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ABSTRACT 

Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic stem cells characterized 
by inhibition of differentiation, subsequent accumulation of incomplete matured cells at 
various stages and reduced production of healthy hematopoietic elements. Despite significant 
progress, the outcome of AML is variable and often suboptimal. Many patients will ultimately 
relapse and approximately 60% of patients will succumb to their disease. Deep understanding 
of the leukemogenesis and progression of AML and searching for new prognosis markers, risk 
stratification as well as therapeutic targets are of great importance to scientists, clinicians and 
of course future patients. 

In the first paper, we conducted a study on 48 de novo AML patients and found down-
regulation of miR-370 expression as a frequent event. Ectopic expression of miR-370 in two 
AML cell lines led to cell growth arrest and senescence, while depletion of miR-370 expression 
enhanced the proliferation of those leukemic cells. Mechanistically, miR-370 targeted the 
transcription factor FoxM1, a well-established oncogenic factor promoting cell cycle 
progression. The treatment of AML cells with 5-aza-2’-deoxycytidine (5-aza-CdR), a DNA 
methylation inhibitor, led to the up-regulation of miR-370 expression, which indicates 
epigenetic silencing of miR-370 in leukemogenesis. In conclusion, miR-370 acts as a tumor 
suppressor in AML by targeting FoxM1. 

Acute promyelocytic leukemia (APL) is a distinct subtype of AML characterized by the 
balanced reciprocal translocation t(15;17)(q22;q12-21) that encodes a fusion protein PML-
RARα. In study II, we determined the clonal evolution scenario in an APL patient who 
presented the same disease after 17 years to distinguish between a very late relapse and newly 
developed de novo APL. The patient APL cells carried the identical PML-RARa fusion gene 
between two occasions, however, exhibited significant other genetic alterations. FLT3ITD and 
FLT3D835 mutations were observed in the first and second APL cells, respectively. Thus, the 
patient experienced a very true late relapse of the disease. The data also suggest that PML-
RARa fusion-mediated APL development needs a second oncogenic event (FLT3 mutations in 
the present case). 

DNA methyltransferase inhibitors such as 5-azacytidine (5-AZA) have been used for the 
treatment of AML and other malignancies. In study III, we identified that 5-AZA induced DNA 
damage, telomere dysfunction and telomerase inhibition in AML cells, which was coupled with 
cellular apoptosis. Telomerase over-expression significantly attenuated 5-AZA-mediated DNA 
damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA-mediated 
telomere dysfunction contributes to its anti-cancer activity.  

Somatic mutation of FMS-like tyrosine kinase 3 (FLT3) occurs in 30% of AML, with the 
majority of mutations exhibiting internal tandem duplication (ITD) in the juxtamembrane 
domain to drive leukemogenesis. In study IV, we observed that, in FLT3ITD-harboring 
primary cells from AML patients and AML cell lines, FLT3 inhibitor PKC412 down-regulated 
telomerase (TERT) gene expression and telomerase activity in a MYC-dependent manner. This 
effect was required for its optimal anti-AML efficacy. Ectopic expression of TERT 
significantly attenuated the apoptotic effect of PKC412 on AML cells. Mechanistically, TERT 
enhanced the activity of FLT3 downstream effectors or alternative tyrosine kinase receptor 
signaling pathways through which PKC412 effect was attenuated. In conclusion, FLT3ITD 
regulates TERT expression via a MYC-dependent manner, and TERT plays an important role 
in FLT3 inhibitor-mediated anti-AML efficacy. 
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1 INTRODUCTION 
 

1.1 ACUTE MYELOID LEUKEMIA 

1.1.1 Definition 

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. It is a 

malignant disorder of the hematological system characterized by clonal expansion of immature 

myeloblasts in bone marrow, blood and/or other tissue and reduced production of healthy 

hematopoietic elements1. Cytopenias cause clinical manifestations, with symptoms of anemia 

(fatigue and dyspnea), neutropenia (infections), and thrombocytopenia (hemorrhage), which 

are usually present at the time of diagnosis and are dominant throughout treatment2. When at 

least 20% of nucleated cells in a bone marrow sample are myeloblasts, the diagnosis of AML 

can be established. In AML with certain specific genetic abnormalities the diagnosis is 

established irrespective of the blast cell count3.  

1.1.2 Classifications 

The name of ‘leukemia’ was given by Rudolf Virchow in 1845, which was derived from Greek 

meaning ‘white blood’4. However, it took a long time before a uniform classification system 

was generally accepted for acute leukemia. In 1976 the French-American-British (FAB) co-

operative group published ‘Proposals for the classification of the acute leukemias4’ in which 

AML was classified into six main subtypes based on morphological characteristics of the 

leukemic blasts and the direction of differentiation along one or more cell lineages as well as 

the degree of maturation. Modifications were made in 19855. In 2001, World Health 

Organization (WHO) introduced a new classification which highlighted the biological and 

prognostic relevance of the cytogenetic abnormalities. It categorizes AML based on genetic 

findings, relation to cytotoxic therapy, and presence of myelodysplasia-related changes6. Cases 

that do not fulfill criteria for inclusion in one of these groups are assigned to the group of ‘acute 

myeloid leukemia, not otherwise specified’ and classified according to the major lineages 

involved and the degree of maturation. The WHO classification modified in 2008 is described 

in Table 1.  
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Table 1. Classification of acute myeloid leukemia according to WHO3 

Acute myeloid leukemia with recurrent genetic abnormalities 

t(8;21)(q22;q22); RUNX1-RUNX1TI 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

t(15;17)(q22;q12); PML-RARA (acute promyelocytic leukemia) 

t(9;11)(p22;q23); MLLT3-MLL 

t(6;9)(p23;q34); DEK-NUP214 

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EV11 

t(1;22)(p13;q13); RBM15-MKL1 (acute megakaryoblastic leukemia) 

Provisional entity: acute myeloid leukemia with mutated NPM1 

Provisional entity: acute myeloid leukemia with mutated CEBPA 

Acute myeloid leukemia with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

Myeloid sarcoma 

Acute myeloid leukemia, not otherwise specified 

Acute myeloid leukemia with minimal differentiation 

Acute myeloid leukemia without maturation 

Acute myeloid leukemia with maturation 

Acute myelomonocytic leukemia 

Acute monoblastic and monocytic leukemia 

Acute erythroid leukemia 

Acute megakaryoblastic leukemia 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Acute leukemia of ambiguous lineage 

Acute undifferentiated leukemia 

Mixed phenotype acute leukemia with t(9;22)(q34;q11.2); BCR-ABL1 

Mixed phenotype acute leukemia with t(v;11q23); MLL-rearranged 

Mixed phenotype acute leukemia, B/myeloid 

Mixed phenotype acute leukemia, T/myeloid 

Provisional entity: Natural killer (NK) cell lymphoblastic leukemia/lymphoma 
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1.1.3 Epidemiology 

AML is a relatively rare cancer, but is the most frequent form of acute leukemia7. In Sweden, 

every year approximately 350-400 patients are diagnosed with AML, which corresponds to an 

annual incidence of 3-4/100,000 inhabitants. The incidence of AML is highest in the U.S., 

Australia, and Western Europe world wide8. AML is diagnosed at all ages, but the incidence 

increases with increasing age. The median age at presentation is about 70 years. Males are 

slightly more affected than females9. 

1.1.4 Etiology, Pathogenesis, Clinical Signs and Treatment 

The etiology of AML is unknown in most patients. Risk factors include exposure to ionising 

radiation3, benzene10, and cytotoxic chemotherapy11. Some have a preceding diagnosis of 

another hematologic disease such as myelodysplastic syndrome (MDS) or myeloproliferative 

neoplasm (MPN). Cigarette smoking is also a risk factor which could increase the incidence of 

AML12-14. There is no overall increased risk among first-degree relatives to AML patients15. 

