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ABSTRACT 

The skin protects the organism from the environment and shields it from the constant danger 
of infections by microorganisms. Keratinocytes are epithelial cells in the skin that constitute a 
physical barrier towards the environment. More than that, they are essential players in innate 
immunity: Keratinocytes can recognize invading pathogens by a variety of receptors, among 
them Toll-like receptors (TLRs). Activation of keratinocytes by pathogenic triggers leads to 
the induction of an inflammatory reaction in the skin, finally leading to the destruction and 
elimination of the pathogens. After clearance of the infection, homeostasis needs to be 
restored in order to avoid pathophysiological chronic inflammation.  
Psoriasis is a common chronic inflammatory skin disease characterized by local and systemic 
activation of both the innate and the adaptive immune system. In psoriasis skin lesions, 
hyperproliferation and activation of keratinocytes is combined with a massive infiltration of 
immune cells into the skin.  
MicroRNAs are endogenous short RNA molecules that regulate gene expression at the post-
transcriptional level. They have been shown to be involved in the regulation of all basic 
biological processes. The aim of this thesis was to study the role of microRNAs in skin 
immunity, with a focus on their regulation and function in keratinocytes under homeostatic 
and inflammatory conditions.  
 
We have characterized systematically the microRNA expression profile of keratinocytes 
treated with ligands for TLR2, TLR5 and TLR3, showing that a distinct subset of 
microRNAs is regulated by different TLR ligands (Paper I). MiR-146a was strongly induced 
by all studied TLR ligands, while other microRNAs were regulated in a TLR- or time point-
specific manner. A detailed analysis of the regulation of miR-146a in keratinocytes revealed 
its long-lasting induction upon TLR2 stimulation, leading to a global repression of the 
inflammatory response (Paper II). Functionally, miR-146a acts as a negative feedback to 
counteract TLR2-induced inflammation and to restore tissue homeostasis by suppressing the 
production of inflammatory mediators and the chemotactic attraction of immune cells. 
Moreover, endogenous miR-146a was essential to prevent unstimulated keratinocytes from 
producing inflammatory mediators, thus protecting from unwanted inflammation in the 
absence of a trigger. In the chronically inflamed skin of psoriasis patients, miR-146a was 
overexpressed and keratinocytes were partially responsible for this phenotype (Paper III). 
Pro-inflammatory cytokines of the IL-1 family were shown to be strong inducers of miR-
146a, plausibly responsible for the miR-146a overexpression in psoriasis keratinocytes. 
Taken together, these results propose that miR-146a regulates skin immune responses after 
infection or skin injury and may set the threshold of activation in keratinocytes.  
We have identified miR-31 as another microRNA overexpressed in psoriasis keratinocytes 
and regulating the keratinocyte immune responses (Paper IV). MiR-31 could be induced by 
TGF-β1 in vitro and in vivo. Inhibition of endogenous miR-31 decreased the inflammatory 
activity of keratinocytes, suggesting that miR-31 acts as a pro-inflammatory microRNA and 
contributes to the chronic inflammation in psoriasis lesions.  
In conclusion, the data presented in this thesis underline the crucial importance of 
microRNAs in the innate immune response of keratinocytes. The modulation of the local 
inflammatory environment by microRNAs may explain more of the unknown underlying 
factors regulating susceptibility to autoimmune diseases such as psoriasis.   
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1 BACKGROUND  

Multicellular organisms have developed highly sophisticated mechanisms during evolution to 

protect themselves from the permanent attack of pathogens in the environment. Constant 

surveillance of the tissues, specific recognition of potentially dangerous invaders and the 

elicitation of a pathogen-specific immune response are key steps for a successful immune 

defense. Inflammatory reactions are beneficial not only to protect from infections but also 

from malignancies; without inflammatory mechanisms no complex organism would be 

viable. However, an overreaction or lack of termination of the immune response may 

eventually lead to chronic inflammation or autoimmunity; therefore a precise control of the 

immune response balancing pro- and anti-inflammatory factors is a necessity for survival and 

health.  

 

1.1 THE SKIN  

The skin forms a physical, chemical and immunological barrier of the organism towards the 

environment, preventing the invasion of pathogens, protecting from trans-epithelial water loss 

and regulating body temperature. Human skin consists of three major layers, the epidermis, 

the dermis and the underlying subcutaneous fat tissue (Figure 1).  

Figure 1: Structure of the skin (left) and the epidermis (right). Illustration from the National Cancer Institute 

and the Wikiversity Journal of Medicine.  

 

The epidermis consists mainly of keratinocytes which create the outermost barrier of the skin 

in a structure of multiple layers (Figure 1). From bottom to top, these histologically distinct 
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epidermal layers are termed stratum basale, stratum spinosum, stratum granulosum, stratum 

lucidum and stratum corneum. Keratinocytes in the stratum basale proliferate constantly and 

migrate upwards, thus forming the different epidermal layers. During this process, the 

keratinocytes differentiate in various stages until they finally die and shed off. Keratinocytes 

are thus forming the physical barrier of the skin, but more than that they are also important 

players in the immune surveillance of the skin by actively recognizing invading pathogens 

(Gutowska-Owsiak and Ogg, 2012).  

Besides keratinocytes, the epidermis also contains Langerhans cells, which are epidermis-

specific antigen-presenting dendritic cells that capture and present foreign antigens towards 

cells of the adaptive immune system (Romani et al., 2012). The basal layer of the epidermis 

also contains a population of melanocytes that produce melanin, a pigment that protects the 

organism from damages by UV irradiation (Brenner and Hearing, 2008), as well as Merkel 

cells, which sense tactile sensation (Halata et al., 2003).  

Below the epidermis is the dermis, which is characterized by collagen- and elastin-rich 

connective tissue. The extensive extracellular matrix in the dermis creates stability and 

flexibility of the skin and is majorly produced by fibroblasts. The dermis contains blood 

vessels, hair follicles, sweat glands and sebaceous glands. The hair follicle does not only 

produce hair, but serves also as a niche for epidermal stem cells (Blanpain and Fuchs, 2006). 

The dermis hosts a large number and variety of immune cells, among them macrophages, 

myeloid dendritic cells, plasmacytoid dendritic cells, T cells, B cells and NK cells, which 

altogether provide additional immune surveillance, memory of previous infections and a 

quick primary immune response against invading pathogens. It has been estimated that skin 

resident T cells outnumber T cells in the circulation by two to one (Clark et al., 2006), 

highlighting the importance of immune cells within the skin.  

Under the dermis, a layer of subcutaneous fat and connective tissue in varying thickness 

creates the third layer of the skin.  

 

1.1.1 The skin as an immune organ  

The skin can be regarded as a specialized lymphoid organ, sometimes referred to as SALT 

(skin-associated lymphoid tissue) (Streilein, 1983). According to this concept, different cells 

in the skin can recognize invading pathogens by the repertoire of the innate and adaptive 

immune system and induce a protective immune response.  
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The cells in the epidermis are important players in the immune surveillance of the skin. Due 

to their close proximity towards the environment they are the first cells encountering invading 

pathogens. Keratinocytes recognize conserved motifs of invading pathogens via Toll-like 

receptors (TLRs; chapter 1.2.1), thus being key players of the innate immune system 

(Pivarcsi et al., 2004; Miller, 2008). Keratinocyte activation by TLR stimulation, but also by 

other external stimuli, such as physical trauma or UV irradiation, induces the production of 

numerous cytokines, chemokines and antimicrobial peptides (chapter 1.2.4 - 1.2.6). These 

keratinocyte-derived inflammatory mediators serve as alarm signals for the innate and 

adaptive immune system, regulate the recruitment, activation and retention of immune cells 

(neutrophils, granulocytes, dendritic cell precursors and T cells) to the skin and modulate 

their function (Goodarzi et al., 2007; Nestle et al., 2009a) (Figure 2).  

 

 
Figure 2: The immune functions of keratinocytes in the skin upon invasion of pathogens. Illustration by Andor 

Pivarcsi.   

Immune cells can enter the skin by extravasation from the circulation. In a highly 

orchestrated cascade, leukocytes bind towards the endothelial cell wall of the blood vessel, 

using selectins and integrins as adhesion points (Ley et al., 2007). After initial rolling along 
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the vessel wall, the leukocytes become activated by chemokines. Leukocyte integrins (e.g. 

LFA-1, VLA-4) bind to endothelial immunoglobulin molecules (e.g. ICAM-1, VCAM-1), 

leading to the arrest of the cell at a specific site. The leukocytes then start to transmigrate 

between the endothelial cells into the tissue (Nourshargh et al., 2010). The precise 

coordination of time, tissue site and intensity of the recruitment of specific immune cells is 

required to maintain the balance between inflammation and tissue homeostasis (Li et al., 

2008).  

Langerhans cells act as antigen-presenting cells in the epidermis. They provide immune 

surveillance in the epidermis by phagocytic uptake of foreign material within the skin 

followed by antigen processing and presentation to cells of the adaptive immune system. This 

leads eventually to the activation of antigen-specific skin-homing T cells and a general 

attraction of immune cells into the skin (Romani et al., 2012). But also immune-suppressive 

functions of Langerhans cells have been discussed, potentially being responsible for the 

tolerance towards commensal bacteria on the skin (van der Aar et al., 2007).  

Cross-talk between keratinocytes, stromal cells and immune cells is of crucial importance for 

regulating physiological inflammatory reactions and homeostasis in the skin (Lowes et al., 

2014). An appropriate immune response of the skin towards local infections or wounds 

requires an orchestrated action of all cell types in the skin, involving pro-inflammatory 

cytokines and chemokines. Equally important are mechanisms to restore homeostasis after 

clearance of the infection. Resolution of inflammation is necessary to avoid tissue 

destruction, again involving all cells present. Failure of any cell type to terminate the 

inflammatory response may lead to the re-activation of other cells in the skin and thus start a 

vicious cycle of chronic inflammation. Therefore the communication of the different cell 

types in the skin with each other is a key factor in maintaining homeostasis. It is also highly 

relevant during the development of chronic inflammatory skin diseases such as psoriasis.  

 

1.1.2 The skin microbiome  

The skin is not sterile, instead it is inhabited by a large number of microorganisms, including 

bacteria, fungi, viruses and also mites (Grice and Segre, 2011). The composition of the skin 

microbiome is diverse and varies dependent on host and environmental factors. Host factors 

such as body site, sex and age but also genetic variances influence the skin microbiome 

largely. It is therefore individual and has recently even been shown to influence the microbial 
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composition of the environment (Lax et al., 2014). The colonization of the skin with non-

pathogenic commensal microbes appears to prevent the establishment and overgrowth of 

potentially pathogenic microbes, thus protecting the organism from infection (Sanford and 

Gallo, 2013). The skin on the other hand has during the co-evolution with microbes acquired 

the ability to tolerate commensals, but actively fight pathogens, by that maintaining the 

balance between homeostasis and inflammation. To distinguish between commensals and 

pathogens is therefore of major importance for preserving the integrity of the skin. 

Interestingly, TLR2 ligands prepared from commensals can have an immune-suppressive 

function on keratinocytes, compared to pro-inflammatory effects of TLR2 ligands prepared 

from pathogenic bacteria (Lai et al., 2009). These observations suggest that there are defined 

mechanisms and structures helping the immune system to differentiate between commensals 

and pathogens.   
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1.2 INNATE IMMUNITY  

1.2.1 Toll-like receptors  

Toll-like receptors (TLRs) recognize evolutionary conserved motifs of pathogens, so called 

pathogen-associated molecular patterns (PAMPs) (Kumar et al., 2011). In humans, 10 TLRs 

are known (TLR1 - TLR10), each having a specific class of binding ligands (Figure 3).  

TLR1, TLR2, TLR4, TLR5 and TLR6 are primarily expressed on the cell surface and they 

recognize PAMPs derived from bacteria, fungi or protozoae (Kawai and Akira, 2010). TLR2 

recognizes various lipopeptides derived from the cell wall of Gram-positive bacteria or fungi. 

TLR2 can recognize among others bacterial peptidoglycans and lipoteichoic acid 

(Schwandner et al., 1999), bacterial lipoarabinomannan (Underhill et al., 1999) and yeast-

derived zymosan (Ozinsky et al., 2000). It can form heterodimers with TLR1 or TLR6, 

specifically differentiating between tri-acetylated (TLR2-TLR1) and di-acetylated (TLR2-

TLR6) lipopeptides (Takeuchi et al., 2001; Takeuchi et al., 2002). TLR4 recognizes 

lipopolysaccharides (LPS, also termed endotoxin), a major component of the cell wall of 

Gram-negative bacteria (Poltorak et al., 1998). TLR5 recognizes flagellin, an evolutionary 

conserved globular protein in the flagella of bacteria, thus enabling the detection of 

flagellated bacteria (Hayashi et al., 2001).  

TLR3, TLR7, TLR8 and TLR9 are located in the endosomal compartments of the cell and 

recognize mainly viral and bacterial nucleic acids. TLR3 recognizes double-stranded RNA 

which is usually produced by RNA viruses, and is absent in mammalian cells (Alexopoulou 

et al., 2001). Of note, also certain siRNAs have been shown to trigger the stimulation of 

TLR3, raising concerns about the safety and side-effects of RNAi-based drugs (Kleinman et 

al., 2008). TLR7 and TLR8 recognize single-stranded RNA, mostly of viral origin (Diebold 

et al., 2004; Heil et al., 2004). Interestingly, microRNAs secreted by cancer cells have been 

shown to activate TLR8 signaling in immune cells, implicating that TLR signaling can also 

be triggered by non-pathogenic motifs and have a function in the communication between 

tumor cells and the immune system (Fabbri et al., 2012). TLR9 is specialized to recognize 

unmethylated CpG motifs in DNA, which occur in bacterial and viral DNA, but are very rare 

in mammalian cells (Bauer et al., 2001).  

No ligand is known so far for TLR10, but it has been suggested that TLR10 has a modulatory 

function by inhibiting the TLR2-dependent activation of peripheral blood mononuclear cells 

(PBMCs) (Oosting et al., 2014).  
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Human keratinocytes express several of the mentioned TLRs. There is consensus that TLR1, 

TLR2, TLR3 and TLR5 are expressed by human keratinocytes, while TLR7 and TLR8 are 

absent (Baker et al., 2003; Mempel et al., 2003; Kollisch et al., 2005; Lebre et al., 2007). The 

expression of TLR4, TLR6, TLR9 and TLR10 though is controversial; their presence on 

keratinocytes is seen in some of these studies, but not in others.  

 

1.2.2 TLR signaling  

Recognition of the regarding ligand by TLRs leads to an intracellular signaling cascade that 

induces an appropriate inflammatory response of the cell. In principal, two major signaling 

pathways can be distinguished, the MyD88-dependent production of pro-inflammatory 

cytokines and chemokines, and the TRIF-dependent expression of anti-viral interferons 

(Kawasaki and Kawai, 2014) (Figure 3).  

All TLRs have an intracellular Toll/IL-1 receptor (TIR) domain that can also be found on 

IL-1 receptors (Slack et al., 2000). Binding of the regarding ligand induces the dimerization 

of TLRs, which leads to the intracellular recruitment of adaptor molecules to the TIR domain. 

Four adaptor molecules are known, MyD88, TRIF, TRAM and TIRAP/MAL. All TLRs 

except TLR3 recruit MyD88 upon activation. TIRAP/MAL is a sorting adaptor that recruits 

MyD88 towards the activated TLR (Fitzgerald et al., 2001; Yamamoto et al., 2002; Kagan 

and Medzhitov, 2006). Kinases of the IRAK family subsequently connect with MyD88 and 

the following phosphorylation cascades lead to the activation of IRAK4 and IRAK1 (Li et al., 

2002). In this submembraneous signaling complex, the ubiquitin ligase TRAF6 is recruited 

and activated by self-polyubiquitination (Cao et al., 1996; Deng et al., 2000). TRAF6 binds 

then to TAK1, TAB1, TAB2 and TAB3, and in conjunction this signaling complex activates 

the NF-κB pathway by ubiquitination of NEMO (IKKγ) and phosphorylation of IKKβ 

(Ninomiya-Tsuji et al., 1999; Ajibade et al., 2013). The activated IKK complex then degrades 

IκB, which leads to the release of NF-κB (chapter 1.2.3).  

In addition to NF-κB, the TRAF6 / TAK1 signaling complex also activates MAPK pathways 

by phosphorylation, among them JNK, ERK1/2 and p38 (Kawasaki and Kawai, 2014). 

MAPKs are a large group of serine/threonine kinases that transduce a variety of cellular 

signals, including mitogenic (growth stimulating) and inflammatory signals (Cargnello and 

Roux, 2011). They mediate the activation of transcription factors (e.g. AP-1, Elk-1, PKC, 

p53), thus modulating the cellular activity. This transcriptional regulation influences for 
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example proliferation, differentiation, immune responses and apoptosis. The MAPK 

pathways overlap in many aspects; nonetheless a certain specificity in the cellular response 

can be attributed to the different pathways. In keratinoyctes, JNK is thought to regulate 

proliferation and differentiation, ERK1/2 promotes proliferation and survival, while p38 is 

rather associated with the induction of inflammation, differentiation and apoptosis (Eckert et 

al., 2002; Cargnello and Roux, 2011).  

 

Figure 3: Mammalian TLR signaling pathways. Reproduced with permission from (O'Neill et al., 2013).  

Some TLRs activate another, MyD88-independent signaling pathway for the induction of an 

inflammatory response. Upon TLR stimulation, TRIF is recruited directly to TLR3, and via 

TRAM also to TLR4. In contrast to the MyD88-dependent pathway, TRIF activation leads 

rather to the production of type I interferons, thus enforcing an antiviral response. Briefly, in 
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this pathway TRIF is binding and activating TRAF3 and TRAF6. While TRAF6 activates 

NF-κB and MAPK pathways, TRAF3 induces the activation of IRF3, a transcription factor 

leading to the expression of interferons and other antiviral genes (Kawasaki and Kawai, 

2014).  

 

1.2.3 NF-κB  

NF-κB is a transcription factor that becomes activated in response to cellular stress, for 

example by encounter of pathogens, inflammatory cytokines, UV irradiation or free radicals. 

Five different NF-κB proteins are known, p65 (RelA), RelB, cRel, p50 and p52 (Gilmore, 

2006). The NF-κB family of transcription factors acts as homo- or heterodimers. Dependent 

on the different combinations, NF-κB can act as a transcriptional activator (e.g. dimers 

containing p65 or cRel) or repressor (e.g. p50 or p52 homodimers). Each NF-κB combination 

has a certain specificity to distinct DNA binding sites, thus providing specification of the 

cellular response towards different stimuli (Bonizzi and Karin, 2004). The NF-κB subunits 

are usually bound to a member of the IκB family (IκBα, IκBβ, IκBε, BCL-3) in the 

cytoplasm, rendering them inactive. Pro-inflammatory stimulation of the cell by e.g. IL-1, 

TNF-α or TLR signaling induces the activation of the IKK complex, consisting of IKKα, 

IKKβ and NEMO (Hayden and Ghosh, 2004; Perkins, 2007). In case of TLR and IL-1 

signaling, TRAF6 and TAK1 play a major role during the activation of the IKK complex 

(chapter 1.2.2). The activated IKK complex phosphorylates IκB proteins which leads to their 

quick degradation. This classical pathway releases mostly the NF-κB subunits p50 and p65 

which can then translocate to the nucleus and act as transcription factors. In an alternative 

way (the non-canonical pathway), IKKα is activated by NIK and cleaves the NF-κB 

precursor p100 to its active form p52, which often forms a heterodimer with RelB. Moreover, 

certain stimulations such as UV irradiation or hypoxia have been suggested to induce atypical 

pathways of NF-κB activation by IKK-independent mechanisms such as direct degradation of 

IκB proteins (Perkins, 2007). Additionally, all NF-κB, IκB and IKK subunits are prone to 

extensive post-translational modifications such as phosphorylation, ubiquitination or 

acetylation, which have major impact on the activity, stability and binding specificity of NF-

κB and thus lead to the integration of signals from many different pathways (Perkins, 2006).  

In keratinocytes, NF-κB is involved in the quick inflammatory response of the cell towards 

different stimuli such as encounter of pathogens, cytokine stimulation or UV irradiation 

(Pasparakis, 2009). In mouse models, constituent activation of the NF-κB pathway in 



 

10 

keratinocytes by keratinocyte-specific deletion of IκBα or transgenic overexpression of IKKβ 

induces skin inflammation, highlighting the relevance of NF-κB in the inflammatory response 

of keratinocytes (Rebholz et al., 2007; Page et al., 2010). In line with this, in psoriasis, a 

chronic inflammatory skin disease, the NF-κB pathway is highly activated (Johansen et al., 

2005; Lizzul et al., 2005). Moreover, NF-κB has been shown to be crucial for the regulation 

of apoptosis and proliferation in keratinocytes, showing that NF-κB has multiple functions in 

keratinocyte biology (van Hogerlinden et al., 1999; Seitz et al., 2000; Lippens et al., 2011).  

 

1.2.4 Cytokines  

Cytokines are a category of relatively small proteins that transmit signals between different 

cells. In contrast to hormones, cytokines are present in the tissue at rather low concentrations 

(picomolar range), but their expression can be induced very strongly. Functionally, cytokines 

are mostly associated with the regulation of inflammation. They can be secreted by virtually 

all cells of the body, often in response to a stimulus. Cytokines form gradients within the 

tissue around the producing cell, thus influencing neighboring cells in decreasing intensity 

dependent on the distance. The cytokines that are most relevant in skin immunity and during 

the pathogenesis of psoriasis (see also chapter 1.3.2) are briefly described here:  

IL-1 cytokines are closely connected to inflammation and are major mediators of innate 

immunity. The IL-1 family of cytokines consists of 11 members, some of them acting pro-

inflammatory (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ), others anti-inflammatory 

(IL-1ra, IL-36ra, IL-37, IL-38) (Dinarello, 2011). IL-1 cytokines (except IL-1ra) are 

produced as precursors that require intra- or extra-cellular cleavage to gain full biological 

activity.  

IL-1 cytokines bind to a family of receptors, consisting of a combination of a main receptor 

and a co-receptor. IL-1 receptors contain the same intracellular TIR domain as TLRs. Similar 

to the situation in TLR signaling, the binding of IL-1 cytokines (the ligand) to the regarding 

receptor leads to a dimerization with the co-receptor upon which MyD88 is recruited towards 

the intracellular TIR domain of the receptor (O'Neill, 2008). IL-1 cytokines induce therefore a 

very similar signaling cascade as TLR ligands, leading to the activation of the NF-κB and 

MAPK pathways (chapter 1.2.2).  

