senates et al. who studies hepcidin levels in NAFLD patients. They found hepcidin levels to 

be higher in patients compared to age and sex matched healthy controls. There was a significant 

correlation between hepcidin and total cholesterol and triglycerides, but no association to iron 

parameters or histology.75 Hepcidin levels have also been studied in the case of morbidly obese 

patients undergoing bariatric surgery. In a study by Vuppalanchi et al. obesity was associated to 

hepcidin levels, but there was no correlation to NAFLD including liver histology, (However this 

study did not include assesement of iron stains).76 Bekri et al found an increased expression of 

hepcidin mRNA in adipose tissue of obese patients. In this group the presence of diabetes or 

NASH did not affect hepcidin expression levels either in adipose tissue, or in the liver.77 In 

summary there are different explanatory models of hepcidin regulation in DIO. Some stress the 

putative links to lipid metabolism and obesity which is in line with the possible involvement of 

pro-inflammatory cytokines in the pathogenesis in NASH, while others have found that 

hepcidin levels primarily reflect iron stores.  
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1.8 CRYPTOGENIC CIRRHOSIS 

As mentioned above patients with NASH are at risk of developing progressive liver disease, 

cirrhosis and hepatocellular carcinoma. The term cryptogenic cirrhosis (CC) is used when no 

underlying etiology of the liver disease can be found, and thus is a diagnosis of exclusion. The 

proportion of CC, as compared to all cirrhotic patients, varies and has been estimated to 

between 5-30%.78 The focus on NAFLD and NASH in recent years has evoked the question 

whether or not many cases of CC in fact could be “burned out NASH”.79 A more definite 

diagnosis can be obtained in the case of CC if a more detailed clinical evaluation is carried out 

prior to, or after, orthotopic liver transplantation (OLT), as has been shown in several studies.30, 

80-83  Studies have shown higher frequencies of diabetes and obesity in patients with CC 

compared to those with cirrhosis of known etiologies, leading to the assumption that the 

underlying cause is NAFLD in up to 50% in cases of CC30, 31, 84. However, other studies have 

concluded that a smaller proportion (10-20%) of CC patients have possible NAFLD as the 

underlying diagnosis. Instead there was a higher frequency of patients with burned out 

autoimmune hepatitis.81, 83, 85 Other proposed underlying causes include unknown viral (non-A, 

non-B, non-C) infections, heterozygous alpha-1-antitrypsin deficiency, and alcohol abuse 

unapparent at the time of diagnosis. One would think that the latter could be a fairly common 

explanation, but studies have failed to prove alcohol abuse as a major cause in this setting.86 
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2 AIMS 

The overall aims of this study were to explore the pathogenesis, histological and clinical 

features in patients with chronic liver disease due to steatosis and/or iron overload, with 

special emphasis on HFE mutations, inflammatory regulation, iron homeostasis and end-

stage liver disease in the context of liver transplantation. 

The specific aims of this study were 

 to determine the HFE S65C frequency in a Northern European population, and to 

evaluate whether the S65C mutation would result in a significant hepatic iron 

overload or not. (Study I) 

 to evaluate the presence of NAFLD in patients with cryptogenic cirrhosis evaluated 

for OLT, and to compare survival in OLT candidates with cryptogenic cirrhosis and 

those with cirrhosis of another known origin. (Study II) 

 to correlate amount and type of hepatic fat to inflammation in NAFLD, and 

investigate if not only innate, but also adaptive immunity is involved in NASH. 

(Study III) 

 to investigate if hepcidin levels are altered in patients with NAFLD with or without 

DIO compared to other patients with chronic liver disease with or without hepatic 

iron overload, and to see if these levels correlate to markers of inflammation, 

dyslipidemia and/or altered iron metabolism. (Study IV) 
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3 MATERIALS AND METHODS 

 

3.1 SUBJECTS AND DATA COLLECTION 

3.1.1 Study I 

Patients 

Patients with clinical indications of iron overload were selected from those genotyped for 

HFE mutations at the Division of Clinical Chemistry, Huddinge University Hospital from 

October 1st 1997 to September 19th 2000. All patients having: (1) serum ferritin >300 μg/l 

(males) or >200 μg/l (females); or (2) Tf-saturation >50% (males) or >45% (females) were 

included, except for those patients found by family screening or those related to another 

subject in the study, who were excluded. Another 17 patients were excluded who had 

hyperferritinemia due to acute hepatitis, acute liver failure, hepatocellular carcinoma, 

thyreotoxicosis, acute leukaemia, or myelodysplastic syndrome. In total, 296 patients were 

included in the study. Apart from HFE mutation analysis, values for serum ferritin and/or Tf-

saturation, and hemoglobin count were collected retrospectively from patient files from the 

time of diagnosis (before any phlebotomy treatment had been initiated). In 78 cases, the exact 

serum ferritin value at the time of diagnosis could not be found, and in 90 patients, data on 

Tf-saturation were missing. Clinical data concerning iron staining of liver biopsies (if 

performed), and whether or not patients had undergone phlebotomy were extracted from 

patient files for 231 of 296 patients. Patients with hepatic iron staining of grade 1 or more or 

who had been treated with phlebotomies were classified as having iron overload. 

In patients carrying the HFE S65C mutation, clinical data were collected from patient files. 

Alcohol consumption, hepatitis B and C serology, and activity levels of serum alanine 

aminotransferases were evaluated. In patients diagnosed as having iron overload and 

undergoing phlebotomies, redrawn quantities of blood were noted. 

Controls  

A total of 250 healthy control subjects participated in the study. None had a history of liver 

disease or had received multiple blood transfusions. They were recruited from hospital staff, 

students, and their relatives. Blood samples were collected from each subject for analysis of 

serum ferritin, Tf-saturation, and hemoglobin count. HFE mutation analysis was performed 

on all subjects. 

3.1.2 Study II 

A search in the computerized OLT evaluation register at the Karolinska University Hospital 

in Huddinge was performed in order to find adult patients evaluated for OLT between 1990 

and 2004. Of the 924 evaluations found, 350 were excluded for the following reasons: (a) 

evaluations for re-transplantation (n = 63); (b) evaluations on non-cirrhotic patients such as 
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those with familial amyloidosis with polyneuropathy or acute liver failure (n= 92); (c) 

patients with malignant liver disease (n = 180); and (d) patients with polycystic liver disease, 

Caroli’s syndrome or Budd–Chiari syndrome (n = 15). In patients evaluated twice or more 

only the initial evaluation was included. Of the remaining 574 cases, clinical data could be 

retrieved in 470 consecutive patients, all of whom were included in the study. Of these, 39 

(8.3%) had been diagnosed as having cryptogenic cirrhosis. No patient transplanted later than 

December 31st 2004 was included.  

In the 39 patients diagnosed with cryptogenic cirrhosis, more detailed information was 

obtained regarding alcohol consumption, concurrent autoimmune disease and previous 

response to treatment for presumed autoimmune liver disease by re-evaluation of patient files 

pre- and post-OLT. None of these patients reported a previous or current alcohol 

consumption exceeding 20 g/day in the interview protocol. Signs of autoimmunity were 

defined as either concurrent autoimmune disease (thyroid disease, rheumatoid arthritis, 

inflammatory bowel disease and vitiligo) or elevated autoantibodies and immunoglobulins. 

The written results from previous liver biopsies were accessible in 24 of 39 patients with 

cryptogenic cirrhosis.  

The OLT evaluation register at the Karolinska University Hospital in Huddinge comprises 

prospectively registered data on all adult patients evaluated for OLT since 1989. Data has 

been collected from patient interviews and results of investigations performed at the time of 

evaluation for OLT. Data on diabetes mellitus, history of hypertension, esophageal and 

gastric varices, variceal bleeding episodes and hepatic encephalopathy were recorded. Child–

Pugh and Model for End-Stage Liver Disease (MELD) scores had been calculated for all 

patients. Data also include blood and serum biochemistry (including liver tests), lipid status 

and viral plus immunological markers. Body mass index (BMI) at the time of OLT evaluation 

was corrected by a weight reduction of 5 kg if significant ascites was present. A current 

alcohol consumption > 20 g of ethanol per day had been recorded, and previous alcohol over-

consumption (> 60 g per day) or previous healthcare for alcohol dependency had been noted. 