Some AML patients develop the disorder after treatment with cytotoxic chemotherapy (usually 

for a solid cancer), which is named as therapy-related AML16. It can be seen 5–10 years after 

exposure to alkylating agents or 1–5 years after treatment with drugs such as doxorubicin and 

etoposide, which interact with DNA topoisomerase II. Both therapy-related AML and AML 

progressed from MDS or MPN are considered as secondary AML. 

Development of AML in a patient is considered to be a process of multiple genetic steps in a 

hematopoietic stem cell17. Mutations can either affect cell proliferation or cell survival (class I 

mutations: RAS, FLT3 and c-KIT)18,19 or interfere with differentiation and maturation of the 

hematopoietic cells (class II mutations: RUNX1/ETO, CBFB/MYH11 and PML/RARα)20,21. The 

development of the disease can most probably only be possible in the presence of combination 

of these two mutation types, and either one is not enough to induce leukemia. 

AML is an aggressive disease and if left untreated, patients will die within weeks. Normal 

hematopoiesis is impaired by expansion of myeloid blasts in bone marrow and by other 

mechanisms, leading to the main symptoms of anemia, bleeding and infection10. Expansion of 

myeloblasts in bone marrow and leukemic infiltration may cause skeletal pain and organ 

specific signs respectively in some patients.  

Intensive chemotherapy is necessary for achievement of complete remission (CR) and the latter 

is a requiste for long-term survival in AML. CR is defined as that leukemic blasts in bone 
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marrow is less than 5% as well as a neutrophil count more than 1.0 × 109/L and a platelet count 

more than 100×109/L22. The initial phase of treatment is referred to as remission induction or 

‘induction therapy’. The combined use of daunorubicin (D) and cytosine arabinoside (A; DA) 

from late 1960’s made it possible to induce CR in AML patients23. In a small subpopulation, 

there was even a potential of long-term survival. Several anti-leukemic drugs have been 

introduced since then, including addition of etoposide24 and the substitution of daunorubicin 

for idarubicin or mitoxantrone. Although those combinations may improve overall survival in 

certain groups of patients25, DA remains the cornerstone in AML treatment26. This phase of 

treatment takes approximately four to six weeks and usually consists of one or two cycles. 

Induction therapy frequently results in a CR of AML, but such remissions are usually short-

lived unless additional, post-remission therapy is given. 

Post-remission therapy is given with the intention of killing leukemic cells remaining in the 

bone marrow or blood, being undetectable under microscope. There are three main basic 

choices for post-remission therapy: additional chemotherapy (mainly several cycles of high-

dose cytarabin), stem cell transplantation from a donor (allogeneic hematopoietic stem cell 

transplantation, HSCT), or high-dose chemotherapy with autologous stem cell support. 

Advances in the genetic and molecular characterizations of leukemia have enhanced the 

capabilities to develop targeted therapies27. The most dramatic example of targeted therapy to 

date is the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) in chronic 

myeloid leukemia (CML)27. However, AML is an extremely heterogeneous disease with 

outcomes that vary widely according to the disease subtypes and patient characteristics. 

Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors is 

promising strategy to help improve the cure rates in AML27,28.  

1.1.5 Acute Promyelocytic Leukemia 

Acute promyelocytic leukemia (APL) is a well-recognized entity, characterized as the M3 

subtype of AML within the FAB morphologic classification, where the cancer cells stop 

maturing at the promyelocyte or progranulocyte stage21,29,30. APL accounts for approximately 

10-15% of all cases of AML in Italy but only 3-4% in Sweden21,31. The incidence of APL in 

China is higher where APL accounts for 20-30% of all AML cases32. Secondary APL is also 

recognized following topoisomerase II inhibitor therapy33. APL is characterized by a balanced 

reciprocal translocation involving the promyelocytic leukemia (PML) gene on chromosome 15 

and the retinoic acid receptor alpha (RARa) gene on chromosome 17, resulting in a generation 
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of a fusion gene PML-RARa encoding for a onco-protein. PML-RARa fusion protein induces 

cell renewal and block differentiation34.  

APL differs clinically from other AML subtypes in that patients carry a high risk of bleeding 

and thromboembolic events35, even in the absence of leukocytosis, before diagnosis and during 

early treatment36. 

APL is treated differently from all other subtypes of AML. The vitamin A derivative, all-trans 

retinoic acid (ATRA)37,38, introduced in the late 1980’s39, has the ability to induce 

differentiation40,41 of leukemic promyelocytes in patients with APL and can induce CR as a 

single drug42. Prior to the incorporation of ATRA into the treatment of APL, patients with APL 

were generally treated according to standard AML chemotherapy protocols, but early death 

rate was a major problem42. Single ATRA could induce CR, however, the duration of remission 

was relatively short43. In combination with an anthracycline-based thermotherapy the efficacy 

has been further improved36. Arsenic trioxide (ATO) was first used to treat APL in 1973, well 

before the benefits of ATRA were appreciated. It is now recognized that ATO has potent and 

relatively selective activity against APL-initiating cells44,45 via its ability to induce PML-RARα 

fusion protein degradation46,47. In addition, ATO has the ability to induce CR in patients with 

refractory and relapsed APL and is successfully used in combination with chemotherapy in this 

group of patients36,48. 

 

1.2 MICRORNAS (MIRNAS) 

1.2.1 MiRNA Regulations 

MiRNAs, small (~22 nucleotide), single-stranded noncoding RNAs, are a novel class of 

biological molecules. Genes coding miRNAs may either give rise to single miRNAs, or contain 

several miRNAs in one transcriptional unit as miRNA clusters49. MiRNAs post-

transcriptionally repress gene expression by recognizing complementary target sites in the 

3’untranslated region (UTR) of target mRNAs50. A single miRNA can regulate several mRNA 

targets and conversely multiple miRNAs can cooperatively regulate a single mRNA target. 

miRNAs have been implicated in a large variety of biological processes, including cell cycle 

progression, apoptosis, differentiation and hematopoiesis51-55, and thereby play important roles 

in multiple pathological processes, including malignant transformation56,57. MiRNAs are most 

frequently located within intergenic regions (distant from annotated genes) or introns of 
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protein-coding genes, and less commonly within exons or antisense transcripts.  

1.2.2 Role of MiRNAs in Human Cancer 

The first evidence of a role for miRNAs in human cancer came from studies of chronic 

lymphocytic leukemia (CLL)58. The expression of miR-15a and miR-16-1 was found to be 

down-regulated in 50-60% of CLL cases due to a deletion of chromosomal region 13q1459. 

Subsequently, the majority of miRNA genes were found to be located at chromosomal regions 

that are genetically altered in human cancer56. The observed miRNA deregulation in cancers 

can be attributed to genomic alterations/mutations, defects in miRNA biogenesis, 

transcriptional deregulations and epigenetic regulations. Epigenetic alterations, such as DNA 

methylation and histone modifications can regulate miRNA expression. Numerous studies 

have demonstrated that miRNAs are deregulated by epigenetic modifications in a variety of 

cancer types. For example, miR-203 is hyper-methylated in several hematological 

malignancies60. 

MiRNAs can suppress the expression of oncogenes or tumor suppressors, and function as 

tumor suppressors or oncogenes that regulate tumor growth by coordinating multiple signaling 

pathways. 

 

1.3 FMS-LIKE TYROSINE KINASE3 (FLT3)  

1.3.1 FLT3 Mutations in AML 

FLT3, structurally related to the receptors for the platelet-derived growth factor (PDGF), 

colony-stimulating factor (CSF), and Kit ligand (KL) is a type III receptor tyrosine kinase 

(RTK)61 (Figure 1). It is expressed on hematopoietic stem cells within bone marrow and 

activated by its ligand (FL), thereby supporting survival, proliferation, and differentiation of 

primitive hematopoietic progenitor cells62. Somatic mutation of the FLT3 gene is an internal 

tandem duplication (ITD) in the juxtamembrane (JM) domain-coding sequence region, being 

one of the most frequently mutated genes and occurs in approximately 23% of AML63-65. The 

JM domain of RTKs often has an autoinhibitory function66. Disruption of its secondary 

structure by mutation frequently results in constitutive activation of the tyrosine kinase67. 