IL-1α and IL-1β are produced by many cells in a very fast response to tissue injury or 

contact with pathogenic motifs. IL-1α is released upon necrosis, accounting for sterile 
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inflammation (Chen et al., 2007). Virtually all cells express the IL-1α / IL-1β receptors 

IL-1R1 / IL-1R2 and the co-receptor IL1RAcP. Upon encounter of IL-1α or IL-1β, cells react 

with a cell type-dependent strong inflammatory reaction, often involving the additional 

production of IL-1α and IL-1β in a positive feedback-loop (Weber et al., 2010). 

Keratinocytes encountering IL-1 produce a number of immune cell attracting chemokines 

(Sanmiguel et al., 2009). IL-1ra is a receptor antagonist, blocking the IL-1R1 receptor 

without induction of a response. Thus, IL-1ra acts anti-inflammatory. Of note, IL-1 is 

overexpressed in psoriasis lesions (Johnston et al., 2011), and recombinant IL-1ra (anakinra) 

is used off-label successfully for the treatment of pustular psoriasis (Viguier et al., 2010), 

hinting at the relevance of IL-1 signaling in psoriasis.  

IL-36 has three isoforms, IL-36α, IL-36β and IL-36γ. In contrast to IL-1, the IL-36 cytokines 

are expressed majorly in epithelial tissues, such as skin, lung and intestines (Kumar et al., 

2000; Debets et al., 2001). In skin, keratinocytes are a major source of IL-36; they have been 

shown to produce IL-36 upon stimulation with IL-17 (Carrier et al., 2011; Johnston et al., 

2011; Muhr et al., 2011). The receptor for IL-36 is composed of IL-1Rrp2 and the co-receptor 

IL-1RAcP. IL-36 signaling induces a strong activation of NF-κB and MAPK pathways 

including the transcription of downstream targets, suggesting that IL-36 mimics IL-1 

signaling in a tissue-specific basis (Towne et al., 2004). Several immune cells such as 

dendritic cells and monocytes are affected by IL-36 signaling in a pro-inflammatory manner 

(Foster et al., 2014). Murine T cells are skewed towards TH1 differentiation by IL-36 (Vigne 

et al., 2011; Vigne et al., 2012), but this is not reproducible in human T cells which lack the 

IL-36 receptor (Foster et al., 2014). Keratinocytes respond towards IL-36 stimulation with an 

inflammatory response. IL-36 induces NF-κB as well as MEK1/2, JNK and p38 activity in 

keratinocytes (Nguyen et al., 2012), leading to the production of antimicrobial peptides, 

chemokines and cytokines (Carrier et al., 2011; Johnston et al., 2011; Foster et al., 2014). 

IL-36ra is a receptor antagonist that blocks IL-36 signaling, comparable to the function of 

IL-1ra (Towne et al., 2011). IL-38 has been suggested to be another receptor antagonist for 

the IL-36 receptor, although its effect appears to be lower than that of IL-36ra (van de 

Veerdonk et al., 2012).  

IL-36 has been closely connected to the pathogenesis of psoriasis. IL-36 cytokines are 

overexpressed in psoriasis skin lesions (Debets et al., 2001; Blumberg et al., 2007; Johnston 

et al., 2011), while mutations of the anti-inflammatory receptor antagonist IL-36ra are 

associated with the development of pustular psoriasis (Marrakchi et al., 2011; Onoufriadis et 

al., 2011). Strikingly, transgenic mice overexpressing IL-36α in keratinocytes develop a 
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psoriasis-like skin phenotype. Additional deletion of IL-36ra worsens this phenotype, 

showing the relevance of IL-36 signaling in skin inflammation (Blumberg et al., 2007). 

Altogether, the IL-36 cytokines appear to be tissue-specific inducers of innate inflammation 

and their de-regulation in psoriasis renders them as attractive therapeutic targets.  

TNF-α is a very potent pro-inflammatory cytokine that is produced in the skin predominantly 

by mast cells and macrophages, but also by T cells and keratinocytes (Carswell et al., 1975; 

Kock et al., 1990). Its receptor is expressed on virtually all cells, inducing different pathways: 

Most relevant is the activation of NF-κB, which leads to an inflammatory response of the 

target cell. In addition, differentiation and proliferation is induced through the JNK MAPK 

pathway, while apoptosis is promoted via caspase-dependent pathways (Bradley, 2008; 

Aggarwal et al., 2012). The large influence of TNF-α on inflammation has made it an 

attractive target for therapy of inflammatory diseases. Indeed, monoclonal antibodies 

(infliximab, adalimumab) or soluble receptors (etanercept) targeting TNF-α are successfully 

used in the clinical treatment of psoriasis but also in other chronic inflammatory diseases 

(Krueger and Callis, 2004).  

IL-23 is produced by activated dendritic cells and macrophages, in the skin possibly also by 

keratinocytes (Piskin et al., 2006). IL-23 contributes to the TH17 lineage commitment during 

T cell differentiation and maintenance, thus favoring the TH17 effector response during 

inflammation (Wilson et al., 2007). IL-23 has been implicated to contribute majorly to the 

pathogenesis of chronic inflammation, such as in psoriasis (Chan et al., 2006). An antibody 

targeting the p40 subunit of IL-23 (ustekinumab) is used clinically for the treatment of 

psoriasis (Gaffen et al., 2014).  

IL-17 is the originally defining cytokine of TH17 cells. In addition to TH17 cells, also other 

cells such as γδT cells and innate lymphoid cells can produce IL-17 in the skin (Cua and 

Tato, 2010). Neutrophils have recently been shown to be a relevant source of IL-17, 

especially in psoriasis lesions (Lin et al., 2011; Keijsers et al., 2014). IL-17 acts as a pro-

inflammatory cytokine, inducing the production of various cytokines, chemokines and 

colony-stimulating factors (e.g. IL-1β, IL-6, IL-8, CXCL1, GM-CSF) in a range of cells, 

among them macrophages and keratinocytes (Korn et al., 2009). IL-17 is a central cytokine in 

the pathogenesis of psoriasis, as evidenced by the efficacy of anti-IL-17 / IL-17 receptor 

antibodies in clinical trials (Chiricozzi and Krueger, 2013). 

IL-22 is an effector cytokine which is produced by various immune cells, especially by TH1, 

TH17 and TH22 cells (Rutz et al., 2013). Interestingly, IL-22 targets mainly epithelial cells, in 
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the skin keratinocytes (Wolk et al., 2009). IL-22 induces the production of a series of 

antimicrobial peptides and granulocyte-attracting chemokines, supporting a role in anti-

bacterial defense mechanisms. Moreover, it suppresses the differentiation process of 

keratinocytes, possibly supporting repair mechanism in the skin (Sabat et al., 2014). All these 

processes are disturbed in psoriasis, making IL-22 a highly relevant target in therapeutic 

approaches.  

TGF-β is a multipotent cytokine that has a strong chemoattractant potential. TGF-β is 

produced by many cell types, including immune cells and keratinocytes. It controls 

proliferation, differentiation, immunity and other cellular functions in a highly context-

specific manner via SMAD signaling (Massague, 2012). In inflammatory processes, TGF-β 

acts both stimulatory and inhibitory, likely orchestrating a balance between inflammation and 

homeostasis (Wahl, 1994). In keratinocytes, TGF-β signaling promotes homeostasis by 

suppressing proliferation, and supports re-epithelialization during wound healing (Shirakata, 

2010; Ramirez et al., 2014). Keratinocyte-specific overexpression of TGF-β1 in a mouse 

model leads to psoriasis-like skin inflammation, suggesting a substantial contribution of 

TGF-β to the pathogenesis of psoriasis (Liu et al., 2001; Han et al., 2010).  

IFN-γ is a key cytokine produced by TH1 cells. IFN-γ induces an antiviral state via IRF 

transcription factors in a variety of cells (Schroder et al., 2004). In keratinocytes, IFN-γ leads 

to the increased production of chemokines, cell adhesion molecules and HLA genes, which is 

in accordance with its antiviral function (Banno et al., 2003). In psoriasis, IFN-γ is highly 

overexpressed (Kaneko et al., 1990).  

 

1.2.5 Chemokines 

Chemokines are small peptides, which can induce directed chemotaxis in nearby responsive 

cells, thus contributing to the intercellular communication (Griffith et al., 2014). More than 

40 chemokines in different structural families are known today. While some chemokines are 

constitutively expressed, most are of inflammatory nature and are secreted only upon 

stimulation. The secretion of chemokines by a cell leads to the formation of a chemotactic 

concentration gradient within the tissue. Migratory cells with regarding chemokine receptors 

follow this gradient and are thus attracted to the chemokine producing cell. The chemotactic 

gradient reaches also the blood vessels and can therefore attract circulating immune cells 

from the blood stream into the tissue at a specific site (Comerford and McColl, 2011). 
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Different cell types express different sets of chemokine receptors; therefore the secretion of a 

certain chemokine mixture will attract specific immune cells.  

In the skin, keratinocytes are a major source of chemokines during inflammation (Mabuchi et 

al., 2012; Singh et al., 2013b). Upon tissue damage or infection, keratinocytes produce 

chemokines which are secreted to the extracellular space (Figure 2). Their production and 

secretion leads to the activation of endothelial cells and to the chemotactic attraction of 

immune cells, in particular neutrophils, monocytes/macrophages, eosinophils, T cells and 

dendritic cells into the skin.  

Highly relevant in skin immunity are the chemokines IL-8 (also known as Neutrophil-

activating peptide; NAP, systematic name: CXCL8), CXCL1 (Growth regulated oncogene-α; 

GROα) and CXCL2 (Growth regulated oncogene-β; GROβ) which attract and activate 

neutrophils expressing the receptors CXCR1 and CXCR2 (Larsen et al., 1989; Schumacher et 

al., 1992). IL-8 is also known to be a potent promoter of angiogenesis (Koch et al., 1992). 

The keratinocyte-produced chemokine CCL20 (Macrophage inflammatory protein-3α; MIP-

3α) is the only ligand of CCR6 (Baba et al., 1997; Power et al., 1997). A large number of 

immune cells expresses CCR6 (Schutyser et al., 2003), among them TH17 cells and 

regulatory T cells, but not TH1 or TH2 cells (Yamazaki et al., 2008), showing that CCL20 

may attract only a specific subset of T cells to the skin. CCL5 (Regulated on activation, 

normal T cell expressed and secreted; RANTES) attracts cells which express the receptors 

CCR1, CCR3 or CCR5 (monocytes, dendritic cells, TH cells, basophils, eosinophils, 

neutrophils, NK cells, mast cells). CCL5 therefore attracts a very mixed population of 

immune cells. CCL5 and its receptors CCR1/3/5 have been targeted for therapeutic 

approaches in infectious and autoimmune diseases (Marques et al., 2013). The interferon-

inducible chemokines CXCL9 (Monokine induced by gamma interferon; MIG), CXCL10 

(Interferon gamma-induced protein 10; IP-10) and CXCL11 (Interferon-inducible T-cell 

alpha chemoattractant; I-TAC) all recruit effector T cells by their receptor CXCR3, thus 

enforcing an antiviral reaction (Groom and Luster, 2011). CCL27 (Cutaneous T-cell-

attracting chemokine; CTACK) attracts skin-homing T cells via CCR10. Interestingly, a 

majority of T cells in inflamed skin expresses CCR10, a phenotype that is not seen in other 

organs (Morales et al., 1999; Homey et al., 2002).  
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Table 1: Examples of keratinocyte-derived chemokines and their function   

Chemokine 
corresponding 
chemokine receptor 

Cell type attracted 

IL-8  
CXCL1  
CXCL2  

CXCR1 / CXCR2 Neutrophils 

CCL20 CCR6 TH17 cells, Treg cells, dendritic cells, monocytes  

CCL5 CCR1 / CCR3 / CCR5 
monocytes, dendritic cells, TH cells, basophils, 
eosinophils, neutrophils, NK cells, mast cells 

CXCL9  
CXCL10  
CXCL11 

CXCR3 T cells 

CCL27 CCR10 T cells 

CCL2 CCR2 monocytes, TH1 cells  

CCL17 CCR4 TH1, TH17 cells  

 

In addition to leukocytes, also endothelial cells express a series of chemokine receptors. 

Keratinocyte-derived chemokines can activate endothelial cells, thus facilitating the 

extravasation of leukocytes from the circulation into the tissue, but also enforce angiogenesis 

which leads to the formation of new blood vessels in the inflamed tissue (Speyer and Ward, 

2011).  

The mixture of chemokines secreted by keratinocytes upon inflammatory stimulation (e.g. by 

TLR ligands, cellular stress or cytokine signaling), can attract specific subsets of immune 

cells in a coordinated timely manner. Normally, the secretion of chemokines by keratinocytes 

is only transient, thus enabling the restoration of homeostasis after clearance of the inducing 

trigger. However, in psoriasis skin lesions the described chemokines are up-regulated 

(Mabuchi et al., 2012; Singh et al., 2013b), supporting a role for chemokines in sustaining 

chronic inflammation by constantly recruiting immune cells to the skin.  

 

1.2.6 Antimicrobial peptides  

Antimicrobial peptides (AMPs) are important components of the innate immune system to 

control infections. AMPs can destroy pathogens by various direct and indirect mechanisms, 

targeting bacteria, viruses, fungi and protozoa (Izadpanah and Gallo, 2005). Electrostatic 

interaction of positively charged AMPs with the negatively charged membrane of a microbe 

leads to the formation of pores and to the disruption of the membrane, thus killing the 
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microbe within seconds (Loeffler et al., 2001). AMPs also interact with and inhibit microbial 

proteins and disturb DNA or RNA synthesis (Bahar and Ren, 2013). In the skin, 

keratinocytes are a major source of AMPs, the most important being β-defensins, S100 

proteins and the cathelicidin LL-37 (Bardan et al., 2004). Interestingly, in psoriasis many 

AMPs are highly overexpressed, which has recently been implicated in the disease 

pathogenesis (chapter 1.3.2) (Morizane and Gallo, 2012). Moreover, increased genomic copy 

numbers of β-defensin genes were associated with the risk to develop psoriasis, suggesting a 

functional connection (Hollox et al., 2008).  
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1.3 PSORIASIS  

Psoriasis is a chronic inflammatory skin disease which affects approximately 2-3 % of the 

worldwide population (Lowes et al., 2007). The prevalence of psoriasis differs between 

populations, peaking in northern Europe and being significantly less common in Asia and 

South America (Christophers, 2001). Psoriasis is a life-long disease with significant impact 

on the quality of life (Dowlatshahi et al., 2014; Ronneberg Mehren et al., 2014). Disease 

onset can occur at any age but is most common in young adults. Although treatment options 

have increased during the past years, no cure is known for psoriasis. The most common type, 

psoriasis vulgaris (plaque type psoriasis), is characterized by erythematous plaques of the 

skin with well-defined borders and silvery scales (Figure 4). Less common phenotypes 

include guttate, inverse, pustular, erythrodermic and palmo-plantar psoriasis.  

Figure 4: Psoriasis plaques.  

Histologically, plaque psoriasis lesions show an increased thickening of the epidermis, in 

conjunction with incomplete keratinocyte differentiation of the upper layers, leading to the 

retention of nuclei in the stratum corneum (Figure 5). The basal layers of the epidermis are 

characterized by increased keratinocyte proliferation and elongated epidermal rete ridges. 

More dermal blood vessels are formed, responsible for the redness of the lesions. Moreover, a 

massive immune cell infiltrate can be observed in both dermis and epidermis, containing T 

cells, dendritic cells and others. Very characteristic is the presence of neutrophils in the 

epidermis and especially in the stratum corneum (Perera et al., 2012; Lowes et al., 2014).  

Patients affected by psoriasis often develop co-morbidities. Nail dystrophy, psoriatic arthritis, 

depression, Crohn’s disease, squamous cell carcinoma and lymphoma are associated with 

psoriasis. Recently, also cardiovascular diseases, diabetes and metabolic syndrome / obesity 

have been epidemiologically associated with psoriasis (Lowes et al., 2014). The connection 

of the skin disease psoriasis with seemingly not skin related systemic diseases reveals that 

psoriasis may affect the whole organism and systemic inflammation may be an 

underestimated problem in psoriasis patients.  
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Figure 5: Histological section of healthy skin (left) and psoriasis lesional skin (right).  

In psoriasis, a complex interplay between the different cell types in the skin causes chronic 

inflammation. The underlying cause of psoriasis is unknown, but both genetic risk factors as 

well as environmental triggers have been identified to contribute to the pathogenesis of 

psoriasis.  

 

1.3.1 The genetic background of psoriasis  

Psoriasis has a high concordance rate in monozygotic twins (up to 70 %) compared to 

dizygotic twins (up to 20 %), suggesting a strong genetic component in disease pathogenesis 

(Bowcock, 2005). Nonetheless, the lack of complete inheritance in monozygotic twins 

indicates that additional factors contribute to the development of psoriasis.  

Up till now, 36 different psoriasis susceptibility loci have been identified over the past years 

(Tsoi et al., 2012). The genetic locus PSORS1 on chromosome 6 shows the strongest 

association to psoriasis with HLA-Cw*0602 as the main disease causing variant (Nair et al., 

2006). HLA-C is expressed by dendritic cells to present antigens to CD8pos T cells. But also 

keratinocytes express HLA-C and are thought to interact via this molecule with NK cells 

(Dunphy and Gardiner, 2011). Linkage analysis in families as well as large-scale genome-

wide association studies (GWAS) have identified other susceptibility loci, most of which 

involve genes that are connected to immune responses (Nair et al., 2009; Zhang et al., 2009; 

Ellinghaus et al., 2010; Genetic Analysis of Psoriasis et al., 2010; Tsoi et al., 2012). Genetic 

loci with a number of genes involved in the NF-κB pathway (e.g. TNFAIP3, TNIP, 

TRAF3IP2, NFKBIA) were shown to be associated with the risk to develop psoriasis, 

suggesting a major contribution of the innate immune system to psoriasis pathogenesis (Tsoi 

et al., 2012). In line with this, genetic mutations of CARD14, a regulator of the NF-κB 



 

 19 

pathway, were shown to be causal for the development of psoriasis in several families (Jordan 

et al., 2012). Genetic deletion of late cornified envelope (LCE) genes which are relevant for 

the differentiation of keratinocytes have also been associated with the risk to develop 

psoriasis, thus presenting a genetic connection of a skin-specific gene (de Cid et al., 2009).  

In some families mutations of IL-36ra have been reported to be associated with a rare 

phenotype of psoriasis, pustular psoriasis. The anti-inflammatory effect of IL-36ra was 

decreased by the mutation, likely explaining the development of severe inflammatory 

pustular psoriasis in these patients (Marrakchi et al., 2011; Onoufriadis et al., 2011). Thus, 

even though psoriasis is generally considered as a complex genetic disease, some phenotypes 

may appear as monogenic disease traits, indicating that psoriasis is highly heterogeneous and 

associated with a variety of underlying causes and triggers. Interestingly, association of 

certain risk loci seems also to depend on the age of disease onset, suggesting that a strict 

stratification of study populations might be needed to reveal underlying genetic causes of 

psoriasis (Lysell et al., 2013).  

 

1.3.2 The pathogenesis of psoriasis  

The pathogenesis of psoriasis is not fully understood, but evidence from extensive research 

has led to a model where interaction of multiple cell types within the skin establishes a cycle 

of chronic inflammation. This process has been described as the IL-23 / TH17 / IL-22 axis of 

psoriasis (Di Cesare et al., 2009; Nestle et al., 2009b) (Figure 6).  

Psoriasis can be triggered by several environmental stimuli, all of them also known to worsen 

the ongoing disease. Infections, especially by streptococci, physical trauma and certain 

medications can trigger psoriasis (Abel et al., 1986; Raychaudhuri et al., 2008; Valdimarsson 

et al., 2009). In conjunction with a certain genetic background rendering a person susceptible 

to psoriasis, these and other triggers may lead to cellular stress in the skin, inducing an 

inflammatory response of local keratinocytes. Activated keratinocytes produce large amounts 

of antimicrobial peptides such as LL-37 (Frohm et al., 1997). LL-37 can form complexes 

with self-DNA which may be released from necrotic cells in the stressed skin. These LL-37 / 

DNA complexes can trigger the activation of plasmacytoid dendritic cells (pDCs) in a TLR7 / 

TLR8 / TLR9-dependent manner (Lande et al., 2007; Ganguly et al., 2009). Also other 

antimicrobial peptides secreted by keratinocytes (β-defensin-2, β-defensin-3, lysozyme) can 

complex with DNA and activate pDCs in a TLR9-dependent fashion (Lande et al., 2014), 
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thus potentially breaking the immunological tolerance of the skin. pDCs release IFN-α upon 

activation (Cella et al., 1999), which has clinically been shown to induce psoriasis (Funk et 

al., 1991) and is present at increased concentrations in psoriasis lesions (Nestle et al., 2005; 

Yao et al., 2008). Myeloid dendritic cells (mDCs) may become activated in the local 

inflammatory milieu and migrate to the draining lymph nodes where they activate T cells, 

although it remains debatable what antigen might be presented during this interaction. 

Activated mDCs, but also keratinocytes produce high levels of IL-23, which favors the 

polarization and maintenance of TH17 cells and can be found at increased concentrations in 

psoriasis lesions (Piskin et al., 2006; Wilson et al., 2007; McGeachy et al., 2009). 

Neutralization of IL-23 by monoclonal antibodies is used successfully in the treatment of 

psoriasis (ustekinumab) (Gandhi et al., 2010), suggesting that IL-23 indeed has a major 

impact on the pathogenesis of psoriasis.  

TH17 as well as TH22 cells express CCR6 and can thus be attracted via keratinocyte-produced 

CCL20 to the skin (Trifari et al., 2009; Mabuchi et al., 2012). In this model, activated TH17 

and TH22 cells migrate towards the skin and contribute to an inflammatory reaction. 

Accordingly, TH17 and TH22 cells are abundant in psoriasis lesions and have been implicated 

to play a driving role in many autoimmune disorders (Lowes et al., 2008; Eyerich et al., 2009; 

Singh et al., 2014). TH17 and TH22 cells produce a series of pro-inflammatory cytokines, 

most prominent IL-17 and IL-22, which have major effects on keratinocytes. The activation 

of keratinocytes by IL-17 and IL-22 leads to hyperproliferation (Zheng et al., 2007; Wolk et 

al., 2009; Rizzo et al., 2011) and to the production of chemokines (Albanesi et al., 2000; 

Homey et al., 2000; Wolk et al., 2004; Boniface et al., 2005) which in turn attract more 

immune cells into the skin. Thus, a vicious cycle of continuous inflammation is initiated, 

leading to the observed clinical phenotype of psoriasis lesions.  