All patients had been interviewed by an experienced anesthesiologist regarding estimated 

weight loss in the last 12 months prior to the evaluation for OLT, and this had been 

documented in the protocol.  

Patient survival 

Survival dates were recorded until 1 January 2008. Patients not accepted for OLT were 

classified either as being too healthy for OLT or as having bad health and/or other diseases 

precluding OLT. Patients who died during the time of evaluation for OLT were recorded. For 

those patients who were accepted for OLT, patient survival after acceptance on the waiting 

list (intention-to-treat), as well as after OLT (post-transplant), was recorded. 

3.1.3 Study III 

A computer search for in-house liver biopsies at the Department of Gastroenterology at 

Karolinska University Hospital in Huddinge between April 1994 and October 2004 was 
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performed in order to identify patients with persistent abnormal liver biochemistries for more 

than 6 months, and/ or clinical signs of cirrhosis of unknown cause at the time of biopsy. Four 

hundred and five biopsies were found and for these cases clinical data was reviewed. 

Exclusions were made for patients with known alcohol use in excess of 20 g/ day. Biopsies 

from patients with other known liver disease such as viral hepatitis, autoimmune hepatitis, 

drug-induced liver disease, primary biliary cirrhosis, biliary obstruction, hemochromatosis, 

Wilson´s disease, and α-1-antitrypsin deficiency associated liver disease, were excluded. The 

remaining biopsies corresponded to 110 patients who were classified as subjects with high 

suspicion of NAFLD based on clinical data including ultrasound and/or the presence of 

hepatic fat as described in the original liver biopsy protocols. For these patients laboratory 

data were obtained from medical and laboratory records closest to the dates of liver biopsy, 

such as serum alanine aminotransfrease (ALT), aspartate aminotransfrease (AST), alkaline 

phosphatase, gamma-glutamyl transpeptidase (GGT), ferritin, transferrin saturation, total 

cholesterol, total triglyceride and glucose levels. BMI was recorded for all patients. No 

patient had a history of ingestion of drugs known to cause hepatic steatosis, including 

corticosteroids, high-dose estrogens, methotrexate, calcium channel blockers or amidorone in 

the previous 6 months. All biopsies were re-evaluated by a pathologist blinded to patient data, 

and scored according to the NAFLD Activity Score (NAS) as described by Kleiner et al.35 

(See below.) From this cohort we randomly selected 31 patients with the diagnosis of NASH. 

In addition, we selected 18 non-NASH patients having steatosis without inflammation (n=8), 

inflammation and less than 5 % steatosis (n=8), and no inflammation and less than 5% 

steatosis (n=2), respectively.  

3.1.4 Study IV 

Patients with chronic liver diseases and/or hereditary hemochromatosis with or without 

hyperferritinemia were prospectively enrolled in this study at the outpatient clinics at the 

Karolinska University Hospital between January 2008 and April 2013. A total of 85 patients 

were included, 38 of which had NAFLD, 18 hereditary hemochromatosis (HH), ten non-

hereditary hemochromatosis (NHH), and 19 patients with various other causes of chronic 

liver disease (CLD). Among the 18 patients with HH, 12 were HFE C282Y homozygotes and 

six were C282Y/H63D compound heterozygotes. NHH was defined as the clinical phenotype 

of hemochromatosis (elevated serum ferritin and transferrin saturation, and hepatic iron 

overload) but without homozygocity for the HFE C282Y mutation or compound 

heterozygocity for the C282Y and H63D mutations. One patient with NHH had received oral 

iron substitution for several years; however, none had been treated with parenteral iron 

substitution or blood transfusions. In the group of 19 patients with chronic liver disease, nine 

had alcohol overconsumption (>30 g/day), and ten patients had other causes of liver disease 

(primary biliary cirrhosis, hepatitis C, cryptogenic cirrhosis, methotrexate-treated psoriasis) 

with alcohol consumption <30 g/d. None of the patients with NAFLD, HH or NHH had 

reported a previous or current alcohol consumption exceeding 20 g/day.  
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Hyperferritinemia was defined as a serum ferritin >350 µg/L, according to the reference value 

of the Karolinska University Laboratory. All patients were over 18 years of age. One patient 

with iron deficiency (serum ferritin <30µg/L) was excluded. No patients included had been 

subject to treatment with iron reduction therapy before entering the study. Liver biopsy was 

performed in 67 out of 85 patients. MRI was used for iron assessment in 16 cases in which 

histology was lacking. In 21 cases there was both histology and MRI. In two cases (one HH 

compound heterozygote and one with CLD) both liver histology and MRI was lacking. 

The NAFLD-patients were divided into three groups: (1) those with normal ferritin and 

without any signs of iron overload in liver biopsy or on MRI (NAFLD-N; n=15); (2) those 

having elevated ferritin, but no signs of iron overload in liver biopsy or on MRI (NAFLD-

FERR; n=7); and (3) those with elevated ferritin and iron overload (NAFLD-DIO; n=16). 

The chronic liver disease patient group (CLD) was divided into: (1) those with normal iron 

parameters and no signs of iron overload (CLD-N; n=8); and (2), those with signs of hepatic 

iron overload (CLD-IO; n=11). 

Controls 

A total of 40 controls, recruited from hospital staff, with normal or low (<30 µg/l) ferritin 

levels participated in the study. None had a history of liver disease. Of these, two were 

excluded (elevated transaminases in one case, and compound heterozygocity and elevated 

ferritin in the other). A third subject had slightly elevated ferritin (413 µg/l), but was not 

excluded. The remaining 38 controls were divided into two groups: (1) those with normal 

serum ferritin (>30 µg/L; n=25) (denoted normal iron status controls) and (2) those who were 

iron deficient (serum ferritin <30 µg/L; n=13) (denoted iron deficiency controls).   

Biochemical data was collected at the time of enrollment in the study for patients and 

controls. Blood samples were collected before 10 A.M. in the morning. Subjects were not 

fasting but had had a light breakfast. Routine blood chemistry analyses at the Karolinska 

University Hospital were used. 

Body mass index was calculated and HFE-mutation analysis was performed on all subjects. 

3.2 ASSESSEMENT OF LIVER BIOPSIES 

3.2.1 Assessment of liver biopsies in study I 

Liver biopsy had been performed in seven of the 14 patients carrying the HFE S65C 

mutation. These biopsies were re-evaluated in order to refine the data from the written 

protocols in those cases where precise indications concerning iron score and fibrosis stage 

were lacking. Iron deposition in hepatocytes was described using the “hepatocyte iron score” 

(HIS) as described by Deugnier et al.13, with the following modifications: grade 0= no 

stainable iron, grade 1= faint bluish color with small non-coalescent iron granules in zone 1 

hepatocytes, grade 2= iron granules in the majority of zone1 hepatocytes, occasionally 

coalescent, grade 3= marked iron deposition with coalescent granules, and grade 4= massive 
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iron deposition in hepatocytes of the entire lobule. Sinusoidal cell iron deposits were 

described by the “sinusoidal iron score” (SIS) and scored as present =1 or absent =0. Fibrosis 

was staged as follows: stage 0= absent, stage 1= non-extensive portal fibrosis, stage 2= 

extensive portal fibrosis, stage 3= bridging fibrosis, and stage 4= cirrhosis. 

3.2.2 Assessment of liver biopsies in study II 

The written results from previous liver biopsies were accessible in 24 of 39 patients with 

cryptogenic cirrhosis. Biopsies displaying steatosis or steatohepatitis in the written protocol 

were re-evaluated and classified by an experienced pathologist according to Brunt et al.87 

3.2.3 Grading of liver biopsies for NAFLD and NASH (study III and IV) 

All liver biopsies were re-evaluated by an experienced pathologist blinded to clinical data. 

Liver histology was scored in accordance with the system developed by Kleiner and Brunt et 

al.35, 88  Thus the classification was based on the basis of macro- and microvesicular steatosis, 

lobular inflammation, and ballooning degeneration. The stage of fibrosis was also recorded.  