FLT3ITD is believed as a leukemogenesis driver and predictor of a poor prognosis in AML 

patients68. The other mutation type of FLT3 is a point mutation in the tyrosine kinase domain 
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(TKD), comprising approximately 7% of cases. Most commonly, the mutation occurs at codon 

835 (FLT3D835) that leads to constitutive activation of FLT3. Several variants at nearby 

residues have also been reported. 

 

Figure 1. Structural schematic diagram of FLT3ITD. FLT3 receptor monomer is composed 

of an extracellular ligand binding domain, a trans-membrane domain, a juxtamembrane (JM) 

domain, and a tyrosine kinase domain (TKD). Binding to FLT3 ligand (L) leads to receptor 

dimerization and activation of the intracellular kinase, which then leads to phosphorylation (P) 

of multiple sites in the intracellular kinase moiety. 

1.3.2 FLT3 Inhibitors 

FLT3 has now been well validated as a therapeutic target in AML69,70. In the last years, a panel 

of small-molecule tyrosine kinase inhibitors (TKI) targeting FLT3 have been developed, and 

these agents are being tested in clinical trials in various contexts—in combination with 

induction chemotherapy, as single agents in the relapsed/refractory setting, combined with 

hypo-methylating agents in the relapsed/refractory population, and as maintenance therapy 

before or after HSCT. Those TKIs include PKC412, tandutinib, sorafenib, sunitinib and 

others69,70.  

The N-indolocarbazole PKC412 (midostaurin; N-benzoyl-staurosporine; Novartis Pharma AG) 

is one of several FLT3 inhibitors that is currently in late-stage clinical trials71. In preclinical 

studies, PKC412 caused cell cycle arrest and induced apoptosis in mutant FLT3-positive cells 

by directly inhibiting FLT3 kinase activity. In a phase II clinical trial, PKC412 was generally 

well-tolerated, with a decrease in peripheral blast counts observed in roughly a third of 

PKC412-treated relapsed/refractory AML patients, and a median response duration of 13 
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weeks72. PKC412 is currently in phase III clinical trials in combination with daunorubicin and 

cytarabine73,74. 

Resistance to therapy is a major obstacle in FLT3-mutated AML70. One of the well 

characterized mechanisms contributing to resistance is the occurrence of new mutations in the 

FLT3 genome. However, such new mutations were only found in a fraction of patients who 

had developed FLT3TKI resistance75. 

 

1.4 TELOMERE, TELOMERASE AND TELOMERASE 
REVERSE TRANSCRIPTASE (TERT) 

1.4.1 Human Telomeres and Telomerase  

Human telomeres at the termini of chromosomes are the nucleoprotein complex consisting of 

up to 20 kb tandemly repeated TTAGGG sequences and associated proteins76-78. Six key 

proteins binding to telomeric DNA include TRF1, TRF2, TIN2, POT1, TPP1 and RAP1, 

known as shelterin77,78. The telomere structure forms protective caps on human chromosome 

ends, and is essential to maintenance of genomic stability and integrity76-78. Telomere length is 

affected by multiple elements, but the major player in controlling telomere length is telomerase, 

an RNA-dependent DNA polymerase that adds TTAGGG onto chromosome ends. Telomerase 

is composed of two core components, the rate-limiting catalytic unit TERT, and the 

ubiquitously expressed telomerase RNA component (TERC) (Figure 2).  

 

Figure 2. Structural schematic diagram of telomere and telomerase. Human telomeres 

locate at the termini of chromosomes, which contain tandemly repeated TTAGGG sequences. 

Six key proteins bind to telomeric DNA, including TRF1, TRF2, TIN2, POT1, TPP1 and RAP1. 

Telomerase is composed of two core components, the catalytic unit TERT and RNA template. 
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1.4.2 Regulation of TERT 

Transcription, alternative mRNA splicing, phosphorylation, and the maturation and 

modification of TERT have all been shown to play vital roles in the regulation of telomerase 

activity. However, the transcriptional controlling of the TERT gene is the most important 

regulatory element of telomerase expression79. Sequence analysis revealed that the TERT 

promoter lacks the TATA and CAAT boxes, but contains binding sites for several transcription 

factors, including SP1 and c-Myc80.  

1.4.3 Telomerase and Cell Proliferation Potential 

Telomerase is silent in most human differentiated cells due to the tight repression of the TERT 

gene, which results in progressive telomere shortening with each round of divisions. Cells are 

triggered to enter a permanent growth arrest stage named “senescence” when their telomeres 

reach a critical size. Senescence mediated by telomere attrition confers a limited lifespan to 

normal cells and has been proposed as a potent tumor-suppression mechanism81. 

The relationship of cellular life-span with telomere length and telomerase expression has been 

well established. Stem/progenitor cells with great proliferation potential exhibit longer 

telomere coupled with telomerase expression77. Telomere dysfunction82,83 or telomerase 

deficiency may lead to defective hematopoietic cell proliferation and bone marrow failure 

while aberrant activation of telomerase is essential for immortalization and transformation of 

human cells including hematopoietic cells77,78. 

TERT has little or no expression in normal differentiated somatic cells, however, the presence 

of TERT is obligatory for aberrant cell proliferation and immortalization in most tumors (up to 

90%) and recent studies have revealed that cancer stem cells are also TERT-positive. Targeting 

telomerase/TERT is thus suggested as a novel anti-cancer strategy. 

1.4.4 Extra-Telomeric Roles for Telomerase 

Besides the canonical telomere elongation function, telomerase can also act as a transcriptional 

modulator mediating the Wnt–β-catenin signaling pathway. TERT forms a complex with the 

Wnt transcription factor BRG1 and binds to the promoters of Wnt-target genes following 

stimulation of Wnt receptors at the plasma membrane, thus regulating the expression of target 

genes84. Moreover, TERT RNA-dependent RNA polymerase activity has been found to 

contribute to the genesis of double-stranded RNAs that act as precursor of silencing RNAs. In 
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the mitochondria, TERT has also been shown to play a role in regulating oxidative damage-

induced apoptosis. Oxidative stress triggers nuclear export of TERT to the mitochondria85. 

 

1.5 DNA METHYLATION 

1.5.1 DNA Methylation and Gene Transcription 

DNA methylation is a process adding a methyl group to the cytosine DNA nucleotide located 

in CpG sites, which is mediated by DNA methyltransferases (DNMTs). CpG sites are most 

frequently clustered in regulatory or promoter regions of genes86. DNA methylation is an 

important regulator of gene transcription and a large body of evidence has demonstrated that 

genes with high levels of 5-methylcytosine in their promoter region are transcriptionally silent, 

and that DNA methylation gradually accumulates upon long-term gene silencing87. 

Dysregulation of DNMT expression and aberrant DNA methylation widely occurs in human 

malignancies including AML86,87. 