Many pro-inflammatory chemokines are up-regulated in psoriasis skin lesions and influence 

the cellular composition in the skin (Mabuchi et al., 2012). CCL20 for example is 

overexpressed in psoriasis skin (Homey et al., 2000). Its selective attraction of CCR6pos cells 

could explain the massive infiltrate of TH17 cells in psoriasis lesions (Yamazaki et al., 2008). 

Keratinocytes in psoriasis lesions produce also increased levels of CCL2, which attracts 

monocytes via CCR2 (Vestergaard et al., 2004). The overexpression of IL-8 (CXCL8) in 

psoriasis lesions could account for the massive infiltration of neutrophils into the epidermis 

via CXCR1 / CXCR2 (Gillitzer et al., 1996).  
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Figure 6: Model of the pathogenesis of psoriasis by the IL-23/TH17/IL-22 axis. Reproduced with permission 

from (Nestle et al., 2009b). Copyright Massachusetts Medical Society.  

The relevance of the intercellular communication for disease pathogenesis is seen in the 

recent development of drugs targeting the mentioned pathways, so called biologics. Drugs 

targeting TNF-α and the p40 subunit of IL-12 / IL-23 are readily used in clinical practice, 

while drugs against IL-17, the IL-17 receptor and the IL-23 p19 subunit are recently in 

clinical trials (Leonardi et al., 2015). The cross-talk between keratinocytes and immune cells 

becomes also obvious in mouse models where the keratinocyte-specific deletion of a disease-

relevant gene has systemic effects that are modulated by the immune system (Wagner et al., 

2010). For example mice with a keratinocyte-specific knock-out of c-Jun and JunB develop 

psoriasis-like inflammation in the skin, but also arthritis which is mediated by T and B cells 

(Zenz et al., 2005). On the other hand, in a model of xenotransplantation of human skin onto 

SCID mice, psoriasis non-lesional skin can be induced to develop full-fledged psoriasis 
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plaques upon dermal injection of activated immune cells, suggesting that the cells of the 

immune system influence the behavior of keratinocytes (Wrone-Smith and Nickoloff, 1996).  

Many other cell types are involved in the cross-talk during chronic inflammation, and many 

of the connections between the cells are not well understood. Nonetheless, this currently most 

accepted model of psoriasis pathogenesis explains many of the manifestations seen in 

psoriasis patients.  

In healthy skin, a similar inflammatory reaction might be induced by environmental triggers 

(Stamatas et al., 2013). However, in difference to patients affected by psoriasis, upon 

clearance of the inducing trigger, the inflammation is resolved and the skin returns back to 

homeostasis. Why these mechanisms fail in psoriasis patients remains unclear. Genetic 

predispositions as described above are part of the explanation, but this cannot in all cases 

account for the lack of resolution of inflammation.  
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1.4 NON-CODING RNAS  

The human genome consists of approximately 3 billion base pairs, but only 1-2 % are 

encoding for protein-coding genes (Lander et al., 2001). While the rest of the genome was 

originally considered as “junk DNA”, it is becoming increasingly recognized that the vast 

majority of the DNA has functional relevance besides structural stability (Claverie, 2005). 

Large-scale sequencing projects have revealed that at least 80 % of the genome has functional 

relevance, being transcribed into RNA or physically interacting with proteins (Consortium, 

2012). A surprisingly large variety of RNAs is actively transcribed and can be grouped into 

several categories. Besides the protein-coding genes (mRNAs), a very heterogeneous group 

of non-coding RNAs with diverse functionality is present in cells (Morris and Mattick, 2014). 

Often forgotten, tRNAs and rRNAs are non-coding RNAs that fulfill basic functions in the 

cellular metabolism during translation from mRNA to protein, they belong to the most 

important housekeeping genes. Also active in the basic metabolism are small nuclear RNAs 

(snRNA) including small nucleolar RNAs (snoRNAs), which are involved in the splicing of 

mRNA (Matera et al., 2007).  

The field of regulatory RNAs has been emerging with advances in sequencing technologies 

and large scale analysis of non-coding RNAs. MicroRNAs (miRNAs) are the most prominent 

and best studied regulatory RNAs (chapter 1.4.1). Other regulatory non-coding RNAs 

include Piwi-interacting RNAs (piRNAs), which are thought to sustain genomic integrity by 

the repression of retrotransposons (Luteijn and Ketting, 2013). Long non-coding RNAs 

(lncRNAs) are a very heterogeneous group of RNAs longer than 200 nucleotides, but 

spanning up to several thousands of nucleotides. They can be located in intergenic or intronic 

regions of the genome, but they can also be a sense or antisense transcript from known 

mRNAs. LncRNAs regulate gene expression by a variety of mechanisms, often acting as a 

scaffold for other molecules, connecting proteins, genomic DNA, mRNAs and other 

regulatory RNAs (Fatica and Bozzoni, 2014). Recently, a novel class of circular RNAs 

(circRNAs) has been discovered. Functionally, one of the circRNAs was shown to be 

involved in the intracellular transportation of miRNAs, suggesting yet an additional 

mechanism of gene regulation by RNAs (Memczak et al., 2013).  
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1.4.1 microRNAs  

MicroRNAs (miRNAs) are 20-23 nucleotide long single-stranded RNA molecules that 

regulate gene expression by post-transcriptional silencing of a specific set of target genes. 

The discovery of the first miRNA (lin-4) (Lee et al., 1993) was originally regarded as a 

peculiarity of the worm Caenorhabditis elegans. The second miRNA to be known (let-7) was 

identified several years later, again in Caenorhabditis elegans (Reinhart et al., 2000), but 

shortly after, it became apparent that miRNAs are a whole class of short non-coding RNAs 

(Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001). Nowadays, more than 

2500 miRNAs are known in human (Kozomara and Griffiths-Jones, 2014).  

 
Figure 7: The biogenesis of miRNAs. Reproduced with permission from (Sonkoly and Pivarcsi, 2009).  

 

MiRNAs are usually encoded by genes containing promoters and transcription factor binding 

sites and are transcribed by the RNA polymerase II, just like protein-coding genes (Ha and 

Kim, 2014) (Figure 7). The expression of miRNAs therefore underlies classical 

transcriptional regulation (Lee et al., 2004). The primary miRNA transcript (pri-miRNA) is 

processed in the nucleus by DGCR8 and the endonuclease Drosha to a ~ 70 nucleotide long 

miRNA precursor (pre-miRNA) (Lee et al., 2003). The pre-miRNA forms a hairpin structure 

and is exported from the nucleus by Exportin 5 coupled to Ran-GTP (Yi et al., 2003; Lund et 

al., 2004). In the cytoplasm, the hairpin of the pre-miRNA is further cleaved by the enzyme 

Dicer, leaving a short double-stranded RNA duplex (Ketting et al., 2001). One of the two 

strands, the mature miRNA, is subsequently incorporated into the RNA-induced silencing 
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complex (RISC) that contains proteins of the argonaute (Ago) family as central components 

(Hutvagner and Zamore, 2002). The miRNA within the RISC complex then binds to the 3'-

UTR of its target gene. This binding can be imperfect, but requires the seed sequence 

(nucleotide 2-8 of the miRNA) to be fully complementary. Upon this binding the target 

mRNA is either degraded, or protein translation is inhibited, in both cases leading to reduced 

protein expression (Huntzinger and Izaurralde, 2011). Predictions about which mRNAs are 

directly targeted by a miRNA are challenging, due to the short seed sequence and the 

imperfect base pairing between miRNA and mRNA (Brennecke et al., 2005; Brodersen and 

Voinnet, 2009). 

Many miRNAs are evolutionary highly conserved from worm to human (Lau et al., 2001). 

Interestingly, also many miRNA binding sites in the 3'-UTR of mRNAs are highly conserved, 

hinting at a solid co-evolution (Friedman et al., 2009). Some miRNAs which share major 

sequence similarities especially in the functionally relevant seed sequence are categorized in 

miRNA families. MiRNAs belonging to the same family are often encoded in close 

proximity within the genome, thus forming clusters (Altuvia et al., 2005; Mathelier and 

Carbone, 2013).   

MiRNAs are estimated to regulate the expression of more than 60 % of all genes, it is thus 

not surprising that miRNAs have been implicated to affect virtually all biological processes 

(Friedman et al., 2009). A single miRNA regulates dozens to hundreds of genes (Krek et al., 

2005; Lim et al., 2005; Friedman et al., 2009). Usually, the target genes are repressed by a 

miRNA only modestly (Baek et al., 2008; Selbach et al., 2008). However, since the targets of 

a miRNA often belong to the same biological pathways (Grun et al., 2005; Lall et al., 2006), 

a miRNA may have a major effect on the overall functional behavior of a cell. MiRNAs have 

therefore been attributed as fine-tuners of gene expression which keep the protein 

concentration of all its targets in the precise optimal range and thus contribute to tissue 

homeostasis (Bartel, 2004, 2009).  

The miRNA signature is often tissue-specific (Lim et al., 2005; Sood et al., 2006); it has been 

suggested that miRNAs suppress the expression of all genes that should not be present in a 

certain tissue to inconsequential levels, therefore contributing to tissue identity (Bartel and 

Chen, 2004). MiRNAs play a crucial role during development, as demonstrated by the fact 

that mice without miRNAs (knock-out of Dicer or DGCR8) are not viable (Bernstein et al., 

2003; Wang et al., 2007). Also deletion of a single miRNA can lead to severe developmental 

defects, as shown by for example neonatal lethality of miR-205 knock-out mice (Wang et al., 
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2013). But in most cases the deletion of a single miRNA in vivo has little or no effect on 

viability, and for many miRNA deletions no obvious phenotype has been reported (Park et 

al., 2010). Redundancies with other miRNAs, potentially from the same family, may account 

for this observation, nonetheless it has been noted that many miRNA knock-out mice display 

an altered phenotype only upon injury or stress (Mendell and Olson, 2012). For example 

miR-22 knock-out mice do not exhibit any obvious phenotype, but upon external stress 

(isoproterenol treatment), the miR-22 knock-out mice are prone to develop cardiomyopathies 

(Huang et al., 2013). These observations support the hypothesis that a main function of 

miRNAs is to maintain cellular homeostasis upon external instabilities.  

 

1.4.2 microRNAs in diseases  

MiRNAs have been shown to be deregulated in a large variety of human diseases. In many 

different types of cancer substantial differences in the miRNA expression profile were 

detected; moreover, the discovery of specific oncogenic miRNAs (onco-miRs) and tumor 

suppressor miRNAs has shed light on the significance of miRNAs during tumorigenesis (Lu 

et al., 2005; Garzon et al., 2009; Iorio and Croce, 2012). MiRNAs are deregulated in and 

have been implicated to impact several autoimmune diseases, among them psoriasis (chapter 

1.4.3), rheumatoid arthritis, diabetes, multiple sclerosis, systemic lupus erythematosus, 

Sjögrens syndrome, inflammatory bowel disease (Pauley et al., 2009; Ceribelli et al., 2012; 

Singh et al., 2013a; Qu et al., 2014). MiRNAs are also involved in other disease types, for 

example in cardiovascular diseases (Hata, 2013) or neurodegenerative disorders (Abe and 

Bonini, 2013). Interestingly, miRNA expression profiles have been shown to robustly classify 

various cancers, while mRNA expression profiles from the same samples were inaccurate, 

proposing miRNAs as potential biomarkers (Lu et al., 2005).  

In recent years, it has been shown that most cells release miRNAs to the extracellular 

environment, either packaged in vesicles / exosomes, or bound to protein complexes 

protecting from the degradation by RNases, thus being remarkably stable (Valadi et al., 2007; 

Arroyo et al., 2011). Exosomal miRNAs were shown to be taken up and processed by other 

cell types, thus representing a novel mode of communication between cells (Valadi et al., 

2007). Extracellular miRNAs can be detected in various body fluids such as serum, which 

makes them interesting as easily accessible potential biomarkers (Chen et al., 2008; Mitchell 

et al., 2008). Indeed, serum miRNAs were acknowledged to distinguish between health and 

disease in a large number of disorders, especially cancers (Reid et al., 2011), though a lack of 
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disease specificity has been an issue with this approach so far (Witwer, 2014). Moreover, 

miRNAs have been discussed to predict therapy response, which might improve clinical 

treatment options (Schwarzenbach et al., 2014).  

MiRNAs have early on been proposed as promising therapeutic targets. Since many miRNAs 

target a large number of genes involved in the same biological pathways, a fine-tuned 

restoration of the healthy state could possibly be achieved by miRNA therapeutics. Moreover, 

due to the large number of miRNA targets the risk to develop drug resistances in cancer is 

considered to be relatively low (Broderick and Zamore, 2011; van Rooij et al., 2012). Drugs 

targeting several different miRNAs have been developed for the treatment of various 

diseases, and the first ones are already in clinical trials (miR-122 inhibition for treatment of 

hepatitis C; inhibition of miR-34 for treatment of hepatic cancer) (van Rooij and Kauppinen, 

2014). These encouraging results hold promise for the development of novel therapeutic 

strategies also in chronic inflammatory diseases.  

 

1.4.3 microRNAs in psoriasis  

Our group has previously analyzed the miRNA expression profile of psoriasis lesional skin 

and identified a set of miRNAs to be differentially expressed (Sonkoly et al., 2007). The 

miRNA profile of psoriasis skin lesions has been confirmed by other studies (Zibert et al., 

2010; Joyce et al., 2011; Lerman et al., 2011). We have also studied the level of circulating 

miRNAs in serum of psoriasis patients and found four miRNAs to be changed compared to 

healthy controls (Pivarcsi et al., 2013). In full blood another panel of miRNAs was shown to 

be differentially expressed between psoriasis patients and healthy individuals (Lovendorf et 

al., 2014).  

Several of the miRNAs which are de-regulated in psoriasis skin lesions have been studied in 

functional detail: MiR-203 was identified as the first skin-specific miRNA by our group 

which is up-regulated in psoriasis and was shown to regulate keratinocyte differentiation (Yi 

et al., 2008; Sonkoly et al., 2010). We have shown that miR-125b is down-regulated in 

psoriasis and regulates proliferation and differentiation of keratinocytes (Xu et al., 2011). We 

have also identified miR-21 to be up-regulated in psoriasis and to suppress T cell apoptosis 

(Meisgen et al., 2012). Interestingly, targeting of miR-21 in mouse models of psoriasis by 

miRNA inhibitors could ameliorate the disease phenotype and showed a similar efficacy as 

anti-TNF therapy (Guinea-Viniegra et al., 2014). This shows the pathogenic role of 
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deregulated miRNAs in vivo and demonstrates the potential of miRNA-based drugs in the 

treatment of psoriasis. Several other miRNAs have been identified in psoriasis, for example 

miR-424 (Ichihara et al., 2011) and miR-99a (Lerman et al., 2011), which both affect the 

proliferative capacity of keratinocytes. Altogether, these studies highlight the relevance of 

miRNAs in psoriasis and their potential involvement during disease pathogenesis.  
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2 AIMS 

This thesis aims to explore the role of miRNAs in skin immunity and psoriasis. The intention 

of this work is to understand the regulation and function of miRNAs in skin immunity and 

their contribution to pro- or anti-inflammatory processes during the innate immune reactions 

of keratinocytes.  

 

In particular the objectives of this work are:  

 to identify miRNAs involved in the innate immune response of keratinocytes (Paper I),  

 to study the role of miR-146a in the innate immune function of keratinocytes (Paper II),  

 to explore the role of miR-146a in psoriasis (Paper III), and 

 to investigate the regulation and function of miR-31 in psoriasis (Paper IV).  
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3 MATERIALS AND METHODS 

Skin biopsies  

Four-millimeter punch biopsies were taken from non-lesional and lesional skin of patients 

with moderate to severe chronic plaque psoriasis, and from noninflamed, nonirritated skin of 

healthy individuals. The psoriasis patients had not received systemic immunosuppressive 

treatment or psoralen + UVA / solarium / UV for at least one month and topical therapy for at 

least two weeks before skin biopsy. The clinical material was obtained after informed consent 

and the study was approved by the Stockholm Regional Ethics Committee and conducted 

according to the Declaration of Helsinki’s principles.  

Isolation of CD45neg epidermal cells  

Freshly taken biopsies were incubated in dispase (5 U/ml) over night at 4°C to separate 

dermis and epidermis. The epidermal sheets were digested with a trypsin / EDTA mixture for 

15 minutes at 37°C to obtain a single-cell suspension. In order to isolate CD45neg epidermal 

cells, CD45pos cells were marked with CD45-microbeads and depleted from the cell 

suspension using MACS MS magnetic columns according to manufacturer’s intructions 

(Milteney Biotec, Bergisch Gladbach, Germany).  

In situ hybridization  

In situ hybridization was performed using slightly different protocols for different miRNAs. 

For visualization of miR-146a expression, formalin-fixed paraffin embedded sections (10 µm 

thickness) of skin biopsies were de-paraffinized, incubated for 15 minutes at 37°C with 

proteinase K (20 µg/ml) and hybridized with a miR-146a-specific digoxigenin-labeled 

miRCURY locked nucleic acid probe (25 nM) (Exiqon, Vedbaek, Denmark) over night at 

55°C. The slides were then washed with 5× saline-sodium citrate (SSC) buffer for 15 minutes 

and twice with 0.2× SSC for 30 minutes at hybridization temperature. The sections were 

incubated with alkaline phosphatase-conjugated sheep anti-digoxigenin Fab fragments 

(1:1500 [Roche, Basel, Switzerland]) for one hour at room temperature. The probe was 

visualized by adding BM purple alkaline phosphatase substrate (Roche) according to the 

manufacturer’s instructions. MiR-31 expression was visualized using frozen skin sections (10 

µm thickness). The sections were incubated with acetylation solution (60 mM HCl, 1.3% 

trietanolamin and 0.6% acetic anhydride in DEPC treated water) for 10 minutes at room 

temperature and permeabilization buffer (1% Triton X-100) for 30 minutes at room 

temperature. Hybridization with 25 nM digoxigenin-labeled miRCURY locked nucleic acid 

probes (Exiqon) was performed over night at 50°C. Slides were then washed four times with 
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2× SSC buffer followed by one time with 0.1× SSC buffer at 67°C. The probe binding was 

detected by incubating the sections with alkaline phosphatase-conjugated sheep anti-

digoxigenin Fab fragments (1:2500) for one hour at room temperature. The probe was 

visualized using BM purple alkaline phosphatase substrate.  

Immunohistochemistry 

STK40 protein expression was analyzed in both frozen and formalin-fixed paraffin embedded 

skin sections (7 µm in thickness) using rabbit anti-human STK40 antibody (1:200; Sigma-

Aldrich, St. Louis, MO, USA) and the avidin-biotin-peroxidase complex staining system 

(Vector Laboratories, Burlingame, CA, USA) following the manufacturer’s instructions.  

RNA extraction and quantitative real-time PCR 

Skin biopsies were snap-frozen in liquid nitrogen and homogenized using a Mikro-

Dismembrator U (Braun Biotech, Göttingen, Germany) prior to RNA extraction. Total RNA 

containing the miRNA fraction was extracted from tissues and cells using Trizol (Life 

Technologies, Carlsbad, CA, USA) or the miRNeasy Mini kit (Qiagen, Hilden, Germany).  

Quantification of single miRNAs was performed using TaqMan Real-Time PCR (Life 

Technologies) according to manufacturer’s protocols and normalized towards small nucleolar 

RNAs U48 RNA (human) or snoRNA251 (murine) using ΔCt calculation. To quantify 

mRNAs, total RNA was reverse transcribed using the RevertAid First Strand cDNA 

Synthesis Kit (Fermentas, Pittsburgh, PA, USA). IL-8 and TNF-α were quantified using 

specific primers and probes (IL-8 fwd: CCACACTGCGCCAACA; rev:  

GCATCTTCACTGATTCTTGGAT; probe:  CTGGGTGCAGAGGGTTGTGG; TNF-α fwd:  

TCTTCTCGAACCCCGAGTGA; rev:  CCTCTGATGGCACCACCAG; probe:  

TAGCCCATGTTGTAGCAAACCCTCAAGCT). Other mRNAs and pri-miRs were 

quantified by TaqMan gene expression assays (Life Technologies); Gene expression was 

normalized based on 18S RNA (18S fwd: CGGCTACCACATCCAAGGAA; rev: 

GCTGGAATTACCGCGGCT, probe: TGCTGGCACCAGACTTGCCCTC). 

Gene expression profiling  

MiRNA profiling was performed using the miRNA Taqman Low Density Array card A and 

B (v3.0) according to manufacturer’s instructions (Life Technologies). Gene expression 

profiling was performed using the Affymetrix GeneTitan ST1.2 platform. Array data were 

analyzed using significance analysis of microarrays (SAM).  
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Cell culture 

Normal human adult epidermal keratinocytes were purchased from Life Technologies and 

cultured in EpiLife serum-free medium including human keratinocyte growth supplement 

(HKGS) at a final Ca2+ concentration of 0.06 mM and 100 U/ml penicillin/streptomycin at 

37°C in 5% CO2. In order to avoid disturbance by the presence of hydrocortisone, HKGS was 

removed one day before treatment or transfection for most experiments.  

For stimulation experiments, keratinocytes were treated with the TLR ligands zymosan (100 

µg/ml), flagellin (10 ng/ml), poly(I:C) (30 ng/ml) or Pam3CSK4 (50 µg/ml) (Invivogen, 

Toulouse, France), or the cytokines IL-1β, IL-36α, IL-36β, IL-36γ (10 ng/ml), TNF-α (50 

ng/ml) (Immunotools, Friesoythe, Germany) or TGF-β1 (3 ng/ml) (R&D systems). For 

inhibiting signaling pathways, keratinocytes were treated with BAY-11-7082 (an NF-κB 

inhibitor), SB203580 (a p38 inhibitor), UO126 (a MEK1/2 inhibitor) (Merck, Darmstadt, 

Germany) or SP600125 (a JNK inhibitor) (SantaCruz Biotechnology, Santa Cruz, CA, USA) 

at 10 µM or Wortmannin (a PI3K inhibitor) (Merck, Darmstadt, Germany) at 1 µM 

concentration. After one hour, medium, zymosan or IL-36α was added and cells were 

harvested 24 hours later. For functional studies, third passage keratinocytes at 50-60% 

confluence were transfected using Lipofectamine 2000 (Life Technologies) with pre-miR-

146a precursor or negative control #1 (1 nM; Life Technologies); miRCURY LNA 

microRNA Power inhibitor for hsa-miR-146a or negative control A (50 nM; Exiqon); 

miRIDIAN miR-31 hairpin inhibitor or microRNA hairpin inhibitor negative control #1 (10 

nM; ThermoFisher Scientific, Waltham, MA, USA); silencer select siRNA for TLR2, TLR3, 

TLR5 (10 nM), IRAK1, TRAF6, MYD88, STK40 (30 nM) or siRNA negative control #1 

(Life Technologies); siRNA for IRAK1 or siRNA negative control (160 nM; Life 

Technologies).  

