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ABSTRACT 

Gastrointestinal stromal tumor (GIST) is mainly initialized by mutations in receptor tyrosine 

kinase genes KIT or PDGFRA. The development of imatinib, a small molecule inhibitor that 

targets these tyrosine kinase receptors, remarkably improved patient outcome. However, 

imatinib resistance remains a major therapeutic challenge in GIST therapy, and its underlying 

mechanisms are still not completely understood. This thesis work aimed to explore the role of 

microRNAs (miRNAs) and DOG1 in imatinib resistance of GIST. 

In Paper I, we identified specific miRNA signatures associated with imatinib resistance, 

metastatic disease, KIT mutational status and survival in GIST patients treated with 

neoadjuvant imatinib. Importantly, we demonstrate that miR-125a-5p modulates imatinib 

response in the single KIT-mutated GIST882 cells through PTPN18 regulation. This study 

highlights the clinical impact of miRNAs in GIST patients treated with imatinib pre-

operatively, and suggests the important role of miR-125a-5p and PTPN18 in imatinib 

resistance of GISTs. 

In Paper II, we tested our hypothesis that miR-125a-5p overexpression in imatinib-resistant 

GISTs suppresses PTPN18 expression that subsequently leads to defective FAK 

dephosphorylation. Indeed, we demonstrate that silencing of PTPN18 increased FAK 

phosphorylation in GIST cells, and the acquired imatinib-resistant GIST882R cells exhibited 

higher pFAK and lower PTPN18 expressions than the imatinib-sensitive parental cells. FAK 

and pFAK expressions are also associated with imatinib resistance in GIST specimens. This 

study highlights the potential role of PTPN18 and pFAK in imatinib resistance of GIST.  

In Paper III, we found that miR-320a and miR-320b are upregulated and their potential 

target MCL1 is downregulated in imatinib-treated GISTs. Imatinib treatment affects MCL1 

and miR-320 levels in GIST882 cells, and the imatinib-resistant GIST882R cells showed 

higher levels of the anti-apoptotic MCL1L isoform and lower expression of miR-320a/b as 

compared to GIST882 cells. This study suggests that miR-320a/b and MCL1 play a role in 

imatinib-induced cell death and resistance in GIST. 

In Paper IV, we evaluated the functional role of DOG1 in imatinib-resistant GIST48 and –

sensitive GIST882 cells using specific DOG1 activator and inhibitor. We showed that DOG1 

is localized in different cellular compartments in imatinib-resistant and -sensitive GIST 

cells. Pharmacological modulation of DOG1 activity has subtle effect on cell viability and 

proliferation, but may shift early apoptotic cells to late apoptotic stages in GIST48 cells. 

Overall, this thesis work describes the role of miRNAs in cell viability and resistance to 

imatinib treatment in GIST.  
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1 INTRODUCTION 

Discovery and development of tyrosine kinase inhibitors, such as imatinib, revolutionized the 

treatment approaches to cancer, by making possible to target the molecular events specific to 

cancer cells that are responsible for the pathogenesis. When first introduced in 2001, imatinib 

was welcomed with a big hope and excitement. Its application to gastrointestinal stromal 

tumor (GIST) together with chronic myeloid leukemia (CML) provided a clinical benefit for 

the majority of patients and has served as a model system for targeted therapies. The major 

contributors to imatinib development (Brian Druker, Nicholas Lydon and Charles Sawyers) 

received the Lasker-DeBakey Clinical Medical Research Award (known as the “American 

Nobel Prize”) in 2009 for "converting a fatal cancer into a manageable chronic condition". 

Despite the remarkable success of imatinib treatment, resistance is one of the main 

challenges. Follow-up studies revealed that the vast majority of patients eventually develop 

disease progression after an initial response. Although the initial events in GIST development 

are well characterized, the prognosis is clearly influenced by other genetic or epigenetic 

events that are still poorly understood. This thesis work contributes to the understanding of 

the molecular mechanisms underlying imatinib resistance in GIST. 

 

1.1 GASTROINTESTINAL STROMAL TUMOR 

Cancer is defined as a group of more than 100 different diseases characterized by 

uncontrolled cell growth with ability to invade or spread to other parts of the body, which is 

the second leading cause of death worldwide (Jemal et al, 2010). Sarcomas are rare and a 

heterogeneous group of malignant connective tissue tumors with mesenchymal origin, 

which accounts for 1-2% of all malignancies (Ferrari et al, 2011; Mastrangelo et al, 2012; 

Stiller et al, 2013). Because mesenchymal cells are present all around the body, sarcomas 

can arise in nearly all locations, and they are classified as skeletal and soft tissue sarcomas.  

GISTs comprise one-fifth of soft tissue sarcomas, making them the most common single 

type of sarcoma (Ducimetiere et al, 2011). Population-based reports show that GISTs have 

an annual incidence between 11 and 19.5 per million (Chan et al, 2006; Goettsch et al, 

2005; Nilsson et al, 2005; Tryggvason et al, 2005) and have a prevalence of about 130 

cases per million population (Chan et al, 2006; Nilsson et al, 2005). GISTs can be found 

anywhere along the gastrointestinal tract, but predominantly occur in the stomach (50-60%) 

and the small intestine (30-35%), less frequently in the colon/rectum (5%) and esophagus 

(<1%) (Joensuu et al, 2012). In rare cases, GISTs can occur outside the gastrointestinal 

tract, such as in the omentum, mesentery or retroperitoneal (<5%), and they are named as 

extra-gastrointestinal stromal tumors (EGISTs). Conversely, EGISTs are under an ongoing 

debate whether they are metastasis of an undetected primary tumor (Joensuu et al, 2012). 

GISTs can arise at any age, with a median age of diagnosis at 63 years. More than 80% of 

the patients are older than 50 years, and only 0.4% of them are younger than 20 years 

http://en.wikipedia.org/wiki/Lasker-DeBakey_Clinical_Medical_Research_Award
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(Ducimetiere et al, 2011; Joensuu et al, 2012). The tumor size varies between 2 to 30 cm at 

the time of diagnosis (Corless et al, 2002). As an example, macroscopic and histologic 

images of a gastric GIST are represented in Figure 1. 

 

 

 

Figure 1. Macroscopic and histologic images of a gastric GIST. A) Intra-operative image. B) 

Hematoxylin and eosin staining showing the spindle-shaped phenotype. 

Immunohistochemistry images showing the positivity for C) CD117, D) CD34 and E) 

DOG1. 
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For many years, GISTs were considered as smooth muscle sarcomas based on their 

morphology, and misclassified as leiomyomas, leiomyosarcomas or leiomyoblastomas. In 

1983, Mazur and Clark used the term GIST for the first time to distinguish these tumors that 

do not express the immunohistochemical markers of Schwann cells or do not possess the 

ultrastructural characteristics of smooth muscle cells (Mazur & Clark, 1983). Later, CD34 

was introduced as a clinically useful marker for distinguishing GIST from leiomyomas and 

schwannomas (Miettinen et al, 1995).  

Two groundbreaking discoveries in the late 1990`s revolutionized the approach towards 

GIST as an entity. First, Kindblom and colleagues found that majority of GISTs (>95%) are 

immunohistochemically positive for the tyrosine kinase receptor KIT (v-kit Hardy-

Zuckerman 4 feline sarcoma viral oncogene homolog also known as CD117) (Kindblom et 

al, 1998). Second, Hirota and colleagues identified KIT mutations in GISTs (Hirota et al, 

1998). Since then, continuous research revealed that 70–80% of GISTs harbor KIT gene 

mutations. To date, KIT immunostaining and mutation screening are used as key diagnostic 

markers in clinical practice for GISTs, and mutant KIT is a clinically important therapeutic 

target in GISTs. These findings transformed GISTs from a challenging chemotherapy-

resistant disease to a model for molecular targeted therapy. 

 

1.1.1 Origin 

1.1.1.1 Interstitial cells of Cajal 

In 1998, Kindblom and co-workers noted similarities between GISTs and a cell population in 

the gastrointestinal tract called the interstitial cells of Cajal (ICCs) which function as 

pacemaker cells that cause peristaltic contractions. GISTs were found positive for CD117 

(KIT) and CD34 immunohistochemically, and ICCs were the only known cells in the 

gastrointestinal tract positive for both CD117 and CD34 (Hirota et al, 1998; Kindblom et al, 

1998). This finding led to the hypothesis that GISTs originate from, or share a common 

origin with, ICCs. GISTs and ICCs show similar gene expression patterns, such as high levels 

of PKCθ, nestin and DOG1 (Gomez-Pinilla et al, 2009; Motegi et al, 2005; Poole et al, 2004; 

Sarlomo-Rikala et al, 2002; Southwell, 2003; Wong & Shelley-Fraser, 2010). In addition, 

ETV1 is highly expressed in both GISTs and the myenteric and intramuscular subpopulations 

of ICCs (Chi et al, 2010). Further evidence supporting this notion came from transgenic mice 

expressing KIT mutant induced diffuse ICC hyperplasia (Rubin et al, 2005; Sommer et al, 

2003), expansion of ICCs (Bardsley et al, 2010) and GIST-like tumors (Rubin et al, 2005; 

Sommer et al, 2003). Notably, diffuse ICC hyperplasia has also been described in GISTs 

harboring heritable KIT mutations, and it has been associated with development of multiple 

GISTs (Hirota et al, 2002; Isozaki et al, 2000; Kang et al, 2007; O'Riain et al, 2005).  
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1.1.1.2 Micro-GISTs 

Micro-GISTs are small growths of cells with less than 1 cm in size that shares similar 

characteristics with GISTs and ICCs. These growths are found in 2.9 - 35% of stomachs 

that are thoroughly examined after surgical removal or during autopsy (Corless et al, 2002; 

Kawanowa et al, 2006; Muenst et al, 2011). Their prevalence is estimated to exceed 10 

million lesions in the US population (Corless, 2014). Even though they are mitotically 

inactive and often partially calcified, micro-GISTs harbor KIT mutations with the same type 

and frequency as in clinically relevant GISTs (Agaimy et al, 2007; Rossi et al, 2010). 

PDGFRA mutations in micro-GISTs have also been reported (Agaimy et al, 2007). These 

findings suggest that kinase mutations occur at very early stages in GIST tumorigenesis. 

Additional molecular events are required for progression to malignant transformation. 

1.1.1.3 GIST stem cells 

Cancer stem cells (CSC) have been identified in hematopoietic malignancies (Bonnet & Dick, 

1997; George et al, 2001; Miyamoto et al, 2000) and solid tumors, such as melanomas 

(Schatton et al, 2008), breast (Al-Hajj et al, 2003; Charafe-Jauffret et al, 2009), brain (Corti et 

al, 2006; Salmaggi et al, 2006), and prostate (Tang et al, 2007) cancers. However, their 

existence and role in sarcomas remains uncertain.  

The first evidence of GIST stem cells was shown in 2008 when Ördög and colleagues 

identified a rare population of cells that do not resemble ICC in the post-natal murine stomach 

(Lorincz et al, 2008). These Kit
low

Cd34
+
Cd44

+
Igf1r

+
 cells were able to differentiate into ICCs 

and their proliferation could be stimulated by SCF and IGF1. Two years later, the same group 

showed that single isolated Kit
low

Cd34
+
Cd44

+
 cells were capable of self-renewal and 

differentiation into ICCs and gave rise to GIST in mice (Bardsley et al, 2010). Importantly, 

these progenitor cells were resistant to imatinib; indicating that imatinib-resistant GIST may 

arise from GIST stem cells.  