1.5.2 DNMT Inhibitors (DNMTIS) 

Strategies to combat cancer by inhibiting DNA methylation have been developed88, and 

DNMTIs including 5-AZA have been applied to the treatment of AML, MDS, and other 

malignancies89,90. It is generally believed that DNMTIs result in global and gene-specific hypo-

methylation through which growth arrest and/or apoptosis of malignant cells are induced. A 

typical example is the tumor suppressor p16INK4, a gene that is frequently silent due to its 

promoter methylation in oncogenesis while re-activated by DNMTI treatment91. However, 

besides DNA demethylation function, DNMTIs may activate or repress many other 

downstream effectors to achieve their anti-cancer efficacy, for example, DNMTI-mediated 

growth arrest and apoptosis of leukemic cells has recently been shown to result from the 

generation of reactive oxygen species (ROS)92. In addition, activation-induced cytidine 

deaminase was down-regulated by DNMTIs via proteasomal degradation rather than a 

transcriptional regulation, which was believed to play an important role in DNMTI-mediated 

cytotoxic activities93.  
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2 AIMS OF THE STUDY 

The overall objective of this translational study is to define the clinical implications of 

molecular alterations in AML, trying to improve risk stratification and find new therapeutic 

targets in AML. More specifically, the study aims are: 

1. To define the tumor suppressive role of miR-370 in AML, and to explore the underlying 

mechanism for dysregulation of miR-370 in AML and its relationship with oncogene 

FoxM1 (Paper I);  

2. To define the clonal evolution in a unique APL patient who presented with the same disease 

17 years later, and to distinguish between the late relapse of the original disease and new 

de novo or secondary APL, thereby helping select the best therapeutic protocol (Paper II); 

3. To probe whether DNMTIs affect telomere function and whether TERT/telomerase 

interferes with their anti-AML efficacy (Paper III); 

4. To determine whether FLT3-ITD regulates TERT expression in AML cells and whether 

TERT expression affects FLT3 inhibitors’ therapeutic efficacy on AML, trying to uncover 

TERT-mediated drug resistance in FLT3-ITD inhibitor targeted therapy (Paper IV). 
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3 METHODS 

3.1 PATIENT SAMPLES (PAPER I-IV) 

Diagnosis of AML was established according to clinical presentation and morphologic criteria 

of the FAB Classification. Patient’s bone marrow (BM) or peripheral blood samples were 

collected at the Department of Hematology, Qilu Hospital, Shandong University, Jinan, China 

(paper I) and at the Department of Hematology, Karolinska University Hospital, Stockholm, 

Sweden (paper II-IV). Mononuclear cells were isolated using Ficoll-Hypaque density gradient 

centrifugation94.  

3.2 MUTATION ANALYSIS OF FLT3-ITD AND FLT3-D835 
(PAPER II, III & IV) 

AML patients’ DNA was obtained using QIAamp Blood & Cell Culture DNA Kit (QIAGEN 

GmbH Hilden, Germany). FLT3ITD and FLT3D835 mutations were studied qualitatively using 

the fragment length analysis method. PCR primers were fluorescently labeled with 6-FAM, 

NED or HEX. Amplified fragments were detected using Applied Biosystems 3130 XL and 

interpretation of the length of each dye-labeled fragment was calculated by comparing it to a 

size standard using the GeneMapper software95. 

3.3 ARRAY-COMPARATIVE GENOMIC HYBRIDIZATION 
(CGH) (PAPER II) 

Array-CGH96 of genomic DNA isolated from APL patient BM samples was performed using 

the Oxford Gene Technology (OGT) platform with four arrays of 180K oligonucleotide probes 

(60-mer). This platform allowed a complete genome-wide survey with an average resolution 

of 20-50 Kb. Sample labelling and hybridization were performed following the manufacturer’s 

protocol. The arrays were scanned on an Agilent Microarray Scanner and data was analyzed 

using the CytoSur Interpret Software (OGT). 

3.4 WHOLE GENOME SEQUENCING (WGS) (PAPER II) 

Libraries of qualified genomic DNA were prepared for paired-end analysis by the Illumina 

HiSeq 2000. After the generation of clusters of template DNA, they were sequenced by the 

Illumina HiSeq 2000 platform. Each sample was at least 30-fold haploid coverage. After a strict 

QC test, the sequencing data were subjected to bioinformatics analysis. The raw sequencing 

data were filtered and then aligned by Burrows-Wheeler Aligner (BWA). For the mapping the 
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human genome build 37 (Hg19) was used as the reference genome. Then, the generated BWA 

files were processed by the SOAPsnp, SAMtools, BreakDancer and ANNOVAR to analyze 

and annotate the variants. In order to find the precise translocation sites of PML-RARα, the 

intrachromosomal translocation analysis of paired-end sequence data of initial and second APL 

samples was performed using BreakDancer97. Firstly, we extracted all Maq-mapped reads 

within 3000bp of chromosomal locations of PML and RARα by SAMtools98. Then the data 

were subjected to BreakDancer and the analysis parameters were set according to reference. 

3.5 CELL LINES AND CULTURE CONDITIONS (PAPER I, III 
& IV) 

Human AML cell lines HL60, K562, HEL, KG1A, MV4; 11 and MOLM-13 were cultured in 

10% fetal calf serum-containing RPMI-1640 with addition of 2mM L-glutamine and antibiotics 

(50 mg/mL penicillin, and 50 mg/mL streptomycin) in a humid atmosphere at 37°C/5% CO2. 

The DNA methylation inhibitors 5-AZA was bought from Sigma-Aldrich (St. Louis, USA). 

To assess DNMTIs’ effects, exponentially growing cells (HL60 and K562 cells for paper I; 

HEL and KG1A cells for paper III) were treated with inhibitors (0, 0.5, 1.0, 2.0, 5.0μM). 

Culture medium was replaced with freshly prepared DNMTI-containing medium every two 

days. The specific FLT3 inhibitor PKC41299 (Sigma-Aldrich, Buchs, Switzerland) was diluted 

in DMSO and cells were incubated with different concentrations of PKC412 (0.01, 0.025, 0.05, 

0.1μM) for various time periods (paper IV). Cells were counted for numbers and viability 

determined by using Trypan-Blue exclusion test or harvested for isolation of miRNA, total 

RNA or protein. 

3.6 PRIMARY AML CELL SEPARATION AND CULTURE 
(PAPER III & IV) 

Primary AML cells were derived from AML patients and their clinical/molecular 

characteristics are listed in Table 2. Peripheral blood was drawn into heparinized glass tubes 

and leukemic cells were isolated by Lymphoprep gradient centrifugation (Nycomed, Oslo, 

Norway), and subsequently incubated in complete medium in the absence or presence of 5-

AZA or PKC412 as described above. 
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Table 2. Clinical, cytogenetic and molecular characteristics of AML patients 

ID Gender Age (years) 
at 

diagnosis 

Diagnosis(FAB) Cytogenetics  Molecular 
Abnormalities 

1 Female 22 AML-M3 t(15;17) FLT3-ITD mutation 

2 Male 20 AML-M4E0 inv16(p13q22) c-KIT mutation 

3 Male 60 AML-M5 Normal No above mutations 

4 Male 78 AML del(20) FLT3-ITD mutation 

5 Male 68 AML-M1 Normal No above mutations 

 

3.7 RNA EXTRACTION AND QUANTITATIVE REAL-TIME 
PCR (PAPER I, III & IV) 

Total cellular RNA was extracted using the Trizol (Life Technology, Paisley, Scotland, UK) 

according to the manufacturer’s protocol. cDNA was synthesized using random primers (N6) 

(Amersham, Buckinghamshire, UK) and MMLV reverse transcriptase. The PCR primers used 

in the study are listed in Table 3. The above primer pairs cross intron/exon boundaries; thus, 

the resultant PCR products do not represent genomic DNA contamination. β-actin expression 

was used as a control for RNA loading and RT efficiency and amplified. Quantitative real-time 

polymerase chain reaction (qRT-PCR) was carried out in an ABI7900 sequence detector 

(Applied Biosystems, Foster City, CA, USA) using SYBR Green kit (Applied Biosystems, 

Foster City, CA, USA). 