Three dimensional epidermal equivalents  

Three-dimensional epidermal equivalents were obtained from MatTek (Ashland, MA, USA) 

and cultured according to manufacturer’s instructions at the air-liquid interphase in 

hydrocortisone-free medium. IL-1β, IL-17A, IL-22, IL-36α, IL-36β, IL-36γ, TGF-β1, TNF-α 

or IFN-γ (Immunotools) was added to the culture medium at 20 ng/ml for 72 hours. Parts of 

the tissue were FFPE sectioned and hematoxilin / eosin stained. The remaining tissue was 

snap-frozen in liquid nitrogen and subjected to RNA extraction.  
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Endothelial cell activation 

Human umbilical vein endothelial cells (HUVECs) were freshly isolated and maintained in 

Medium 199 (Life Technologies) containing 20% fetal calf serum, 28 μg/ml gentamycin, 2.5 

μg/ml amphotericin B, 1 ng/ml epidermal growth factor, and 1 μg/ml hydrocortisone (Sigma-

Aldrich). Alternatively, HUVECs were obtained from Life Technologies and cultured in 

Medium 200 containing low serum growth supplement (LSGS). HUVECs were treated with 

keratinocyte culture medium for four hours and then harvested.  

Chemotaxis assays 

Primary human leukocytes and neutrophils were isolated from 0.2% EDTA anticoagulated 

whole blood collected by venipuncture from healthy donors. Erythrocytes were removed 

using dextran sedimentation (2:1 mixture of blood:6% dextran / 0.9% NaCl), followed by 

hypotonic lysis using ddH2O. To isolate neutrophils, the purified leukocytes were layered 

over Ficoll-Paque (GE Healthcare, Little Chalfont, UK) and recovered from the pellet after 

centrifugation. The leukocytes or neutrophils were suspended in EpiLife serum-free 

keratinocyte growth medium, and 6×105 cells were added to the inner chamber of a 3 µm 

PET membrane cell culture insert (BD Falcon, Erembodegem, Belgium). The outer chamber 

contained culture medium from keratinocytes. After incubation for 1.5 (neutrophils) or 3 

hours (leukocytes) at 37°C in 5% CO2, the migrated cells in the outer chamber were 

quantified by CyQUANT GR dye (Life technologies) staining, or by flow cytometry, 

normalizing the culture medium volume by addition of CountBright counting beads (Life 

Technologies). 

Luciferase reporter assays 

Renilla luciferase reporter plasmids were obtained from SwitchGear Genomics (Carlsbad, 

CA, USA). The plasmids contained synthetic sequence repeats that are fully complementary 

to miR-31 (miR-31 sensor) or the 3'-UTR of the STK40 gene cloned downstream of the 

reporter gene. Mutations were generated at the predicted target site of the STK40 3'-UTR 

using the QuickChange XL site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA) 

according to the manufacturer’s instructions. The NF-κB reporter plasmid pGL4.32 

containing five copies of an NF-κB response element that drives transcription of the 

luciferase reporter gene luc2P was obtained from Promega (Madison, WI, USA). Human 

primary keratinocytes were co-transfected with the luciferase reporters (25 ng/ml) together 

with 10 nM anti-miR-31 or anti-miR-Ctrl using Fugene HD (Promega). For functional studies 

on miR-146a, pGL4.32 (400 ng/ml) was co-transfected into keratinocytes with a renilla 

control plasmid (20 ng/ml) and pre-miR-146a, pre-miR-Ctrl (1 nM), anti-miR-146a or anti-
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miR-Ctrl (50 nM) using Fugene HD. Luciferase activity was analyzed 24 hours post 

transfection using LightSwitch Luciferase Assay reagent (SwitchGear) or Dual-Luciferase 

Reporter Assay System (Promega).  

Protein detection 

Cell culture supernatant from keratinocytes was collected and stored at -80°C. ELISA 

measurement of the protein levels of IL-8, TNF-α (Biolegend, San Diego, CA, USA), CCL20 

(Boster Immunoleader, Fremont, CA, USA), CXCL1 and CXCL5 (R&D Systems, 

Minneapolis, MN, USA) was performed following the manufacturer’s instructions. 

Keratinocyte lysates were analyzed for protein expression by Western blotting with anti-

human IRAK1 (1:1000) or anti-human TRAF6 (1:500) antibodies (Cell signaling, Danvers, 

MA, USA). Actin expression was visualized using HRP-coupled anti-human Actin antibody 

(1:20000; Sigma-Aldrich).  

Statistics and data analysis  

Statistical significance was determined by Mann-Whitney U test or two-sided Student’s t-test. 

Data is presented as average ± standard deviation, unless indicated otherwise. P-values < 0.05 

were considered to be statistically significant. Correlation between the expression of different 

genes in the same samples was made using Pearson’s correlation test on log-transformed 

data. Microarray data were analyzed using the significance analysis of microarrays (SAM), a 

permutation-based method to estimate the false discovery rate in microarray analysis (Tusher 

et al., 2001). Categorization of genes according to GeneOntology terms was performed by the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang da et al., 

2009). Enrichment of NF-κB target genes among differentially expressed genes was analyzed 

by Gene Set Enrichment analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005). 

For the prediction of miRNA target genes the algorithms of TargetScan (Lewis et al., 2005), 

miRanda (John et al., 2004) and PicTar (Krek et al., 2005) were used.  
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4 RESULTS AND DISCUSSION  

4.1 IDENTIFICATION OF MICRORNAS INVOLVED IN THE INNATE IMMUNE 

FUNCTION OF KERATINOCYTES  

Antimicrobial defense is one of the key functions of the skin. Invading pathogens in the skin 

are recognized among others by TLRs expressed on keratinocytes, which induce an 

inflammatory response. The TLR-induced innate immune reactions of keratinocytes have 

been studied previously (Pivarcsi et al., 2003; Kollisch et al., 2005; Begon et al., 2007; Lebre 

et al., 2007). Nonetheless the role of miRNAs, which are regulatory elements in many 

immune reactions (O'Connell et al., 2012) has not been explored in this process. We therefore 

aimed to identify the miRNAs that are regulated in keratinocytes treated with TLR ligands. 

We chose ligands for TLR2, TLR5 and TLR3, since these TLRs are known to be expressed 

and functional in keratinocytes (Kollisch et al., 2005).  

We treated primary human keratinocytes with zymosan, a yeast cell wall component that acts 

as a ligand for TLR2, with flagellin, which is a bacterial protein stimulating TLR5, or with 

poly(I:C), a synthetic double-stranded RNA analogue that acts as a TLR3 ligand. The 

miRNA profile of the keratinocytes was determined six and 24 hours after the stimulation by 

Taqman Low Density Arrays. Relatively few miRNAs were de-regulated by the different 

TLR ligands six and 24 hours post stimulation (Figure 8; Paper I, Figure 1). Zymosan 

induced the expression of four and decreased the expression of three miRNAs, flagellin led to 

the increased expression of eight and the diminished expression of five miRNAs, while 

poly(I:C) induced 13 and decreased nine miRNAs in keratinocytes.  

MiR-146a was significantly induced by all tested TLR ligands, being by far the most up-

regulated miRNA in each category. Its induction was concentration-dependent (Paper I, 

Figure 2) and ligand-specific, as shown by siRNA-dependent knock-down of the regarding 

TLR (Paper I, Figure S2). Thus miR-146a appears to be a key miRNA in the general 

response of keratinocytes towards TLR stimulation and could have a common effect on TLR 

signaling. We further followed up the role of miR-146a specifically in TLR2 signaling in 

another study (chapter 4.2).  
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Figure 8: MicroRNA profile of 

TLR-ligand treated keratino-

cytes. Primary human keratino-

cytes were exposed to zymosan, 

flagellin or poly(I:C) in 

biological replicates for six or 

24 hours. Expression of 754 

miRNAs was measured using 

Taqman Low Density Arrays 

(TLDA). The heat map shows 

significantly differentially (FCH 

> 1.5; FDR < 0.1) expressed 

miRNAs.  

 

 

 

 

 

 

 

 

In contrast to miR-146a, other miRNAs were regulated by only one of the TLR ligands, 

hinting at a rather specific response of the keratinocytes towards different TLRs. For 

example, zymosan induced the expression of miR-203, a miRNA that has been implicated to 

regulate keratinocyte differentiation (Sonkoly et al., 2010), but also acts during inflammatory 

processes through targeting SOCS3 and IL-8 (Sonkoly et al., 2007; Wei et al., 2013). Another 

example is miR-135a, which was decreased by flagellin and which has been shown to 

regulate LPS-induced apoptosis in pulmonary epithelial cells (Zhao et al., 2014). MiR-155 is 

known to enhance the inflammatory response of immune cells and its overexpression has 

been linked to the development of autoimmune diseases, in humans as well as in mouse 

model systems (Seddiki et al., 2014). MiR-155 was induced exclusively by poly(I:C) in 
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keratinocytes, proposing that it could be involved in antiviral responses. Investigating the 

functional consequences of the TLR-induced regulation of the above mentioned and other 

miRNAs promises insights into the mechanism of the inflammatory response of 

keratinocytes.  

TLR signaling induces in general a strong NF-κB response (Kawai and Akira, 2006). This 

alone could not account for the vastly distinct miRNA profiles of keratinocytes stimulated 

with different TLR ligands. A specific response of the cell towards the different TLR stimuli 

and even to different ligands of the same receptor may require co-receptors and the 

combination of different intracellular adapter molecules, leading to the activation of 

additional transcription factors such as AP-1 and IRFs (Kondo et al., 2012). Since the 

expression of miRNAs depends on the activity of certain transcription factors, this might 

explain the distinct differences in the miRNA profile of the different TLR ligands.  

The difference of the miRNA profiles could have functional relevance and shape the response 

of keratinocytes towards different TLR stimuli. Since each miRNA regulates a specific set of 

target genes, changes in the miRNA profile may modulate the global transcriptome and thus 

affect the cellular behavior. MiRNAs regulated by TLR3 stimulation for example could 

prime keratinocytes to an antiviral response. To test this, the predicted target genes of the de-

regulated miRNAs could be clustered according to their function in a computational 

approach, potentially hinting towards a specific functional outcome. Functional studies of the 

de-regulated miRNAs will be able to verify such a hypothesis. In conclusion, the miRNAs 

found to be de-regulated in this study may contribute to the specificity of the innate immune 

response of keratinocytes towards different pathogens.  

  



 

40 

4.2 THE REGULATION OF MIR-146A BY TLR2 LIGANDS IN KERATINOCYTES  

4.2.1 The kinetics of miR-146a induction by TLR signaling   

Profiling of the miRNome of TLR-stimulated keratinocytes had identified miR-146a as the 

most consistently and strongest induced miRNAs after treatment with ligands for TLR2, 

TLR5 and TLR3 (chapter 4.1).  

In order to study the mechanisms underlying this phenotype, we investigated the regulation of 

miR-146a by TLR stimulation in detail, exemplified by the use of TLR2 ligands. We treated 

primary human keratinocytes with the TLR2 ligand zymosan and measured the expression of 

inflammatory mediators over time. As expected, the expression of IL-8, TNF-α and other 

inflammation genes was rapidly increased upon stimulation with TLR2 ligands, but their 

expression quickly returned back to base levels (Figure 9; Paper II, Figure 1c), which is in 

accordance with literature data (Larsen et al., 1989; Kawai et al., 2002; Pivarcsi et al., 2003). 

In contrast to that, miR-146a showed a distinct different kinetic profile. MiR-146a started to 

be induced by all treatments after approximately three hours, when the expression of the 

inflammatory mediators was already at its peak or started to decline, and it kept being up-

regulated for at least 96 hours, when IL-8 and other pro-inflammatory factors had long 

reached their basic expression level. This partly reciprocal kinetics led us to the question 

whether miR-146a could be involved in the down-regulation of inflammatory mediators and 

thus contribute to the resolution of inflammation in the skin (chapter 4.4).  

 

Figure 9: Expression kinetics of miR-146a of keratinocytes upon TLR2 stimulation. Keratinocytes were exposed 

to zymosan and expression of IL-8, TNF-α and miR-146a was determined over time using qRT-PCR. *p < 0.05; 

**p < 0.01; ***p < 0.001 
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4.2.2 Induction of miR-146a upon TLR2 stimulation is mediated through the 

NF-κB and MAPK pathways  

Next, we analyzed the pathways leading to the expression of miR-146a upon stimulation with 

TLR2 ligands. Silencing of TLR2 by siRNA knock-down completely abolished the induction 

of miR-146a by zymosan or Pam3CSK4, a synthetic TLR2 ligand (Paper II, Figure 1b), 

showing that miR-146a induction indeed was TLR2-dependent.  

The uttermost important downstream molecule in the inflammatory TLR signaling cascade is 

the transcription factor NF-κB, but also the MAPK pathways are known to partly transfer 

inflammatory signals within the cell (Kawasaki and Kawai, 2014). We therefore inhibited 

NF-κB and key components of the three major MAPK pathways (MEK1/2, JNK and p38) 

using chemical inhibitors. The induction of miR-146a by zymosan was majorly abolished 

upon blockade of NF-κB (Paper II, Figure 1d), indicating that the NF-κB pathway is indeed 

crucial for the up-regulation of miR-146a by TLR ligands. The strong dependence of miR-

146a expression on NF-κB signaling has previously also been shown in other cell types 

(Taganov et al., 2006; Bhaumik et al., 2008; Perry et al., 2009; Curtale et al., 2010), likely 

due to the three NF-κB binding sites in the miR-146a promoter (Taganov et al., 2006). 

Interestingly, also blockade of MEK1/2 and p38 diminished the induction of miR-146a by 

zymosan, while blockade of JNK had no effect on the zymosan-induced production of miR-

146a. Thus, the induction of miR-146a by TLR2 ligands depends on NF-κB, MEK1/2 and 

p38, demonstrating that besides the NF-κB pathway also the MAPK pathways are involved in 

the induction of miR-146a.  

Mature miRNAs are processed from their primary transcripts, the respective pri-miR, which 

are transcribed from the genome. To get an insight into the transcriptional regulation of the 

miR-146a gene, we studied also the expression of pri-miR-146a upon TLR2 stimulation. 

Treatment of keratinocytes with zymosan led to a quick but transient induction of pri-miR-

146a, following the kinetics of inflammatory mediators such as IL-8 (Paper II, Figure 1c). 

The discrepancy towards the slower and long-lasting induction of the mature miR-146a 

suggests that the continuous up-regulation of miR-146a upon TLR2 stimulation is not due to 

constant transcriptional activity of the miR-146a gene. This is also supported by the fact that 

NF-κB signaling plays a major role during the induction of miR-146a, which is known to act 

and to induce gene expression in the range of minutes (Napetschnig and Wu, 2013). Our data 

suggest that the long-term up-regulation of miR-146a in keratinocytes depends on the 

stability of the mature miR-146a. This is in line with reports showing that the half-life of 
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miRNAs can be up to several days long (Bail et al., 2010; Gantier et al., 2011). The long-term 

up-regulation of miR-146a is thus transcription-independent and does not rely on a constant 

stimulation of the cell. MiR-146a might therefore provide a regulatory mechanism, counter-

acting the acute pro-inflammatory reaction of keratinocytes upon an infection.  
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4.3 MIR-146A IN PSORIASIS  

Our and other groups have previously described the miRNA profile of psoriasis skin biopsies 

compared to healthy skin or non-lesional psoriasis skin (Sonkoly et al., 2007; Zibert et al., 

2010; Joyce et al., 2011). MiR-146a was one of the miRNAs that was consistently found to 

be up-regulated in psoriasis skin lesions. We aimed to characterize the regulation and 

function of miR-146a in psoriasis because its induction by TLR ligands in keratinocytes 

suggested a functional link towards the innate immune functions of keratinocytes, which are 

known to be disturbed in psoriasis skin.  

 

4.3.1 miR-146a is up-regulated in psoriasis keratinocytes  

The studies describing the psoriasis miRNA profile so far have worked with full-depth 

biopsies, mixing different cell populations from epidermis, dermis and even the underlying 

fat tissue. It is common to use whole tissue also for other organs to determine the miRNA 

expression profile in diseases (Pritchard et al., 2012), but this approach makes it impossible to 

predict which cell type is responsible for the observed phenotype. We therefore aimed to 

determine the cell type(s) responsible for the de-regulation of miR-146a in psoriasis skin. To 

that end we visualized the expression of miR-146a in sections of psoriasis skin lesions and 

healthy skin by in situ hybridization using specific probes. We found that miR-146a was 

strongly expressed by infiltrating immune cells and keratinocytes in the psoriasis lesions 

(Figure 10; Paper III, Figure 1c). It has previously been reported that activated immune cells 

(e.g. monocytes, mast cells, T lymphocytes, dendritic cells) express increased levels of miR-

146a (Taganov et al., 2006; Curtale et al., 2010; Jurkin et al., 2010; Rusca et al., 2012), 

making it likely that the highly activated immune cell infiltrate in the psoriasis skin lesions is 

a major source of the increased miR-146a expression in the full-depth biopsies. In addition to 

immune cells, also the keratinocytes in psoriasis lesions showed an increased expression of 

miR-146a compared to healthy skin, suggesting that they contribute to the up-regulation of 

miR-146a in psoriasis skin lesions.  

In order to confirm the role of keratinocytes for the miR-146a expression in psoriasis lesions 

in a more quantitative manner, we aimed to isolate keratinocytes from skin biopsies of 

psoriasis patients and healthy individuals. We chose an approach where the epidermis of 

freshly taken skin biopsies was separated from the underlying tissue by enzymatic digestion 

with dispase. The epidermis was then digested by trypsin into a single cell suspension and 
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immune cells were depleted using CD45-antibody coupled magnetic beads. CD45 (also 

known as common leukocyte antigen; CLA) is expressed on all cells of the hematopoietic 

lineage and is thus well suited to mark immune cells (Altin and Sloan, 1997). The remaining 

epidermal CD45neg cells are supposed to consist mainly of keratinocytes and melanocytes. In 

Caucasians, melanocytes comprise to approximately 1 % of all epidermal cells (Brenner and 

Hearing, 2008), it is therefore unlikely that melanocytes would superimpose or skew the data 

of the keratinocyte population. We found that miR-146a was significantly increased in 

epidermal CD45neg cells of psoriasis lesions compared to epidermal CD45neg cells from 

healthy and also from non-lesional skin (Figure 10; Paper III, Figure 1b), demonstrating that 

indeed keratinocytes in psoriasis lesions express miR-146a at increased levels.  

Figure 10: MiR-146a is up-regulated in keratinocytes of psoriasis skin lesions. In situ hybridization of healthy 

skin and psoriasis lesions using a miR-146a-specific probe (left). Scale bar = 50 µm. Relative expression of miR-

146a measured by qRT-PCR in CD45neg epidermal cells from healthy skin, psoriasis non-lesional skin and 

psoriasis lesions (right). *** p < 0.001 

 

4.3.2 Induction of miR-146a by psoriasis-relevant cytokines   

Next, we aimed to understand what mechanisms could lead to the de-regulation of miR-146a 

in psoriasis keratinocytes. Since psoriasis lesions are an area of extensive inflammation, we 

looked at the effect of inflammatory cytokines. While conventional primary cell culture 

systems are well-established to study the function of keratinocytes in vitro, the interplay of 

keratinocytes in various stages of differentiation in the epidermal layers is not accounted for. 

In order to better mimic the processes in the skin, we employed in this experiment a three-

dimensional in vitro keratinocyte cell culture system. Grown at the interphase between air 

and culture medium, primary keratinocytes develop a three-dimensional structure that is 

analogue to the human epidermis (Andrei, 2006). We treated these three-dimensional 
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epidermal equivalents with a series of cytokines that have been implicated in the pathogenesis 

of psoriasis (IL-1β, IL-17, IL-22, IL-36, TNF-α, IFN-γ, TGF-β1). Treatment efficacy was 

evaluated by morphological changes of the three-dimensional structure of the models: IL-1β, 

and to a lesser extent IL-36α, IL-36β, IL-36γ and TNF-α decreased the epidermal thickness. 

In addition, IL-1β-treated epidermal equivalents showed extensive thickening of the stratum 

corneum. IL-22 and TGF-β1 induced epidermal thickening and hypogranulosis, while IFN-γ 

led to hypergranulosis. Moreover, inflammation markers such as IL-8, CCL20, β-defensin-2 

and CXCL9 were induced by the different cytokines, confirming the effective treatment 

(Paper III, Figure 2b-d). In this model system, miR-146a expression was strongly induced by 

IL-1β, IL-36α, IL-36β and IL-36γ, all members of the IL-1 cytokine family (Figure 11; 

Paper III, Figure 2a). In addition, also IL-17, IL-22 and TNF-α led to an induction of miR-

146a expression in three-dimensional epidermal equivalents.  

Figure 11: MiR-146a is regulated by 

psoriasis-associated cytokines. Three-

dimensional epidermal equivalents were 

treated with psoriasis-associated 

inflammatory cytokines for 72 hours. 

Expression of miR-146a was determined by 

qRT-PCR. * p < 0.05; ** p < 0.01; *** p < 

0.001 

 

 

Overall, these results demonstrate that miR-146a can be induced by various pro-inflammatory 

cytokines in keratinocytes, especially by members of the IL-1 cytokine family. This is in 

accordance with studies showing the regulation of miR-146a by IL-1β in keratinocytes 

(Rebane et al., 2014), but also in other cell types (Perry et al., 2009; Larner-Svensson et al., 

2010; Iyer et al., 2012; Li et al., 2012), hinting at a general mechanism of miR-146a induction 

rather than a cell type-specific regulation. The three IL-36 cytokines on the other hand are 

considered to act in a more tissue-specific manner. Their effect on miR-146a expression has 

not been explored previously. IL-1β, IL-36α, IL-36β and IL-36γ are all known to be present 

at high concentrations in psoriasis skin lesions (Debets et al., 2001; Blumberg et al., 2007; 

Johnston et al., 2011). Therefore it is very likely that IL-36 and IL-1β are responsible for the 

increased expression of miR-146a in psoriasis keratinocytes. Also IL-17, IL-22 and TNF-α 

are key cytokines in the pathogenesis of psoriasis. Their expression is increased in psoriasis 
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lesions (Lowes et al., 2013), thus potentially contributing to the observed phenotype. This 

hypothesis is supported by a report suggesting a correlation between the expression of miR-

146a and IL-17 in psoriasis lesions (Xia et al., 2012). Up-regulation of miR-146a in 

keratinocytes has also been reported in another chronic inflammatory skin disease, atopic 

dermatitis (Rebane et al., 2014), likely due to the high levels of IL-1β that are present in 

atopic dermatitis skin lesions (Krause et al., 2012). Thus, induction of miR-146a driven by 

IL-1 cytokines appears to be a general phenomenon of inflamed skin which can probably be 

observed in other inflammatory skin diseases.  