Degree of steatosis was graded 0-3 based on the area of the biopsy occupied by fat: (grade 0: 

< 5%, grade 1: 5-33%, grade 2: 34-66%, and grade 3: >67% of the area occupied by fat). 

Lobular inflammation was graded 0-3 based on the number foci/ 200 magnification (grade 0: 

none, grade 1: <2 foci, grade 2: 2-4 foci, and grade 3: >4 foci). Ballooning was graded 0-2.  

(0:  where no ballooned cells were seen, 1: ballooned cells few or inapparent, and 2: many 

ballooned cells or easily noted.) 

NAS was calculated as the unweighted sum of steatosis (0-3), lobular inflammation (0-3), 

and hepatocellular ballooning (0-2). 

Patients diagnosed with NASH had a NAS-score of ≥5. In study III the term borderline 

NASH was used to define (eight) patients with the score of 4. 

3.2.4 Determination of siderosis in study IV 

Siderosis was determined for all patients semi-quantitatively on histopathologic examination 

of Perls’ stained liver biopsy samples adapted from Deugnier et al. 89 to match available 

levels of magnification: 

A score from 0 to 4 for iron in hepatocytes was determined: (0) granules absent or barely 

discernible at a magnification of 400X; (1) barely discernible granules at a magnification of 

200X but easily confirmed at a magnification of 400X; (2) discrete granules at 100X 

magnification; (3) discrete granules easily confirmed at magnification of 40X, but barely 

discernible at a magnification of 20X; (4) granules obvious at a magnification of 20X, and 

barely visible for the naked eye. RES-iron was also determined and scored as (0) none, (1) 

mild, (2) or more than mild, as described by Nelson et al. 90. In this study, these two scores 

were transformed into a histologic iron score (HIS) ranging from 0 to 5, comprising the score 

for iron in hepatocytes (0-4), plus one point for RES iron in those cases where it had been 
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determined as more than mild, or a half point where it has been determined as mild. Iron 

overload was defined as a histologic iron score of ≥1.  

3.3 BIOCHEMICAL ANALYSES, MORPHOMETRY AND MAGNETIC 
RESONANCE IMAGING 

3.3.1 Biochemical data 

Unless otherwise indicated, standard laboratory routine methods at the Karolinska University 

Hospital, have been used. 

3.3.2 Mutation analysis in study I 

Human genomic DNA was extracted from peripheral blood leucocytes using Qiagen Blood  

and Cell Culture DNA Midi Kit (Qiagen GmbH, Hilden, Germany). In the control material, 

identification of mutations in the HFE gene causing the amino acid exchanges C282Y, H63D, 

and S65C was carried out by restriction fragment length polymorphism (RFLP), essentially 

as described previously.22, 91, 92 Electrophoresis was performed on precast polyacrylamide 

gels (GeneGel Excel 12.5/24 Kit) using the GenePhor DNA Separation System (Pharmacia 

Biotech AB,Uppsala,Sweden). Bands were visualized by silver staining (PlusOne DNA 

Silver Staining Kit; Pharmacia Biotech AB, Uppsala, Sweden). All substitutions detected by 

RFLP were confirmed, either by repeating RFLP testing (C282Y) or by automatic sequence 

analysis (H63D, S65C). In the patient material automatic DNA sequence determination was 

used, corresponding to the first half of exon 2 and the whole of exon 4, using the ABI Prism 

Big Dye Primer Cycle Sequencing Kit on an ABI Prism 377 DNA Sequencer (PE Applied 

Biosystems, Norwalk, Connecticut, USA). Screening for the Y250X mutation in the TfR2 

gene was performed in 44 patients by restriction enzyme digestion, according to Camaschella 

and colleagues.93 

3.3.3 Serum levels of ICAM-1 in study III  

Serum levels of ICAM-1 were measured with ELISA (Human sICAM-1 ⁄CD54 

Immunoassay; RnD Systems, MN, USA). 

3.3.4 Morphometric study of fat content in study III 

Fat volume density was determined using a point counting method with a 11 x 11 grid in x 

200 magnification in Nikon Eclips E800 (Nikon, Solna, Sweden) according to Weibel et al.94 

The area of fibrosis was determined with a computer software program, Image J (public 

domain, NIH, MD, USA). The size of the hepatocytes depends on how much fat they contain, 

which thereby influences the number of cells per defined area. In order to compare the 

number of inflammatory cells between patients with different degree of steatosis, a method 

was developed to correct the number of cells positive for inflammatory markers to the whole 

amount of cells by using the known area of fat. That is, if a biopsy contained 0% fat this 

would be the ”true value” since no area was occupied by fat, but if a biopsy contains 50% fat 

the number of positive cells seen are in fact half of what we should see because of the fat 
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occupying 50% of the area. The formula: estimated true number of positive cells = number of 

positive cells counted/ (1-percentage of fat) was used in an attempt to approximate the 

number of cells. 

3.3.5 Immunohistochemistry in study III 

Paraffin-embedded liver sections from the 49 patients were stained with specific antibodies.  

Sections were deparaffinized with xylene and then ethanol. After rehydration, sections were 

blocked in 0.3–3% H2O2, put in unmasking solution Vector, H-3300 (Vector laboratories, 

Buringame, CA, USA), pH 6 and heat activated by press cooker for 10–30 min, treated with 

IMPRESS serum block and incubated with primary antibody overnight at 4°C. For secondary 

antibody IMPRESS was used. The bound antibody was revealed by addition of DAB and 

then counterstained with haematoxylin.  

For immunostaining the following was used: IMPRESS (Vector Laboratories, Buringame, 

CA, USA) system, for Cleaved Caspase-3 (Asp175, rabbit a-human 1:200; Cell Signalling, 

Danvers, MA, USA), CD3 (DAKO, 0452, rabbit a-human, 1:1000; DAKO, Stockholm, 

Sweden), ICAM1 (CD54, Cell signaling 4915, rabbit a-human, 1:30), CD68 (DAKO M0814, 

mouse a-human, 1:1000; DAKO), and TLR4 (eBioscience 14-9917-82, mouse a-human, 

1:20; eBioscience, San Diego, CA, USA).  

The ICAM1-stainings were considered positive for hepatocytes when the staining covered the 

entire outer cell membrane of hepatocytes. The Foxp3: Standard IHC-protocol for paraffin- 

embedded tissue with 3%  H2O2-blocking in methanol, unmasking solution Vector, H-3300, 

pH 6, heat activated by press cooker, blocking with serum, avidin and biotin, primary 

antibody (Foxp3 mouse a-human, Abcam ab 20034; Abcam, Cambridge, UK), concentration 

10 µg ⁄mL and incubated overnight in 4°C. For secondary antibody biotinylated horse a-

mouse (BA-2001, 1:200; Vector) was used. Apoptosis was evaluated immunohistochemically 

using ApopTag (ApopTag Peroxidase In Situ Apoptosis Detection Kit, S7100; Chemicon 

International, Billerica, MA, USA). ApopTag was performed according to the manufacturer’s 

instructions and stained with DAB, then counterstained with Hx and was calculated in three 

different areas; fat area ⁄tissue (defined as none of the other), inflammatory lobular area and 

portal zones (PZ) (hepatocytes one or two cell rows form portal inflammation tracts).The 

results of immunohistochemical staining with specific antibodies were calculated in the entire 

section and then divided with the number of fields viewed in the microscope at magnification 

40 x (1.0 mm2). 

3.3.6 Quantitative assay of hepcidin in serum samples in study IV 

Freshly drawn serum samples from the 85 patients and 38 healthy controls were stored at -

70°C until analysis. Samples were analyzed for hepcidin by a competitive ELISA kit 

(Bachem, Peninsula Laboratories, LLC, CA, United States). Reference ranges established in 

83 normal subjects showed hepcidin levels that ranged 8-76 and 2-50 µg/L for men and 
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women, respectively (2,5-97,5 percentiles). The results were significantly different between 

genders.  