Table 3. Primers used for qRT-PCR determination of gene expression 

Target Description Sequence 

FoxM1 Forward 5’-TGCAGCTAGGATGTGAATCTTC-3’ 

 Reverse 5’-GGAGCCCAGTCCATCAGAACT-3’ 

Skp2 Forward 5’-GGACCTATCGAACTCAGTTAT-3’ 

 Reverse 5’-CAGCCACCTGTACATGCTTT-3’ 

p27kip Forward 5’-ATGTCAAACGTGCGAGTGTCTAA-3’ 

 Reverse 5’-TTACGTTTGACGTCTTCTGAGG-3’ 

TERT Forward 5’-CGGAAGAGTGTCTGGAGCAA-3’ 

 Reverse 5’-GGATGAAGCGGAGTCTGGA-3’ 
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c-MYC Forward 5’- TACCCTCTCAACGACAGCAGCTCGCCCAACT-3’ 

 Reverse 5’-TCTTGACATTCTCCTCGGTGTCCGAGGACCT-3’ 

c-KIT Forward 5’-TCATGGTCGGATCACAAAGA-3’ 

 Reverse 5’-AGGGGCTGCTTCCTAAAGAG-3’ 

DOK3 Forward 5’-TCCAAAAAGGGGCTTTGTTCC -3’ 

 Reverse 5’-GGAGGTAGGGTCCTTTCAGC -3’ 

SULF2 Forward 5’-CCGCCCAGCCCCGAAACC-3’ 

 Reverse 5’-CTCCCGCAACAGCCACACCTT-3’ 

 

3.8 WESTERN BLOT (PAPER I & IV) 

Total cellular proteins were extracted from cultured cells or AML BM samples. Proteins were 

resolved by SDS-PAGE and transferred to PVDF membranes. The membranes were probed 

with the specific antibodies against FoxM1, p27, c-MYC (Santa Cruz Biotechnologies, Santa 

Cruz, CA, USA), total FLT3-ITD, phosph-FLT3-ITD, total AKT and phosph-AKT (Cell 

Signalling Technology, Boston, MA, USA) followed by anti-mouse or rabbit horseradish 

peroxidase–conjugated IgG and developed with the enhanced chemiluminescence method 

(ECL). β-actin served as a loading control. 

3.9 TAQMAN QRT-PCR MIRNA ANALYSIS (PAPER I) 

Quantification of mature miRNAs was performed using qRT-PCR with the TaqMan miRNA 

assay kit100 (Applied Biosystems, Foster City, CA, USA) according to manufacturer’s 

instruction. Briefly, 10 ng of total RNA was reverse-transcribed (RT) with specific primers, 

subsequently 1.5 μL of RT product was used as template for real-time PCR. All real-time 

experiments were performed in triplicate. Data was normalized by the expression of small 

nuclear RNA (snRNA) U6 and expressed either as relative expression (2-ΔCt) or as fold change 

relative to control (2-ΔΔCt). 

3.10  VECTOR CONSTRUCTION (PAPER I, III & IV) 

To generate the miR-370-expressing pSilencer3.1-H1 neo vector, a fragment of 212 base pairs 

(bp) corresponding to the desired miRNA and the surrounding sequences was amplified from 

human genomic sequence, adding a BamHI site and a HindIII site to the 5’ and 3’ ends 
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respectively. MiR-370 inhibitor sequences were synthesized as DNA oligonucleotides; after 

annealing, were sticking ended and subcloned into a pSuper vector. 

The h3.4k-GFP plasmid containing 3.4kb TERT promoter (+1 to -3405, ATG as +1) was 

obtained from Dr. Pei-Rong Huang (National Taiwan University), and the 3.4kb TERT 

promoter fragment was inserted into a pPuro. Cre empty vector (Addgene) just upstream of 

GFP gene.  

For pLenti-III-HA-GFP-TERT vector construction, plenti-III-HA empty vector was bought 

from Applied Biological Materials Inc. (BC, Canada), a 4.5kb GFP-TERT fragment was cut 

from pBabe-hygro-GFP-TERT (Addgene) and inserted into pLenti-III-HA. A control plasmid 

(pLenti-BMN-GFP) encoding a GFP protein was a gift from Rudbeck Laboratory, Uppsala 

University. The vectors were then packaged101 in 293FT cells and supernatant containing virual 

particles collected to infect AML cells to make TERT promoter-driven GFP cells and TERT-

over-expressed cells.  

3.11 TRANSFECTION AND INFECTION (PAPER I, III & IV) 

Cells were incubated in 6-well plates and then transfected with plasmid or siRNA using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) or infected with lentivirus101. Chemical 

modified Stealth small interfering RNA (siRNA) targeting FoxM1 and control siRNA were 

bought from Invitrogen. The sequence for the FoxM1 siRNA was 5’-

GACAACUGUCAAGUGUACCACUCUU-3’. The cells were selected using puromycin (2 

μg/ml) after lentivirus infection. 

3.12  LUCIFERASE REPORTER VECTOR (PAPER I) 

The precursor to miR-370 was synthesized and cloned in pSilencer. Firefly luciferase reporter 

vectors with the intact putative miR-370 recognition sequence from the 3’-UTR of FoxM1 

(pGL3-FoxM1-wt-3’-UTR) or with random mutations (pGL3-FoxM1-mut-3’-UTR) cloned 

downstream of the firefly luciferase gene were constructed. Wild-type and mutant inserts were 

confirmed by sequencing. For the 3’UTR-luciferase assays, cells were co-transfected with 0.5 

μg pGL3-FoxM1-wt or mut-3’-UTR construct, 4 μg of pSilencer or pSilencer-miR370 and 

0.05 μg pRL-TK Renilla luciferase expression construct using Lipofectamine 2000. Luciferase 

assays were performed 24 hrs after transfection using the Dual Luciferase Reporter Assay 

system (Promega, Madison, WI, USA). 
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3.13  SOFT AGAR COLONY FORMATION ASSAY (PAPER I) 

HL60 and K562 cells were re-suspended in DMEM (Gibco, Carlsbad, CA, USA) containing 

20% heat-inactivated fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA) with equal amount 

of either 0.3% agar (HL60) or 0.5% agar (K562), and plated in 6-well plates at 5,000 per well 

on top of a 2.0 mL precast semisolid 1% agar under-layer as described previously102. The 

number of colonies with more than 50 cells was counted after two weeks. 

3.14  SENESCENCE-ASSOCIATED BETA-GALACTOSIDASE 
(PAPER I) 

Senescence-associated beta-galactosidase (SA -β-Gal) staining was done as described103,104. 

Briefly, Cells grown in 6-well plates were transfected with pSilencer or pSilencer-miR-370. 

After 7 days, the cells were rinsed with PBS once, fixed in 3% of formaldehyde for 15 min, 

and incubated with freshly prepared SA -β-Gal staining105 solution at 37°C overnight. 

3.15  ASSESSMENT OF TELOMERASE ACTIVITY (PAPER III 
& IV) 

Telomerase activity was determined using a commercial Telomerase PCR ELISA kit (Roche 

Diagnostics Scandinavia AB, Stockholm, Sweden) according to the manufacturer's instruction. 

Total cellular proteins were extracted using CHAPS lysis buffer. For each assay, 0.5 μg of 

protein was used, and 26 PCR cycles were performed after the telomerase-primer elongation 

reaction. The PCR products were detected with an ELISA colour reaction. The measure 

telomerase activity was expressed as absorbance [optimal density (OD) in arbitrary units]. 

3.16  IMMUNO-FISH (PAPER III) 

Immuno-FISH was performed as described106. Cells were harvested and cytospined onto 

Superfrost plus slides (Thermo Scientific), fixed with 4% paraformadehyde and permeabilized 

with Triton PBS for 20 min and blocked with serum free Block (DAKO, Glostrup, Denmark). 

The slides were then incubated with 53BP1 antibody (Bethyl Inc., Montgomery, TX, USA) 

followed by incubation with Alexa 594 secondary antibody (Jackson Labs Technologies Inc., 

Los Gatos, CA, USA). The slides were treated with frozen and thawed cycle in liquid nitrogen, 

and incubated in 0.1N HCL for 10 min. The PNA telomere probe (PANAGENE Inc., Daejeon, 

Korea) was finally added.  
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3.17  FLOW-FISH FOR TELOMERE LENGTH ASSAY (PAPER 
III) 

Flow FISH of AML cells was performed according to a previous protocol by Baerlocher etc107-

109 with minor modifications. Cells from calf thymus were kindly donated from the butchery 

Ö-slakt AB (Värmdö, Stockholm). All experiments were made with a Gallios flow cytometer 

(Beckman Coulter) and analysed using the Kaluza software (Beckman Coulter, Caguas, PR, 

USA).  