Human GIST stem cells still remain to be determined. CD133 has been described as a specific 

marker for human hematopoietic stem cells (Miraglia et al, 1997; Yin et al, 1997) and CSCs of 

several solid tumors (Collins et al, 2005; Ricci-Vitiani et al, 2007; Singh et al, 2003). Lately, 

several studies have evaluated the significance of CD133 as a potential GIST stem cell marker 

(Arne et al, 2011; Bozzi et al, 2011; Bozzi et al, 2012; Chen et al, 2012). However, these 

studies revealed that CD133 is universally expressed in GIST (Bozzi et al, 2011; Bozzi et al, 

2012; Chen et al, 2012). CD133 expression was detected in imatinib-sensitive, but not in the 

imatinib-resistant GIST cell lines. Furthermore, CD133
-
 cells show more aggressive behavior 

than CD133
+ 

cells in vitro (Chen et al, 2012). Taken together, these findings suggest that 

CD133 represents a lineage marker, but not a CSC marker in GIST. Besides CD133, several 

other putative markers were also evaluated, including CD44 and CD90. The findings were 

similar to CD133; both markers were ubiquitously expressed in GISTs and are thus unlikely to 

be GIST CSC markers (Bozzi et al, 2011; Chen et al, 2012). Further investigations are still 

warranted to identify human GIST stem cells. 
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1.1.2 Molecular biology 

1.1.2.1 Oncogenic mutations 

KIT and PDGFRA 

The main initial event in GIST tumorigenesis is gain-of-function mutations in KIT or 

PDGFRA (platelet-derived growth factor-α) genes. KIT and PDGFRA genes are located on 

the long arm of chromosome 4 (4q12), and encode transmembrane proteins that belong to 

the type III tyrosine kinase receptor family. The receptor family also includes three other 

members: platelet-derived growth factor-β (PDGFRB), colony-stimulating factor-1 receptor 

(CSF1R) and Fms-like tyrosine kinase 3 (FLT3).  

The members of type III tyrosine kinase receptor family consist of a ligand-binding 

extracellular domain of five immunoglobulin (Ig) regions, an autoinhibitory intracellular 

juxtamembrane domain, and a kinase domain of an amino terminal ATP-binding region and a 

carboxy terminal phosphotransferase region (activation loop) (Figure 2). 

 

 

Figure 2. Location and frequency of KIT and PDGFRA mutations in GIST. Modified from 

(Corless, 2014). 
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KIT and PDGFRA serve as the receptors for stem cell factor (SCF) and platelet-derived 

growth factor (PDGF), respectively. Binding of these ligands to the receptors results in 

homodimerization, transphosphorylation of the tyrosine residues and kinase activation, 

initiating signal transduction cascades that promote cell proliferation, growth and survival 

(Heldin, 1995; Hubbard et al, 1998; Roskoski, 2005). In humans, KIT expression is required 

for cellular maintenance of germ cells, melanocytes, mast cells, hematopoietic stem cells and 

ICC (Huizinga et al, 1995).  

Under normal conditions, KIT is maintained in an inactive state in the absence of SCF. The 

kinase activity of KIT is tightly controlled by auto-regulation mechanisms. KIT is stabilized 

in inactive conformation by juxtamembrane domain that physically hinders the kinase 

domain by inserting a hairpin directly into the cleft between amino- and carboxyl- terminal 

lobes (Mol et al, 2004). Furthermore, active KIT is inhibited by a rapid dephosphorylation 

through the phosphatase SHP-1 (also known as PTPN6) (Kozlowski et al, 1998), and by 

activation-induced endocytic uptake of the receptor from the cell surface, followed by 

proteasomal degradation (Babina et al, 2006).   

KIT and PDGFRA mutations disrupt the auto-regulatory mechanisms and cause ligand-

independent constitutive activation of the encoded tyrosine kinase receptors (Gajiwala et al, 

2009), which results in aberrant cell growth and tumor formation (Corless et al, 2004). 

Several lines of evidence support the functional role of KIT/PDGFRA mutations in GIST 

tumorigenesis. For examples, KIT mutants promote constitutive kinase activity in the 

absence of their ligands (Hirota et al, 1998; Rubin et al, 2001) and develop GIST-like 

tumors in mice (Rubin et al, 2005; Sommer et al, 2003). Phosphorylated forms of these 

kinases are found in most human GISTs, indicating their in vivo activity (Rubin et al, 

2001). Germline KIT mutations are reported in familial GIST cases (Hirota et al, 2002; 

Isozaki et al, 2000). As aforementioned, KIT and PDGFRA mutations are found even in the 

micro-GISTs, which are the earliest recognizable forms of GISTs (Agaimy et al, 2007; 

Rossi et al, 2010).  

In GIST, the most common mutations are found in KIT exon 11 (60-70%) that affects the 

juxtamembrane domain (Corless et al, 2011). These mutations interfere with the 

juxtamembrane secondary structure that normally prevents the kinase activation loop going 

into the active conformation (Mol et al, 2004). In-frame deletions, insertions and 

substitutions, or combinations of these are seen in exon 11. Mutations in exon 9 (7-10%) 

affecting the extracellular domain are the second most common following the exon 11 

mutations (Lux et al, 2000). They are thought to mimic the structure of extracellular KIT 

domain when SCF binds (Yuzawa et al, 2007), and not interfere with the kinase domain. A 

minority of mutations is found in exons 13 and 17 (Corless et al, 2011). Exon 17 mutations 

affect the activation loop and stabilize the active conformation (Lasota et al, 2008). Exon 

13 mutations disrupt the ATP-binding region (encoded by exon 13), and its biological 

function is still unclear. It is thought that they interfere with the normal auto-inhibitory 

function of the juxtamembrane domain. 
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About 10% of GISTs harbor PDGFRA mutations (Heinrich et al, 2003b; Hirota et al, 

2003). PDGFRA is highly expressed in GISTs with mutations in the juxtamembrane 

domain (encoded by exon 12), the ATP-binding domain (encoded by exon 14) or the kinase 

activation loop (encoded by exon 18) (Pauls et al, 2005; Wasag et al, 2004).  

Besides the kinase activation caused by the mutations, mutant KIT has a longer half-life 

than wild-type KIT (Corless et al, 2011). As mentioned above, signaling from wild-type 

KIT upon activation by SCF is quickly controlled by endocytosis, ubiquitination and 

proteasome-mediated degradation, serving as a negative feedback mechanism. Long half-

life of mutant KIT/PDGFRA might be due to stabilization by chaperone heat shock protein 

90 (HSP90) or defective autophagy that prevent it from degradation (Bauer et al, 2006; 

Fumo et al, 2004; Hsueh et al, 2013; Matei et al, 2007). 

“Wild-type” GISTs and other mutations  

About 10-15% of GISTs do not have KIT or PDGFRA mutations. These tumors are so-

called ‘wild-type’ GISTs have detectable levels of KIT in phosphorylated form, suggesting 

that KIT is still activated (Duensing et al, 2004). However, the mechanism of its activation 

is unclear. Wild-type GISTs occur anywhere in the gastrointestinal tract and show no 

difference in morphology, making them clinically indistinguishable from KIT/PDGFRA-

mutant GISTs (Duensing et al, 2004).  

A number of studies revealed that wild-type GISTs are heterogeneous and display various 

oncogenic mutations. The identified mutated genes are succinate dehydrogenase 

(SDHA/B/C/D) (50%) (Janeway et al, 2011; Pantaleo et al, 2011), BRAF V600E 

substitution (13%) (Hostein et al, 2010), neurofibromin 1 (NF1) (7%) (Andersson et al, 

2005; Kinoshita et al, 2004) and RAS family members (Miranda et al, 2012). VEGF and 

IGF1R over-expressions were identified in wild-type GISTs (Antonescu et al, 2004), and 

are thought to correlate with SDH activity (Figure 3B). 

Different from GISTs found in adults, pediatric GISTs (1–2% of all GISTs) are rarely 

positive for KIT or PDGFRA mutations, despite expressing KIT at similar levels as adult 

GISTs (Janeway et al, 2007). These tumors also have a different gene expression pattern 

than adult GISTs (Agaram et al, 2008; Janeway et al, 2007; Prakash et al, 2005), 

suggesting distinct oncogenic mechanisms of GIST in children and adults. 

1.1.2.2 Downstream pathways 

Activations of several downstream signaling pathways are found in KIT mutant GISTs, 

including mitogen-activated protein kinase (MAPK) pathway, phosphatidylinositol-3-

kinase (PI3K)/AKT/mTOR pathway and signal transducer and activator of transcription 3 

(STAT3) (Bauer et al, 2007; Duensing et al, 2004; Rossi et al, 2006) (Figure 3A). The 

oncogenic KIT signaling mechanisms are thought to vary depending on the location and 

type of the KIT mutation (Duensing et al, 2004). Additional mechanisms affecting 

downstream signaling include SHC adaptor protein interaction with KIT leading to 
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GRB2/RAS/MAPK pathway (Lennartsson et al, 1999) and expression of differential KIT 

isoforms as a result of alternative splicing (Caruana et al, 1999).  

 

Figure 3. A) KIT and PFGFRA signaling pathways. Mutations in KIT or PDGFRA activate 

MAPK, PI3K/AKT/mTOR and STAT3 pathways. B) Signaling pathways in “wild-type” 

GISTs. Mutations in NF1, BRAF or RAS lead to increased MAPK signaling. Mutations in 

SDHA/B/C/D lead to Succinate accumulation, which inhibits prolyl hydroxylase-mediated 

HIF1α degradation, causing increased HIF1α-mediated transcription factor levels. Modified 

from (Corless, 2014). P: Phosphate group. 
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Therapeutic targeting of the downstream pathways of KIT reveals the relative importance 

of these pathways in GIST. Inhibition of MAPK pathway (with U0126, a MEK2 inhibitor) 

showed inconsistent effects on cell proliferation (5–40% inhibition) and had no effect on 

apoptosis (Bauer et al, 2007). On the other hand, PI3K inhibitor (LY294002) remarkably 

inhibits cell proliferation (40–75% inhibition) and induces apoptosis (three to four fold) in 

both imatinib-sensitive and –resistant cells (Bauer et al, 2007). mTOR inhibitors reduce cell 

proliferation and induce apoptosis but are less effective than PI3K inhibitors (Bauer et al, 

2007). In addition, although they induce cell cycle arrest, mTOR inhibitors do not result in 

any histological or apoptotic response in GIST mouse models (Rossi et al, 2006). These 

findings suggest determinants of cell survival signaling in GIST are located downstream of 

PI3K but upstream of mTOR, and PI3K/AKT pathway seem to play a crucial role in GIST 

proliferation and survival. 

1.1.2.3 GIST progression 

Patients harboring germline KIT mutations do not manifest GISTs until their early 

adulthood (Kim et al, 2005). In addition, even though micro-GISTs are commonly found in 

the general population, most of them do not transform into malignant stage. These 

observations suggest that other genetic events are required for tumor progression in 

addition to the oncogenic kinase mutations.  

Cytogenetic studies demonstrated that about 65% of GISTs have either monosomy of 

chromosome 14 or partial loss of 14q (Bergmann et al, 1998; Debiec-Rychter et al, 2001; 

Fukasawa et al, 2000). Loss of heterozygosity and comparative genomic hybridization 

studies showed two regions of this chromosome, 14q11.2 and 14q32, as hotspot regions 

harboring tumor suppressor genes that might be important for GIST development (Debiec-

Rychter et al, 2001; El-Rifai et al, 2000b). Several candidate genes are suggested within 

these regions, such as PARP2, APEX1 and NDRG2 genes at 14q11.2, SIVA (Assamaki et al, 

2007) and a miRNA cluster at 14q32 (Kelly et al., 2013). Interestingly, two members of the 

14q32 miRNA cluster are associated with shorter disease-free survival/tumor progression 

(Choi et al, 2010; Haller et al, 2010). Loss of the long arm of chromosome 22 is observed 

in approximately 50% of GISTs and associated with malignant behavior (Bergmann et al, 

1998; Fukasawa et al, 2000; Kim et al, 2000).  