 

4.3.3 IL-36- and IL-1-dependent induction of miR-146a  

Our results suggest that IL-1 cytokines are potent inducers of miR-146a in keratinocytes. In 

order to get an insight into the detailed regulatory mechanisms, we treated primary human 

keratinocytes with IL-36α or IL-1β and measured the expression of inflammatory mediators 

such as IL-8 and TNF-α, as well as miR-146a over time. Comparable to the stimulation with 

TLR2 ligands, IL-8 and TNF-α were rapidly induced upon encounter with IL-1 cytokines, 

and their expression returned to base levels very quickly (Paper III, Figure 3a-b). MiR-146a 

expression on the other hand was induced by IL-36α and IL-1β after approximately three 

hours, and high levels of miR-146a were persistent for at least 96 hours. Thus, the kinetics of 

miR-146a induction by IL-1 cytokines, and the reciprocal decline of inflammation genes was 

similar to that of TLR2 ligand stimulation, hinting that the same intracellular signaling 

pathways are used.  

To decipher which signaling molecules are necessary for the induction of miR-146a by IL-36, 

we silenced MyD88, IRAK1 and TRAF6 by specific siRNA before treatment with IL-36α. 

Knock-down of MyD88 and IRAK1 indeed abolished the induction of miR-146a by IL-36α 

(Paper III, Figure 3d), suggesting that they are the primary signal transducers in direct 

connection to the IL-36 receptor, comparable to the TLR and IL-1 signaling cascade. In 

contrast, TRAF6 seemed not to be involved in the IL-36α-dependent miR-146a induction, 

thus other components of the inflammatory signaling cascade must be responsible for the 

further signal transduction and the transcription of the miR-146a gene.  

Further downstream in the TLR / IL-1 signaling cascade are the NF-κB and MAPK 

pathways. We tested the contribution of NF-κB, MEK1/2, JNK and p38 to the induction of 

miR-146a by IL-36α by using chemical inhibitors. MiR-146a was not induced by IL-36α 
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upon blockade of NF-κB which highlights the relevance of NF-κB in the induction of miR-

146a (Paper III, Figure 3e). Inhibition of JNK reduced the induction of miR-146a by IL-36α, 

while MEK1/2 and p38 had no effect, showing the additional contribution of MAPK 

pathways. Compared to the results from TLR2-stimulated keratinocytes, the induction of 

miR-146a seems to follow ligand-specific pathways. MiR-146a induction by zymosan 

depends on NF-κB, MEK1/2 and p38, while its induction by IL-36 depends on the NF-κB 

and JNK pathway. This is in accordance with data from epithelial alveolar cells, in which 

miR-146a was shown to be induced by IL-1β depending on the activity of NF-κB and JNK, 

but not on that of MEK1/2 or p38 (Perry et al., 2009). Taken together, our data revealed that 

besides the NF-κB pathway also the MAPK pathways are involved in the induction of miR-

146a, and that their involvement differs dependent on whether TLRs or IL-1 receptors are 

stimulated. These observations indicate that the regulation of miR-146a in keratinocytes by 

inflammatory stimuli is much more complex and fine-tuned than just an acute NF-κB 

response.  

Next, we tested the effect of IL-36ra on the induction of miR-146a. IL-36ra is a natural 

antagonist of the IL-36 cytokines that can effectively block the inflammatory activation of 

keratinocytes by IL-36α, IL-36β or IL-36γ (Debets et al., 2001; Towne et al., 2011). We 

found that pre-treatment of keratinocytes with IL-36ra could block the induction of miR-146a 

by IL-36α in a concentration-dependent manner (Paper III, Figure 3c), suggesting that the 

competition between IL-36 and IL-36ra in the epidermis also has implications for the 

expression level of miR-146a in keratinocytes.  

Overall, our data show that miR-146a can be induced in keratinocytes by TLR- or IL-1-

signaling via pathways that depend on the regarding receptors, MyD88, IRAK1 and NF-κB. 

Context-dependent, the different MAPK pathways also contribute to the induction of miR-

146a in keratinocytes, thus likely fine-tuning the response of keratinocytes to different 

stimuli. Most striking, the induction of miR-146a by both TLR stimulation and IL-1 cytokine 

signaling was very long-lasting, despite the normally quick and transient effects of the 

studied pro-inflammatory stimuli, proposing a regulatory function of miR-146a upon 

inflammatory stimulation.  
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4.4 THE FUNCTION OF MIR-146A IN KERATINOCYTES  

4.4.1 miR-146a suppresses the expression of inflammatory mediators  

Precise control of inflammation is necessary to sustain homeostasis, the failure to end 

inflammatory reactions after removal of the inducing pathogen is a hallmark of 

autoimmunity. Comparing the kinetics of the long-lasting up-regulation of miR-146a with the 

quick and transient expression of IL-8, TNF-α and other inflammation-related mediators 

raised the question whether miR-146a could be involved in the mechanisms leading to a 

down-regulation of inflammatory genes. To test this hypothesis, we overexpressed miR-146a 

in primary human keratinocytes by transfection with a synthetic precursor before treatment 

with zymosan. Indeed, the inflammation-induced expression and secretion of IL-8, TNF-α 

and CCL20 was markedly diminished by the overexpression of miR-146a (Paper II, Figure 

2a), suggesting that miR-146a can dampen the inflammatory response of keratinocytes that 

are stimulated by TLR ligands. The importance of miR-146a in this process became obvious 

upon inhibition of endogenous miR-146a by specific inhibitors. The already high levels of for 

example IL-8 after stimulation were increased to an even higher level when miR-146a was 

lacking (Paper II, Figure 2b). This shows the crucial importance of miR-146a in the 

limitation of the inflammatory response of keratinocytes. Therefore the up-regulation of miR-

146a upon stimulation by pathogens can be considered as a negative feedback mechanism, 

restricting the inflammatory reactions of the keratinocytes to the necessary minimum.  

The potential functionality of miR-146a as a negative feedback loop is also relevant in the 

inflammatory milieu of psoriasis lesions. We tested therefore the effect of miR-146a on the 

levels of inflammatory mediators induced by IL-1β and IL-36α. Overexpression of miR-146a 

suppressed the IL-36α- and IL-1β-induced expression of inflammation genes, while inhibition 

of endogenous miR-146a released the expression and secretion of IL-8 and other 

inflammatory mediators after IL-1β and IL-36α stimulation (Figure 12; Paper III, Figure 4). 

These results suggest that miR-146a could dampen the inflammation of psoriasis 

keratinocytes, proposing a model where the increased levels of miR-146a in psoriasis 

keratinocytes would contribute to an amelioration of the disease.  

Next, we investigated the role of miR-146a in unstimulated, resting keratinocytes. 

Overexpression of miR-146a suppressed the already low baseline production of inflammation 

genes (Figure 12; Paper II, Figure 3a; Paper III, Figure 4a-b). On the other hand, inhibition 

of the endogenous miR-146a in unstimulated keratinocytes led to a massive increase in the 

production of inflammatory mediators (Figure 12; Paper II, Figure 3b; Paper III, Figure 4c-
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d). This suggests that even the physiological low level of miR-146a in unstimulated 

keratinocytes fulfils a crucial function by suppressing an inflammatory reactions of the cell in 

the absence of any stimuli.  

Figure 12: MiR-146a suppresses the production of inflammatory mediators in keratinocytes. Keratinocytes were 

transfected with miR-146a precursor (pre-miR-146a) (left) or miR-146a inhibitor (anti-miR-146a) (right). 48 

hours later, IL-36α was added and the expression and secretion of IL-8 was measured six and 24 hours later by 

qRT-PCR and ELISA, respectively. *p < 0.05; **p < 0.01; ***p < 0.001   

 

4.4.2 miR-146a has a global impact on the transcriptome of keratinocytes  

In order to get a broader and more detailed view of the processes that are regulated by miR-

146a in keratinocytes, we performed a transcriptome profiling of keratinocytes 

overexpressing miR-146a. More than 400 genes were differentially expressed (Paper II, 

Table S1), many of them having immune-related functions. Several pro-inflammatory 

cytokines were down-regulated by miR-146a (e.g. IL-1β, IL-6, TNF-α). Many of these 

cytokines are relevant for the acute response of keratinocytes in inflammation. In chronic 

inflammation such as in psoriasis, these cytokines are overexpressed and targeted 

therapeutics against some of them have been shown to very effective (Lynch et al., 2014). 

This indicates that miR-146a modulates pathways that are relevant in the pathogenesis of 

psoriasis.  

The chemokines CXCL1, CXCL2 and IL-8 (CXCL8) were all repressed by miR-146a in 

keratinocytes. Considering their function as major attractors of neutrophils expressing their 

cognate receptors CXCR1 / CXCR2, this suggests that miR-146a largely represses the influx 

of the most acute immune mediators to the skin, which moreover are highly overrepresented 

and overactive in psoriasis lesions. IL-8 is also an important inducer of angiogenesis which is 

relevant for the pathogenesis of psoriasis (Heidenreich et al., 2009). Also other chemokines 

of key importance were suppressed by miR-146a, such as CXCL10 and CXCL11 (T cell 
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attracting), and CCL20 (attracting TH17 and other CCR6pos immune cells). Also CCL5, a 

chemokine attracting a mixture of immune cells was down-regulated upon overexpression of 

miR-146a. CCL5 has recently been shown to be a direct target of miR-146a in keratinocytes 

(Rebane et al., 2014), showing that the global transcriptomic changes by miR-146a are partly 

direct.  

Several antimicrobial peptides were repressed by miR-146a (α-defensin 5, β-defensin-113, β-

defensin-2), thus inhibiting one of the most powerful effector tools of keratinocytes in the 

antimicrobial defense. Of note, β-defensin-2 is one of the most up-regulated genes found in 

psoriasis skin lesions (Li et al., 2014a) and increased genomic copy numbers of β-defensin 

genes have been associated to psoriasis (Hollox et al., 2008). Also many other genes with 

crucial functions in immunity were suppressed by miR-146a, among them HLA genes, which 

are involved in the presentation of antigens towards immune cells (Howell et al., 2010; 

Dunphy and Gardiner, 2011), and signaling molecules which participate in the transduction 

of inflammatory signals within the cell (Hanada and Yoshimura, 2002). Altogether, these 

data show the overwhelming effect of miR-146a on the immune function of keratinocytes.  

Accordingly, categorization of the differentially expressed genes by GeneOntology categories 

revealed a high enrichment of categories such as “Immune response”, “Inflammatory 

response”, “Chemotaxis” or “Defense response” (Paper II, Figure 4a-c), confirming that 

miR-146a has a global impact on the immune function of keratinocytes.  

 

4.4.3 miR-146a regulates the NF-κB pathway  

Gene Set enrichment analysis (GSEA) showed that genes that are annotated as NF-κB targets 

were significantly enriched among the genes regulated by miR-146a (Paper II, Figure 4e), 

hinting at a connection between miR-146a expression and NF-κB activity. In order to verify 

this hypothesis, we transfected an NF-κB luciferase reporter plasmid into keratinocytes 

overexpressing or inhibited for miR-146a, thus measuring the activity of NF-κB. Indeed, 

miR-146a significantly suppressed the activity of NF-κB in zymosan-stimulated 

keratinocytes (Paper II, Figure 4f). These results confirm that the global repression of 

inflammatory genes in keratinocytes by miR-146a is likely due to a decreased activity of the 

NF-κB transcription factor.  
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4.4.4 miR-146a targets IRAK1 and TRAF6 

MiRNAs regulate gene expression by direct binding to the mRNA of its target genes, leading 

to transcriptional silencing. Several of the genes being down-regulated upon overexpression 

of miR-146a were predicted to be direct targets of miR-146a (Paper II, Table S1). Two of 

those, IRAK1 and TRAF6, are key signal transducers in the TLR and IL-1 signaling 

pathways (Takeda and Akira, 2004) and have previously been shown to be direct targets of 

miR-146a in monocytes by luciferase reporter assays (Taganov et al., 2006). Nonetheless, 

miR-146a did not target IRAK1 or TRAF6 in lung alveolar epithelial cells, indicating a cell-

type specific regulation (Perry et al., 2008).  

In keratinocytes, overexpression of miR-146a led to a significant repression of IRAK1 and 

TRAF6, both at mRNA and protein level, while miR-146a inhibition increased their 

expression (Paper II, Figure 5a-b), confirming that IRAK1 and TRAF6 are targeted by miR-

146a in keratinocytes. Direct targeting of IRAK1, TRAF6 and probably many more genes by 

miR-146a may explain the functional effect of miR-146a as a negative feedback-loop on 

TLR/IL-1-induced inflammatory stimuli.  

To study the relevance of IRAK1 as a target of miR-146a in TLR-induced inflammatory 

processes, we inhibited miR-146a in keratinocytes before treatment with zymosan. As shown 

before, the induction of IL-8 by zymosan was significantly higher in keratinocytes inhibited 

for miR-146a. Interestingly, this increase was completely abolished upon simultaneous 

knock-down of IRAK1 by siRNA (Paper II, Figure 5c), thus rescuing the lack of miR-146a 

by silencing of IRAK1. Taken together, our data suggest that miR-146a acts through IRAK1 

when dampening the inflammatory response of TLR-induced keratinocytes.  

 

4.4.5 miR-146a modulates the communication of keratinocytes with the local 
environment  

The production of inflammatory cytokines, chemokines and antimicrobial peptides by 

stimulated keratinocytes aims to create an inflammatory environment in the skin by attracting 

and activating professional immune cells from the circulation (Figure 2). We therefore aimed 

to determine whether miR-146a expression in keratinocytes modulates the communication 

towards other cell types in the skin. To enter the skin, immune cells in the blood stream need 

to first attach towards cell adhesion molecules on the surface of endothelial cells of the blood 

vessels before they can penetrate into the tissue and follow chemotactic gradients towards the 
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site of inflammation (Nourshargh et al., 2010; Wong et al., 2010). The expression of cell 

adhesion molecules such as ICAM-1, VCAM-1 or E-Selectin on endothelial cells can be 

regulated by cytokines and chemokines that are secreted by keratinocytes (Pober and Cotran, 

1990). We therefore treated endothelial cells (HUVECs) with culture medium from 

keratinocytes overexpressing or inhibited for miR-146a. MiR-146a overexpression in 

keratinocytes had a profound suppressive effect on the expression of ICAM-1, VCAM-1 and 

E-Selectin on endothelial cells, while miR-146a inhibition increased their expression (Paper 

III, Figure 5b). This suggests that the adhesion of leukocytes towards the wall of blood 

vessels is indirectly influenced by miR-146a expression in keratinocytes.  

Many different types of immune cell are attracted into the skin during inflammation. 

Neutrophils belong to the first cells that reach the inflamed tissue, thus being in the front line 

of defense against invading pathogens (Wright et al., 2010). Neutrophils are attracted by 

chemokines secreted from keratinocytes (especially IL-8, CXCL1 and CXCL2) (Kobayashi, 

2008). We therefore investigated the effect of miR-146a modulation on the leukocyte-

attracting capacity of keratinocytes.  

 

 

Figure 13: MiR-146a suppresses the capacity of keratinocytes to attract neutrophils. Keratinocytes were 

transfected with miR-146a precursor / inhibitor or regarding controls for 48 hours. The keratinocyte 

supernatant was used to attract primary neutrophils in a Boyden chamber and counted using flow cytometry. 

Plots showing forward/sideward scatter and quantification of migrated neutrophils. *p < 0.05  
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To that end we attracted primary neutrophils in a Boyden chamber towards conditioned 

keratinocyte medium. Keratinocytes overexpressing miR-146a had a significantly decreased 

ability to attract neutrophils, while keratinocytes inhibited for miR-146a attracted 

substantially more neutrophils (Figure 13; Paper II, Figure 4g; Paper III, Figure 5c-d). 

These data suggest that miR-146a influences the communication of keratinocytes with 

endothelial cells and immune cells, after all leading to a repression of the influx of immune 

cells into the skin.  
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4.5 MIR-146A – A GATEKEEPER OF IMMUNITY IN SKIN   

In summary, our data highlight the role of miR-146a as a novel player in innate immunity in 

the skin: MiR-146a is strongly induced in keratinocytes by different TLR signaling pathways. 

This suggests that encounter of keratinocytes with any class of pathogens would induce the 

expression of miR-146a, acting as a key player in the immune response of keratinocytes. 

MiR-146a has a massive impact on the gene expression profile and production of 

inflammatory mediators by keratinocytes which in turn modulates the infiltration of immune 

cells into the skin, thus dampening inflammation of the skin. Our results suggest that the 

induction of miR-146a in keratinocytes may play a role in the restoration of tissue 

homeostasis after an infection.  

On the other hand, we have shown that the baseline expression of miR-146a is crucial to 

prevent autoinflammation. Balancing its precise expression level is therefore vital to sustain 

homeostasis in the skin. In the absence of pathogens, miR-146a may define a threshold for 

the activation of keratinocytes by external stimuli, thus preventing autoimmunity.  

The strictly pro-inflammatory role of TLR signaling has been questioned by studies showing 

that a TLR3-induced inflammatory reaction of keratinocytes can be inhibited by TLR2 

ligands derived from commensal bacteria, but not from pathogenic bacteria (Lai et al., 2009). 

This modulation of inflammation by commensal bacteria was also shown in vivo, suggesting 

that the skin microbiome has influence on the immune reactivity of the skin. In regard to 

miR-146a, it is therefore possible that the constant exposure of keratinocytes towards 

commensal bacteria could control the expression level of miR-146a in keratinocytes. Thus, 

the skin microbiome would modulate the threshold for the activation of keratinocytes by 

pathogenic microbes.  

MiR-146a has previously been shown to have an anti-inflammatory function also in other cell 

types such as monocytes (Taganov et al., 2006), PBMCs (Tang et al., 2009), dendritic cells 

(Jurkin et al., 2010), regulatory T cells (Lu et al., 2010), lung epithelial cells (Perry et al., 

2008), microglial cells (Rom et al., 2010), evidently being a global player in the anti-

inflammatory response. In accordance with this, miR-146a knock-out mice spontaneously 

develop a severe general autoimmune phenotype and are prone to excessive inflammation, 

although skin alterations have not been described (Boldin et al., 2011; Yang et al., 2012).  

In an inducible model of atopic dermatitis, miR-146a knock-out mice showed increased 

expression of inflammatory mediators in the skin and extended immune cell infiltration 
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(Rebane et al., 2014). This suggests that only upon an external trigger the functional 

relevance of miR-146a becomes apparent in the skin. Nonetheless, the precise role of 

keratinocytes in this model remains to be investigated, since the studied mouse model is miR-

146a deficient in all cells. It is therefore also possible that other cell types, especially immune 

cells, modulate the reaction in the skin.  

We have shown that miR-146a is significantly up-regulated in psoriasis skin lesions. MiR-

146a has also been shown to be up-regulated in other inflammatory diseases, such as 

rheumatoid arthritis (Nakasa et al., 2008; Stanczyk et al., 2008) and Sjögren’s syndrome 

(Pauley et al., 2011). Considering that miR-146a is induced in a variety of activated immune 

cells (Taganov et al., 2006; Curtale et al., 2010; Jurkin et al., 2010; Rusca et al., 2012), the 

observed phenotype in these diseases might at least partly be caused by the activated immune 

cells. Whether tissue-resident cells contribute to the overexpression of miR-146a remains to 

be investigated. Interestingly, in systemic lupus erythematosus, another autoimmune disorder, 

miR-146a was found to be significantly down-regulated (Tang et al., 2009). This highlights 

the complexity of the interlaced feedback mechanisms and their dysregulation in chronic 

inflammatory diseases.  

In psoriasis, we have shown that keratinocytes significantly overexpress miR-146a, and that 

miR-146a functions as a potent anti-inflammatory regulator of keratinocytes. Nonetheless, 

chronic skin inflammation is active despite the increased expression of miR-146a. Since 

psoriasis has a strong genetic component, it is possible that genetic alterations in psoriasis 

patients render miR-146a dysfunctional, which in combination with other factors could 

manifest in chronic inflammation. Genome-wide association studies for psoriasis did not find 

an association between the miR-146a gene locus and the risk of psoriasis (Nair et al., 2009; 

Ellinghaus et al., 2010; Genetic Analysis of Psoriasis et al., 2010). During the writing of this 

thesis, a genetic variant of the miR-146a gene (SNP rs2910164) has been found to be 

associated with a significantly increased risk to develop psoriasis in the Chinese population 

(Zhang et al., 2014). Functionally, this polymorphism led to a down-regulated miR-146a 

expression in keratinocytes and an increased proliferation rate. This suggests that a genetic 

variation can decrease miR-146a expression and thus contribute to the pathogenesis of 

psoriasis. Further studies need to determine whether this polymorphism affects also the anti-

inflammatory function of miR-146a in keratinocytes and thus modulates the immune 

response.  
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Another possibility is that miR-146a binding sites in the 3'-UTR of some of the important 

target genes are mutated in psoriasis patients, thus disturbing the miRNA-mRNA binding, or 

that novel binding sites are created in genes that are normally not targeted by miR-146a 

(Pivarcsi et al., 2014). Detailed studies analyzing the genome of psoriasis patients are needed 

to address this hypothesis, since such alterations in the individual genetic background could 

explain some of the psoriasis cases.  

Strikingly, not only mice with a genetic deletion of miR-146a, but also transgenic mice 

overexpressing miR-146a show signs of autoimmunity (Guo et al., 2013). Considering the 

anti-inflammatory effect of miR-146a in various cell types, it is surprising that also miR-146a 

overexpression causes an inflammatory phenotype in vivo. This seemingly paradoxical 

finding highlights gaps in our knowledge about the factors regulating the balance between 

homeostasis and autoimmunity. It indicates that even small changes in intricate regulatory 

networks may have unexpected effect on the functional outcome of a complex system. This 

finding proposes that the precise balance of miR-146a level is of major importance to sustain 

homeostasis. Interestingly, a similar concept has been proposed based on the computational 

modeling of multiplex cytokine-networks, showing that alterations in the cytokine profile can 

lead to the modification of feedback loop interactions between cells and cause a disease status 

(Valeyev et al., 2010). In regard to psoriasis, this means that increased levels of the anti-

inflammatory player miR-146a may not necessarily be beneficial in chronic inflammation. In 

our model systems we have studied the role of miR-146a in acute inflammatory responses, 

but it is not accounted for the chronicity of inflammation as in psoriasis. It is therefore also 

possible that the chronic overexpression of miR-146a in psoriasis keratinocytes has 

unexpected opposing effects on the inflammatory status of keratinocytes and actually 

worsens the disease.  