3.18  SUBTELOMERIC DNA METHYLATION AT 
CHROMOSOME 4P (PAPER III) 

Genomic DNA, extracted from control and TERT-over-expressed HEL cells with or without 

5-AZA, was subjected to bisulfite conversion using an EZ DNA Methylation-Gold Kit (ZYMO 

RESEARCH, Irvine, CA, USA). PCR primers specific to the sub-telomere region of 

chromosome 4p were used to amplify the target region110. The obtained PCR products were 

then sequenced at both directions. Two independent experiments were performed. 

3.19  FLOW CYTOMETRY ANALYSIS OF CELL CYCLE AND 
APOPTOSIS (PAPER III & IV) 

AML cells with different treatment were harvested for ethanol fixation and PI staining as 

described111. The PI fluorescence was measured with a Flow Cytometer (Beckman Coulter). 

For each sample 1 ×106 cells were measured. Data analysis was performed with Kaluza®Flow 

Analysis Software112. The control gate was set based on the negative control. 

3.20  TERT PROMOTER ACTIVITY ASSAY (PAPER IV) 

The TERT promoter reporter plasmid p181wt harboring the core promoter sequence of the 

TERT 5'-flanking region and its mutant variant (p181MYC-) lacking the functional c-MYC 

motifs (E-boxes) were described previously113,114. Cells cultured in 24-well plates at 0.5×106 

were transfected with p181wt and p181MYC- plasmids using Lipofectamine2000 (Life 

Technology) according to the manufacturer's protocol, followed by the treatment with PKC412. 

Luciferase activity in the cell lysates was determined by using a dual luciferase reporter assay 

system (Promega, Madison, WI, USA) 24 hrs post-transfection of the promoter reporter. 
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3.21  CDNA ARRAY (PAPER IV) 

MOLM-13 cells infected with control pBMN or TERT-expressing lentiviral vectors were 

treated with 0.1 μM PKC412 for 12 hrs and total RNA extracted. The affymetrix Human Gene 

1.0 ST Array was performed115. The fold change in gene expression between DMSO- and 

PKC412-treated cells was then calculated. 

3.22  STATISTICAL ANALYSES (PAPER I-IV) 

The comparison of mRNA expression, promoter activity, telomerase activity, telomere length, 

cell cycle analysis and co-localization between control and experimental groups was made 

using a Student's t-test or One-way ANOVA followed by Fisher's Least Significant Difference  

(LSD) test. All the tests were two tailed and computed using SPSS18.0 software. Results are 

depicted as the mean ± standard deviation (SD). P values < 0.05 were defined as statistically 

significant. 
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4 RESULTS & DISCUSSION 

4.1 TUMOR SUPPRESSIVE ROLE OF MIR-370 BY 
TARGETING FOXM1 IN AML (PAPER I) 

4.1.1 Dysregulation of miR-370 and FoxM1 in AML 

We determined the expression level of miR-370 in de novo AML patient samples, AML patient 

in 1st CR samples and healthy control materials, and found that miR-370 was down-regulated 

in BM blasts from de novo AML patients. Compared to that from healthy controls, miR-370 

level in patients’ samples was significantly reduced (P < 0.01, t test), while following 

acquisition of CR after induction chemotherapy, miR-370 expression level was restored to 0.82 

fold of controls. There was no association between the presence of mature miR-370 and age, 

gender, blast percentage or FAB subtypes. 

FoxM1, a master regulator of mitotic gene expression, is required for cell proliferation and its 

inhibition leads to reduction in anchor-independent growth and tumorigenesis of cancer cells116. 

We determined the expression level of FoxM1 in all of the clinical samples described above. 

The results revealed that the FoxM1 transcript level in AML patients was 21.47-fold higher 

than that in controls, while following acquisition of CR after induction chemotherapy, FoxM1 

expression level decreased to 1.75 fold of controls, which was negatively correlated with miR-

370 levels.  

4.1.2 Identification of FoxM1 as a Target of miR-370  

Four target prediction programs with different algorithms: DIANA-MicroT117, TargetScan118, 

Miranda119 and PicTar120 predicted that FoxM1 might be a target of miR-370 due to a potential 

7-mer binding site for miR-370 in the 3’UTR region of FoxM1. The prediction was further 

confirmed by the following experiments. 

First, transfection with miR-370 precursor decreased reporter activity in K562 cells, which 

containing the miR-370 recognition sequence from the 3’-UTR of FoxM1 inserted downstream 

of the luciferase gene. Second, random mutations in the recognition sequence resulted in 

abolition of the reporter activation by miR-370 precursor. Finally, transfection of HL60 and 

K562 cells with miR-370 precursor resulted in lower expression of FoxM1. However, there 

was a >2-fold increase in expression of FoxM1 in HL60 and K562 cells after transfection of 

miR370 inhibitor. All of the above results confirmed that FoxM1 is a direct target of miR-370. 
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4.1.3 Changes in Proliferation and Cellular Senescence of Leukemic 
Cells Mediated by Altered miR-370 or FoxM1 Expression 

We transfected AML cell lines with miR-370-expressing vector as well as its inhibitor to 

explore the effect of miR-370 on cell proliferation ability. Overexpression of miR-370 

decreased cell proliferation, as revealed by colony formation assay (pSilencer vs pSilencer-

miR: HL60: 88 ± 15 vs 11 ± 4, P < 0.01; K562: 49 ± 5 vs 18 ± 5, P < 0.01), while the decline 

in miR-370 expression was coupled with enhanced cell proliferation (pSuper vs pSuper-miR-

inhibitor: HL60: 56 ± 7 vs 72 ± 6, P <0.05; K562: 66 ± 12 vs 93 ± 7, P < 0.05). SA β-Gal 

staining, a specific marker for senescent cells revealed a positive β-Gal staining in the two cell 

lines transfected with miR-370 precursors [pSilencer vs pSilencer-miR (% of β-Gal-positive 

cells): HL60: 3 ± 1 vs 28 ± 3, P < 0.01; K562: 8 ± 3 vs 40 ± 1, P < 0.01;], indicating that cell 

senescence was at least one of the underlying mechanisms for decreased cell proliferation 

ability. 

In the two AML cell lines, we knocked down the expression of FoxM1. Compared to control 

ones, FoxM1-knocked down cells exhibited significantly diminished foci formation in both 

(Controls vs FoxM1 siRNA: HL60: 19 ± 3 vs 11 ± 2, P < 0.05; K562: 33 ± 5 vs 5 ± 2, P = 

0.001).  

4.1.4 Epigenetic Silencing of miR-370 in AML 

The chromosomal location of miR-370 on chromosome 14q32.31 has been shown to be 

regulated by DNA methylation, or deleted by loss of heterozygosity121,122 or by hyper-

methylation of a CpG island 200 bp upstream in the mother allele123. Treatment with 5.0 μM 

5-aza-CdR, a DNA methylation inhibitor, for 72 hrs, substantially (>2.0-fold) and significantly 

(P < 0.05) increased the expression of miR-370 in both HL60 and K562 cells and decreased 

cell proliferation, as revealed by clonal formation assay (control vs CdR: HL60: 24 ± 4 vs 7 ± 

2, P < 0.01; K562: 152 ± 5 vs 78 ± 5, P < 0.001). This result demonstrated that the dysregulation 

of miR-370 in AML was at least partially due to abnormal hyper-methylation mechanism. 

Demethylation by DNMTI led to restoration of miR-370 expression and decline in expansion 

of leukemic cells. 

MiR-370 has been noted to be down-regulated in papillary thyroid carcinoma, colorectal cancer 
124and malignant cholangiocytes125, but evidence of a biological role for this miRNA in AML 

has not been reported. A link between microRNAs dysregulation and hematological 

malignancies has been reported dating back to a decade ago, and recent documents further 

reveal that miRNA expression profiles are AML subtype-specific126,127. 
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Collectively, we demonstrate that miR-370 is a tumor suppressive factor by targeting multiple 

oncogenic pathways, and miR-370 is down-regulated in primary cells from de novo AML 

patients as well as AML cell lines. FoxM1 is a direct downstream target of miR-370, and 

restoring miR-370 expression down-modulates FoxM1, induces senescence, and dampens cell 

proliferation in AML cells, suggesting miRNA-based therapy as a novel anti-AML approach 

(Figure 3).  