3.3.7 Analysis of cytokines in study IV 

IL-6 and TNFα were measured using Bio-plex Pro Human Cytokine Group 1 kit (Bio-rad 

Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions. Briefly, 

plasma/serum was diluted 1:4 using Bio-plex sample diluents. To obtain the nine point 

(including blank) standard curve, the kit standard was reconstituted and diluted fourfold. The 

10x IL-6 and TNFα coupled beads was diluted in kit assay buffer and added to all standard 

and sample wells. The plate was incubated on shaker 30 min. After washing IL-6 and TNFα 

biotinylated detection antibodies were added and the plate was incubated as above. In the 

final step PE-conjugated Streptavidin was added and the plate was run on a Magpix 

instrument (Luminex Corporation, Austin TX, USA) and analyzed with xPonent software 

(Luminex). 

3.3.8 Analysis of hepcidin mRNA in liver biopsies in study IV 

Thirty-nine liver biopsies were collected from selected patients, immediately immersed in 

RNA-later and stored at -70C until processed. Total RNA was retrieved from 36 of the 39 

utilized liver biopsies with a dry weight of 0.3-5.9 mg using the RNAqueous -4PCR kit 

(Ambion PN AM1914). Recovered quantities of RNA ranged from 13-200 ng/µL. The 

quality and quantity of the extracted RNA was verified with the Bio-Rad Experion 700-7000 

electrophoresis system, and only samples with an RQI > 8 were included in the study. cDNA 

synthesis was carried out with the High Capacity Reverse Transcriptase Kit (Applied 

Biosystems), using 65-930 ng of total RNA per sample.  

Quantative analysis of liver mRNA: Determination of specific mRNA levels was performed 

on the 7500 Fast Real Time PCR System (Life Technologies), utilizing three endogenous 

controls (GAPDH, Cyclophilin and HPRT) and a reference sample (liver RNA from a patient 

not eligible for this study).  Two different primer pairs were used for the hepcidin analyses 

(denoted Hepcidin Harvard and Hepcidin Saku). All cDNA samples were diluted 1:5, and 

utilizing a sample volume of 2 µL, each sample was run in triplicates with power SYBR 

Green PCR master mix (Life Technologies PN 4367659) and 0.1 µM of each primer. 

Relative expression levels were calculated by the ΔΔCt method, utilizing the 7500 Software 

v.2.0.6. The threshold was set to 0.2, utilizing a defined baseline between 3 and 13 cycles for 

all PCR primer sets. The efficiency was set to 90 % for Cyclophilin and GAPDH, 110 % for 

HPRT and 100 % for both the hepcidin primer pairs. Replicates with a S.D. >0.5 were 

omitted from the analysis. The efficiency of the PCR reactions were evaluated  by using a 6-

fold dilution series of the reference sample, and was found to vary between  90-110%.  

3.3.9 Magnetic resonance imaging in study IV 

Magnetic resonance (MRI) imaging was used for detection and quantification of liver iron 

overload in 35 patients and correlated to histology in 17 of these. Liver iron was assessed 
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semi-quantitatively as has been described by Gandon et al.95 (Their calculation algorithm is 

available at http://www.radio.univ-rennes1.fr/Sources/EN/HemoCalc15.html).  

In the correlation analyses of serum hepcidin to liver iron content, MRI iron was 

approximated to histologic liver iron (HIS) score as follows: <60 µmol/g iron = HIS 0; 60-

100 µmol/g = HIS 1; 101-150 µmol/g = HIS 2; 151-200 µmol/g = HIS 3; 201-250 µmol/g = 

HIS 4; >250 µmol/g iron = HIS 5. 

3.4 STATISTICAL ANALYSIS 

Student’s t-test for unpaired data was used for comparing two groups assuming a normal 

distribution. The Mann-Whitney test was used when comparing non-parametric data between 

two groups. Numerical values of laboratory parameters were analyzed using one-way 

ANOVA and validated for equal variance and normal distribution. Kruskal-Wallis ANOVA 

was used when the assumptions of normal distribution did not hold.  Results were presented 

as mean ± SEM or mean and range. All p-values were presented as two-tailed.  

The relationship between two categorical variables was examined with Chi2-test or Fisher’s 

exact test (when applicable). Pearson´s correlation or simple linear regression was used for 

correlations. 

In study II, patient and graft survival after acceptance for OLT (intention-to-treat survival) 

and after liver transplantation (post-transplant survival) were assessed by Cox regression 

analysis with a score test to calculate the hazard ratios, and Kaplan–Meier survival plots. 

In study IV, the correlation between two numerical variables was analyzed with simple linear 

regression validated for linearity, variance between observations and for normal distribution. 

In the cases where the assumptions did not hold the Spearman’s rank order correlation was 

used instead. Multiple linear regression was used for variables that were significantly 

correlated in the simple linear regression in study IV.  

A p-value < 0.05 was considered statistically significant. 

3.5 ETHICAL APPROVAL 

Study I was approved by the ethics committee at Huddinge University Hospital. Studies II-

IV, were approved at the ethics committee at Karolinska University Hospital.  

 

 

 

 

 



 

22 
 

4 RESULTS 

 

4.1 STUDY I 

The HFE S65C mutation was found in 14 patients and eight controls. In controls, the S65C 

allele frequency was 1.6%. The S65C allele frequency was enriched in non-C282Y non-

H63D chromosomes from patients (4.9%) compared with controls (1.9%) (p<0.05).  

Table 1. Number of patients and controls with the C282Y and H63D mutations, and allele 

frequencies of the S65C mutation in alleles without the amino acid substitution C282Y or 

H63D. 

C282Y H63D No of patients 

(n=296) 

No of controls 

(n=250) 

S65C alleles 

(patients) 

S65C alleles 

(controls) 

+/+ -/- 84 1 - - 

-/- +/+ 7 7 - - 

+/- +/- 21 2 - - 

+/- -/- 30 27 2/30 (0.067) 1/27 (0.037) 

-/- +/- 52 41 3/52 (0.058) 1/41 (0.024) 

-/- -/- 102 172 9/204 (0.044) 6/344 (0.017) 

    14/286 (0.049)** 8/412 (0.019)** 

**p=0.0449 (Fisher´s exact test) 

  

Serum ferritin was significantly increased in controls carrying the S65C mutation compared 

with those without HFE mutations. Fifty per cent of controls and relatives having the S65C 

mutation had elevated serum ferritin levels or transferrin saturation. The number of iron 

overloaded patients was significantly higher among those having HFE S65C compared with 

those without any HFE mutation. Half of patients carrying the S65C mutation (7/14) had 

evidence of mild or moderate hepatic iron overload but no signs of extensive fibrosis in liver 

biopsies. 
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Table 2. Genotype, biochemical iron parameters, and clinical data in unrelated patients 
carrying the S65C variant. 
 
Pat 
No. 

Sex Genotype Age (y) Ferritin 
(µg/l) 

TS 
(%) 

Diagnosis 

1 M C282Y/S65C 24 238 77 Mild iron overload 
2 F C282Y/S65C 60 324 48 Healthy, surveillance 
3 F H63D/S65C 72 265 55 Healthy, surveillance 
4 M H63D/S65C 49 536 31 Mild iron overload, AAT def. 
5 M H63D/S65C 68 1463 53 Moderate iron overload, diabetes 

mellitus 
6 F S65C/N 55 251 41 Mild iron overload 
7 M S65C/N 64 566 44 Mild iron overload 
8 F S65C/N 63 205 26 Mild iron overload 
9 F S65C/N 72 364 41 Steatosis 
10 M S65C/N 58 621 28 NASH, mild iron overload 
11 F S65C/N 71 211 56 Ferritin normalized 
12 M S65C/N 64 537 26 Diabetes, hypertension, angina 

pectoris 
13 M S65C/N 69 690 48 Emphysema. Alcohol consumption 

40-60 g/d 
14 F S65C/N 47 50 50 Healthy 

TS, transferring saturation; NASH, non-alcoholic steatohepatitis 

Screening of relatives revealed one S65C homozygote that had no signs of iron overload. 

Compound heterozygosity with S65C and C282Y or H63D did not significantly increase the 

risk of iron overload compared with S65C heterozygosity alone. 

 

 

4.2 STUDY II 

Seventeen (44%) of the cryptogenic patients had NAFLD in a prior liver biopsy and/or 

clinical features of the metabolic syndrome. Two patients had occult alcohol over 

consumption and one patient had burnt-out AIH.  