From a functional perspective, it is plausible that miR-146a cannot fully compensate for the 

deregulated immune response of psoriasis keratinocytes, acting as an anti-inflammatory 

counter-weight in a widely pro-inflammatory environment. After all, the increased expression 

of miR-146a in psoriasis keratinocytes may therefore still contribute to a decreased 

production of inflammatory mediators, thus ameliorating the disease.  

In conclusion, we have identified miR-146a as a novel regulatory element in keratinocyte 

immunity. We propose a model, where miR-146a is induced in keratinocytes by TLR ligands 

and pro-inflammatory cytokines such as IL-1β and IL-36 (Figure 14). Induction of miR-146a 

is long-lasting and leads to a negative feedback-loop by down-regulation of the IRAK1 / 
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TRAF6 / NF-κB signaling cascade, thus dampening the TLR / IL-1-induced inflammatory 

response of keratinocytes. Under homeostatic conditions, miR-146a averts an immune 

reaction of keratinocytes in the absence of stimuli, thus preventing spontaneous 

autoinflammatory reactions in the skin. The up-regulation of miR-146a in psoriasis 

keratinocytes, likely due to high concentrations of IL-1 cytokines in psoriasis lesions, 

probably contributes to, but cannot completely suppress the deregulated immune reactions of 

psoriasis keratinocytes. Overall, miR-146a can thus be regarded as a gatekeeper of immunity 

in the skin.  

 

 

Figure 14: Schematic summary of the regulation  

and function of miR-146a in keratinocytes. 
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4.6 MIR-31 IN PSORIASIS  

MiR-31 was one of the miRNAs identified to be up-regulated in psoriasis skin biopsies 

(Sonkoly et al., 2007; Zibert et al., 2010; Joyce et al., 2011). Since skin is a complex tissue, 

we aimed to identify the cell type responsible for the up-regulation of miR-31 in psoriasis 

skin. In situ hybridization specific for miR-31 revealed that keratinocytes appear to be the 

source of miR-31 in the skin (Figure 15; Paper IV, Figure 1C). MiR-31 was only slightly 

expressed in the basal layers of healthy epidermis, but its expression was strongly increased 

in the basal and suprabasal layers of psoriasis lesions. This indication was supported by qRT-

PCR analysis of miR-31 expression in CD45neg epidermal cells, showing a drastic increase in 

miR-31 expression in psoriasis keratinocytes (Figure 15; Paper IV, Figure 1D).  

Figure 15: MiR-31 is up-regulated in keratinocytes of psoriasis skin lesions. In situ hybridization of healthy skin 

and psoriasis lesions using a miR-31-specific probe (left). Relative expression of miR-31 measured by qRT-PCR 

in CD45neg epidermal cells from healthy skin, psoriasis non-lesional skin and psoriasis lesions (right). ** p < 

0.01; *** p < 0.001  

 

In order to identify potential inducers of miR-31 expression in keratinoyctes, we investigated 

the effect of cytokines (TNF-α, IL-22, TGF-β1, IL-6, IL-20, IFN-γ, GM-CSF), growth factors 

(EGF, KGF) and keratinocyte differentiation-driving factors (high concentration calcium, 

TPA, cell confluence) on keratinocytes. Strikingly, miR-31 expression was only altered by 

one of the tested treatments: TGF-β1 (Paper IV, Figure 7A). TGF-β expression in the skin 

has been shown to correlate with the severity of psoriasis (Flisiak et al., 2002). Interestingly, 

a transgenic mouse model overexpressing TGF-β1 under a keratinocyte-specific promoter 

develops a psoriasis-like skin phenotype that can be ameliorated by clinical psoriasis 

therapies (etanercept) (Li et al., 2004; Han et al., 2010). We evaluated the expression of miR-

31 in the skin of these mice by qRT-PCR and in situ hybridization and found that 

keratinocyte-specific overexpression of TGF-β1 strongly increased miR-31 expression in 

vivo, while this effect was diminished by etanercept treatment (Paper IV, Figure 7B-C). 
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These results suggest that high levels of TGF-β in the psoriasis lesion might contribute to the 

observed up-regulation of miR-31 in psoriasis keratinocytes and that the expression of miR-

31 is tightly linked to disease activity in vivo.  

 

 

4.7 THE FUNCTION OF MIR-31 IN KERATINOCYTES  

4.7.1 miR-31 regulates inflammatory mediators  

We also aimed to determine the role of miR-31 in keratinocytes with a focus on its function 

in immunity. To that end we inhibited miR-31 in primary human keratinocytes by a specific 

inhibitor and measured the expression and secretion of a series of inflammatory mediators 

such as IL-8, CXCL1, CXCL5 and IL-1β. Inhibition of miR-31 significantly decreased the 

production of these immune mediators (Figure 16; Paper IV, Figure 2A-B), suggesting that 

miR-31 fulfils a pro-inflammatory role in keratinocytes.  

Figure 16: Inhibition of miR-31 suppresses the production of inflammatory mediators by keratinocytes. 

Keratinocytes were transfected with miR-31 inhibitors (anti-miR-31) or regarding controls (anti-miR-Ctrl) (left) 

and additionally treated with TNF-α (right). Expression and secretion of IL-8 (CXCL8) was analyzed by qRT-

PCR and ELISA, respectively. *p < 0.05; **p < 0.01; ***p < 0.001  

 

This was further supported by data from a genome-wide gene expression profiling of 

keratinocytes inhibited for miR-31, showing several immune-related genes to be differentially 

expressed (Paper IV, Table S1). The differentially expressed genes were significantly 

enriched for NF-κB target genes (Paper IV, Figure 4A), suggesting a functional connection 

between miR-31 and the NF-κB pathway. Decreased NF-κB activity in keratinocytes 

inhibited for miR-31 was indeed shown by luciferase reporter assays (Paper IV, Figure 4B), 

supporting that miR-31 has a pro-inflammatory function in keratinocytes.  
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Simulation of an inflammatory situation by addition of TNF-α led as expected to a strong 

induction of the inflammatory response genes (Figure 16; Paper IV, Figure 2C-D). This 

induction was diminished upon inhibition of endogenous miR-31, suggesting that 

keratinocytes need the presence of miR-31 in order to react with an appropriate inflammatory 

response towards a stimulus such as TNF-α.  

To test whether these changes in cytokine and chemokine production have an impact on the 

local environment, we studied the effect of conditioned keratinocyte medium on endothelial 

cells and leukocytes. HUVECs treated with culture medium from miR-31-inhibited 

keratinocytes expressed significantly less adhesion molecules (ICAM-1, VCAM-1, E-

Selectin) (Paper IV, Figure 3A). Moreover, TNF-α-stimulated keratinocytes inhibited for 

miR-31 attracted fewer leukocytes, as measured by quantification of migrated leukocytes 

(Paper IV, Figure 3B). Taken together, these results strongly suggest that miR-31 modulates 

the cytokine and chemokine profile of keratinocytes towards a more pro-inflammatory 

mixture which in turn leads to an increased influx of immune cells into the skin.   

 

4.7.2 miR-31 targets STK40  

To get a functional insight into the mechanisms leading to the pro-inflammatory effect of 

miR-31, we were searching for potential target genes. By comparing the list of genes up-

regulated by miR-31 inhibition (and thus potential targets) with in silico predictions of miR-

31 target genes, we found STK40 to be a promising candidate gene. STK40 is a 

serine/threonine kinase that negatively regulates NF-κB signaling induced by TNF-α (Huang 

et al., 2003). It appears to be essential for the maturation of lung epithelium (Yu et al., 2013). 

STK40 has previously been proposed as a potential target of miR-31 in ovarian cancer cell 

lines (Creighton et al., 2010), but a direct interaction was not confirmed. We therefore used a 

luciferase reporter plasmid containing the 3'-UTR of the STK40 gene and co-transfected it 

together with miR-31 inhibitor into keratinocytes. Inhibition of miR-31 released the 

luciferase activity, showing the negative effect of miR-31 on STK40 translation (Paper IV, 

Figure 5D). This release was completely abolished upon mutation of the two predicted 

binding sites for miR-31 in the STK40 3'-UTR, confirming the direct interaction of miR-31 

with the STK40 mRNA.  

In skin, STK40 was expressed by keratinocytes, mainly in the granular layers of the 

epidermis (Paper IV, Figure 5E). In healthy skin also a weak expression was detected in the 
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basal and spinous layers, while STK40 was completely absent in the basal and lower spinous 

layers in psoriasis lesions. In contrast, miR-31 was majorly expressed in the basal and 

suprabasal layers of the epidermis. This reciprocal expression of STK40 and miR-31 in vivo 

further supports that miR-31 directly targets STK40.  

Next, we aimed to assess the importance of STK40 in mediating the effects of miR-31 on 

inflammatory signaling. The decreased expression of inflammatory cytokines and 

chemokines by miR-31 inhibition could be rescued upon silencing of STK40 via siRNA 

(Paper IV, Figure 6B-C), suggesting that the pro-inflammatory function of miR-31 is, at least 

partly, accomplished through targeting of STK40.   

 

 

4.8 MIR-31 – A PRO-INFLAMMATORY MIRNA   

Our data suggest that expression of miR-31 promotes inflammation in keratinocytes. But the 

role of miR-31 in keratinocytes is not limited to a pro-inflammatory function. Our group has 

shown that miR-31 also promotes cell proliferation and migration in the context of skin 

wounding, thus contributing to re-epithelialization of the skin (Li et al., 2014b). This suggests 

that also in psoriasis, up-regulation of miR-31 may increase keratinocyte proliferation, 

potentially contributing to the hyper-proliferative phenotype observed in psoriasis lesions. 

Also multiple cancers display a major de-regulation of miR-31, leading to a change of cancer-

associated phenotypes, but its regulation and functional role appears to be largely cell-type 

dependent (Laurila and Kallioniemi, 2013). We have shown that in cutaneous squamous cell 

carcinoma, a malignant transformation of keratinocytes, miR-31 was up-regulated, inducing 

migration and thus possibly raising the metastatic potential of the tumor cells (Wang et al., 

2014). In accordance, keratinocyte-specific overexpression of miR-31 in mice increases their 

susceptibility for developing squamous cell carcinoma (Tseng et al., 2014), highlighting the 

significance of miR-31 in keratinocyte biology. The up-regulation of the oncogenic miR-31 

in keratinocytes of psoriasis lesions could therefore promote the development of squamous 

cell carcinoma. In line with this, epidemiological studies have shown that psoriasis patients 

have an increased risk to develop squamous cell carcinoma (Pouplard et al., 2013).  

In summary, our data highlight the importance of miR-31 in the regulation of inflammatory 

processes of keratinocytes. We have shown here that miR-31 is up-regulated in psoriasis 

keratinocytes, and that TGF-β1 can induce its expression. Functionally, inhibition of 
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endogenous miR-31 decreases the production of inflammatory mediators by keratinocytes 

and diminishes the attraction of leukocytes. STK40, a repressor of NF-κB signaling, is 

targeted directly by miR-31, which may at least partly explain the modulatory effect of miR-

31 on the inflammatory status of keratinocytes. Taken together, these results suggest a model 

where TGF-β in psoriasis lesions induce the expression of miR-31 in keratinocytes. MiR-31 

in turn suppresses STK40, thus releasing NF-κB signaling, inducing the production of 

inflammatory mediators and actively attracting immune cells to infiltrate into the skin. MiR-

31 can therefore be considered as a positive regulator of keratinocyte immunity, contributing 

to the highly pro-inflammatory environment in psoriasis lesions (Figure 17).  

 

 

Figure 17: Schematic summary of the regulation  

and function of miR-31 in keratinocytes. 
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5 CONCLUSION  

Protection against infections is crucial for any organism to survive. The recognition of and an 

appropriate inflammatory reaction against an invading pathogen is therefore vital. After 

clearance of an infection, the inflammation needs to be terminated, otherwise chronic 

inflammation and autoimmunity develop, which will weaken and eventually kill the 

organism. A wide variety of complex and often redundant regulatory networks balances the 

thin line between inflammation and homeostasis. The role of miRNAs in this equilibrium is 

only partly known and was the objective of investigation in this thesis.  

We show here that a number of miRNAs is regulated by the encounter of keratinocytes with 

TLR ligands, thus likely shaping the specific inflammatory response of the keratinocytes 

towards the pathogens. The miRNA expression profiles of keratinocytes treated with ligands 

for different TLRs has little overlap. Future studies will show whether these miRNAs might 

specify the response of keratinocytes towards different pathogens. Exempt from this notion is 

miR-146a, being strongly induced by all tested TLR ligands.  

MiR-146a itself can be induced in keratinocytes not only by various TLR ligands, but also by 

cytokines of the IL-1 family (IL-1β, IL-36). MiR-146a induction by inflammatory stimuli is 

surprisingly long-lasting, exceeding by far the acute inflammatory response of keratinocytes. 

Functionally, this up-regulation suppresses globally the production of cytokines, chemokines 

and other inflammatory mediators, at least partly by targeting IRAK1 and TRAF6 and thus 

repressing the NF-κB signaling pathway. MiR-146a decreases the ability of keratinocytes to 

activate endothelial cells and to attract immune cells, thus dampening the local inflammatory 

environment in the skin and reducing the infiltrate of immune cells into the skin. This 

immune-suppressive function of miR-146a is not only active as a negative feedback-loop in 

keratinocytes encountering TLR ligands or IL-1 cytokines, but also in resting, unstimulated 

keratinocytes, protecting from an undesired inflammatory reaction in the absence of a 

stimulus.  

MiR-146a is up-regulated in keratinocytes of psoriasis lesions, most likely by the presence of 

pro-inflammatory cytokines such as IL-36 and IL-1. We have demonstrated the capacity of 

miR-146a to suppress the inflammatory reactions of keratinocytes induced by IL-36 and IL-1. 

Nonetheless, despite the increased expression of miR-146a, keratinocytes in psoriasis skin 

lesions are still in a highly inflammatory state. This suggests that the anti-inflammatory effect 

of miR-146a is not sufficient to suppress chronic inflammation, or that parts of the regulatory 
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network around miR-146a are dysfunctional in psoriasis patients. The function of miR-146a 

in psoriasis therefore needs to be established in the future by in vivo models of psoriasis.  

We found that miR-31 is up-regulated in psoriasis keratinocytes, potentially by the presence 

of TGF-β, but it acts rather as an inducer of inflammation. In fact, keratinocytes need the 

activity of miR-31 to properly induce the NF-κB pathway, produce inflammatory mediators 

and attract leukocytes into the skin upon an inflammatory stimulus. Thus, miR-31 likely 

supports and sustains the pro-inflammatory status of keratinocytes in psoriasis lesions.  

Taken together, we have shown here two examples of miRNAs that have opposite functions 

in the immune response of keratinocytes, miR-146a which dampens inflammation and 

protects from an over-reactive immune response, and miR-31 which appears to be essential 

for keratinocytes to induce an inflammatory action. This emphasizes the complex regulatory 

feedback mechanisms within the cell that become unbalanced in chronic inflammation such 

as in psoriasis.  

To unveil these connections and to acknowledge the contribution of regulatory RNAs to the 

phenotype of chronic inflammation should be a major ambition for future studies in order to 

better understand the complex networks determining the balance between homeostasis and 

inflammation. These insights might lead to the development of novel therapeutic approaches 

targeting miRNAs, which emphasizes the clinical relevance of miRNA research. Moreover, 

the potential of miRNAs to serve as disease biomarkers and to predict therapy response may 

enable novel diagnostic applications.  

In conclusion, our studies highlight the importance of miRNAs in the immune response of 

keratinocytes and provide evidence for the complexity of the networks regulating 

inflammatory responses in the skin, both in health and disease.  

 

 





 

 67 

6 ACKNOWLEDGEMENTS 

In a way, this is the most important chapter of my thesis. Not only because this part is 

guaranteed to be read by everybody, but also because a PhD project involves a lot of people 

and many have contributed in one way or another during the past years to accomplish this 

thesis. I had help from many sides and I want to thank all of you for that.  

First and foremost, I would like to thank Enikő Sonkoly and Andor Pivarcsi, my main 

supervisors. Thank you for giving me the opportunity to do my PhD in your lab. You two are 

really a science dream-team, complementing each other between fantastic plans and the 

down-to-earth reality. I really appreciate your enthusiasm and positive spirit, as well as the 

freedom you have given me during these years. You have been excellent teachers, I learned 

from you not only practical experimental setup, analysis and data presentation, but also how 

to win against statistics, what in science to believe in and what an RNase-free hammer and 

toothbrush might be good for.  

Mona Ståhle, my co-supervisor and head of the Molecular Dermatology group. Thank you 

so much for your support throughout my PhD, for always having time to solve any urgent 

matters and for elegantly guiding our (no longer) small group between university and 

hospital. You have given me insights into clinical considerations and taught me that the most 

exciting findings in the lab may not necessarily be relevant for patients; and that fun at work 

is a key to success.  

Ning Xu Landén, my co-supervisor and colleague, I enjoyed pipetting and discussing with 

you a lot. Thank you for your always positive attitude and your never-ending effort to find a 

positive explanation even for those experiments that absolutely didn’t work.  

Of course I want to thank all members of the Molecular Dermatology Research group: 

Tianling Wei, for welcoming and introducing me to the lab at the beginning, and for 

teaching me to use smileys :-) Anna-Lena Kastman, for cutting endless sections, bribing the 

pathology to do stainings for me and for sharing my love of keeping the lab in order. Ankit 

Srivastava and Warangkana Beau-Bo Lohcharoenkal, for your help with my projects in 

the last months and for (hopefully) continuing them. Gunilla Ekstrand, for rescuing me (and 

all of us) from bureaucracy. Maria Lundqvist, Helena Griehsel and Anna Schroeter, for 

reliably collecting patient samples for all the different projects. Stanley Cheuk, for solving 

Mac conversion problems and being a walking library for immunology questions. Kerstin 

Bergh, for keeping the cell culture sterile and always knowing where to find things. Maria 



 

68 

Wikén, for your help with flow cytometry and for bringing fun to the cell culture lab. Josefin 

Lysell, for inspiring discussions about basic science, and of course for hilarious trips to the 

ESDR. Aoxue Wang, for your kind assistance with all the small problems during 

experimental setups. Elisa Martini, for your support with goodies during the writing period. 

Clara Chamorro, for sharing your experience with Western Blots and for your never-ending 

optimism. Pernilla Nikamo, for your expertise in genetics and your willingness to explain it 

understandably to me. Liv Eidsmo, for always sharing your fascination about immunology. 

Harry Xi Liu, Dongqing Li, Irène Gallais and Sissi Li, for the Friday fika and all the nice 

chats. Levente, Lilla and Hanna, for enduring scientific discussions so early in your lives, I 

hope you are not affected too much. Thank you also to all other present and previous 

members of the group, for creating such a nice and enjoyable atmosphere in the lab: Husam 

El-Nour, Klas Nordlind, Aram Rasul, Louise Lönndahl, Christine Dieterich and Alvar 

Grönberg.  

I also would like to express my gratitude to all patients and volunteers who contributed to 

the studies by donating skin biopsies or blood samples.  

To our little writing room: Thank you for the good company and all the nice chats at the 

border between science and gossip: Sanna, Izabella, Jia, Tatiana, Christos, Anna, Zaid, 

Sofia, Petra, Jessada, Michela and everybody else who rotated in and out over time.  

Thanks a lot to all people from CMM 2nd floor, it was very nice to work in between so 

diverse groups. A special thanks to the Hamsten group for usually leaving some cake on 

Wednesday afternoons to the hungry rest of the corridor. Thanks also to everybody else at 

CMM and Karolinska Insitutet for helping out with equipment, explaining methods and 

sharing reagents.  

Jacob Lovén and Marie Arsenian-Henriksson, thank you for introducing me to the world 

of microRNAs and guiding my first steps at Karolinska Institutet. Peter Janson, Ami 

Beyeen and Maja Jagodic, for teaching me how to deal with T cells and how to convince 

them to incorporate microRNAs. Bence Réthi, Michela Zuccolo, Audrey Gueniche and 

Lionel Breton for inspiring discussions about innate immunity in the skin. Roger, Pinar, 

Goncalo, Fridi and the rest of the organizing team of the Stockholm RNA club, thanks for 

great discussions and an exciting symposium about the miracles of RNA biology. 

 

 



 

 69 

To all friends who made my life in Stockholm so enjoyable! Thank you for so many nice 

hangouts, parties, barbecues, concerts, dinners, canoeing, dancing, fika, climbing, ice-skating, 

helping to move around Stockholm, hiking tours, movies, singing, and much much more: 

Marijke, Judit, Hannes, Tianling, Lasse, Tess, Ivan, Maria, Emina, Zaid, Elena, Ana, 

Phil, Brendan, Tatjana, Marco, Mari, Brandon, Stefano, Daniel, Laura, Anna, Cath, 

Maryam, Inga, Arnika, Thore, Luise, Michael, Sabrina R., Jessica, Inka, Christina, 

Erik, Louisa, Daniel, Marianne, Simone, Petra and everybody else who is not listed, but 

actually should be here.  

To my family in Bonn, Leverkusen, Daugendorf, Freudenstadt and München, but especially 

to my parents: Mama and Papa, thank you for always supporting and believing in me, 

whereever I have been and whatever I have been doing.  

Finally, to my precious little family, Sabrina and Felicitas. Thank you for being there in my 

life! After all, you are all that counts.  

 

 

 

 





 

 71 

7 REFERENCES 

Abe M, Bonini NM (2013) MicroRNAs and neurodegeneration: role and impact. Trends in 
cell biology 23:30-36. 

Abel EA, DiCicco LM, Orenberg EK, Fraki JE, Farber EM (1986) Drugs in exacerbation of 
psoriasis. Journal of the American Academy of Dermatology 15:1007-1022. 

Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and 
its superfamily: 25 years later, a golden journey. Blood 119:651-665. 

Ajibade AA, Wang HY, Wang RF (2013) Cell type-specific function of TAK1 in innate 
immune signaling. Trends in immunology 34:307-316. 

Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G (2000) Interleukin-
17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and 
interleukin-4-induced activation of human keratinocytes. The Journal of investigative 
dermatology 115:81-87. 

Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded 
RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732-738. 