Losses on chromosomes 1p, 9p, 11p, 17p, 13q and 15q have also been reported in GISTs 

(Bergmann et al, 1998; Gunawan et al, 2007; Kim et al, 2000; O'Leary et al, 1999; 

Wozniak et al, 2007). Chromosome 9p21 deletion causes inactivation of the tumor 

suppressor gene CDKN2A and associated with malignancy (Perrone et al, 2005; Ricci et al, 

2004; Sabah et al, 2004; Schneider-Stock et al, 2003). Gains on chromosomes 8q 

(including MYC), 3q (including SMARCA3) and 17q are associated with metastatic 

behavior (Debiec-Rychter et al, 2001; El-Rifai et al, 2000a; O'Leary et al, 1999; Ylipaa et 

al, 2011).  
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Gene expression profiles of high-risk tumors show significant changes in cell cycle 

regulator genes and genes associated with PI3K pathway (Hur et al, 2010). p27 is 

commonly downregulated in malignant GISTs, but the association with tumor progression 

is not very well supported (Nakamura et al, 2005; Pruneri et al, 2003). Increased expression 

levels of cyclin A and cyclin H are associated with high-risk GISTs (Dorn et al, 2010; 

Huang et al, 2009; Nakamura et al, 2005). TP53 mutations and decreased p53 expression 

also correlate with a poor prognosis in GIST (Feakins, 2005; Panizo-Santos et al, 2000; 

Romeo et al, 2009).  

In 2004, expression of another protein, DOG1 (Discovered on GIST-1), was discovered in 

~98% of GISTs (West et al, 2004). DOG1 is encoded by ANO1 (also known as 

TMEM16A), functions as calcium (Ca
2+

)-dependent chloride (Cl
-
) channel. Notably, DOG1 

is highly and specifically expressed in both GISTs and ICCs (Espinosa et al, 2008; Gomez-

Pinilla et al, 2009), and detected in ~35% of “wild type” GISTs. However, its biological 

function in GISTs has not been fully characterized. Ca
2+

-dependent Cl
-
 channels are 

involved in several physiological processes including gastrointestinal muscle contractions 

(Hwang et al, 2009), regulation of neuronal excitability, and transduction of sensory stimuli 

(Ferrera et al, 2010; Frings et al, 2000). Functionally, DOG1 is essential in generation of 

gastrointestinal muscle contractions (Hwang et al, 2009); and it regulates tumorigenesis and 

cancer progression through MAPK signaling in head and neck squamous cell carcinoma 

(Ayoub et al, 2010; Duvvuri et al, 2012; Ruiz et al, 2012). A recent functional study in 

GIST reported that although DOG1 does not affect GIST cell growth or KIT signaling in 

vitro, its inhibition delays the growth of GISTs in certain GIST cell-line derived xenografts 

in vivo (Simon et al, 2013). Further studies are warranted to illuminate the functional 

impact of DOG1 in GIST tumorigenesis. 

 

1.1.3 Treatment of gastrointestinal stromal tumor 

Treatment options for patients with advanced GIST were few until 2000s. Surgical 

resection has been the main therapy for GIST, with the main goal of complete resection and 

avoidance of tumor rupture (Hohenberger et al, 2010). The response rate to conventional 

chemotherapy agents was extremely low (<5%) (Dematteo et al, 2002). The resistance to 

chemotherapy in GIST might be due to the increased levels of P-glycoprotein and 

multidrug resistance protein (Plaat et al, 2000). Alternatively, oncogenic activation of 

tyrosine kinases might cause increased anti-apoptotic signaling and activation of other drug 

resistance pathways. Because of the diffuse pattern of recurrence in the liver or the 

peritoneum, radiation therapy was beneficial only to palliate patients with bleeding, but not 

for treatment. Median overall survival for patients with advanced disease was 18 months 

(Dematteo et al, 2002) until imatinib was introduced. The work-flow of GIST treatment 

according to the Scandinavian Sarcoma Group and the European Sarcoma Network Group 

guidelines is illustrated in Figure 4. 
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Figure 4. Clinical practice of diagnosis, treatment and follow-up of GISTs. Modified from 

(Berglund E, thesis for doctoral degree 2014, ISBN 978-91-7549-520-0), (ESMO, 2014). 

 

1.1.3.1 Imatinib 

1.1.3.1.1 Discovery 

“There is new ammunition in the war against cancer. These are the bullets.” 

Time Magazine Cover, 28 May 2001 

Discovery of imatinib (also known as Gleevec, Glivec, and STI-571) led to a major paradigm 

shift in cancer therapy towards molecular targeted therapy. Until then, most of the anti-cancer 

therapies have been non-specific; generally function by interfering with cellular machinery 

that is common for both normal and neoplastic cells (e.g. DNA/RNA synthesis, formation of 

microtubules). These therapies lack selectivity, have a narrow therapeutic index, and induce 

toxicity. 

In 1996, Druker and colleagues have published their identification of a small molecule, now 

known as imatinib, that can selectively block the ABL kinase activity and induce cell death of 

BCR-ABL positive chronic myeloid lymphoma (CML) cells (Druker et al, 1996). The 
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finding was translated into the clinical trials rapidly. The striking results from clinical trials 

with CML patients came in 2001 (Druker et al, 2001a; Druker et al, 2001b), showing more 

than 90% complete response rate in patients with chronic-phase. Shortly after, U.S. Food and 

Drug Administration (FDA) approved the usage of imatinib as an efficient and safe therapy 

for CML patients. 

Based on the discovery of KIT mutations in GIST by Hirota and co-workers in 1998 (Hirota 

et al, 1998), many scientists investigated KIT activation as a crucial event in GIST 

pathogenesis. The mutations causing constitutive kinase activation and an uncontrolled cell 

growth behavior in GIST, was reminiscent of the mechanism of BCR-ABL in CML. These 

findings led to the hypothesis of KIT inhibition might be a therapeutic strategy for GIST. 

Concurrently, imatinib was shown not only specific to BCR-ABL, but also blocks the 

enzymatic activity of the transmembrane receptor tyrosine kinases KIT, PDGFRA and 

PDGFRB (Buchdunger et al, 2000; Heinrich et al, 2000a). The inhibitory effect of imatinib 

on mutant KIT was functionally confirmed first in a mast leukemia cell line that harbors a 

similar mutation as clinically relevant GISTs (Heinrich et al, 2000a; Heinrich et al, 2000b), 

then in the GIST cell line with a mutant KIT (Tuveson et al, 2001). Inhibition of mutant KIT 

by imatinib led to GIST cell growth arrest and apoptosis (Tuveson et al, 2001). Thereafter, 

clinical development of imatinib for GIST therapy rapidly progressed, and FDA approved 

imatinib therapy for advanced or metastatic GIST in 2002. In 2008, FDA approved adjuvant 

use of imatinib for patients with high risk of recurrence. 

1.1.3.1.2 Mechanism of Action 

Kinases show high plasticity that allows the interplay between open (active state) or close 

(inactive state) conformation (Huse & Kuriyan, 2002). The binding of SCF to the 

extracellular Ig domain turns KIT into the active state by initiating its dimerization. 

Dimerization permits the kinase domains of KIT to phosphorylate each other at specific 

tyrosine residues located in juxtamembrane regions. Phosphorylation of the tyrosine activates 

the kinase domains, and initiates the downstream cascade that leads to cell growth and 

proliferation. 

Imatinib binds to the ATP-binding site located in the amino-terminal lobe of the kinase 

domain that competitively blocks ATP binding and consequent phosphorylation of KIT 

(Figure 5). Imatinib can only bind to inactive conformation of KIT, to the amino acids 

Cys673, Glu640, Asp810 and Phe811, giving it a greater degree of specificity. However, this 

characteristic has implications for potential mechanisms of developing resistance.  

1.1.3.2 Response to imatinib therapy 

In 2000, imatinib treatment of the first patient with metastatic GIST started in Finland, and a 

dramatic response was observed (Joensuu et al, 2001). The following Phase I and II trials 

reported partial response rates as 54% and 68%, respectively, and majority of the remaining 

patients achieved a stable disease (van Oosterom et al, 2002). Promising results led to two 

phase III trials, comparing the dose levels of imatinib (400 mg and 800 mg per day). These 
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studies reported that imatinib achieved disease control in 70-85% of patients with advanced 

GIST, median progression-free survival was 20-24 months, and median overall survival was 

50 months (Blanke et al, 2008b; MetaGIST, 2010; Verweij et al, 2004).  

 

 

 

Figure 5. Mechanisms of imatinib action in GIST. Imatinib competitively binds to ATP 

binding pocket of the kinase domain. It inhibits downstream survival signaling pathways 

including MAPK, PI3K/AKT/mTOR and STAT3 (Tuveson et al, 2001); induces anti-cancer 

immune response through IDO inhibition (Balachandran et al, 2011); and activates apoptotic 

pathways through BIM (Gordon & Fisher, 2010), H2AX (Liu et al, 2007) and MCL1 (Paper 

III). IM: Imatinib, P: Phosphate group. 

 

A study evaluated the effect of imatinib therapy using positron emission tomography on 

fluorodeoxyglucose (FDG) levels revealed that tumors had a robust response to imatinib 

present a significant decrease in FDG signal, even within 24 hours of the first dose (Van den 

Abbeele & Badawi, 2002). This result suggests that a decrease in glycolytic mechanism is 

one of the initial effects of kinase inhibition. At molecular level, imatinib was shown to 

inhibit oncogenic signaling that down-regulate downstream survival pathways such as PI3K-

AKT and MAPK (Bauer et al, 2007), and to induce cell apoptosis through BIM (Gordon & 

Fisher, 2010) and soluble histone H2AX (Liu et al, 2007) (Figure 5). In addition, imatinib 

reduces the expression of indoleamine 2,3-dioxygenase (IDO), which is an enzyme produces 

immunosuppressive metabolites (Balachandran et al, 2011). Reduction of IDO causes 

depletion of regulatory T cells and increase of tumor-infiltrating CD8
+
 T cells. Thus, imatinib 

stimulates an anti-cancer immune response by diminishing IDO-mediated 

immunosuppression.  

Clinical observations demonstrate that long-term imatinib treatment is not sufficient to 

eradicate GIST cells. In order to determine the optimal duration of imatinib therapy, an 
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interesting clinical trial was conducted with patients who had continuous disease control after 

3 years of imatinib treatment (Le Cesne et al, 2010). Patients were grouped as either to 

continue or to discontinue the treatment. The 2-year progression-free survival rates were 80% 

in the continuous patient cohort and only 16% in the discontinuous cohort. The relapse after 

the discontinuation of imatinib was due to persistent disease, showing that imatinib fails to 

eradicate cells although it stops their proliferation. The progression during continuous 

imatinib treatment was due to resistant disease. 

Another study investigated the histological responses of the tumors upon imatinib treatment 

(Agaram et al, 2007). After a range of 1 to 31 months of treatment, tumors showed a size 

reduction range between 10 to 90%. Overall responses did not correlate with duration of 

treatment or KIT and PDGFRA mutational status. The residual tumor cells in the 75% of the 

tumors were mitotically inactive, showing a quiescent state. These results demonstrate that 

GIST cells may avoid apoptosis by evading the cell cycle under imatinib exposure. Indeed, 

imatinib was shown to cause tumor cell quiescence through the APC/CDH1-SKP2-p27
Kip1

 

signaling axis (Liu et al, 2008), and to induce autophagy that protects tumor cells from cell 

death (Gupta et al, 2010). 

Only a small percentage of patients (3-5%) show a complete disappearance of their tumor 

upon imatinib treatment (Abhyankar & Nair, 2008; Choi et al, 2007). However, it was 

reported that patients with tumors that shrink or remain stable in size show a similar clinical 

benefit from the treatment (Blanke et al, 2008a). 

 

1.1.4 Imatinib resistance 

The majority of GIST patients with advanced disease achieve a clinical benefit from imatinib 

treatment. However, approximately 10% of patients progress within 6 months of initial 

therapy, which is defined as primary resistance to imatinib (Blanke et al, 2008a; Blanke et al, 

2008b; van Oosterom et al, 2002; Verweij et al, 2004). Approximately 50-60% of the 

initially responding patients develop disease progression within two years. Such cases are 

regarded as secondary or acquired resistance to imatinib (Blanke et al, 2008a; Blanke et al, 

2008b; van Oosterom et al, 2002; Verweij et al, 2004). 