        

Figure 3. Regulation of FoxM1 by miR-370 in AML cells. MiR-370 acts as a tumor 

suppressive factor by targeting FoxM1. Restoring miR-370 expression could down-modulate 

FoxM1, induce senescence, and dampen cell proliferation. 

 

4.2 CLONAL ORIGIN AND EVOLUTION OF APL (PAPER II) 

4.2.1 A Very Late (17 Years) Relapse in a Unique Patient 

A 42-year-old woman was admitted to hospital in April 1994 and diagnosed with APL and the 

typical t(15;17)(q22;q12) as revealed by cytogenetic analysis. The patient achieved 

hematological and cytogenetic CR following induction treatment and consolidation courses. In 

February 2011, almost 17 years after the initial APL diagnosis, she presented at the hospital 

and an APL diagnosis was subsequently made. The patient acquired CR following the 

induction treatment, two consolidation courses followed by two additional consolidation 

courses with ATRA and ATO. The disease history is summarized in Figure 4. A routine 

diagnostic work-up did not discriminate between a relapse of her previous APL, the appearance 

of a secondary APL or a new de novo APL. 
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Figure 4. The summary of the clinical history of the APL patient. 

 

4.2.2 Potential APL Clonal Evolution in the Patient 

An array-CGH assay was conducted using genomic DNA material from both the two 

manifestations of APL. Data analysis showed the initial APL sample in 1994 harboring a main 

cluster of discontinuous losses in chromosome 19 (p13.2–p13.11 and q13.11–q13.43), nearly 

up to 24 Mb, for the second diagnostic sample in 2011, most of the chromosome 9 (p12-p11.2 

and q12-q31.1) was lost. 

Whole genome sequencing (WGS) was implemented with the same material mentioned above 

which revealed two different PML/RARa gene fusions (Chromosome17:38489469-

Chromosome15:74316176 and Chromosome15:74316160-Chromosome17:38489139) in 

APL cells from both samples, with the first fusion being predominant in both. Although the 

fusion genes/breakpoints were identical, significant differences in genetic aberrations were 

shown by WGS. Fragment length analysis and WGS both demonstrated FLT3ITD and 

FLT3D835 point mutations in the first and second APL samples, respectively. 

Likely, the patient’s hematopoietic cells underwent PML-RARa gene fusion following a genetic 

attack, leading to the generation of abnormal ancestral or pre-leukemic clones. These ancestral 

clones did not transform into APL until the acquisition of FLT3ITD by another genetic attack. 

The patient obtained a CR following ATRA treatment plus chemotherapy in 1994. APL blast 

clones were eradicated after treatment, but the ancestral clones carrying the PML-RARa fusion 

gene were persistent and acquired a FLT3D835 point mutation later. The PML-

RARa/FLT3D835 clones then contributed to the second onset of APL in 2011 (Figure 5). 
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Figure 5. Potential APL clonal evolution in the APL patient. ATRA: all-trans-retinoic acid. 

 

The relapse rate of APL is approximately 5-20%31, which mostly occurs within 2-3 years from 

CR achievement and late relapse is very rare beyond 7 years128-130. Late relapse up to 111,135 

and 155 months, respectively, have been reported128,131,132. The approach for establishing the 

diagnosis of relapse in patients with APL relies on the presumption that recurrent disease will 

be similar to the neoplasm before therapy. However, the characteristics of APL at the time of 

relapse are not well described in the literature. 

In summary, we documented here an APL patient who presented the longest known interval 

between diagnosis and relapse in the literature to date. Genomic analyses showed how APL 

clones evolved between the two manifestations of APL in this patient. It seems that the presence 

of PML-RARa fusion gene alone is not sufficient to cause APL and ancestral PML-RARa-

positive clones may be resistant to anti-APL therapy, causing future relapses when a new 

genetic attack occurs. Very late relapses in APL, as seen in this unique patient, are more likely 

caused by a new genetic attack on existing pre-APL clones, which differs from early relapses 

resulting from the re-growth of original residual APL blasts. ATO, a drug with potent and 

relatively selective activity against APL-initiating cells was also used here, hopefully 

preventing APL recurrence. 
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4.3 ROLE OF DNA METHYLATION INHIBITOR RELATED 
TO TELOMERE AND TELOMERASE IN AML (PAPER 
III) 

4.3.1 Telomere Dysfunction, Telomere Length Shortening and TERT 
Down-Regulation Induced by 5-AZA 

DNMTIs have been used for the treatment of AML and other malignancies, and inhibition of 

global/gene-specific DNA methylation is widely accepted as a key mechanism behind their 

anti-tumor activity133. In the present study, we wanted to know whether DNMTIs affect 

telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy.  

Here, telomere dysfunction-induced foci (TIF): co-localization of 53BP1 foci with telomere 

signals using immuno-fluorescence in situ hybridization (Immuno- FISH) showed: telomeres, 

revealed as green signals, were readily detectable in both control and 5-AZA-treated KG1A 

and HEL cells, whereas red 53BP1 foci only occurred in the treated cells. The merged image 

demonstrated that parts of 53BP1 foci were localized at telomeres in cells exposed to 5-AZA. 

Thus, 5-AZA induces telomere dysfunction (Figure 6). 

To probe potential mechanisms behind 5-AZA-mediated telomere dysfunction, we determined 

telomere length in these AML cells. FLOW FISH analysis showed that compared to the control 

cells, both KG1A and HEL cells in the presence of 5-AZA at 2.0μM only exhibited slight 

telomere shortening, however, significant telomere attrition was observed at 5.0μM. 

To further explore the mechanism behind telomere shortening in 5-AZA treated cells, we 

determined whether 5-AZA inhibited TERT expression and telomerase activity in KG1A and 

HEL cells. TERT mRNA expression was significantly down-regulated by 5-AZA treatment in 

both cells in a dose-dependent manner. Consistent with the down-regulation of TERT 

expression, telomerase activity was diminished in 5-AZA-treated cells. 

Telomere               53BP1               Merge 
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Figure 6. DNA damage and telomere dysfunction mediated by 5-AZA in AML cells. Red 

and Green: 53-BP1 foci and telomere signals, respectively. Yellow: Co-localization of 53-BP1 

foci and telomere signals. 

4.3.2 TERT Over-Expression Attenuates Telomere Shortening and 
Telomere Dysfunction in 5-AZA-Treated AML Cells 

We introduced a lentiviral TERT expression vector into HEL cells, making a TERT-over-

expressing HEL cell subline (HEL-TERT). This subline expressed two-fold higher telomerase 

activity than its parent one and TERT expression/telomerase activity was not inhibited by 5-

AZA. The parent control HEL cells with an empty pBMN vector (HEL-pBMN) and HEL-

TERT cells were first treated with 5-AZA and potential differences in cell numbers, viability 

or apoptosis, telomere length, telomere dysfunction, DNA damage response were then 

compared between these two sublines. First, more HEL-TERT cells survived than HEL-pBMN 

cells in the presence of 5-AZA, especially at a high concentration (mean ± SD, 69.7 ± 7.9% vs 

30.5 ± 16.2%, P = 0.021). Consistently, apoptotic death of HEL-TERT cells was 10% less than 

that of HEL-pBMN cells (P < 0.05). Second, there were no detectable decline in telomere 

length in HEL-TERT cells treated with 5-AZA at 5.0μM; Finally, 5-AZA-induced TIFs and 

p53-BP1 foci were significantly fewer in HEL-TERT cells than in HEL-pBMN cells. 
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In summary, we show that the DNMT inhibitor 5-AZA down-regulates TERT expression in 

both AML cell lines and primary leukemic cells, and shortens telomere length coupled with 

telomere dysfunction, DNA damage response and apoptosis. Ectopic TERT expression 

partially attenuated telomere dysfunction and DNA damage, thereby protecting AML cells 

from apoptosis. Conceivably, TERT down-regulation and telomere dysfunction mediated by 

5-AZA may contribute to the anti-tumor activity of DNMTIs. Thus, it may be worthwhile to 

evaluate the therapeutic efficacy of DNMTIs on hematological malignancies based on their 

induction of TERT inhibition/telomere dysfunction in future clinical trials. 