Cryptogenic patients had significantly higher frequencies of diabetes, ascites, and 

hyponatremia. There was no difference in BMI, however weight loss the last 12 months was 

significantly higher among patients with cryptogenic cirrhosis. 
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Table 3. Clinical data of patients with cryptogenic cirrhosis and of those having cirrhosis of 

other etiologies evaluated for liver transplantation. (data are expressed as mean ± SD or as 

number of patients with percentages in parentheses) 

 Cryptogenic cirrhosis 

(n=39) 

Cirrhosis of other 

etiologies (n=431) 

p 

Females 21/39 (54) 171/431 (40) NS 

Age at time of evaluation (y) 49 ± 9 49 ± 11 NS 

BMI (kg/m2) 24.5 ± 4.8 24.6 ± 4.1 NS 

Self-reported weight loss in last 

year (kg) 

10.1 ± 13.8 (11.9% of 

BW) 

4.3 ± 6.5 (5.5% of 

BW) 

< 0.01 

Diabetes 10/39 (26) 50/431 (11.6) < 0.05 

Ascites 33/37 (89) 279/411 (68) < 0.01 

Sodium (135-145 µmol/l) 134 ± 6 136 ± 6 < 0.05 

BW, bodyweight; NS, not significant 

. 

Patient survival was similar between cryptogenic patients and cirrhotics with a known 

etiology. 

 

Figure 3. Patient survival 

(A) Kaplan–Meier survival plot 

demonstrating survival after 

acceptance for OLT in patients with 

cryptogenic cirrhosis (n = 21) and 

those with cirrhosis of other 

aetiologies (n = 223) (Cox regression 

analysis). There is no statistically 

significant difference between groups 

(hazard ratio 0.71, p = 0.37).  

 

(B) Survival after OLT in cryptogenic 

cirrhosis (n = 19) versus cirrhosis of 

other aetiologies (n = 202) (hazard 

ratio 0.55, p = 0.18). 
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4.3 STUDY III 

Scoring of the amount of fat both by estimation according to NAS-classification and by using 

a morphometric method showed discrepancies that could be attributed to the presence of 

microvesicular fat. Microvesicular fat was increased in high NAS patients and also correlated 

with the total volume of fat. ICAM-1 positive hepatocytes were seen in NASH and were 

absent in non-NASH patients. In addition, ICAM-1 positive hepatocytes were localized to 

areas with microvesicular fat. The sICAM-1 was significantly higher in NASH-patients than 

in non-NASH patients. 

 

  

Figure 4. Immunohistochemical stainings of ICAM-1 (A and B). Positive staining was found 

around hepatocytes in areas of microvesicular fat in biopsies from NASH-patients. 

 

 

Figure 5.  

Patients with NASH had larger areas of CD68 positive cells when corrected for the amount of 

fat. NASH-patients also displayed a higher amount of Foxp3 positive cells, than non-NASH 

Serum levels of sICAM-1 in 

patients with NASH and 

non-NASH (controls). 

Patients with NASH had 

significantly higher serum 

levels of sICAM-1 than 

non-NASH subjects, p = 

0.0015. 
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patients. The quota of Foxp3/CD3 positive cells differed significantly between NASH/ 

borderline-NASH-patients and non-NASH patients (p=0.0236). 

 

 

Figure 6. 

 

 

Figure 7. 

 

 

 

 

 

 

 

The area of CD68 positive 

cells in biopsies corrected 

for the amount of fat in the 

tissue. Results are grouped 

according to NAS results. 

NASH-patients did have 

significantly larger area of 

CD68 positive cells than 

non-NASH and Borderline 

NASH, p = 0.0011. 

The ratio of Foxp3/CD positive 

cells in the lobule from IHC, 

biopsies grouped according to 

NAS results. There was a 

significant difference in the 

quota between non-NASH and 

borderline/NASH-patients, p = 

0.0236. 
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4.4 STUDY IV 

Serum hepcidin values for the different patient groups and controls are shown in Figure 8.  

 

 

Figure 8. Serum hepcidin levels in the different patient groups. The box plots show the median, the 

interquartile range and the min-max values. Hepcidin levels were significantly increased in non-

hereditary HH (in the graph denoted as HFE-wt HH), and for NAFLD-DIO, compared with iron 

deficiency controls, NAFLD-N, homozygous HH and chronic liver disease with normal iron stores 

(CLD-N) (Kruskal-Wallis ANOVA, p<0.05).  

Simple linear regression showed a good correlation between histologic iron score and hepatic 

iron content determined by MR (r2=0.77, p<0.01). There was also a good correlation between 

serum hepcidin and hepcidin mRNA (r2=0.39, p< 0.01).  

Hepcidin levels were increased in patients with iron overload (except for patients with HH), 

including NAFLD-DIO, and correlated to liver iron stores. Ratios between hepcidin and iron 

score is shown in Figure 9. NAFLD-FERR had significantly higher ratios compared to other 

groups.  
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Figure 9. The ratios between serum hepcidin and hepatic iron contents (“iron score”). The 

calculation of iron scores are described in Methods. Patients with a hepatic iron score of 0 (NAFLD-

N) are excluded from the ratio calculation. Patients with homozygous HH had significantly lower 

ratios, and NAFLD-FERR significantly increased ratios, compared with the other groups.(Kruskal-

Wallis ANOVA, p<0.05). (NHH is denoted as HFE-wt HH in the graph). 

 

 

In NAFLD, hepcidin correlated to serum ferritin (r2=0.20, p< 0.01) and liver iron (r2=0.27, p< 

0.05) but not to BMI, CRP, NAS or steatosis. Patients with NAFLD-DIO had significantly 

higher transferrin saturation (0.40±0.08) than NAFLD-FERR (0.25±0.10), p< 0.05. The 

hepcidin-to-liver iron ratio was highest in NAFLD-FERR, and there was a trend towards 

increased inflammatory markers in NAFLD-FERR. Serum hepcidin correlated inversely with 

serum leptin in NAFLD patients (r2=0.14, p< 0.05).  There was a trend towards increased 

portal inflammation in NAFLD-FERR, but without statistical significance. Steatosis, lobular 

inflammation, ballooning, fibrosis and NAS-score did not differ between groups. Clinical and 

laboratory findings in patients with NAFLD are demonstrated in Table 4. 
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Table 4. Clinical and laboratory findings in patients with NAFLD and dysmetabolic iron 

overload (DIO), elevated serum ferritin but normal iron stores (NAFLD-FERR), and normal 

serum ferritin (NAFLD-N), respectively (mean ± S.D.) 

 
NAFLD-DIO 

(n=16) 
NAFLD-FERR 

(n=7) 
NAFLD-N  

(n=15) 

BMI (kg/m2) 28.1±2.4 29.4±2.7 31.4±5.0 

Serum ferritin (µg/L) 816±285* 621±170 156±78 

Serum hepcidin (µg/L) 53±28* 37±13 24±19 

Ratio hepcidin/ferritin 0.07±0.04* 0.06±0.04* 0.19±0.19 

Transferrin saturation (%) 0.39±0.09*# 0.25±0.10 0.27±0.07 

Liver iron score 2.13±0.92*# 0.14±0.24 0.03±0.13 

 n=13: n=6: n=11: 

Triglycerides (mmol/L) 1.95±0.90 1.83±1.09 2.89±1.09 

Cholesterol (mmol/L) 5.25±0.71 5.25±0.84 5.18±0.96 

 n=13: n=6: n=9: 

Leptin (µg/L) 15.8±8.65 21.2±17.0 16.2±9.09 

*=p<0.05(vs. NAFLD-N) 

#=p<0.05(vs. NAFLD-FERR)  
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5 GENERAL DISCUSSION 

The rapid global increase of obesity and type 2 diabetes mellitus is paralleled by an increase 

in NAFLD, thus representing a challenge to general practitioners as well as hepatologists. 

The state of knowledge has improved substantially over the years, and what was considered a 

completely benign condition a couple of decades ago, is now recognized as a major health 

problem. Why some patients with NAFLD progress to NASH with the risk of developing end 

stage cirrhosis and hepatocellular carcinoma, while others do not is still not fully understood. 