1.1.4.1 Primary imatinib resistance 

Primary resistance can be observed in GISTs with all kind of known mutations, however, it 

shows stronger correlation with certain genotypes (Debiec-Rychter et al, 2006; Debiec-

Rychter et al, 2004; Heinrich et al, 2003a; Heinrich et al, 2008b). For example, wild-type, 

KIT exon 9 mutated, and PDGFRA D842V mutated GISTs are more likely to show primary 

resistance. In experimental cell culture systems, GIST cells expressing exon 11 mutant KIT 

are highly sensitive to imatinib (Heinrich et al, 2008a). Correspondingly, patients with GISTs 

harboring KIT exon 11 mutations have a better progression-free and overall survival 
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compared to patients with wild-type GISTs or GISTs harboring KIT exon 9 mutation 

(Debiec-Rychter et al, 2006; Heinrich et al, 2008b; MetaGIST, 2010).   

The primary resistance arises in GISTs with no identifiable KIT or PDGFRA mutations is 

likely due to different mechanisms causing the disease development and activation of 

alternative signaling pathways. Therefore, treatment of these GISTs with the targeted agents 

other than imatinib, such as VEGFR, BRAF or MEK inhibitors, might be a better clinical 

alternative (Janeway et al, 2009). 

Mutations in exon 9 affect the extracellular KIT domain, mimicking the conformation change 

when SCF binds to the receptor, which induces higher degree of dimerization (Yuzawa et al, 

2007). Since this mutation does not interfere with the kinase domain, exon 9 mutated KIT has 

the kinase domain same as the wild-type KIT, in which decreased sensitivity to imatinib was 

observed in vitro compared to exon 11 mutant KIT  (Corless et al, 2011). Dose escalation is 

suggested for treatment of GISTs harboring these mutations (MetaGIST, 2010). 

Both clinical and in vitro studies have reported that PDGFRA D842V mutation is strongly 

resistant to imatinib (Corless et al, 2005; Heinrich et al, 2008a; Weisberg et al, 2006). This 

mutation results in a change in the kinase activation loop that strongly favors the active 

conformation of the kinase domain, which consequently disfavors imatinib binding (Gajiwala 

et al, 2009; Heinrich et al, 2003a). Patients with D842V mutant GISTs show low response 

rates and short progression-free and overall survival during imatinib treatment (Biron et al, 

2010).  

In addition to mutations, gene amplification of KIT or PDGFRA was shown as a potential 

mechanism leading to either primary or secondary resistance (Debiec-Rychter et al, 2005; 

Liegl et al, 2008; Miselli et al, 2007). 

1.1.4.2 Secondary imatinib resistance 

Secondary mutations in the same gene is the main known mechanism for developing 

secondary resistance (Antonescu et al, 2005; Grimpen et al, 2005; Heinrich et al, 2006; 

Wakai et al, 2004). A clinical trial revealed that 67% of the patients whose tumors showed 

secondary resistance had a new mutation in KIT (Heinrich et al, 2006). Secondary mutations 

involve two regions in the KIT and PDGFRA kinase domains: (i) the ATP-binding pocket 

(encoded by exons 13 and 14) that directly interfere with imatinib binding, and (ii) the kinase 

activation loop (encoded by exons 17 and 18) that can stabilize the kinase in the active 

conformation and hinder imatinib binding.  
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Figure 6. Mechanisms of acquired resistance to imatinib in GIST. Secondary mutations in 

exons 13 and 17 block imatinib binding and activity (upper left). GIST cell lines that acquire 

imatinib resistance activate AXL (Mahadevan et al, 2007) or FAK (Takahashi et al, 2013) 

instead of KIT (upper right). GIST cells downregulate phosphatase PTPN18 (by miR-125a-

5p overexpression) (Paper I) that dephosphorylate either the substrates of KIT, or other 

kinases such as FAK (Paper II) (lower left). Imatinib induces pathways that protect tumor 

cells from cell death including quiescence (Liu et al, 2008), autophagy (Gupta et al, 2010) 

and pro-survival (Paper III) (lower right). IM: Imatinib, P: Phosphate group, ҂ Shown in 

CML. 
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It is noted that most of the imatinib-resistant tumors exhibit extensive intra- and inter-tumor 

heterogeneity (Liegl et al, 2008; Loughrey et al, 2006; Wardelmann et al, 2006). As an 

illustration, up to five different types of secondary mutations had been observed in different 

areas of the same tumor, and up to seven different secondary mutations across the multiple 

tumors of the same patient (Liegl et al, 2008). This heterogeneity has important implications 

in regard to the efficacy of second-line TKI therapy after the first-line imatinib treatment, 

because the diverse resistant subclones render the complete eradication of GIST cells by any 

particular TKI.  

Several alternative mechanisms of imatinib resistance have been described. Kinase switching 

is one of them and number of kinases have been involved in such mechanism. The first one is 

AXL, which is an oncogenic RTK that regulates the same downstream signaling pathways as 

KIT. GIST cells switch from KIT to AXL during acquisition of imatinib resistance in vitro 

and in vivo (Mahadevan et al, 2007). In addition, another study reported a switch from KIT to 

FAK and FYN activation in GIST cells upon acquisition of imatinib resistance, and pFAK 

inhibition can re-sensitize the resistant cells to imatinib-induced cell death (Takahashi et al, 

2013). FAK has also been implicated in growth and survival of imatinib-resistant GIST cells, 

and FAK inhibition induces apoptosis in GIST cells and decreases tumor size in mice 

(Sakurama et al, 2009). Concordant with these findings, we also observed increased 

expression of FAK phosphorylation in imatinib-resistant GIST cell lines and clinical samples 

(Paper II).  

miRNA-mediated regulation is known to play a role in resistance mechanism of TKI (such as 

EGFR inihibitor) (Bryant et al, 2012; Garofalo et al, 2012; Wang et al, 2014; Wang et al, 

2012; Weiss et al, 2008; Zhong et al, 2010). The role of miRNAs in imatinib resistance has 

been demonstrated in CML (Hershkovitz-Rokah et al, 2014; Joshi et al, 2014; Li et al, 2013; 

Liu et al, 2012; Lopotova et al, 2011; Shibuta et al, 2013; Venturini et al, 2007; Xu et al, 

2014; Zimmerman et al, 2010) (see section 1.2.4.1) and is now described in GIST in this 

thesis work (Papers I-III).  

Mechanisms of secondary resistance to imatinib in GIST are summarized in Figure 6. 

1.1.4.3 Strategies to overcome the resistance 

In clinical guidelines, for GIST patients who progress on the standard dose of imatinib, it is 

recommended to increase the dose prior to change of therapy. As described above, resistance 

results from KIT exon 9 mutations or secondary mutations causing inefficient imatinib 

binding might be overcome by dose escalation. Even though the median time to progression 

after the dose escalation is only five months, 33% of the patients achieve a stable disease up 

to one year or more (Blanke et al, 2008b). 

1.1.4.3.1 Alternative TKIs 

Several other tyrosine kinase inhibitors can be the alternatives for those patients who do not 

respond to imatinib dose escalation or progress after an initial response (Figure 7). Most of 
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these agents also target vascular endothelial growth factor receptors (VEGFR), giving them a 

potential advantage to decrease the progression by inhibition of angiogenesis (Demetri, 

2011).  

 

Figure 7. Strategies to overcome imatinib resistance in GIST. The dose of imatinib is 

increased prior to change of therapy. Sunitinib and regorafenib are current clinically approved 

drugs for imatinib-resistant GISTs. Clinical trials are ongoing for inhibitors of PI3K-mTOR 

pathway and KIT stabilizer protein HSP90. IM: Imatinib. 

 

Sunitinib is the first FDA approved TKI inhibitor for the treatment of advanced GISTs which 

are not non-responsive to imatinib. It has more inhibition activity against the wild-type KIT 

than imatinib, and it also inhibits other targets, including VEGFR1-3, FLT3 and RET 

(Abrams et al, 2003; Broutin et al, 2011; Mendel et al, 2003; O'Farrell et al, 2003).  

However, its activity against secondary kinase mutations is not optimal. A phase III placebo 

control trial study with imatinib-resistant or intolerant patients reported that sunitinib 

prolonged the progression-free survival only 18 weeks compared to placebo (Demetri et al, 

2006). As demonstrated by in vitro studies, although mutations in the ATP-binding pocket 

are very sensitive to sunitinib, mutations in the activation loop are strongly resistant (Heinrich 

et al, 2008a). Due to the equality in frequency of these secondary mutations within a lesion or 

in a patient, mixed responses are commonly observed when using sunitinib for imatinib-

resistant GISTs. Similar to imatinib, sunitinib can only bind and inhibit the inactive form of 

KIT. 
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Regorafenib is the third approved therapeutic agent for GIST patients who no longer respond 

to imatinib and sunitinib treatments. Besides to KIT and PDGFRA, this TKI also inhibits 

VEGFR1–3, TEK, RET, RAF1, BRAF, and BRAF
V600E

 and FGFR (Wilhelm et al, 2011). 

Similar to sunitinib, regorafenib delayed the progression of patients only 3.9 months 

compared to the placebo treatment (Demetri et al, 2013). 

Accumulating evidence show that resistance to ATP-competitive inhibitors is inevitable even 

with newer drugs such as regorafenib, and alternative treatment strategies based on non-ATP 

mimetic kinase inhibitors (switch pocket kinase inhibitors, such as DP-2676) are suggested as 

a novel strategy for kinase inhibition (Eide et al, 2011; Heinrich et al, 2010). These inhibitors 

suppress the conformational switch to the active form of KIT. 

1.1.4.3.2 Other agents 

PI3K-mTOR signaling pathway is known as one of the crucial pathways for survival of GIST 

cells (Bauer et al, 2007), and agents targeting the components of this pathway (e.g. 

everolimus against mTOR; BYL719 and BKM120 against PI3K) are in clinical trials 

(clinicaltrials.gov). Using these agents in combination with KIT inhibitors might provide a 

successful treatment strategy. 

Inhibition of HSP90 has been proven to have a dramatic inhibitory activity against KIT-

positive imatinib-resistant GIST cell lines, but it was not effective to inhibit wild-type KIT 

(Bauer et al, 2006). Clinical trials are ongoing to test these inhibitors (AT-13387, AUY922) 

on TKI-resistant GISTs (Corless et al, 2011). 

Combinational treatment of cancer stem cell targeting drugs together with imatinib has been 

proposed to eradicate the persistent GIST stem populations in tumor bulk. Salinomycin, a 

breast cancer stem cell inhibitor, was shown to inhibit the growth of ICC stem cells, 

especially with a greater degree when used together with imatinib (Bardsley et al, 2010). 

 

1.2 MicroRNAs 

 

The explanation of the genetic information flow within a biological system, i.e. central 

dogma of molecular biology, was first described by Francis Crick in 1956. It stated that 

genetic information is transcribed from DNA to RNA, and subsequently translated into 

proteins. RNA is a mediator for transmitting the message and proteins are the key regulators 

of the biological functions (Crick, 1970). In 2000s, development of genome-wide 

transcriptome technologies revealed that ~80% of the human genome is transcribed into 

RNAs, but only a small fraction (<2%) of the transcripts encode proteins (IHGSC, 2004). 

These findings opened a new era of “non-coding RNAs”, which are now known as important 

regulatory elements of gene regulation, cellular functions and disease development.  
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Non-coding RNAs are classified into two major classes: (i) small non-coding RNAs (~18-200 

nt) that include microRNA (miRNA), small interfering RNA (siRNA) and PIWI-interacting 

RNA (piRNA); and (ii) long non-coding RNAs (>200 nt), such as pseudogenes, H19, XIST 

and AIR (Grosshans & Filipowicz, 2008). miRNAs constitute the most abundant class of 

small non-coding RNAs in human and are extensively studied. The expression and function 

of miRNAs have been related to many cellular functions, and their deregulation is often 

associated with human diseases including cancer.  

 

1.2.1 Discovery 

In 1993, a gene called lin-4 was discovered to regulate developmental timing in C. elegans, 

which does not encode a protein but produces a pair of small RNAs with sizes 22 and 61 nt 

(Lee et al, 1993; Wightman et al, 1993). These small RNAs have antisense complimentary to 

multiple sites in the 3`UTR of the lin-14 gene and regulate lin-14 translation  (Lee et al, 1993; 

Wightman et al, 1993).  