Altin JG, Sloan EK (1997) The role of CD45 and CD45-associated molecules in T cell 
activation. Immunology and cell biology 75:430-445. 

Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. (2005) Clustering 
and conservation patterns of human microRNAs. Nucleic acids research 33:2697-2706. 

Andrei G (2006) Three-dimensional culture models for human viral diseases and antiviral 
drug development. Antiviral research 71:96-107. 

Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. (2011) 
Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles 
in human plasma. Proceedings of the National Academy of Sciences of the United States of 
America 108:5003-5008. 

Baba M, Imai T, Nishimura M, Kakizaki M, Takagi S, Hieshima K, et al. (1997) 
Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine 
LARC. The Journal of biological chemistry 272:14893-14898. 

Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of 
microRNAs on protein output. Nature 455:64-71. 

Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543-1575. 

Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, et al. (2010) Differential regulation of 
microRNA stability. RNA (New York, NY 16:1032-1039. 

Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L (2003) Normal keratinocytes express 
Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque 
psoriasis. The British journal of dermatology 148:670-679. 

Banno T, Adachi M, Mukkamala L, Blumenberg M (2003) Unique keratinocyte-specific 
effects of interferon-gamma that protect skin from viruses, identified using transcriptional 
profiling. Antiviral therapy 8:541-554. 



 

72 

Bardan A, Nizet V, Gallo RL (2004) Antimicrobial peptides and the skin. Expert opinion on 
biological therapy 4:543-549. 

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 
116:281-297. 

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-233. 

Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread 
influence of metazoan microRNAs. Nature reviews Genetics 5:396-400. 

Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, et al. (2001) Human 
TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. 
Proceedings of the National Academy of Sciences of the United States of America 98:9237-
9242. 

Begon E, Michel L, Flageul B, Beaudoin I, Jean-Louis F, Bachelez H, et al. (2007) 
Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) 
in normal human keratinocytes: TLR2 up-regulation in psoriatic skin. Eur J Dermatol 
17:497-506. 

Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. (2003) Dicer is 
essential for mouse development. Nature genetics 35:215-217. 

Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC (2008) Expression of 
microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in 
breast cancer cells. Oncogene 27:5643-5647. 

Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annual review of cell and 
developmental biology 22:339-373. 

Blumberg H, Dinh H, Trueblood ES, Pretorius J, Kugler D, Weng N, et al. (2007) Opposing 
activities of two novel members of the IL-1 ligand family regulate skin inflammation. The 
Journal of experimental medicine 204:2603-2614. 

Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. (2011) miR-146a is a 
significant brake on autoimmunity, myeloproliferation, and cancer in mice. The Journal of 
experimental medicine 208:1189-1201. 

Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F (2005) IL-22 inhibits 
epidermal differentiation and induces proinflammatory gene expression and migration of 
human keratinocytes. J Immunol 174:3695-3702. 

Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate 
and adaptive immunity. Trends in immunology 25:280-288. 

Bowcock AM (2005) The genetics of psoriasis and autoimmunity. Annual review of 
genomics and human genetics 6:93-122. 

Bradley JR (2008) TNF-mediated inflammatory disease. The Journal of pathology 214:149-
160. 

Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target 
recognition. PLoS Biol 3:e85. 

Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human 
skin. Photochemistry and photobiology 84:539-549. 

Broderick JA, Zamore PD (2011) MicroRNA therapeutics. Gene therapy 18:1104-1110. 



 

 73 

Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and 
mode of action. Nature reviews 10:141-148. 

Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996) TRAF6 is a signal transducer 
for interleukin-1. Nature 383:443-446. 

Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the 
MAPK-activated protein kinases. Microbiology and molecular biology reviews : MMBR 
75:50-83. 

Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O'Toole M, et al. (2011) Inter-
regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in 
psoriasis pathogenesis. The Journal of investigative dermatology 131:2428-2437. 

Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-
induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of 
Sciences of the United States of America 72:3666-3670. 

Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, et al. (1999) 
Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of 
type I interferon. Nature medicine 5:919-923. 

Ceribelli A, Satoh M, Chan EK (2012) MicroRNAs and autoimmunity. Current opinion in 
immunology 24:686-691. 

Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, et al. (2006) 
IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with 
implications for psoriasis pathogenesis. The Journal of experimental medicine 203:2577-
2587. 

Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key 
pathway required for the sterile inflammatory response triggered by dying cells. Nature 
medicine 13:851-856. 

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. (2008) Characterization of microRNAs in 
serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research 
18:997-1006. 

Chiricozzi A, Krueger JG (2013) IL-17 targeted therapies for psoriasis. Expert opinion on 
investigational drugs 22:993-1005. 

Christophers E (2001) Psoriasis--epidemiology and clinical spectrum. Clinical and 
experimental dermatology 26:314-320. 

Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, et al. (2006) 
The vast majority of CLA+ T cells are resident in normal skin. J Immunol 176:4431-4439. 

Claverie JM (2005) Fewer genes, more noncoding RNA. Science 309:1529-1530. 

Comerford I, McColl SR (2011) Mini-review series: focus on chemokines. Immunology and 
cell biology 89:183-184. 

Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. 
Nature 489:57-74. 

Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, et al. (2010) Molecular 
profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of 
serous ovarian carcinomas and other cancers. Cancer research 70:1906-1915. 



 

74 

Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. 
Nature reviews Immunology 10:479-489. 

Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V, et al. (2010) An 
emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 
expression and activation-induced cell death in T lymphocytes. Blood 115:265-273. 

de Cid R, Riveira-Munoz E, Zeeuwen PL, Robarge J, Liao W, Dannhauser EN, et al. (2009) 
Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for 
psoriasis. Nature genetics 41:211-215. 

Debets R, Timans JC, Homey B, Zurawski S, Sana TR, Lo S, et al. (2001) Two novel IL-1 
family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-
kappa B activation through the orphan IL-1 receptor-related protein 2. J Immunol 167:1440-
1446. 

Deng L, Wang C, Spencer E, Yang L, Braun A, You J, et al. (2000) Activation of the 
IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme 
complex and a unique polyubiquitin chain. Cell 103:351-361. 

Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the 
immunopathogenesis of psoriasis. The Journal of investigative dermatology 129:1339-1350. 

Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses 
by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529-1531. 

Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory 
diseases. Blood 117:3720-3732. 

Dowlatshahi EA, Wakkee M, Arends LR, Nijsten T (2014) The prevalence and odds of 
depressive symptoms and clinical depression in psoriasis patients: a systematic review and 
meta-analysis. The Journal of investigative dermatology 134:1542-1551. 

Dunphy S, Gardiner CM (2011) NK cells and psoriasis. Journal of biomedicine & 
biotechnology 2011:248317. 

Eckert RL, Efimova T, Dashti SR, Balasubramanian S, Deucher A, Crish JF, et al. (2002) 
Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated 
protein kinase. The journal of investigative dermatology Symposium proceedings / the Society 
for Investigative Dermatology, Inc [and] European Society for Dermatological Research 
7:36-40. 

Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, et al. (2010) Genome-
wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nature 
genetics 42:991-995. 

Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. (2009) Th22 cells 
represent a distinct human T cell subset involved in epidermal immunity and remodeling. J 
Clin Invest 119:3573-3585. 

Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. (2012) MicroRNAs 
bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the 
National Academy of Sciences of the United States of America 109:E2110-2116. 

Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and 
development. Nature reviews Genetics 15:7-21. 



 

 75 

Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, et 
al. (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. 
Nature 413:78-83. 

Flisiak I, Chodynicka B, Porebski P, Flisiak R (2002) Association between psoriasis severity 
and transforming growth factor beta(1) and beta (2) in plasma and scales from psoriatic 
lesions. Cytokine 19:121-125. 

Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, et al. (2014) IL-36 
promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol 
192:6053-6061. 

Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are 
conserved targets of microRNAs. Genome research 19:92-105. 

Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, et al. (1997) 
The expression of the gene coding for the antibacterial peptide LL-37 is induced in human 
keratinocytes during inflammatory disorders. The Journal of biological chemistry 272:15258-
15263. 

Funk J, Langeland T, Schrumpf E, Hanssen LE (1991) Psoriasis induced by interferon-alpha. 
The British journal of dermatology 125:463-465. 

Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from 
mechanisms to therapeutic testing. Nature reviews Immunology 14:585-600. 

Gandhi M, Alwawi E, Gordon KB (2010) Anti-p40 antibodies ustekinumab and 
briakinumab: blockade of interleukin-12 and interleukin-23 in the treatment of psoriasis. 
Seminars in cutaneous medicine and surgery 29:48-52. 

Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, et al. (2009) Self-
RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and 
TLR8. The Journal of experimental medicine 206:1983-1994. 

Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D, et al. (2011) Analysis of 
microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic acids research 
39:5692-5703. 

Garzon R, Calin GA, Croce CM (2009) MicroRNAs in Cancer. Annual review of medicine 
60:167-179. 

Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, 
Spencer CC, Knight J, et al. (2010) A genome-wide association study identifies new psoriasis 
susceptibility loci and an interaction between HLA-C and ERAP1. Nature genetics 42:985-
990. 

Gillitzer R, Ritter U, Spandau U, Goebeler M, Brocker EB (1996) Differential expression of 
GRO-alpha and IL-8 mRNA in psoriasis: a model for neutrophil migration and accumulation 
in vivo. The Journal of investigative dermatology 107:778-782. 

Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 
25:6680-6684. 

Goodarzi H, Trowbridge J, Gallo RL (2007) Innate immunity: a cutaneous perspective. 
Clinical reviews in allergy & immunology 33:15-26. 

Grice EA, Segre JA (2011) The skin microbiome. Nature reviews Microbiology 9:244-253. 



 

76 

Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning 
cells for host defense and immunity. Annual review of immunology 32:659-702. 

Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic 
functions. Immunology and cell biology 89:207-215. 

Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target 
predictions across seven Drosophila species and comparison to mammalian targets. PLoS 
computational biology 1:e13. 

Guinea-Viniegra J, Jimenez M, Schonthaler HB, Navarro R, Delgado Y, Concha-Garzon MJ, 
et al. (2014) Targeting miR-21 to treat psoriasis. Science translational medicine 6:225re221. 

Guo Q, Zhang J, Li J, Zou L, Zhang J, Xie Z, et al. (2013) Forced miR-146a expression 
causes autoimmune lymphoproliferative syndrome in mice via downregulation of Fas in 
germinal center B cells. Blood 121:4875-4883. 

Gutowska-Owsiak D, Ogg GS (2012) The epidermis as an adjuvant. The Journal of 
investigative dermatology 132:940-948. 

Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nature reviews 15:509-524. 

Halata Z, Grim M, Bauman KI (2003) Friedrich Sigmund Merkel and his "Merkel cell", 
morphology, development, and physiology: review and new results. The anatomical record 
Part A, Discoveries in molecular, cellular, and evolutionary biology 271:225-239. 

Han G, Williams CA, Salter K, Garl PJ, Li AG, Wang XJ (2010) A role for TGFbeta 
signaling in the pathogenesis of psoriasis. The Journal of investigative dermatology 130:371-
377. 

Hanada T, Yoshimura A (2002) Regulation of cytokine signaling and inflammation. Cytokine 
& growth factor reviews 13:413-421. 

Hata A (2013) Functions of microRNAs in cardiovascular biology and disease. Annual 
review of physiology 75:69-93. 

Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. (2001) The innate 
immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099-
1103. 

Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes & development 18:2195-2224. 

Heidenreich R, Rocken M, Ghoreschi K (2009) Angiogenesis drives psoriasis pathogenesis. 
International journal of experimental pathology 90:232-248. 

Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. (2004) Species-
specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-
1529. 

Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, et al. (2008) 
Psoriasis is associated with increased beta-defensin genomic copy number. Nature genetics 
40:23-25. 

Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, et al. (2002) CCL27-CCR10 
interactions regulate T cell-mediated skin inflammation. Nature medicine 8:157-165. 

Homey B, Dieu-Nosjean MC, Wiesenborn A, Massacrier C, Pin JJ, Oldham E, et al. (2000) 
Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine 
receptor 6 in psoriasis. J Immunol 164:6621-6632. 



 

 77 

Howell WM, Carter V, Clark B (2010) The HLA system: immunobiology, HLA typing, 
antibody screening and crossmatching techniques. Journal of clinical pathology 63:387-390. 

Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths 
toward the comprehensive functional analysis of large gene lists. Nucleic acids research 
37:1-13. 

Huang J, Teng L, Liu T, Li L, Chen D, Li F, et al. (2003) Identification of a novel 
serine/threonine kinase that inhibits TNF-induced NF-kappaB activation and p53-induced 
transcription. Biochem Biophys Res Commun 309:774-778. 

Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, et al. (2013) MicroRNA-22 
regulates cardiac hypertrophy and remodeling in response to stress. Circulation research 
112:1234-1243. 

Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of 
translational repression and mRNA decay. Nature reviews Genetics 12:99-110. 

Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme 
complex. Science 297:2056-2060. 

Ichihara A, Jinnin M, Yamane K, Fujisawa A, Sakai K, Masuguchi S, et al. (2011) 
microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. The British journal 
of dermatology 165:1003-1010. 

Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and 
therapeutics. A comprehensive review. EMBO molecular medicine 4:143-159. 

Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. (2012) MicroRNA-
146a: a key regulator of astrocyte-mediated inflammatory response. PloS one 7:e44789. 

Izadpanah A, Gallo RL (2005) Antimicrobial peptides. Journal of the American Academy of 
Dermatology 52:381-390; quiz 391-382. 

Johansen C, Flindt E, Kragballe K, Henningsen J, Westergaard M, Kristiansen K, et al. 
(2005) Inverse regulation of the nuclear factor-kappaB binding to the p53 and interleukin-8 
kappaB response elements in lesional psoriatic skin. The Journal of investigative dermatology 
124:1284-1292. 

John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA 
targets. PLoS Biol 2:e363. 

Johnston A, Xing X, Guzman AM, Riblett M, Loyd CM, Ward NL, et al. (2011) IL-1F5, -F6, 
-F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes 
keratinocyte antimicrobial peptide expression. J Immunol 186:2613-2622. 

Jordan CT, Cao L, Roberson ED, Duan S, Helms CA, Nair RP, et al. (2012) Rare and 
common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. 
American journal of human genetics 90:796-808. 

Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A, et al. (2011) Deep sequencing of 
small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Human 
molecular genetics 20:4025-4040. 

Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. (2010) miR-146a is 
differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-
dependent activation. J Immunol 184:4955-4965. 



 

78 

Kagan JC, Medzhitov R (2006) Phosphoinositide-mediated adaptor recruitment controls Toll-
like receptor signaling. Cell 125:943-955. 

Kaneko F, Suzuki M, Takiguchi Y, Itoh N, Minagawa T (1990) Immunohistopathologic 
studies in the development of psoriatic lesion influenced by gamma-interferon and the 
producing cells. Journal of dermatological science 1:425-434. 

Kawai K, Shimura H, Minagawa M, Ito A, Tomiyama K, Ito M (2002) Expression of 
functional Toll-like receptor 2 on human epidermal keratinocytes. Journal of dermatological 
science 30:185-194. 

Kawai T, Akira S (2006) TLR signaling. Cell death and differentiation 13:816-825. 

Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update 
on Toll-like receptors. Nature immunology 11:373-384. 

Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Frontiers in immunology 
5:461. 

Keijsers RR, Hendriks AG, van Erp PE, van Cranenbroek B, van de Kerkhof PC, Koenen HJ, 
et al. (2014) In vivo induction of cutaneous inflammation results in the accumulation of 
extracellular trap-forming neutrophils expressing RORgammat and IL-17. The Journal of 
investigative dermatology 134:1276-1284. 

Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer 
functions in RNA interference and in synthesis of small RNA involved in developmental 
timing in C. elegans. Genes & development 15:2654-2659. 

Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. (2008) 
Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 
452:591-597. 

Kobayashi Y (2008) The role of chemokines in neutrophil biology. Frontiers in bioscience : 
a journal and virtual library 13:2400-2407. 

Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, et al. (1992) 
Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798-1801. 

Kock A, Schwarz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC, et al. (1990) Human 
keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release 
upon stimulation with endotoxin or ultraviolet light. The Journal of experimental medicine 
172:1609-1614. 

Kollisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, et al. (2005) Various 
members of the Toll-like receptor family contribute to the innate immune response of human 
epidermal keratinocytes. Immunology 114:531-541. 

Kondo T, Kawai T, Akira S (2012) Dissecting negative regulation of Toll-like receptor 
signaling. Trends in immunology 33:449-458. 

Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annual review of 
immunology 27:485-517. 

Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs 
using deep sequencing data. Nucleic acids research 42:D68-73. 

Krause K, Metz M, Makris M, Zuberbier T, Maurer M (2012) The role of interleukin-1 in 
allergy-related disorders. Current opinion in allergy and clinical immunology 12:477-484. 



 

 79 

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. (2005) Combinatorial 
microRNA target predictions. Nature genetics 37:495-500. 

Krueger G, Callis K (2004) Potential of tumor necrosis factor inhibitors in psoriasis and 
psoriatic arthritis. Arch Dermatol 140:218-225. 

Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. 
International reviews of immunology 30:16-34. 

Kumar S, McDonnell PC, Lehr R, Tierney L, Tzimas MN, Griswold DE, et al. (2000) 
Identification and initial characterization of four novel members of the interleukin-1 family. 
The Journal of biological chemistry 275:10308-10314. 

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes 
coding for small expressed RNAs. Science 294:853-858. 

Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. (2009) Commensal 
bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nature 
medicine 15:1377-1382. 

Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, et al. (2006) A genome-wide map of 
conserved microRNA targets in C. elegans. Current biology : CB 16:460-471. 

Lande R, Chamilos G, Ganguly D, Demaria O, Frasca L, Durr S, et al. (2014) Cationic 
antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. 
European journal of immunology. 

Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. (2007) 
Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 
449:564-569. 

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. (2001) Initial 
sequencing and analysis of the human genome. Nature 409:860-921. 

Larner-Svensson HM, Williams AE, Tsitsiou E, Perry MM, Jiang X, Chung KF, et al. (2010) 
Pharmacological studies of the mechanism and function of interleukin-1beta-induced 
miRNA-146a expression in primary human airway smooth muscle. Respiratory research 
11:68. 

Larsen CG, Anderson AO, Oppenheim JJ, Matsushima K (1989) Production of interleukin-8 
by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour 
necrosis factor. Immunology 68:31-36. 

Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with 
probable regulatory roles in Caenorhabditis elegans. Science 294:858-862. 

Laurila EM, Kallioniemi A (2013) The diverse role of miR-31 in regulating cancer associated 
phenotypes. Genes, chromosomes & cancer 52:1103-1113. 

Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. (2014) 
Longitudinal analysis of microbial interaction between humans and the indoor environment. 
Science 345:1048-1052. 

Lebre MC, van der Aar AM, van Baarsen L, van Capel TM, Schuitemaker JH, Kapsenberg 
ML, et al. (2007) Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. 
The Journal of investigative dermatology 127:331-341. 

Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. 
Science 294:862-864. 



 

80 

Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes 
small RNAs with antisense complementarity to lin-14. Cell 75:843-854. 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. (2003) The nuclear RNase III Drosha 
initiates microRNA processing. Nature 425:415-419. 

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. (2004) MicroRNA genes are 
transcribed by RNA polymerase II. EMBO J 23:4051-4060. 

Leonardi CL, Romiti R, Tebbey PW (2015) Ten Years On: The Impact of Biologics on the 
Practice of Dermatology. Dermatologic clinics 33:111-125. 

Lerman G, Avivi C, Mardoukh C, Barzilai A, Tessone A, Gradus B, et al. (2011) MiRNA 
expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R. PloS one 
6:e20916. 

Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, 
indicates that thousands of human genes are microRNA targets. Cell 120:15-20. 

Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: 
the leukocyte adhesion cascade updated. Nature reviews Immunology 7:678-689. 

Li AG, Wang D, Feng XH, Wang XJ (2004) Latent TGFbeta1 overexpression in 
keratinocytes results in a severe psoriasis-like skin disorder. EMBO J 23:1770-1781. 

Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, et al. (2014a) 
Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides 
insights into disease mechanisms. The Journal of investigative dermatology 134:1828-1838. 

Li D, Wang A, Meisgen F, Pivarcsi A, Sonkoly E, Ståhle M, et al. (2014b) MicroRNA-31 
promotes skin wound healing by enhancing keratinocyte proliferation and migration. 
Manuscript, submitted  

Li J, Huang J, Dai L, Yu D, Chen Q, Zhang X, et al. (2012) miR-146a, an IL-1beta 
responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by 
targeting Smad4. Arthritis research & therapy 14:R75. 

Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family 
with the properties of an IRAK-kinase. Proceedings of the National Academy of Sciences of 
the United States of America 99:5567-5572. 

Li YY, Zollner TM, Schon MP (2008) Targeting leukocyte recruitment in the treatment of 
psoriasis. Clinics in dermatology 26:527-538. 

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. (2005) 
Microarray analysis shows that some microRNAs downregulate large numbers of target 
mRNAs. Nature 433:769-773. 

Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, et al. (2011) Mast cells 
and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 
187:490-500. 

Lippens S, Lefebvre S, Gilbert B, Sze M, Devos M, Verhelst K, et al. (2011) Keratinocyte-
specific ablation of the NF-kappaB regulatory protein A20 (TNFAIP3) reveals a role in the 
control of epidermal homeostasis. Cell death and differentiation 18:1845-1853. 

Liu X, Alexander V, Vijayachandra K, Bhogte E, Diamond I, Glick A (2001) Conditional 
epidermal expression of TGFbeta 1 blocks neonatal lethality but causes a reversible 



 

 81 

hyperplasia and alopecia. Proceedings of the National Academy of Sciences of the United 
States of America 98:9139-9144. 

Lizzul PF, Aphale A, Malaviya R, Sun Y, Masud S, Dombrovskiy V, et al. (2005) 
Differential expression of phosphorylated NF-kappaB/RelA in normal and psoriatic 
epidermis and downregulation of NF-kappaB in response to treatment with etanercept. The 
Journal of investigative dermatology 124:1275-1283. 

Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with 
a bacteriophage cell wall hydrolase. Science 294:2170-2172. 

Lovendorf MB, Zibert JR, Gyldenlove M, Ropke MA, Skov L (2014) MicroRNA-223 and 
miR-143 are important systemic biomarkers for disease activity in psoriasis. Journal of 
dermatological science 75:133-139. 

Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 
445:866-873. 

Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, et al. (2008) 
Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. The Journal 
of investigative dermatology 128:1207-1211. 

Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG (2013) The IL-23/T17 
pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends in immunology 
34:174-181. 

Lowes MA, Suarez-Farinas M, Krueger JG (2014) Immunology of psoriasis. Annual review 
of immunology 32:227-255. 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. (2005) MicroRNA 
expression profiles classify human cancers. Nature 435:834-838. 

Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, et al. (2010) Function of 
miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142:914-929. 

Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA 
precursors. Science 303:95-98. 

Luteijn MJ, Ketting RF (2013) PIWI-interacting RNAs: from generation to transgenerational 
epigenetics. Nature reviews Genetics 14:523-534. 

Lynch M, Kirby B, Warren RB (2014) Treating moderate to severe psoriasis - best use of 
biologics. Expert review of clinical immunology 10:269-279. 

Lysell J, Padyukov L, Kockum I, Nikamo P, Stahle M (2013) Genetic association with 
ERAP1 in psoriasis is confined to disease onset after puberty and not dependent on HLA-
C*06. The Journal of investigative dermatology 133:411-417. 

Mabuchi T, Chang TW, Quinter S, Hwang ST (2012) Chemokine receptors in the 
pathogenesis and therapy of psoriasis. Journal of dermatological science 65:4-11. 

Marques RE, Guabiraba R, Russo RC, Teixeira MM (2013) Targeting CCL5 in 
inflammation. Expert opinion on therapeutic targets 17:1439-1460. 

Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S, et al. (2011) Interleukin-36-
receptor antagonist deficiency and generalized pustular psoriasis. The New England journal 
of medicine 365:620-628. 

Massague J (2012) TGFbeta signalling in context. Nature reviews 13:616-630. 



 

82 

Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear 
and small nucleolar RNAs. Nature reviews 8:209-220. 

Mathelier A, Carbone A (2013) Large scale chromosomal mapping of human microRNA 
structural clusters. Nucleic acids research 41:4392-4408. 

McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. 
(2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 
17-producing effector T helper cells in vivo. Nature immunology 10:314-324. 

Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O, et al. (2012) MiR-21 is up-regulated 
in psoriasis and suppresses T cell apoptosis. Experimental dermatology 21:312-314. 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. (2013) Circular RNAs 
are a large class of animal RNAs with regulatory potency. Nature 495:333-338. 

Mempel M, Voelcker V, Kollisch G, Plank C, Rad R, Gerhard M, et al. (2003) Toll-like 
receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation 
by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet 
activating factor receptor dependent. The Journal of investigative dermatology 121:1389-
1396. 

Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 
148:1172-1187. 

Miller LS (2008) Toll-like receptors in skin. Advances in dermatology 24:71-87. 

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. 
(2008) Circulating microRNAs as stable blood-based markers for cancer detection. 
Proceedings of the National Academy of Sciences of the United States of America 105:10513-
10518. 

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. (2003) 
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately 
downregulated in human diabetes. Nature genetics 34:267-273. 

Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, et al. (1999) CTACK, a 
skin-associated chemokine that preferentially attracts skin-homing memory T cells. 
Proceedings of the National Academy of Sciences of the United States of America 96:14470-
14475. 

Morizane S, Gallo RL (2012) Antimicrobial peptides in the pathogenesis of psoriasis. The 
Journal of dermatology 39:225-230. 

Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nature reviews Genetics 15:423-
437. 

Muhr P, Zeitvogel J, Heitland I, Werfel T, Wittmann M (2011) Expression of interleukin 
(IL)-1 family members upon stimulation with IL-17 differs in keratinocytes derived from 
patients with psoriasis and healthy donors. The British journal of dermatology 165:189-193. 

Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al. (2009) Genome-wide scan 
reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nature genetics 
41:199-204. 

Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NV, Jenisch S, et al. (2006) Sequence and 
haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. American journal 
of human genetics 78:827-851. 



 

 83 

Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. (2008) Expression of 
microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis and rheumatism 58:1284-
1292. 

Napetschnig J, Wu H (2013) Molecular basis of NF-kappaB signaling. Annual review of 
biophysics 42:443-468. 

Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, et al. (2005) 
Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. The 
Journal of experimental medicine 202:135-143. 

Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009a) Skin immune sentinels in health and 
disease. Nature reviews Immunology 9:679-691. 

Nestle FO, Kaplan DH, Barker J (2009b) Psoriasis. The New England journal of medicine 
361:496-509. 

Nguyen TT, Niyonsaba F, Ushio H, Akiyama T, Kiatsurayanon C, Smithrithee R, et al. 
(2012) Interleukin-36 cytokines enhance the production of host defense peptides psoriasin 
and LL-37 by human keratinocytes through activation of MAPKs and NF-kappaB. Journal of 
dermatological science 68:63-66. 

Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase 
TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 
signalling pathway. Nature 398:252-256. 

Nourshargh S, Hordijk PL, Sixt M (2010) Breaching multiple barriers: leukocyte motility 
through venular walls and the interstitium. Nature reviews 11:366-378. 

O'Connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory 
responses. Annual review of immunology 30:295-312. 

O'Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of 
progress. Immunological reviews 226:10-18. 

O'Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors - redefining 
innate immunity. Nature reviews Immunology 13:453-460. 

Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, et al. (2011) 
Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin 
disease known as generalized pustular psoriasis. American journal of human genetics 89:432-
437. 

Oosting M, Cheng SC, Bolscher JM, Vestering-Stenger R, Plantinga TS, Verschueren IC, et 
al. (2014) Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proceedings 
of the National Academy of Sciences of the United States of America 111:E4478-4484. 

Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, et al. (2000) The 
repertoire for pattern recognition of pathogens by the innate immune system is defined by 
cooperation between toll-like receptors. Proceedings of the National Academy of Sciences of 
the United States of America 97:13766-13771. 

Page A, Navarro M, Garin M, Perez P, Casanova ML, Moreno R, et al. (2010) IKKbeta leads 
to an inflammatory skin disease resembling interface dermatitis. The Journal of investigative 
dermatology 130:1598-1610. 

Park CY, Choi YS, McManus MT (2010) Analysis of microRNA knockouts in mice. Human 
molecular genetics 19:R169-175. 



 

84 

Pasparakis M (2009) Regulation of tissue homeostasis by NF-kappaB signalling: implications 
for inflammatory diseases. Nature reviews Immunology 9:778-788. 

Pauley KM, Cha S, Chan EK (2009) MicroRNA in autoimmunity and autoimmune diseases. 
Journal of autoimmunity 32:189-194. 

Pauley KM, Stewart CM, Gauna AE, Dupre LC, Kuklani R, Chan AL, et al. (2011) Altered 
miR-146a expression in Sjogren's syndrome and its functional role in innate immunity. 
European journal of immunology 41:2029-2039. 

Perera GK, Di Meglio P, Nestle FO (2012) Psoriasis. Annual review of pathology 7:385-422. 

Perkins ND (2006) Post-translational modifications regulating the activity and function of the 
nuclear factor kappa B pathway. Oncogene 25:6717-6730. 

Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. 
Nature reviews 8:49-62. 

Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA 
(2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-
induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180:5689-
5698. 

Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA (2009) Divergent 
intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b 
expression and chemokine release in human alveolar epithelial cells. FEBS letters 583:3349-
3355. 

Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB (2006) In vitro and in situ expression 
of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in 
psoriatic skin. J Immunol 176:1908-1915. 

Pivarcsi A, Bodai L, Rethi B, Kenderessy-Szabo A, Koreck A, Szell M, et al. (2003) 
Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. International 
immunology 15:721-730. 

Pivarcsi A, Kemeny L, Dobozy A (2004) Innate immune functions of the keratinocytes. A 
review. Acta microbiologica et immunologica Hungarica 51:303-310. 

Pivarcsi A, Meisgen F, Xu N, Stahle M, Sonkoly E (2013) Changes in the level of serum 
microRNAs in patients with psoriasis after antitumour necrosis factor-alpha therapy. The 
British journal of dermatology 169:563-570. 

Pivarcsi A, Stahle M, Sonkoly E (2014) Genetic polymorphisms altering microRNA activity 
in psoriasis - a key to solve the puzzle of missing heritability? Experimental dermatology 
23:620-624. 

Pober JS, Cotran RS (1990) Cytokines and endothelial cell biology. Physiological reviews 
70:427-451. 

Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. (1998) Defective LPS 
signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-
2088. 

Pouplard C, Brenaut E, Horreau C, Barnetche T, Misery L, Richard MA, et al. (2013) Risk of 
cancer in psoriasis: a systematic review and meta-analysis of epidemiological studies. 
Journal of the European Academy of Dermatology and Venereology : JEADV 27 Suppl 3:36-
46. 



 

 85 

Power CA, Church DJ, Meyer A, Alouani S, Proudfoot AE, Clark-Lewis I, et al. (1997) 
Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3alpha 
from lung dendritic cells. The Journal of experimental medicine 186:825-835. 

Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and 
considerations. Nature reviews Genetics 13:358-369. 

Qu Z, Li W, Fu B (2014) MicroRNAs in autoimmune diseases. BioMed research 
international 2014:527895. 

Ramirez H, Patel SB, Pastar I (2014) The Role of TGFbeta Signaling in Wound 
Epithelialization. Advances in wound care 3:482-491. 

Raychaudhuri SP, Jiang WY, Raychaudhuri SK (2008) Revisiting the Koebner phenomenon: 
role of NGF and its receptor system in the pathogenesis of psoriasis. The American journal of 
pathology 172:961-971. 

Rebane A, Runnel T, Aab A, Maslovskaja J, Ruckert B, Zimmermann M, et al. (2014) 
MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through 
suppression of innate immune responses in keratinocytes. The Journal of allergy and clinical 
immunology. 

Rebholz B, Haase I, Eckelt B, Paxian S, Flaig MJ, Ghoreschi K, et al. (2007) Crosstalk 
between keratinocytes and adaptive immune cells in an IkappaBalpha protein-mediated 
inflammatory disease of the skin. Immunity 27:296-307. 

Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: Association with 
disease and potential use as biomarkers. Critical reviews in oncology/hematology 80:193-
208. 

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. (2000) 
The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. 
Nature 403:901-906. 

Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A (2011) IL-23-mediated 
psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol 186:1495-1502. 

Rom S, Rom I, Passiatore G, Pacifici M, Radhakrishnan S, Del Valle L, et al. (2010) 
CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB 
journal : official publication of the Federation of American Societies for Experimental 
Biology 24:2292-2300. 

Romani N, Brunner PM, Stingl G (2012) Changing views of the role of Langerhans cells. The 
Journal of investigative dermatology 132:872-881. 

Ronneberg Mehren C, Clemmensen A, Boe-Hansen Dall A, Philipsen P, Gniadecki R (2014) 
Essential factors influencing health-related-quality of life in psoriasis. Journal of drugs in 
dermatology : JDD 13:246-250. 

Rusca N, Deho L, Montagner S, Zielinski CE, Sica A, Sallusto F, et al. (2012) MiR-146a and 
NF-kappaB1 regulate mast cell survival and T lymphocyte differentiation. Mol Cell Biol 
32:4432-4444. 

Rutz S, Eidenschenk C, Ouyang W (2013) IL-22, not simply a Th17 cytokine. Immunological 
reviews 252:116-132. 

Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. 
Nature reviews Drug discovery 13:21-38. 



 

86 

Sanford JA, Gallo RL (2013) Functions of the skin microbiota in health and disease. 
Seminars in immunology 25:370-377. 

Sanmiguel JC, Olaru F, Li J, Mohr E, Jensen LE (2009) Interleukin-1 regulates keratinocyte 
expression of T cell targeting chemokines through interleukin-1 receptor associated kinase-1 
(IRAK1) dependent and independent pathways. Cell Signal 21:685-694. 

Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of 
signals, mechanisms and functions. Journal of leukocyte biology 75:163-189. 

Schumacher C, Clark-Lewis I, Baggiolini M, Moser B (1992) High- and low-affinity binding 
of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human 
neutrophils. Proceedings of the National Academy of Sciences of the United States of 
America 89:10542-10546. 

Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor 
CCR6. Cytokine & growth factor reviews 14:409-426. 

Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and 
lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. The Journal of 
biological chemistry 274:17406-17409. 

Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating 
cell-free microRNAs in cancer. Nature reviews Clinical oncology 11:145-156. 

Seddiki N, Brezar V, Ruffin N, Levy Y, Swaminathan S (2014) Role of miR-155 in the 
regulation of lymphocyte immune function and disease. Immunology 142:32-38. 

Seitz CS, Freiberg RA, Hinata K, Khavari PA (2000) NF-kappaB determines localization and 
features of cell death in epidermis. J Clin Invest 105:253-260. 

Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) 
Widespread changes in protein synthesis induced by microRNAs. Nature 455:58-63. 

Shirakata Y (2010) Regulation of epidermal keratinocytes by growth factors. Journal of 
dermatological science 59:73-80. 

Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong D, et al. (2014) Th17 cells in 
inflammation and autoimmunity. Autoimmunity reviews. 

Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S, et al. (2013a) The role of 
miRNA in inflammation and autoimmunity. Autoimmunity reviews 12:1160-1165. 

Singh TP, Lee CH, Farber JM (2013b) Chemokine receptors in psoriasis. Expert opinion on 
therapeutic targets 17:1405-1422. 

Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE, Sims JE, et al. (2000) 
Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region 
responsible for coupling to pro-inflammatory signaling pathways. The Journal of biological 
chemistry 275:4670-4678. 

Sonkoly E, Pivarcsi A (2009) Advances in microRNAs: implications for immunity and 
inflammatory diseases. Journal of cellular and molecular medicine 13:24-38. 

Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, et al. (2007) 
MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PloS one 2:e610. 



 

 87 

Sonkoly E, Wei T, Pavez Lorie E, Suzuki H, Kato M, Torma H, et al. (2010) Protein kinase 
C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. 
The Journal of investigative dermatology 130:124-134. 

Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of 
microRNAs on target mRNA expression. Proceedings of the National Academy of Sciences 
of the United States of America 103:2746-2751. 

Speyer CL, Ward PA (2011) Role of endothelial chemokines and their receptors during 
inflammation. Journal of investigative surgery : the official journal of the Academy of 
Surgical Research 24:18-27. 

Stamatas GN, Morello AP, Mays DA (2013) Early inflammatory processes in the skin. 
Current molecular medicine 13:1250-1269. 

Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. (2008) 
Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid 
arthritis. Arthritis and rheumatism 58:1001-1009. 

Streilein JW (1983) Skin-associated lymphoid tissues (SALT): origins and functions. The 
Journal of investigative dermatology 80 Suppl:12s-16s. 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. (2005) 
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proceedings of the National Academy of Sciences of the United States of 
America 102:15545-15550. 

Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of 
microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. 
Proceedings of the National Academy of Sciences of the United States of America 103:12481-
12486. 

Takeda K, Akira S (2004) TLR signaling pathways. Seminars in immunology 16:3-9. 

Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, et al. (2001) 
Discrimination of bacterial lipoproteins by Toll-like receptor 6. International immunology 
13:933-940. 

Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, et al. (2002) Cutting edge: 
role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J 
Immunol 169:10-14. 

Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, et al. (2009) MicroRNA-146A contributes to 
abnormal activation of the type I interferon pathway in human lupus by targeting the key 
signaling proteins. Arthritis and rheumatism 60:1065-1075. 

Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE (2004) Interleukin (IL)-1F6, IL-1F8, 
and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-
kappaB and MAPKs. The Journal of biological chemistry 279:13677-13688. 

Towne JE, Renshaw BR, Douangpanya J, Lipsky BP, Shen M, Gabel CA, et al. (2011) 
Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and 
IL-36gamma) or antagonist (IL-36Ra) activity. The Journal of biological chemistry 
286:42594-42602. 

Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H (2009) Identification of a human helper 
T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, 
T(H)1 and T(H)2 cells. Nature immunology 10:864-871. 



 

88 

Tseng SH, Yang CC, Yu EH, Chang C, Lee YS, Liu CJ, et al. (2014) K14-EGFP-miR-31 
transgenic mice have high susceptibility to chemical-induced squamous cell tumorigenesis 
that is associating with Ku80 repression. International journal of cancer Journal 
international du cancer. 

Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. (2012) Identification of 
15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature genetics 
44:1341-1348. 

Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the 
ionizing radiation response. Proceedings of the National Academy of Sciences of the United 
States of America 98:5116-5121. 

Underhill DM, Ozinsky A, Smith KD, Aderem A (1999) Toll-like receptor-2 mediates 
mycobacteria-induced proinflammatory signaling in macrophages. Proceedings of the 
National Academy of Sciences of the United States of America 96:14459-14463. 

Wagner EF, Schonthaler HB, Guinea-Viniegra J, Tschachler E (2010) Psoriasis: what we 
have learned from mouse models. Nature reviews Rheumatology 6:704-714. 

Wahl SM (1994) Transforming growth factor beta: the good, the bad, and the ugly. The 
Journal of experimental medicine 180:1587-1590. 

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated 
transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. 
Nature cell biology 9:654-659. 

Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A (2009) 
Psoriasis--as an autoimmune disease caused by molecular mimicry. Trends in immunology 
30:494-501. 

Valeyev NV, Hundhausen C, Umezawa Y, Kotov NV, Williams G, Clop A, et al. (2010) A 
systems model for immune cell interactions unravels the mechanism of inflammation in 
human skin. PLoS computational biology 6:e1001024. 

van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, et al. 
(2012) IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to 
IL-36 receptor antagonist. Proceedings of the National Academy of Sciences of the United 
States of America 109:3001-3005. 

van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MB 
(2007) Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. 
J Immunol 178:1986-1990. 

van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R (1999) Squamous cell 
carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB 
signaling. Cancer research 59:3299-3303. 

van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. 
EMBO molecular medicine 6:851-864. 

van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circulation 
research 110:496-507. 

Wang A, Landen NX, Meisgen F, Lohcharoenkal W, Stahle M, Sonkoly E, et al. (2014) 
MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell 
motility and colony formation ability of tumor cells. PloS one 9:e103206. 



 

 89 

Wang D, Zhang Z, O'Loughlin E, Wang L, Fan X, Lai EC, et al. (2013) MicroRNA-205 
controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nature cell 
biology 15:1153-1163. 

Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for 
microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature genetics 
39:380-385. 

Weber A, Wasiliew P, Kracht M (2010) Interleukin-1 (IL-1) pathway. Science signaling 
3:cm1. 

Wei T, Xu N, Meisgen F, Stahle M, Sonkoly E, Pivarcsi A (2013) Interleukin-8 is regulated 
by miR-203 at the posttranscriptional level in primary human keratinocytes. Eur J Dermatol. 

Vestergaard C, Just H, Baumgartner Nielsen J, Thestrup-Pedersen K, Deleuran M (2004) 
Expression of CCR2 on monocytes and macrophages in chronically inflamed skin in atopic 
dermatitis and psoriasis. Acta dermato-venereologica 84:353-358. 

Vigne S, Palmer G, Lamacchia C, Martin P, Talabot-Ayer D, Rodriguez E, et al. (2011) IL-
36R ligands are potent regulators of dendritic and T cells. Blood 118:5813-5823. 

Vigne S, Palmer G, Martin P, Lamacchia C, Strebel D, Rodriguez E, et al. (2012) IL-36 
signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive 
CD4+ T cells. Blood 120:3478-3487. 

Viguier M, Guigue P, Pages C, Smahi A, Bachelez H (2010) Successful treatment of 
generalized pustular psoriasis with the interleukin-1-receptor antagonist Anakinra: lack of 
correlation with IL1RN mutations. Annals of internal medicine 153:66-67. 

Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. 
(2007) Development, cytokine profile and function of human interleukin 17-producing helper 
T cells. Nature immunology 8:950-957. 

Witwer KW (2014) Circulating MicroRNA Biomarker Studies: Pitfalls and Potential 
Solutions. Clinical chemistry. 

Wolk K, Haugen HS, Xu W, Witte E, Waggie K, Anderson M, et al. (2009) IL-22 and IL-20 
are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are 
not. Journal of molecular medicine 87:523-536. 

Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the 
innate immunity of tissues. Immunity 21:241-254. 

Wong CH, Heit B, Kubes P (2010) Molecular regulators of leucocyte chemotaxis during 
inflammation. Cardiovascular research 86:183-191. 

Wright HL, Moots RJ, Bucknall RC, Edwards SW (2010) Neutrophil function in 
inflammation and inflammatory diseases. Rheumatology 49:1618-1631. 

Wrone-Smith T, Nickoloff BJ (1996) Dermal injection of immunocytes induces psoriasis. J 
Clin Invest 98:1878-1887. 

Xia P, Fang X, Zhang ZH, Huang Q, Yan KX, Kang KF, et al. (2012) Dysregulation of 
miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. 
Immunology letters 148:151-162. 

Xu N, Brodin P, Wei T, Meisgen F, Eidsmo L, Nagy N, et al. (2011) MiR-125b, a microRNA 
downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. The 
Journal of investigative dermatology 131:1521-1529. 



 

90 

Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. (2002) Essential role 
for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 
420:324-329. 

Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B, et al. (2008) CCR6 
regulates the migration of inflammatory and regulatory T cells. J Immunol 181:8391-8401. 

Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, et al. (2012) miR-146a controls 
the resolution of T cell responses in mice. The Journal of experimental medicine 209:1655-
1670. 

Yao Y, Richman L, Morehouse C, de los Reyes M, Higgs BW, Boutrin A, et al. (2008) Type 
I interferon: potential therapeutic target for psoriasis? PloS one 3:e2737. 

Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by 
repressing 'stemness'. Nature 452:225-229. 

Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-
microRNAs and short hairpin RNAs. Genes & development 17:3011-3016. 

Yu H, He K, Li L, Sun L, Tang F, Li R, et al. (2013) Deletion of STK40 protein in mice 
causes respiratory failure and death at birth. The Journal of biological chemistry 288:5342-
5352. 

Zenz R, Eferl R, Kenner L, Florin L, Hummerich L, Mehic D, et al. (2005) Psoriasis-like skin 
disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437:369-
375. 

Zhang W, Yi X, Guo S, Shi Q, Wei C, Li X, et al. (2014) A single-nucleotide polymorphism 
of miR-146a and psoriasis: an association and functional study. Journal of cellular and 
molecular medicine 18:2225-2234. 

Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX, et al. (2009) Psoriasis genome-
wide association study identifies susceptibility variants within LCE gene cluster at 1q21. 
Nature genetics 41:205-210. 

Zhao J, Li X, Zou M, He J, Han Y, Wu D, et al. (2014) miR-135a inhibition protects A549 
cells from LPS-induced apoptosis by targeting Bcl-2. Biochem Biophys Res Commun 
452:951-957. 

Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. (2007) 
Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and 
acanthosis. Nature 445:648-651. 

Zibert JR, Lovendorf MB, Litman T, Olsen J, Kaczkowski B, Skov L (2010) MicroRNAs 
and potential target interactions in psoriasis. Journal of dermatological science 58:177-185. 

 