Dysmetabolic iron overload is common in NAFLD, and iron overload as a potential 

pathogenic factor has attracted much interest in this diagnosis as well as in chronic liver 

disease in general.  

The HFE gene was identified in 1996, and homozygocity for the HFE C282Y mutation 

accounts for approximately 90% of hereditary hemochromatosis (HH) in Sweden.96, 97  

Compound heterozygocity for C282Y/H63D is much less common and is also associated to 

less severe iron overload compared to C282Y homozygocity.98, 99 Also, a third mutation in 

the HFE gene, S65C was found a few years later. At the time of our study (Study I), it´s 

clinical importance was still controversial. We found that the S65C allele was enriched in 

non-C282Y and non-H63D chromosomes from patients with clinical signs of iron overload 

compared to healthy controls. These findings were in line with results reported in a French 

study by Mura et al.22 In control subjects we could also confirm the HFE mutation 

frequencies from other studies in subjects of Northern European ancestry.20, 22, 100 When we 

studied patients carrying the S65C mutation in detail we found that half of them had signs of 

mild to moderate hepatic iron overload, but no signs of extensive fibrosis. When investigating 

the relatives of one patient we found a S65C homozygous subject (the patient’s mother) who 

had signs of iron deficiency, probably due to menstrual blood loss. The patient’s brother who 

carried the same genotype: C282Y/S65C, had normal ferritin and only slightly elevated 

transferrin saturation. We concluded that S65C is likely to constitute a negligible risk for iron 

associated liver cirrhosis. And as stated above, there are no studies that have associated the 

S65C mutation to extensive liver fibrosis. In retrospect, 4 out of 14 patients in our study had 

either NAFLD or diabetes. A potential role for the H63D mutation in NAFLD pathogenesis 

has been suggested by Nelson et al.72, if such a link could be attributed to the S65C mutation 

is this far entirely hypothetical. However, the question sheds light on the complexity of 

chronic liver disease where multiple factors probably are likely to interact in the disease 

process. 

The finding of the iron regulatory hormone hepcidin helped clarify the context of iron 

overload in several conditions, for instance, the hepcidin deficiency in hereditary 

hemochromatosis, and the impaired synthesis in chronic liver disease such as alcoholic liver 

disease. The role of hepcidin in the case of NAFLD and DIO seems more complicated. As 

described above, there are studies that conclude that the hepcidin regulation in NAFLD is 

normal, while others stress the putative link to fat and inflammation. This discrepancy is not 

completely surprising when recapitulating the topic of hepcidin regulation. There are four 
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pathways controlling the hepcidin production in hepatic cells: First the plasma iron regulation 

pathway involves circulating transferrin-bound iron that will compete with HFE in binding to 

transferrin receptor 1 (TfR 1), which promotes hepcidin production via the formation of the 

TfR 2/HFE complex. Secondly, in the erythropoetic pathway, blood loss, anemia and hypoxia 

will lead to erythropoetic stimuli and a subsequent decrease in hepcidin production, thus 

making more iron available. Thirdly, the inflammatory regulation pathway is mainly induced 

by IL-6 and leads to hepcidin excess, causing anemia. Finally, the control of HJV on the 

BMP/SMAD signaling pathway has been described as mandatory in hepcidin regulation.101, 

102  

In our study (Study IV) we studied hepcidin levels, inflammatory markers and lipid profiles 

in patients with various liver diseases and ferritin levels, focusing on NAFLD. The advantage 

of this approach is that we can compare several carefully defined subgroups. A disadvantage 

is the low number of subjects in some of the groups (i.e. NAFLD-FERR). We investigated 

serum hepcidin levels in 85 patients with NAFLD, hemochromatosis and other chronic liver 

diseases, and in 36 of these we correlated serum hepcidin to mRNA in liver tissues. We found 

a good correlation between hepatic hepcidin mRNA and serum hepcidin measured by 

ELISA. Among the 23 NAFLD patients having elevated ferritin in our study, the majority (16 

patients) had DIO, whereas seven patients were found to have elevated ferritin but normal 

iron stores. In all NAFLD patients, hepcidin levels correlated strongly to iron indices such as 

serum ferritin and transferrin iron saturation, as well as to hepatic iron contents. The 

hepcidin-to-hepatic iron score ratio was significantly increased in patients with elevated 

ferritin and normal iron stores (NAFLD-FERR). One may speculate that the increased 

hepcidin levels in these patients are a result of a low-grade chronic inflammation, 

simultaneously increasing serum ferritin levels, and there was a trend towards increased 

TNFα and IL-6 levels among these patients. Thus, a subgroup of NAFLD patients may have 

a low-grade inflammation contributing to increased serum ferritin and hepcidin levels, which 

would then not lead to hepatic iron accumulation and DIO. This is paralleled by the 

observation of a higher fraction of portal inflammation in biopsies from NAFLD-FERR 

patients. Unfortunately, the number of patients in this “inflammatory-NAFLD” group is too 

small in the present study to draw firm conclusions regarding the contribution of low-grade 

inflammation to hyperferritinemia and elevated hepcidin in NAFLD. Our study was not 

designed to discriminate between NAFLD-DIO and “inflammatory-NAFLD”, but rather to 

study hepcidin levels in NAFLD patients compared with patients having other liver diseases, 

with or without iron overload. Thus, further studies are needed on a larger NAFLD cohort to 

explore the hypothesis of the existence of two NAFLD subgroups: “NAFLD-DIO” and 

“inflammatory NAFLD with hyperferritinemia”. When calculating the hepcidin levels in 

relation to the hepatic iron content, i.e. the ratio between hepcidin and liver iron score, 

patients with DIO had a similar ratio as patients with other chronic liver diseases with iron 

overload, that is patients with other chronic liver disease and iron overload and non-

hereditary hemochromatosis, indicating that hepcidin synthesis in DIO is regulated similarly 

as in other chronic liver diseases.  
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We found that transferrin saturation was significantly higher in NAFLD patients with DIO 

compared to those with increased ferritin and normal iron stores. This result indicates that 

transferrin saturation might be used as a marker to differentiate between these two patient 

groups. Such a readily available marker could be of good use in clinical practice, since 

dysmetabolic iron overload may need treatment with phlebotomies, which is not the case in 

“inflammatory NAFLD with hyperferritinemia”.  

In our study, we found no correlation of serum hepcidin with BMI, serum cholesterol, serum 

triglycerides, hepatic steatosis, or NASH activity score (NAS). As mentioned previously 

there are studies that have reached different results. The studies by Barisani et al, and Senates 

et al. found correlations between hepcidin and cholesterol and triglycerides suggesting 

interactions with lipid metabolism.74, 75 In studies on morbidly obese patients, obesity was 

associated to hepcidin levels, but these studies have not found correlations to NAFLD 

including histology or diabetes.76, 77  The NAFLD patients in our study had only slightly 

increased BMI as compared to patients with other liver diseases, and the situation in morbidly 

obese subjects with markedly increased body fat may prove different. The majority of our 

NAFLD patients had either iron overload or a possible “inflammatory NAFLD with 

hyperferritinemia”, which are conditions that strongly induce hepcidin synthesis, which could 

mask a weaker association between hepcidin and cholesterol or triglycerides. There is a tight 

relationship between iron deficiency and obesity. Proinflammatory cytokines such as IL-6 are 

secreted by the adipose tissue and can induce hepcidin expression. Furthermore there is a 

production of hepcidin in adipose tissue, although it is not clear if this could represent a 

significant proportion.9, 103 Interestingly, we found an inverse correlation between serum 

hepcidin and leptin, which is in conflict to other studies performed on obese subjects. Again, 

the situation in our patient cohort differs from those findings, since our patients have only 

slightly elevated BMI but all had significant hepatic steatosis and the majority elevated serum 

ferritin. Our finding has to be confirmed by others in the same context; i.e. NAFLD with liver 

disease but only moderate overweight. 

HFE mutations have been described as being more common in patients with NASH. In the 

present study, we could not find an increased frequency of C282Y or H63D mutations in 

NAFLD patients with dysmetabolic iron overload as compared to patients with other liver 

diseases, or healthy controls. However, the H63D mutation was enriched in NAFLD patients 

with normal iron stores. This finding indicated that this mutation may play a role in hepatic 

steatosis, as has been mentioned above.  