Lin-4 remained to be a unique regulator until the discovery of let-7 in 2000. Let-7 was also 

discovered in C. elegans as a regulator of transition from late-larval to adult cell fate 

developmental stages (Reinhart et al, 2000; Slack et al, 2000). Unlike lin-4, let-7 homologs 

were soon identified in human, Drosophila and 11 other animals (Pasquinelli et al, 2000). 

This finding suggested the existence of a class of small RNAs involved in gene regulation, 

and many scientists began to hunt for these tiny RNAs in different multicellular genomes. In 

2001, three independent studies identified an extensive class of endogenous small RNAs (~22 

nt) in human, flies and worms (Lagos-Quintana et al, 2001; Lau et al, 2001; Lee & Ambros, 

2001). They termed these small RNAs as “miRNAs”. To date, more than 2500 mature 

miRNAs were annotated in the human genome (miRBase release 21, June 2014), and the 

functional roles of most of them have yet to be determined.  

 

1.2.2 Biogenesis and function 

An illustration of miRNA biogenesis and function is shown in Figure 8. The details are 

briefly mentioned below: 

Transcription 

miRNAs are generally transcribed by RNA polymerase II into long primary transcripts with a 

hairpin structure called primary miRNAs (pri-miRNA) (Lee et al, 2004). Majority of human 

miRNAs are encoded by introns of coding or non-coding genes, while some miRNAs are 

encoded by exonic regions. The miRNAs located in the introns of protein-coding genes are 

generally transcribed together with the host gene by the same promoter (Bartel, 2004). 

However, miRNA genes commonly have multiple transcription start sites, and some of the 

intronic miRNAs can have independent promoters from their host genes (Monteys et al, 
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2010; Ozsolak et al, 2008). Around 40% of human miRNAs are located in clusters and co-

transcribed from a poly-cistronic transcription unit (Altuvia et al, 2005). Following the 

transcription, pri-miRNA undergoes nuclear and cytoplasmic processing steps, as described 

below (Lee et al, 2003).  

  

 

Figure 8. Canonical pathway of miRNA biogenesis and function. 

 

Nuclear processing 

Pri-miRNA is typically over 1-kb long, consisting of a stem (33-35 bp), a terminal loop and 

single-stranded RNA sequences at both 3` and 5` ends. In nucleus, pri-miRNA is cleaved by 

Drosha together with its co-factor DGCR8 (DiGeorge Syndrome critical region 8) (Lee et al, 

2003). Drosha cleaves the stem at ~11 bp away from the basal junction (the junction between 

single and double stranded RNAs) and ~22 bp away from the apical junction linked to the 

terminal loop (Han et al, 2006), which yields a small hairpin of ~65 nt long with a 2-nt 

3`overhang called precursor miRNA (pre-miRNA) (Lee et al, 2003). Following Drosha 

processing, pre-miRNA is exported from nucleus to cytoplasm by Exportin 5 (EXP5) 
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together with its co-factor GTP-binding nuclear protein (RAN-GTP) (Bohnsack et al, 2004; 

ESMO, 2014). 

Cytoplasmic processing 

Upon the export from nucleus to cytoplasm, Dicer continues to the maturation process with 

its co-factors TARBP2 (TAR RNA-binding protein 2) and PACT (protein activator of PKR) 

(Chendrimada et al, 2005; Hutvagner et al, 2001; Lee et al, 2006). Dicer binds to pre-miRNA 

with a preference for 2-nt 3`overhang generated earlier by Drosha (Zhang et al, 2004), and 

cleaves the pre-miRNA at a distance of 22 nt away from the 5`end of the double-stranded 

RNA to remove the loop of pre-miRNA and yield a miRNA duplex of ~22 bp (Macrae et al, 

2006; Park et al, 2011). 

miRNA-induced silencing complex (miRISC) 

The miRNA duplex generated by Dicer is subsequently loaded into the AGO2 (Argonaute 2) 

containing complex called miRISC (Hammond et al, 2001; Mourelatos et al, 2002). 

Following the loading, one of the strands (i.e. passenger strand) is quickly degraded or 

discarded, while the other strand called guide strand is used for silencing activity. Selection of 

guide strand is determined on the basis of thermodynamic stability of the two ends of the 

duplex, in which relatively less stable strand at the 5`side is typically selected as guide strand 

(Khvorova et al, 2003; Schwarz et al, 2003). In addition, presence of U at nucleotide position 

1 is favored by AGO protein for guide strand selection (Hu et al, 2009). Notably, even 

though passenger strands are less abundant than the guide strands, they can still be loaded 

into miRISC and active in silencing (Okamura et al, 2008). 

Mature miRNA functions as a guide by base pairing with sequences in the 3`UTR of the 

target mRNA (Bartel, 2009), while the AGO2 complex recruits the necessary factors that 

induce translational repression, mRNA deadenylation and/or mRNA decay (Huntzinger & 

Izaurralde, 2011). For miRNA target recognition, it generally requires perfect base pairing at 

positions 2 to 7 in the 5` end of miRNA (known as “seed region”). In addition to seed region, 

the downstream nucleotides at positions 8 and 13-16 can also contribute for base pairing with 

the targets (Bartel, 2009). Given the relatively short sequence for recognition, each miRNA 

can have multiple targets, and each mRNA can have target sites for multiple miRNAs. 

The degree of miRNA-mRNA complementary determines the subsequent silencing 

mechanism. Perfect base-pairing leads to cleavage by AGO followed by degradation of 

mRNA target (Yekta et al, 2004). This mechanism is rare in animals, but common in plants. 

Imperfect base-pairing leads to translational repression or mRNA deadenylation. 

Translational repression mechanism involves the disruption of the translation initiation 

complex assembly when miRISC recruits CCR-NOT to dissociate PABP from mRNA 

poly(A) tail (Zekri et al., 2013), or interruption of the translation elongation when miRISC 

promotes drop-off or proteolysis of the nascent peptide (Petersen et al., 2006; Nottrott et al., 

2006). Deadenylation is initiated by GW182 and PABP, which recruit CCR4-NOT 
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deadenylation complex that removes the poly(A) tail of mRNA and causes destabilization of 

the target (Behm-Ansmant et al, 2006). 

 

1.2.3 MicroRNAs and cancer 

The first evidence of miRNA involvement in cancer was reported by Calin and colleagues in 

2002 (Calin et al, 2002), in which they found two miRNA genes, mir-15a and mir-16-1, 

located at a region on chromosome 13q14, were deleted in more than half of B-cell chronic 

lymphocytic leukemias (B-CLL). Since this discovery, many scientists began to investigate 

the role of miRNAs in cancer development and progression. To date, numerous evidence 

support that miRNAs are involved in all hallmarks of cancer defined by Hanahan and 

Weinberg (Hanahan & Weinberg, 2011). Importantly, cancers have miRNA expression 

signatures that can distinguish them from normal tissues and among cancer types (Calin & 

Croce, 2006; Lu et al, 2005). Most of the cancers can be further subclassified according to 

their clinical and molecular characteristics based on their miRNA expression profiles (Dvinge 

et al, 2013; Kim et al, 2011a), suggesting the potential diagnostic and prognostic implications 

of miRNAs in cancer.  

The mechanisms of miRNA deregulation are similar to other cancer-associated genes, such as 

genomic abnormalities (e.g. chromosomal amplification/deletion) (Calin et al, 2002), 

transcription factor activation (Hermeking, 2012; Jin et al, 2013), and epigenetic changes 

(e.g. promoter methylation and histone modifications) (Langevin et al, 2011; Vrba et al, 

2013). In addition to these, there are miRNA regulation-specific mechanisms, such as single 

nucleotide polymorphisms (SNPs) or mutations on either miRNA or target 3`UTR sequences 

(Sun et al, 2009; Ziebarth et al, 2012), defects in miRNA biogenesis machinery (Hill et al, 

2009; Kumar et al, 2007; Melo et al, 2009) and post-transcriptional editing catalyzed by 

ADARs (adenosine deaminases that act on RNA) (Choudhury et al, 2012). 

miRNAs can function as oncogenes or tumor suppressor genes. However, some miRNAs can 

have dual function as an oncogene or tumor suppressor depending on cellular context. miR-

125 family is an example of such dual function, which is discussed in detail in Paper I.  

1.2.3.1 MicroRNAs in gastrointestinal stromal tumor 

miRNA signature of GISTs was first described by Subramanian and colleagues in 2008 

(Subramanian et al, 2008). The study compared miRNA profiles in 27 types of sarcomas, and 

demonstrated that GISTs were clearly distinguished from other sarcomas based on their 

miRNA expressions. Shortly after, two groups characterized miRNA expression profiles of 

GISTs in relation to clinical and molecular features (Choi et al, 2010; Haller et al, 2010). 

They identified specific miRNA expression signatures associated with anatomic site, KIT or 

PDGFRA mutation, tumor risk and chromosome 14q loss. Both studies reported 

downregulation of multiple miRNA clusters (located at chromosome 14q) in GISTs. A 

miRNA located in this region, i.e. miR-494, was shown to regulate KIT expression and 
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downstream signaling, cell growth and apoptosis in GIST (Kim et al, 2011b). In addition to 

miR-494, several other miRNAs have been identified as regulators of KIT. miR-221/222 and 

miR-17-92 cluster members (miR-17, miR-20a and miR-222) were found downregulated in 

GISTs (Gits et al, 2013; Koelz et al, 2011). Furthermore, these miRNAs target KIT and 

ETV1, and reduce cell proliferation and induce apoptosis in GIST cells (Gits et al, 2013). 

Recently, miR-218 was also found downregulated in GISTs, and it regulates KIT, suppresses 

proliferation and invasion, and induces apoptosis in vitro (Fan et al, 2014b). 

Several miRNAs have been described in GIST progression. For examples, miR-196a 

overexpression is associated with high-risk, metastasis and poor survival in GISTs, and it 

regulates cell invasion in GIST cells (Niinuma et al, 2012). miR-133b is downregulated in 

high-grade GISTs and associated with FSCN1 overexpression  (Yamamoto et al, 2013). 

Down regulation of miR-137 was reported to induce epithelial to mesenchymal transition 

(EMT) through regulation of TWIST1 in GIST cells (Liu et al, 2014). A summary of miRNAs 

and their functional roles in GIST tumorigenesis are listed in Table 1. 

 

Table 1. Functionally characterized microRNAs in GIST 

 

 miRNA Location Target Functional Relevance Reference 

miR-494 14q32.31 KIT Cell growth, apoptosis Kim et al, 2011b 

miR-221/222 Xp11.3 KIT and ETV1 Cell proliferation, apoptosis Gits et al, 2013 

miR-17-92 13q31.3 KIT and ETV1 Cell proliferation, apoptosis Gits et al, 2013 

miR-218 4p.15.31 KIT Imatinib resistance  Fan et al, 2014a  

   

Cell proliferation, invasion, apoptosis Fan et al, 2014b 

miR-137 1p21.3 TWIST1 EMT Liu et al, 2014 

miR-125a-5p 19q13.41 PTPN18 Imatinib resistance Akçakaya et al, 2014 

EMT: Epithelial to mesenchymal transition. 

 

1.2.4 MicroRNAs and targeted therapy resistance 

Targeted therapies, include tyrosine kinase inhibitors and monoclonal antibodies, are widely 

used to treat cancers that are dependent on specific target proteins whose constitutive activity 

is crucial for survival of the tumor cells (also known as oncogene addiction). Despite the 

remarkable success of targeted therapy, development of acquired resistance is common and 

remains a major challenge in the clinic.  

The most common mechanisms of targeted therapy resistance include: non-responsive 

primary target mutations, secondary mutations in the target gene, activations of downstream 

signal transduction pathways and alternative pathways. In addition to these mechanisms, 

miRNA-mediated regulation of target genes involved in resistance pathways has recently 

emerged as a resistance mechanism to targeted therapy in both hematological and solid 

malignancies.    
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The best example is the EGFR-TKI (such as gefitinib and erlotinib) resistance in lung cancer. 