 

4.4 ROLE OF FLT3ITD INHIBITOR RELATED TO 
TELOMERASE AND TERT IN AML (PAPER IV) 

4.4.1 Down-Regulation of TERT Expression and Inhibition of TERT 
Promoter Activity by PKC412 in FLT3ITD-Carrying AML 
Cells 

PKC412 is a TKI specifically targeting FLT3ITD, and as expected, the PKC412 treatment of 

FLT3-ITD-carrying MV4, 11 and MOLM-13 cells inhibited FLT3 phosphorylation and 

activity. qRT-PCR analysis displayed a time and dose-dependent down-regulation of TERT 

mRNA expression in the presence of PKC412 in both cells. Consistent with diminished TERT 

mRNA expression, telomerase activity was significantly repressed in MV4, 11 and MOLM-13 

cells treated with PKC412.  

To assess whether PKC412 regulated TERT transcription, we infected MV4, 11 cells with a 

GFP expression vector driven by a full-length TERT promoter and then treated the cells with 

PKC412. There were more than 50% of GFP-positive cells in DMSO-containing culture while 

the presence of PKC412 led to the disappearance of most GFP+ cells. We further transfected 

the same cells with a core TERT promoter reporter construct (p181), and then incubated them 

with DMSO or PKC412. The TERT promoter activity, reflected as the level of luciferase 

activity, was significantly inhibited in the cells exposed to PKC412 compared to the DMSO-

treated ones. Those data revealed that PKC412 inhibited TERT transcription. 

4.4.2 MYC-Dependent Inhibition of the TERT Transcription 
Activity by PKC412 

It is well established that c-MYC is the core transcription factor in trans-activating the TERT 

gene, and we thus examined the link between FLT3ITD and c-MYC in regulating TERT 
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transcription. The treatment of FLT3ITD-carrying cells with PKC412 led to a fast and robust 

inhibition of c-MYC mRNA and protein expression, which preceded a decline in TERT 

expression. Then we transfected both cells with wt TERT core promoter-harboring vectors and 

its MYC binding site-deleted counterparts, respectively. Those cells were then exposed to 

PKC412. Wt TERT promoter activity declined significantly in PKC412-treated cells compared 

to that in control cells (DMSO-treated). However, PKC412 did not affect the TERT promoter 

activity any longer once two MYC binding sites on the promoter were disrupted. Taken 

together, PKC412-mediated repression of the TERT transcription is MYC-dependent.   

4.4.3 Attenuation of PKC412-Mediated AML Cell Apoptosis by 
Ectopic Expression of TERT through Alternative Tyrosine 
Kinase (TK) Signaling Pathways 

Compared to control cells (MOLM-13-pBMN), significantly more TERT-overexpressed 

MOLM-13 cells were left in the presence of PKC412. FACS analysis also revealed that 

PKC412 induced apoptosis in 35% of control cells, and the ectopic TERT expression 

significantly attenuated apoptosis of MOLM-13 cells mediated by PKC412 (18%). 

Then we compared differences in gene expression profiles between MOLM-13-pBMN and 

MOLM-13-TERT cells in the presence or absence of PKC412. Intriguingly, we identified that 

the ectopic TERT expression significantly affected FLT3 and other receptor tyrosine kinase 

(RTK) signaling pathways (Figure 7). First, the expression of c-KIT, another RTK structurally 

similar to FLT3, was up-regulated by the ectopic TERT expression, and its mRNA level was 

even much higher upon the exposure of MOLM-13-TERT cells to PKC412. In contrast, c-KIT 

expression did not change in MOLM13-pBMN cells with and without PKC412. Second, DOC3, 

an endogenous inhibitor of the RAS-MAPK signaling, was down-regulated in MOLM-13-

TERT cells and the PKC412 treatment led to further dramatic decline in DOC3 levels. Finally, 

SULF2 that activates the PDGF signaling pathway exhibited enhanced expression in 

MOLM13-TERT cells and its robust increase was observed following PKC412 treatment of 

these cells, whereas there was no detectable alteration in its expression in MOLM-13-pBMN 

cells with and without PKC412. 
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Figure 7. TERT stimulation of the FLT3 downstream effectors and alternative TK 

pathways in the presence of PKC412. PI3K, phosphatidylinositol 3-kinase; GRB2, growth-

factor-receptor-bound protein 2; SHC, SH2-containing sequence protein; mTOR, mammalian 

target of rapamycin. 

 

Here we identified that PKC412, a TKI specifically targeting FLT3ITD, repressed TERT 

transcription and telomerase activity in FLT3ITD-carrying AML cells in a MYC-dependent 

manner. This effect of PKC412 is likely associated with its therapeutic efficacy on AML. 

Importantly, we demonstrate that TERT significantly attenuates the apoptotic cell death 

mediated by PKC412, which strongly indicates that TERT is capable of mediating resistance 

to cancer targeted therapy. Collectively, the present findings reveal a functional link between 

FLT3ITD and telomerase, and may have an important implication in AML pathogenesis and 

targeted therapy. 
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5 SUMMARY&CONCLUSIONS 
AML is a heterogeneous disease. Degulation of multiple oncogenes and tumor suppressors 

contributes to the process of leukemogenesis. At the genetic level, depletion of tumor 

suppressor expression or gain of oncogene copy number plays a great role in this process. 

In addition, at the epigenetic level, abnormal hyper-methylation in promoter region or 

global hypo-methylation leads to silence of tumor suppressor genes, thus inducing 

uncontrolled expansion of leukemic cells.  

In this project, several factors which play potential roles in leukemogenesis are studied both 

from experimental and clinical aspects. Specially, the conclusions are: 

1. MiR-370 is a tumor suppressive factor by targeting FoxM1, and its down-regulation results 

from DNA hyper-methylation. Targeting miR-370 may have a therapeutic implication in 

AML (Paper I). 

2. We reported an extremely late relapse of APL and the leukemic clonal evolution. Very late 

relapses in APL, as seen in our unique patient, are more likely caused by a new genetic 

attack on existing pre-APL clones, which differs from early relapses resulting from the re-

growth of original residual APL blasts. Genomic characterization of late relapses may have 

therapeutic implications (Paper II). 

3. DNMT inhibitor 5-AZA down-regulates TERT expression, and shortens telomere length 

coupled with telomere dysfunction and apoptosis in AML. Ectopic TERT expression 

partially attenuates telomere dysfunction and DNA damage, thereby protecting AML cells 

from apoptosis. TERT down-regulation and telomere dysfunction mediated by 5-AZA may 

contribute to the anti-tumor activity of DNMTIs. Thus, it may be worthwhile to evaluate 

the therapeutic efficacy of DNMTIs on hematological malignancies based on their 

induction of TERT inhibitor/telomere dysfunction in future clinical trials (Paper III).  

4. The FLT3 inhibitor PKC412 repressed TERT transcription and telomerase activity in 

FLT3ITD-carrying AML cells in a MYC-dependent manner. This effect of PKC412 is 

likely associated with its therapeutic efficacy on AML. TERT significantly attenuates the 

apoptotic cell death mediated by PKC412, which strongly indicates that TERT is capable 

of mediating resistance to cancer targeted therapy. The present findings reveal a functional 

link between FLT3ITD and telomerase, and may have an important implication in AML 

pathogenesis and targeted therapy (Paper IV). 
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