The “two hit” hypothesis has for long been used as the explanatory model in the pathogenesis 

of NASH. Insulin resistance plays a central role in the “first hit” leading to hepatic steatosis. 

The “second hit” involves oxidative stress, which in turn leads to the development of 

steatohepatitis and fibrosis. The close connection to the metabolic syndrome has led to the 

proposal that insulin resistance could be the cause of both hits. The simplicity of this model 

is obviously appealing, but it has been expanded into the “multiple parallel hits” hypothesis 

in order to take a number of different processes that might contribute to liver inflammation 
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into consideration. Among these are inflammatory mediators derived from adipose tissue 

and the gut, as well as immune system activation. A more detailed model may also 

encompass such observations as inflammation preceding steatosis in certain cases.47, 104  

The NASH activity score (NAS) was introduced in 2005 by Kleiner et al. to be used in 

studies on NAFLD and NASH. The score is based on the unweighted sum of three 

parameters: hepatic fat content, lobular inflammation and ballooning. A score of ≥5 correlates 

with the diagnosis of NASH35. NAS is widely used, but there are those who argue that NAS 

omits crucial information. For example it takes no account of fibrosis, which has been 

addressed in studies of NAS in the context of disease progression and mortality in 

NAFLD.105, 106 In addition, Younossi et al. performed a study in which the original pathologic 

criteria for NAFLD subtypes (as had been described by himself and colleagues in 1998107) 

demonstrated the best predictability for liver related mortality in this patient group.108 

Moreover the term NAFLD covers a broad spectrum of liver disease. The majority are 

patients with simple steatosis. Some will develop steatohepatitis, and these are in turn at risk 

for progression with fibrosis. In this perspective NAS might seem blunt, since a patient with 

pronounced steatosis and very mild inflammation can receive the same score as a patient with 

only mild steatosis and inflammation and/ or signs of necroinflammatory activity i.e. 

ballooning. 

In order to furhter characterize the importance of fat and inflammatory cell distribution in the 

liver parenchyma we performed a study on 49 patients with the clinical diagnosis of NAFLD 

(Study III). Our goal was to investigate if the type and amount of fat is of importance to the 

inflammatory process in NASH, and we also wanted to investigate if both the innate and 

adaptive immunity is involved in NASH. The amount of fat was scored both by estimation 

according to NAS-classification and calculated with a morphometric method as described in 

the methods section. We found that these two values differed in some patients and concluded 

that this discrepancy could be attributed to the presence of microvesicular fat. In NAFLD 

macrovesicular fat is more predominant, but microvesicular fat has been correlated to higher 

NAS as well as more advanced fibrosis.109 This is interesting, since our study showed that 

ICAM-1 positive hepatocytes were located in areas of microvesicular fat deposits. Therefore 

one could speculate that the presence of microvesicular fat may represent a more severe form 

of NASH. Moreover NASH-patients had higher levels of ICAM-1 in serum compared to 

patients with borderline NASH and non-NASH patients. Thus sICAM-1 might be interesting 

in the quest for non-invasive diagnostic tools in the case of NASH. We found an increase in 

the number of Foxp3 positive cells in NASH patients, and higher Foxp3/ CD3 ratio correlated 

to higher NAS. Since Foxp3 is the most specific marker of regulatory T cells (Tregs), this 

finding supports the involvement of adaptive immunity in NASH. Tregs are involved in the 

negative control of various immune responses, such as viral hepatitis and hepatocellular 

carcinoma. The finding of more Tregs and less CD3 cells in NASH-patients could indicate 

that CD3 cells are diminished by Tregs in order to decrease inflammation. (CD3 is used as a 

general T-cell marker). CD68 is a useful marker of cells of the macrophage lineage. When 

the area of CD68 positive cells in biopsies was corrected for the amount of fat we found 
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higher values in NASH-patients in comparison to non-NASH and borderline-NASH patients, 

indicating involvement of innate immunity. However, in our study, we did not find any 

difference in TLR-4 positive cells between groups, which would contradict the idea of gut 

microbiota as an important pathogenic factor in NASH.   

Cleaved Caspase-3 and ApopTag was used for detection of apoptosis, and did not differ 

between groups. Thus, in our study, apoptosis could not be found to be driving inflammation.  

With chronic hepatic inflammation comes the risk of progressive fibrosis and cirrhosis. In 

some cases the cause of the inflammatory process is unclear. Among patients with liver 

cirrhosis, the percentage of those having cryptogenic cirrhosis (CC), i.e., cirrhosis of 

unknown etiology, varies, but has been estimated to be 5-30%. However, CC is diagnosed in 

only 5-7% of patients undergoing orthotopic liver transplantation (OLT) due to cirrhosis.81  

This discrepancy could be explained by a more thorough work-up at the evaluation of 

patients for OLT, or it could indicate that the lack of a more specific diagnosis is a 

disadvantage in end stage liver disease. It is hardly surprising that the focus on NASH over 

the two last decades has prompted the question if this condition could be the underlying cause 

in many cases of CC. Histopathological findings are crucial for the diagnosis of NASH. 

Consequently, there might be an underestimation of cases, since features of NASH may 

disappear during the development of cirrhosis.110 Studies on NAFLD as the likely underlying 

cause in CC have shown varying results, and there is also a difference between American and 

European studies, in which the latter have shown lower frequencies of suspected NAFLD.30, 

31, 81, 83-85   

In our study (Study II) we addressed these questions by comparing 39 CC patients to 431 

patients with cirrhosis of other (known) etiologies who had been evaluated for OLT between 

1990 and 2004. We wanted to estimate the frequency of possible NAFLD in a Swedish 

material, not the least due to the geographical variation in previous studies. We also wanted 

to compare the severity of liver disease and patient survival in OLT candidates in order to 

find out if the diagnosis of CC could be a disadvantage in this setting.  

In our material re-evaluation of clinical data led us to reach an underlying diagnosis in 51% 

of CC patients. Seventeen (44%) of these patients were considered to have possible 

underlying NAFLD. Conditions associated to NAFLD such as type 2 diabetes or a history of 

obesity was encountered in an additional seven patients. Only one patient was found with 

probable autoimmune hepatitis, and two patients with occult alcohol abuse. Consequently, 

our findings are in line with the results from American studies.30, 31, 80, 81, 84-86, 111, 112 The 

reason for the discrepancies between studies are not known, but possible explanations may be 

differences in patient populations, diagnostic work-ups, and whether or not patients were 

investigated in an OLT setting.  

When comparing CC patients to patients with cirrhosis of known etiologies we found 

increased frequencies of ascites, hyponatremia and reported weight loss in the CC group. 

These findings suggest that CC patients have a more advanced liver disease at the time of 
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referral for OLT. However, we lack stronger evidence in this case, since there was no 

difference in Child-Pugh or MELD-scores between the groups.  

Malnutrition is an independent risk factor for poor survival after OLT.113 The patients with 

CC in our study were not malnourished and their BMI was similar to other patients with liver 

cirrhosis of known etiology. However, weight loss during the year before evaluation for OLT 

was significantly higher in the CC group. This is possibly a sign of deterioration of the liver 

disease in these patients and may signal a need for OLT evaluation.  

When comparing the acceptance rate for transplantation there were no differences between 

CC patients and patients with cirrhosis of known etiology. We could observe a tendency 

towards a higher degree of rejections for OLT due to poor health and/ or concurrent disease 

in the CC group, but the difference was not statistically significant. Nor did the comparison of 

survival after being accepted for OLT or after OLT show any difference between the groups. 

When looking on at the subgroup of CC patients with possible NAFLD, the survival results 

were similar. Our results are in line with many other authors that have concluded that CC, as 

well as NASH-cirrhosis are favorable indications for OLT.82, 85, 114, 115 

6 CONCLUSIONS 

In Study I, the frequency of the HFE S65C mutation in a Northern European population was 

1.6%, and it was found to have the potential of causing mild to moderate hepatic iron 

overload, but not extensive liver fibrosis. 