Weiss and colleagues reported that miR-128b directly regulates EGFR in lung cancer cells, 

and loss of miR-128b correlates with a better gefitinib response and longer patient survival in 

lung cancer (Weiss et al, 2008). Several miRNAs were found to regulate ERK (let-7, miR-

126, miR-145) and PTEN/AKT (miR-214) signaling pathways, and modulate gefitinib 

resistance in vitro (Wang et al, 2012; Zhong et al, 2010). A signature of 13 miRNAs can 

predict erlotinib response in lung tumors and cell lines, and one of these miRNAs (miR-200c) 

functionally regulates EMT and erlotinib sensitivity (Bryant et al, 2012). Furthermore, 

several tyrosine kinase receptors, such as EGF, MET and AXL, can alter specific miRNA 

expressions for regulating gefitinib-induced apoptosis and EMT in vitro and in vivo (Garofalo 

et al, 2012; Wang et al, 2014).  

 

1.2.4.1 MicroRNAs in imatinib resistance 

The involvement of miRNAs in imatinib resistance is well characterized in CML. Several 

findings that support the role of miRNAs in imatinib resistance in CML are briefly described 

below and summarized in Table 2. 

 

Table 2. MicroRNAs involved in imatinib response of CML and GIST 

 

 miRNA Location Target Regulated by Cancer  Reference 

miR-17~92 13q31.3 

 

BCR-ABL, MYC  CML Venturini et al, 2007 

miR-144~451 17q11.2 

 

MYC CML Liu et al, 2012 

miR-181 9q33.3 MCL1 LYN CML Zimmerman et al, 2010 

 

1q32.1 

    miR-199b 9q34.11 

 

ABL CML Joshi et al, 2014 

miR-203 14q32.33 BCR-ABL  

 

CML Li et al, 2013 

miR-30e 1p34.2 BCR-ABL  

 

CML Hershkovitz-Rokah et al, 2014 

miR-138 3p21.32 BCR-ABL  

 

CML Xu et al, 2014 

 

16q13 

    miR-203 14q32.33 BCR-ABL  

 

CML Shibuta et al, 2013 

miR-451 17q11.2 BCR-ABL?  BCR-ABL CML Lopotova et al, 2011 

miR-30a 6q13 Beclin1, ATG5  CML Yu et al, 2012 

miR-218 4p.15.31 KIT 

 

GIST Fan et al, 2014a,b 

miR-125a-5p 19q13.41 PTPN18 

 

GIST Paper I 

miR-320a/b 8p21.3 MCL1   GIST Paper III 

 

miR-17~92 expression is downregulated by imatinib treatment, and overexpression of these 

miRNAs enhance imatinib sensitivity in CML cells (Venturini et al, 2007). Similarly, 

expression of miR-144~451 cluster was found repressed by MYC upon acquiring imatinib 

resistance in CML cells, and their restoration reversed the resistant phenotype (Liu et al, 

2012). Some miRNAs directly regulate BCR-ABL expression and modulate imatinib 
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response. For examples, miR-203, miR-30e and miR-138 regulate ABL and BCR-ABL 

expression, and imatinib sensitivity in CML cells (Hershkovitz-Rokah et al, 2014; Li et al, 

2013; Xu et al, 2014). Autophagy is commonly involved in TKI resistance. Interestingly, 

miR-30a has been shown to suppress autophagy by targeting Beclin1 and ATG5, and its 

overexpression enhances imatinib sensitivity in CML cells (Yu et al, 2012).  

miRNA-mediated regulation of  imatinib resistance in GIST has not been well studied as in 

CML. A recent report by Fan and colleagues showed that modulation of miR-218 affects 

imatinib sensitivity in GIST cell lines through regulation of PI3K/AKT pathway (Fan et al, 

2014a). In this thesis work, we identified two miRNA networks involved in GIST cells 

viability and resistance upon imatinib treatment. Most importantly, we provide functional 

evidence that miR-125a-5p regulates imatinib response through PTPN18-pFAK axis. 

Discussion of these findings is given in Papers I-III. 

 

1.2.5 Diagnostic, prognostic and therapeutic values of microRNAs 

As previously described, miRNA expression profiles can distinguish cancers from normal 

tissues and among cancer types (e.g. GISTs from other sarcomas (Subramanian et al, 2008)), 

and distinct miRNA expression signatures are associated with clinical and molecular 

subclasses [e.g. imatinib resistance, anatomic site, tumor risk in GIST (Akcakaya et al, 2014; 

Choi et al, 2010; Haller et al, 2010)]. These findings suggest a promising role for miRNAs as 

diagnostic and prognostic indicators. Given their longer stability in clinical samples and 

robust expression patterns, miRNAs have been suggested to have a greater utility as 

biomarkers in comparison to mRNAs (Lu et al, 2005).  

Importantly, cancer cells can release their miRNAs into the body liquids through 

microvesicles, which gives them a potential value as non-invasive biomarkers (Mitchell et al, 

2008; Schwarzenbach et al, 2014). As an example, a recent report using 391 lung cancer 

patients identified serum miRNAs, which are predictive of survival for patients with 

advanced disease in lung cancer (Wang et al, 2013). However, there are some obstacles for 

circulating miRNAs, e.g. choosing an appropriate endogenous control and miRNA 

expression fluctuations caused by diet, infection, treatment, trauma or other factors (Jarry et 

al, 2014). Many investigations are ongoing to determine reliable miRNAs as biomarkers. 

Future studies evaluating the potential of circulating miRNAs as response markers for 

treatment would have a clinical benefit.  

miRNA mimics and inhibitors are currently under investigation for their potential as 

therapeutic agents. miRNAs may be used directly to target tumor cells and their 

microenvironment, or to enhance the effect of other therapies for the purpose of overcoming 

resistance. Off-target effects and delivery of these molecules to specific tissues/cell types 

remain the biggest challenges. Several strategies have been developed for delivery, including 

the use of nanoparticles, liposomes, antibodies and nucleic acid structure modifications (Li & 

Rana, 2014).  
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The best example for miRNA-based therapies is the use of anti-miR-122 molecule with a 

locked nucleic acid modification (known as Miravirsen) for treatment of hepatitis C (Janssen 

et al, 2013). Besides mature miR-122, Miravirsen can also bind to pri- and pre-miR-122 and 

inhibit its biogenesis, thus increases its effectiveness to block endogenous miR-122 (Gebert et 

al, 2014). miR-122 is highly abundant in the liver and it is required for hepatitis C virus 

(HCV) replication and HCV RNA stabilization (Jopling et al, 2005). Inhibition of miR-122 

by Miravirsen treatment reduces HCV RNA and viremia levels.  

Another example is the use of synthetic miR-34a mimic loaded into liposomal nanoparticles 

(MRX34) for treatment of liver cancer (Bouchie, 2013). miR-34 is a tumor suppressor, which 

directly regulates at least 24 known oncogenes. The investigators of this study stated that by 

using MRX34 they hope to overcome potential therapy resistance from the beginning by 

“attacking more pathways all at once”.    

Next question arise, what if tumor cells develop resistance also against the miRNA-based 

therapeutics? Future resistance problems for miRNA therapeutics may be overcome by use of 

agents that have a potential to target whole miRNA families instead of a sole miRNA (Obad 

et al, 2011). However, careful evaluation of potential side effects is warranted. The research 

on miRNA-based therapies is newly emerging. Ongoing and future studies will illuminate 

their effectiveness and safeness as novel agents for cancer treatment.  
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2 AIMS OF THE THESIS 

 

The overall aim of this thesis was to investigate the molecular mechanisms of imatinib 

resistance in GIST. The specific aims were to: 

 

 Analyze miRNA expression profiles in GISTs in relation to imatinib response, 

clinical features and KIT mutation status, and to evaluate the functional roles of miR-

125a-5p and its potential targets in imatinib resistance (Paper I). 

 Evaluate FAK as a candidate downstream target of PTPN18 and its role in imatinib 

resistance of GIST (Paper II). 

 Identify miRNAs and their targets involved in imatinib-induced cell death of GIST 

(Paper III). 

 Investigate the functional role of DOG1 in imatinib-sensitive and -resistant GIST cell 

lines (Paper IV). 
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3 MATERIALS AND METHODS 

3.1 MATERIALS 

3.1.1 Clinical samples 

In total, 63 snap-frozen GISTs were included in this thesis. The samples consisted of 30 

tumors from 24 GIST patients who had received neoadjuvant imatinib treatment (Papers I- 

III), and 33 tumors from 32 GIST patients who had not received imatinib treatment prior to 

operation (Paper III). Among the imatinib-treated sample cohort, 14 tumors were imatinib 

resistant, whereas 16 tumors were imatinib sensitive. The clinical, histopathological and 

follow-up details of the cases are detailed in Paper III. 

GIST6 had two tumors: GIST6a was treated with imatinib neoadjuvantly and GIST6b was 

not treated prior to operation. GIST9 and GIST10 had four tumors each, three of the tumors 

in each patient showed progressive growth (imatinib resistant) and one tumor in each patient 

(GIST9-3 and GIST10-3) partially responded to the treatment (imatinib sensitive). GIST25 

had two recurrent tumors collected at different times, and none of them treated prior to 

operation. 

Of the 56 patients, 26 developed tumor metastasis and the remaining 30 patients had no 

recurrence or metastasis during the follow-up. Thirty-nine of the tumors harbored a single 

non-synonymous mutation in KIT and 14 tumors had double KIT mutations. The GIST15 

tumor harboring a silent mutation in KIT (P585P) was considered as wild-type. Five tumors 

had a single mutation in PDGFRA, whereas four were wild-type for both KIT and PDGFRA.  

GISTs were diagnosed based on the routine histopathological examination and positive 

immunoreactivity for CD117 (KIT). Imatinib response was determined by 

fluorodeoxyglucose positron emission tomography and/or contrast-enhanced computed 

tomography based on tumor size, characteristics and metastasis.  

All samples were obtained with informed consent, and Karolinska University Hospital ethical 

committee approved the study of the human tissue materials. The follow-up of the patients 

was until June 2014 or the time of death.  

 

3.1.2 Cell lines 

3.1.2.1 Established GIST cell lines 

Two established human GIST cell lines were used in this thesis: Imatinib-sensitive GIST882 

harboring a homozygous missense mutation in KIT exon 13 (K642E) (Papers I-IV); and 

imatinib-resistant GIST48 harboring a primary homozygous KIT exon 11 missense mutation 

(V560D) and a secondary heterozygous KIT exon 17 (D820A) mutation (Papers I and IV). 

The cell lines were kindly provided by Dr. Jonathan Fletcher (Brigham and Women’s 
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Hospital, Boston, MA, USA). The authenticity of the cell lines was confirmed by short 

tandem repeat (STR) genotyping, as described in Paper I. 

3.1.2.2 Imatinib resistant subclones of GIST882 

Imatinib resistant subclones (GIST882R) were generated from GIST882 cell line and used in 

Papers I-III.  The GIST882 cells were exposed to 1 μM of imatinib for 7 days, leading to cell 

death of 60–70% of cells. The remaining cells were harvested and continuously grown in 

growth media containing 1 μM of imatinib for more than one month prior to further 

experiments. Morphologies of imatinib-resistant subline GIST882R and its parental cell line 

GIST882 are shown in Figure 9.   

 

 

Figure 9. Morphologies of GIST882 and its imatinib-resistant subline GIST882R. 

 

3.1.3 Pharmaceutical agents 

3.1.3.1 Imatinib 

Imatinib mesylate (also known as Gleevec, Glivec or STI-571, C30H35N7SO4) is a small 

molecule compound that binds to an intracellular pocket of the tyrosine kinases and blocks 

ATP binding, thereby preventing activation of the kinase signaling pathways. The inhibitor 

was kindly provided by Novartis Pharma (Basel, Switzerland). Imatinib was dissolved in 

sterile distilled water at 10 mM and stored at -20°C.  

3.1.3.2 DOG1 activator and inhibitor  

In Paper IV, N-aroylaminothiazole (Eact) and aminophenylthiazole (T16Ainh-A01) were 

used to activate and inhibit DOG1, respectively. Eact has been demonstrated to activate 

DOG1 and produce sustained DOG1 Cl
-
 currents independent of intracellular calcium levels 

(Namkung et al, 2011b). T16Ainh-A01 has been shown to completely block calcium-activated 

chloride channel current produced by DOG1 in salivary gland cells without interfering with 
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calcium signaling (Namkung et al, 2011a). Both compounds were purchased from Merck 

Millipore (Billerica, MA, USA). 

 

3.2 METHODS 

3.2.1 GIST characterization 

3.2.1.1 Genomic DNA Sequencing for Mutation Screening 

Sanger sequencing (or chain-termination method) was used for mutation screening of KIT 

and PDGFRA in Papers I-III. This method uses a single-stranded DNA template, primer, 

DNA polymerase, deoxyribonucleotide triphosphate (dNTPs) and modified 

dideoxynucleotides (ddNTPs). ddNTPs lack a 3'-OH group required for the formation of a 

phosphodiester bond between two nucleotides, causing DNA polymerase to terminate 

extension of DNA when a modified ddNTP is incorporated. Each of the four 

dideoxynucleotides (ddATP, ddCTP, ddTTP and ddGTP) is labeled with fluorescent dyes, 

which emit light at different wavelengths. These labeled DNA sequence fragments are 

separated by size as they travel through the polymer-filled capillary array. As they reach the 

detection window, the laser beam excites the dye molecules and causes them to fluoresce. 

The fluorescence emissions from samples are collected simultaneously and spectrally 

separated by a spectrograph, detected by a CCD camera, and displayed as chromatograms. 

Mutation analyses of 23 samples had been performed in the routine pathology diagnostic 

laboratory at Karolinska University Hospital, while 41 samples were analyzed in this thesis 

work (Papers I and III). GIST specimens were first analyzed for KIT mutations (exons 9, 11, 

13 and 17) and the ones that were negative for KIT mutations were further analyzed for 

PDGFRA mutations (exons 12 and 18). The relationship between GIST882 and the three 

generated imatinib-resistant GIST882R subclones were demonstrated by verifying the 

presence of the K642E mutation in KIT exon 13 (Paper II). 

3.2.1.2 Immunocytochemistry 

Immunocytochemistry (ICC) is a technique that is commonly used to detect and localize 

specific proteins in cells using a specific primary antibody that binds to it. The primary 

antibody-antigen interaction is detected by use of a secondary antibody conjugated with an 

enzyme (e.g. horseradish peroxidase or alkaline phosphatase) that stained positive cells 

brown with the substrate 3, 3’-diaminobenzidine (DAB) or with a fluorophore that emits 

light at a specific wavelength.  

ICC was performed for characterization of CD117, DOG1 and CD34 expressions in the 

three imatinib-resistant GIST882R subclones and their parental cell line in Paper II, and 

CD117 and DOG1 expression in GIST48 and GIST882 cell lines in Paper IV. 
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3.2.2 MicroRNA expression analyses 

In this thesis, microarray and reverse-transcription quantitative-PCR (RT-qPCR) methods 

were used for detection and quantification of miRNA expression levels. 

3.2.2.1 Microarray 

Global miRNA expression profiling in Papers I and III were performed using the Agilent 

human miRNA microarray platform (Agilent, Santa Clara, CA, USA). This platform is a 

robust hybridization-based high-throughput method without size fractionation or 

amplification steps, and requires only a small amount of total RNA (≈100 ng). An advantage 

of this platform is the unique design of the probes, which provides optimal sensitivity and 

specificity for both sequence and size discrimination that can distinguish between closely-

related miRNA family members. Design of the probes is illustrated in Figure 10.   

 

 

Figure 10. Agilent miRNA microarray probe design. Modified from (Wang et al, 2007). 

 

Several important features of this platform are briefly mentioned here. miRNAs are first 

labeled by T4 RNA ligase at their 3` end with a single fluorophore-labeled cytosine (C) 

residue (pCp-Cy3). The probes are characterized with a guanosine (G) residue at the 5' end 

that is complementary to the cytosine (C) added to each miRNA during labeling, which 

increases the stability of hybridization to a labeled target miRNA. The differential length of 

the probes is also used for stabilization purpose and normalization of the melting 
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temperatures to hybridize optimally at 55°C for almost all miRNAs. Another unique design 

of this platform is the incorporation of 5`end hairpin structure that eliminates the binding of 

large non-target RNAs (including precursor miRNAs), which increases the target miRNA 

specificity.  

3.2.2.2 Reverse Transcription quantitative-PCR (RT-qPCR) 

Although microarray provides a high-throughput screening, it is relatively limited in terms 

of sensitivity and specificity. RT-qPCR is a quantification method for more accurate and 

sensitive detection of RNAs through a PCR reaction. The RNA template is first converted 

into a complementary DNA (cDNA) using a reverse transcriptase enzyme. This first-strand 

cDNA synthesis reaction can be primed using random primers, oligo(dT), gene-specific 

primers for mRNAs or stem-loop primers for miRNAs. The cDNA is then used as a 

template for exponential amplification using PCR. Quantification is done real-time by 

measuring the amount of amplified product at each PCR cycle. If a particular RNA is 

abundant in the sample, amplification is observed in earlier cycles; whereas amplification is 

observed in later cycles if the input RNA is low. Quantitative measurement of the amplified 

product is obtained using specific fluorescent probes (TaqMan method) or an unspecific 

fluorescent DNA-binding dye that binds to newly synthesized double strand DNA (SYBR 

Green method), and a real-time PCR instrument that measures fluorescence signal while 

performing the PCR reaction. 

The TaqMan probes contain a reporter dye (FAM™) linked to the 5`end, a non-fluorescent 

quencher (NFQ) linked to the 3`end and a minor groove binder (MGB) linked to NFQ at the 

3`end. MGB is a modification increases the melting temperature (Tm) without increasing 

probe length (Afonina et al, 1997; Kutyavin et al, 1997), which allows the design of shorter 

probes. MGB probe anneals specifically to a complementary sequence between the forward 

and reverse primer binding sites. During the amplification, DNA polymerase cleaves the 

probe, and separates the reporter dye from the quencher, resulting in increased fluorescence 

by the reporter (Figure 11). 

In Papers I and III, expression levels of miRNAs were quantified using TaqMan RT-qPCR 

method for validation of miRNA microarray results, and evaluation of relative miRNA levels 

in the cell lines. In addition, mRNA expression levels of putative miRNA target genes 

(PTPN18 and STARD13) were quantified in both clinical samples and cell lines using 

TaqMan RT-qPCR method (Paper I).  

 

3.2.3 Short hairpin RNA (shRNA)  

RNA interference (RNAi) is a widely used method for silencing gene of interest by 

introducing a double-stranded RNA that is complementary to the target sequence. This 

method can be achieved in two ways: chemically synthesized double-stranded small 

interfering RNAs (siRNAs) and vector-based shRNAs. While both siRNAs and shRNAs 
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can be used for gene knockdown, there are differences between them. siRNAs are synthetic 

oligonucleotides that are directly loaded into the RNA-induced silencing complex (RISC) 

for action. The vector-based shRNAs are synthesized in the nucleus of transfected cells and 

then converted into siRNA duplexes by Dicer and integrated into RISC. siRNAs provide a 

fast and efficient silencing of target gene expression, however the effect is short-term. On 

the other hand, shRNAs enable long-term and stable gene silencing.  

In Papers I and III, shRNA targeting to human PTPN18 gene was used for suppressing the 

expression of PTPN18 in GIST882 cells.  

 

 

 

Figure 11. Chemistry of TaqMan RT-qPCR technology. 
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3.2.4 MicroRNA mimics/ inhibitors 

miRNA mimics and inhibitors are commonly used tools for miRNA gain- and loss-of-

function experiments, respectively. miRNA mimics are chemically modified double-

stranded RNA molecules that mimic endogenous mature miRNAs. The chemical 

modifications in miRNA mimics are used to ensure that the guide strand is loaded into 

RISC, but not the passenger strand. miRNA inhibitors are chemically modified single-

stranded oligonucleotides that are designed to bind to and inhibit endogenous miRNAs.  

miRNA mimic/ inhibitor  negative controls are random sequences (i.e. non-targeting 

sequences to human transcripts) that have similar chemical modifications as their miRNA 

mimics/ inhibitors and no identifiable effects on known miRNA functions.  

In Paper I, miRNA mimics/ inhibitors (miR-125a-5p, miR-211 and miR-944) and their 

respective negative controls were transfected into GIST882 or GIST48 cells for functional 

studies and target validations.  

 

3.2.5 Transfection  

Transfection is a method of delivering foreign nucleic acids into the cells. For animal cells, 

it typically involves opening transient pores on the cell membrane to allow the uptake of the 

nucleic acids. Transfection can be carried out through biological (viral or bacterial), 

chemical (e.g. liposomes, diethylaminoethyl-dextran, calcium-phosphate, nanoparticles) or 

physical (e.g. microinjection, biolistic particle delivery, electroporation) methods. 

In this thesis, miR-125a-5p mimics/ inhibitors (Paper I) and shRNA against PTPN18  

(Papers I and II) were transfected into GIST882 and GIST48 cell lines using Amaxa 

Nucleofector™ Technology. This system is an electroporation-based physical transfection 

method, which provides high efficiency for the difficult-to-transfect cell lines. The DNA is 

directly transported into the nucleus of the target cell using a high voltage electrical pulse, 

which induces the formation of temporary membrane pores that enables entry of nucleic acid 

into the cells. The drawbacks of the conventional electroporation method, such as high cell 

mortality and low efficacy, are overcome by validated cell-type specific solutions and 

electrical pulse settings in this method. 

 

3.2.6 Evaluation of cell viability and apoptosis 

Four types of cell viability and apoptosis assays were used in this thesis, and they are briefly 

described below: 
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3.2.6.1 Trypan Blue Exclusion Assay 

Trypan blue (C34H28N6O14S4) is an organic compound derived from toluidine, and 

traditionally used to evaluate cell viability. It is a vital stain that is taken up by non-viable 

cells (that lose their intact and functional membrane) and stains the cells blue. The viable 

cells remain unstained. This method was used to determine the effect of imatinib on 

GIST882 cells in Paper III. 

3.2.6.2 WST-1 Colorimetric Assay 

This method is based on measuring the metabolic activity of viable cells. WST-1 is a 

tetrazolium salt, which is cleaved to soluable formazan by the mitochondrial succinate 

dehydrogenase enzyme in viable cells. More metabolically active cells will produce more 

formazan dye. Therefore, the level of formazan dye detected correlates with the number of 

viable cells in the culture. Other tetrazolium salt, such as MTT, is cleaved to unsoluble 

formazan crystal that has to be solubilized using DMSO or isopropanol. However, WST-1 

yields water-soluble cleavage products that can be directly measured without a solubilization 

step, which makes it a more preferable method.  

This assay was used for determining the effect of imatinib on cell viability upon modulation 

of miR-125a-5p and PTPN18 expression levels in GIST cell lines (Paper I), and the effect of 

DOG1 activator or inhibitor on GIST cell viability (Paper IV). 

3.2.6.3 Detection of PARP Cleavage by Western blot analysis 

Poly (ADP-ribose) polymerase (PARP) is a family of zinc-finger DNA-binding proteins 

involved in the maintenance of genomic stability and DNA damage-triggered signaling 

events, such as apoptosis and necrosis. During apoptosis, the full length PARP (116 kDa) is 

cleaved by caspase-3 or caspase-7 into 89 kDa and 24 kDa fragments and become 

incapable of responding to DNA damage. Since PARP is one of the downstream targets of 

caspases, the PARP cleavage has been regarded as an evidence of caspase activation and 

widely used as a hallmark of cell apoptosis. In Paper III, western blot analyses of PARP 

cleavage products were used to evaluate the effect of imatinib exposure on cell apoptosis in 

GIST882 cells.  

3.2.6.4 Annexin V Affinity Assay 

Annexin V is a Ca
2+

-dependent phospholipid-binding protein that has a high affinity to 

phosphatidylserine (PS). PS is a membrane phospholipid located in the inner membrane 

leaflet of viable cells. During apoptosis, the apoptotic cells lose their membrane asymmetry 

that causes translocation of PS from the inner side of the plasma membrane to the surface. 