Re-evaluation of data in patients with cryptogenic cirrhosis (CC) from the time of evaluation 

for OLT, in study II, resulted in a probable underlying etiology in more than half of patients, 

NAFLD being the most common diagnosis (44%). In spite of a tendency toward more severe 

liver disease at the time of evaluation for OLT, the survival after OLT for patients with CC 

did not differ from that of patients with liver cirrhosis of known etiology. 

In study III, the amount of microvesicular fat increases with NAS. In liver tissue from 

NASH-patients, hepatocytes with microvesicular steatosis express ICAM-1. The increased 

number of CD68 cells and regulatory T-cells seen in liver tissue from NASH-patient indicate 

that there is an involvement of both innate and adaptive immunity. 

In study IV, hepcidin correlates to iron indices and iron stores, but not to BMI, steatosis, or 

NAS, in NAFLD patients, with or without mild to moderate iron overload. Hepcidin 

regulation in NAFLD did not differ from that seen in other chronic liver diseases apart from 

hereditary hemochromatosis. 
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8 POPULÄRVETENSKAPLIG SAMMANFATTNING 

I denna doktorsavhandling undersöks olika aspekter av fett- och järnöverskott i levern hos 

patienter med kronisk leversjukdom.  

Det första arbetet handlar om betydelsen av en då relativt nyupptäckt mutation, dvs. 

förändring i ett arvsanlag. I detta fall handlar det om en förändring i den så kallade HFE-

genen. Mutationer i HFE-genen är den vanligaste förklaringen till den ärftliga formen av 

järnupplagringssjukdomen hemokromatos, på våra breddgrader. Sedan tidigare vet vi att de 

flesta fall av ärftlig hemokromatos beror på dubbel uppsättning av C282Y mutationen i HFE-

genen. En variant med C282Y mutationen och H63D mutationen i kombination, kan också 

förekomma. I denna avhandling har vi tittat närmare på en tredje mutation i HFE-genen, 

nämligen S65C. Studien utfördes på patienter med tecken till järnöverskott. Friska kontroller 

fanns med som jämförelsematerial. Vi kom fram till att S65C mutationen var ungefär lika 

vanlig i befolkningen i Stockholmsregionen som i andra jämförbara delar av världen (såsom 

USA och Västeuropa). Vi kunde också se att de patienter som var bärare av S65C-mutationen 

kunde ha ett lätt till måttligt järnöverskott i levern. Däremot fann vi inte någon betydande 

bindvävsomvandling i leverbiopsier (vävnadsprov) från dessa patienter. Studien talar således 

för att bärarskap av S65C mutationen kan vara en förklaring till lätt till måttligt järnöverskott 

i levern, men att risken för mer avancerad leversjukdom pga. sådant bärarskap torde vara 

försumbar.   

Den andra studien fokuserar på patienter med skrumplever av oklar anledning, så kallad 

kryptogen levercirros. Tanken bakom denna studie var bland annat att ta reda på om icke-

alkoholorsakad fettleversjukdom kan vara den bakomliggande orsaken i fall av kryptogen 

levercirros. Studien omfattar noggrann genomgång av de protokoll som används i samband 

med att patienter med skrumplever med olika bakomliggande orsaker utreds för eventuell 

levertransplantation. Upprinnelsen till denna frågeställning kommer av att icke-

alkoholorsakad fettleversjukdom är ett tillstånd som rönt mycket stort intresse på senare år. 

Även i Sverige används vanligen den engelska terminologin i detta fall. Man talar om 

NAFLD (Non Alcoholic Fatty Liver Disease) och NASH (Non Alcoholic SteatoHepatitis). 

NASH är en underdiagnos till NAFLD. Att fettlever är vanligt har man vetat sedan lång tid 

tillbaka, emellertid betraktades icke alkoholorsakad fettleversjukdom som ett i stort sett 

ofarligt tillstånd så sent som på 1980-talet. Senare forskning har visat att patienter med 

NASH löper risk att utveckla levercirros och levercancer. När vi gick igenom journaler och 

protokoll från patienter med kryptogen levercirros kom vi fram till att det fanns en sannolik 

bakomliggande orsak i hälften av fallen. Den orsak, eller diagnos, som var allra vanligast var 

just NAFLD: 17 av totalt 39 patienter. Två andra orsaker var så kallad autoimmun hepatit (1 

patient) och alkoholmissbruk som var okänt vid tiden för levertransplantationsutredningen (2 

patienter). Vidare ville vi ta reda på om det kan vara en nackdel att sakna en specifik diagnos, 

dvs. att läkarna inte vet varför en patient har levercirros. Vi jämförde de 39 patienterna som 

vid levertransplantationsutredningen hade diagnosen kryptogen levercirros med alla andra 

levercirrospatienter med kända diagnoser (exempelvis virala hepatiter, alkoholleversjukdom, 
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autoimmuna leversjukdomar). Vi noterade att patienter med kryptogen leversjukdom var lite 

sämre i sin leversjukdom vid tiden för utredning jämfört med de andra, men trots detta blev 

de inte levertransplanterade i lägre omfattning. Överlevnaden efter levertransplantationen 

visade sig vara lika god för patienter med kryptogen levercirros som för patienter med känd 

orsak till levercirros. När vi tittade närmare på den andel av patienter med kryptogen 

levercirros som sannolikt hade NAFLD som bakomliggande orsak fick vi samma resultat. En 

skillnad mellan patienter med kryptogen levercirros och de andra var hur mycket patienterna 

hade gått ned i vikt under det senaste året. Patienter med kryptogen levercirros hade gått ned 

mer i vikt. Detta skulle kunna vara ett tecken på en försämring i leversjukdomen och kan vara 

en anledning för läkare att överväga en levertransplantationsutredning. 

I den tredje studien tittade vi närmare på mängden och typen av fett i leverbiopsier från 

patienter med NAFLD för att ta reda på om detta har betydelse för inflammation och 

levercellskada hos dessa patienter. Vi ville också ta reda på om den så kallade adaptiva 

immuniteten och inte bara den ospecifika immuniteten är involverad vid NASH.  Med 

adaptiv immunitet avses den del av immunförsvaret som har förmågan att känna igen och 

även minnas det som är främmande på en detaljerad nivå. Vi jämförde patienter med NASH-

diagnos, patienter som låg på gränsen till att ha NASH och andra patienter som hade fett och 

inflammation av olika grad. Vi kunde se att NASH-patienterna hade mer mikrovesikulärt, 

dvs. findroppigt fett jämfört med de andra patienterna. Den inflammatoriska markören 

ICAM-1 var ökad hos NASH-patienterna och lokaliserad till områden med mikrovesikulärt 

fett. Genom att bland annat mäta markörer för så kallade regulatoriska T-celler kom vi fram 

till att både adaptiv och ospecifik immunitet torde vara av betydelse vid NASH.  

Den fjärde studien handlar om det järnreglerande hormonet hepcidin och dess betydelse vid 

NAFLD. Vid så kallad HFE-relaterad hemokromatos, som beskrivits ovan, produceras inte 

tillräckligt med hepcidin. Hepcidin motverkar upptag av järn från tarmen. Således riskerar 

patienter med hemokromatos att med tiden drabbas av ett potentiellt skadligt järnöverskott. 

Vi vet också att hepcidin påverkas av inflammation och att hepcidin inte bara produceras i 

levern, utan även i fettväven. Järnöverskott i levern är vanligt förekommande hos patienter 

med NAFLD. Även om järnöverskottet i detta fall oftast är mildare än hos 

hemokromatospatienter skulle det kunna ha betydelse för sjukdomsutvecklingen hos vissa 

NAFLD-patienter. Vi ville därför undersöka hur hepcidin-nivåer i blod och levervävnad hos 

NAFLD-patienter avspeglar järnöverskott i levern, inflammation, samt blodfetter och 

övervikt. Vi jämförde NAFLD-patienter med och utan järnöverkott i levern med andra 

leversjuka patienter och hemokromatospatienter. Vår studie visade att hepcidinregleringen 

hos NAFLD-patienter inte skilde sig från regleringen hos andra patienter, (förutom de med 

HFE-relaterad hemokromatos, vilket var förväntat). Vi kunde inte se att hepcidinnivåerna hos 

NAFLD patienterna påverkades av övervikt eller blodfetter, vilket vissa andra studier kommit 

fram till.   
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