The exposed PS on apoptotic cell surface can be detected by fluorochrome-labeled Annexin 

V [e.g. Phycoerythrin (PE) or fluorescein isothiocyanate (FITC)] using flow cytometry or 

fluorescence microscopy. This assay is typically performed in combination with a nuclear 
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dye such as propidium iodide (PI) or 7-aminoactinomycin D (7-AAD) for identification of 

early and late apoptotic cells.  

In Paper IV, PE-labeled Annexin V and 7-AAD staining were used to determine the effects 

of DOG1 activator/ inhibitor on cell apoptosis of GIST cell lines using flow cytometry. 

 

3.2.7 MicroRNA target prediction and validation 

3.2.7.1 Computational target prediction 

Identification of miRNA targets is crucial for unrevealing the role of miRNAs in regulatory 

networks governing biological processes. There are generally two approaches to search for 

miRNA targets: computational and experimental. The experimental approach is laborious 

and time consuming. Therefore, computational approach is more commonly used for 

searching candidate miRNA targets and narrowing down the potential miRNA targets for 

further experimental validation. An extensive number of prediction tools are available, and 

each of them has different sets of criteria for prediction. 

There are five most commonly used features for miRNA target prediction: Seed match, 

conservation, free energy, site accessibility and target-site abundance (Peterson et al, 2014). 

A seed match is a Watson-Crick match between the seed region of miRNA and its mRNA 

target. The type of the seed match varies depending on the algorithm [e.g. 6mer: match for 

six nucleotides; 7mer-m8: match from nucleotides 2-8 of the seed; 7mer-A1: match from 

nucleotides 2-7 of the seed in addition to an A at miRNA nucleotide 1; 8mer: match from 

nucleotides 2-8 of the seed in addition to an A at miRNA nucleotide 1] (Brennecke et al, 

2005; Krek et al, 2005; Lewis et al, 2005; Lewis et al, 2003). Conservation analysis 

evaluates the sequence conservation in the 3`UTR and miRNA across the species (Lewis et 

al, 2003). It assumes that conserved interactions may have functional importance. Free 

energy (Gibbs free energy, G) is a measure of the structural stability. The more stable 

interaction between miRNA and target mRNA is considered as being more likely a real 

target (Yue et al, 2009), which is measured by the change in free energy (ΔG) during the 

binding reaction. A negative ΔG means less energy to react and more stable. mRNAs may 

have a secondary structure which can interfere with miRNA binding (Long et al, 2007). 

Site accessibility measures the ease of miRNA can reach and hybridize with an mRNA 

target. Target-site abundance is a measure of number of target sites located in a 3`UTR 

(Garcia et al, 2011). A relatively new machine learning method that directly constructs the 

predictions from validated miRNA datasets. Less commonly used miRNA target features 

include: local AU content, GU wobble in the seed match, 3`compensatory pairing and 

position contribution analyses.  

In Papers I and III, miRecords was used for miRNA target prediction. miRecords is an 

integrated resource for miRNA targets (Xiao et al, 2009). It has two components: 

The “Validated Targets” component is a database of experimentally validated miRNA targets 
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and the “Predicted Targets” component is an integrated tool for predicted targets of 11 

established miRNA target prediction programs. These programs include: TargetScan, 

miRanda, PicTar, PITA, miTarget, RNA22, RNAhybrid, NBmiRTar, DIANA-microT, 

MicroInspector, MirTarget2. A summary of the features used in these prediction tools is 

presented in Table 3. In this thesis work, miRNA targets predicted by at least six prediction 

tools were chosen for subsequent analyzes. 

Table 3. Summary of the features used in different miRNA prediction tools 

 

Tool Seed Match Conservation Free Site  Target-site Machine  

      energy accessibilty abundance learning 

TargetScan √ √ √ 

   miRanda √ √ √ √ 

 

√ 

PicTar √ √ √ 

 

√ 

 PITA √ √ √ √ √ 

 MiTarget √ 

 

√ 

  

√ 

RNA22 √ √ 

    RNAhybrid √ 

 

√ 

 

√ 

 NBmiRTar √ √ √ √ 

 

√ 

DIANA-microT √ √ √ √ √ √ 

MicroInspector √ √ √ 

   MirTarget2 √ √ √ √   √ 

       
 

3.2.7.2 Evaluation of microRNA targets by western blot analysis 

Expression levels of putative miRNA targets were evaluated by western blot analysis. This 

method is widely used to detect and quantify specific proteins in tissue or cell lysates. In 

this method, proteins are separated according to their size by gel electrophoresis. The 

proteins are then transferred from the gel to a solid surface (the membrane), where protein 

of interest can be detected using a specific primary antibody. After removing the unbound 

primary antibodies, the membrane is incubated with a secondary antibody that specifically 

recognizes and binds to the primary antibody. The secondary antibody is usually conjugated 

with a biotin, fluorescent probe or reporter enzyme (e.g. alkaline phosphatase or 

horseradish peroxidase) for signal detection using colorimetric, chemiluminescent, 

radioactive or fluorescent. The most commonly used methods are chemiluminescent and 

fluorescent detections. In chemiluminescent detection, a horseradish peroxidase-conjugated 

secondary antibody cleaves a chemiluminescent agent that produces luminescence detected 

by a CCD camera. In fluorescent detection, fluorescently labeled secondary antibodies can 

be directly visualized by use of appropriate emission filters with an imaging system.    
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In Papers I and III, Western blot analysis was performed to evaluate the expression levels 

of PTPN18 and STARD13 (candidate targets for miR-125a-5p), MCL1 (for miR-320) and 

PUMA (for miR-483-3p).  

In addition to evaluation of miRNA target expression levels, western blot analysis was also 

performed to detect cleaved PARP in GIST cells treated with imatinib (Paper III), and to 

evaluate pFAK and FAK expression levels in GIST clinical samples and cell lines (Paper 

II). GAPDH was used as an endogenous normalization control.  

 

3.2.8 Patch-clamp 

In Paper IV, whole-cell patch was used to evaluate Cl
-
 currents of DOG1 in GIST882 cells 

upon treatment with DOG1 activator Eact or inhibitor T16Ainh-A01. 

Patch-clamp is an electrophysiological technique that allows the study of ion channels in 

single cells. The method records ion currents across the membrane using an electrical tight 

seal between the electrode and cell membrane that contains one or few ion channel 

molecules.  

Patch-clamp uses a glass microelectrode, which is pulled from borosilicate glass with a tip 

around one micrometer diameter. The microelectrode is positioned next to a cell, and mild 

suction is applied through the microelectrode to attach the cell membrane (the 'patch') into the 

microelectrode tip. Between the glass and the membrane a high resistance 'seal' is formed. 

This configuration is the "cell-attached" mode, and it can be used for studying the activity of 

the ion channels that are present in the patch of membrane.  

If more suction is applied during the “cell-attached” mode, it causes rupture of the membrane 

patch, thus providing the microelectrode an access to the intracellular space of the cell. This 

"whole-cell" mode allows recording currents through multiple channels at once, over the 

membrane of the entire cell. However, the intracellular components of the cells will slowly be 

diluted by the solution in the microelectrode; therefore, the experiments using this mode must 

be completed in a short time (approximately 10 minutes). 

   

3.2.9 Statistical analyses 

All statistical tests in this thesis were performed in Statistica 8.0 (StatSoft Inc., Tulsa, OK, 

USA) or Microsoft Office Excel (Albuquerque, NM, USA), unless otherwise stated.  

Significance Analysis of Microarray (SAM) (http://statweb.stanford.edu/~tibs/SAM/) is a 

statistical method to determine the most significant differentially expressed miRNAs between 

the sample groups in a given dataset. In our studies, microarray data were analyzed using 

SAM to determine the most significantly deregulated miRNAs in relation to imatinib 

http://statweb.stanford.edu/~tibs/SAM/
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resistance and metastasis in Paper I, and imatinib-treatment in Paper III. The strength of 

significance for each gene is given in a score called false discovery rate (FDR). 

Unpaired student’s t-test was conducted to compare miRNA expressions in different patient 

groups (Papers I and III) or different cell lines (Papers I-III), while paired student’s t-test 

was performed to analyze transfection (Papers I and II), imatinib treatment (Paper III) and 

ion channel currents (Paper IV) in cell culture experiments. Association of clinico-

pathological features with gene expression levels was evaluated using Fisher’s exact test 

(Papers I and III). Correlations between expression levels of miRNAs and their potential 

targets were assessed by Pearson`s correlation analyses and p-values were estimated by 

permuting the samples (Papers I and III). The protein expression levels were compared 

among or between different tumor groups using one-way ANOVA or Mann Whitney U-test 

(Paper II). The interrelationship of gene expression with survival was studied using Kaplan-

Meier plots, and significant differences between curves were evaluated using log-rank test 

(Papers I and II). All p-values obtained in this study were two-tailed, and p-values ≤ 0.05 

were considered as significant. 
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4 RESULTS AND DISCUSSION 

4.1 PAPER I 

“microRNA expression signatures of gastrointestinal stromal tumors: associations with 

imatinib resistance and patient outcome” 

The aim of this study was to evaluate the clinical impact of miRNAs in imatinib-treated 

GISTs. We started by profiling global miRNA expressions in imatinib-resistant and 

imatinib-sensitive GISTs using microarray. Unsupervised clustering analysis classified the 

samples into two main subgroups: All imatinib-resistant tumors, except one, were grouped 

in cluster 1; while 7 out of 10 imatinib-sensitive GISTs were found in cluster 2. The result 

suggested that imatinib-resistant and –sensitive GISTs have distinct miRNA profiles. SAM 

analysis on the microarray data revealed 27 over-expressed and 17 under-expressed 

miRNAs with a FDR <15% in the imatinib-resistant GISTs compared to imatinib-sensitive 

ones.  

Ten of these differentially expressed miRNAs (five up-regulated and five down-regulated in 

imatinib-resistant group) were chosen for validation by RT-qPCR in a larger group of 

samples. We found that miR-125a-5p and miR-107 were significantly overexpressed in the 

imatinib-resistant tumors. Notably, the expression levels of these two miRNAs were not 

obviously different between resistant and sensitive tumor pairs in the two patients with 

multiple tumors harboring double mutations in KIT. 

Tumors with double KIT mutations or wild-type KIT and PDGFRA are known as less 

responsive to imatinib treatment (Debiec-Rychter et al, 2006; Debiec-Rychter et al, 2004; 

Heinrich et al, 2003a; Heinrich et al, 2008b). Therefore, we performed an independent 

evaluation of the samples harboring only a single KIT mutation, and showed that expressions 

of miR-125a-5p, miR-107, miR-134, miR-301a-3p and miR-365 were significantly higher in 

the imatinib-resistant tumors among the GISTs with a single KIT mutation.  

miR-125a-5p was the most significant miRNA among the up-regulated miRNAs in imatinib-

resistant GISTs in both analyses. In addition, miR-125 family members have been shown to 

confer drug resistance (Zhou et al, 2010) and to regulate cell death pathways in cancer cells 

(Kim et al, 2012). Therefore, we further investigated the functional role of miR-125a-5p in 

GIST cells with a single (GIST882) and double (GIST48) KIT mutations. Overexpression of 

miR-125a-5p in GIST882 cells resulted in a higher (up to 26 %) cell viability, while its 

suppression reduced cell viability (up to 9 %). However, overexpression or suppression of 

miR-125a-5p in GIST48 cells did not affect cell viability significantly. These results 

suggested that miR-125a-5p could modulate imatinib response of GISTs harboring a single 

KIT mutation, but not in GISTs harboring KIT double mutations. 

To reveal the biological function of miR-125a-5p, we used a computational tool (miRecords) 

to identify its candidate targets. Among the predicted targets, we selected PTPN18 and 
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STARD13 for further validations because of their involvement in KIT or tyrosine kinase 

signaling and their regulations by miR-125 family members (Guo et al, 2012; Tang et al, 

2012). We demonstrated that overexpression of miR-125a-5p results in decreased protein 

levels of both PTPN18 and STARD13 in GIST882 cells, suggesting these genes are potential 

targets of miR-125a-5p in GIST. 

To strengthen the functional evidence of miR-125a-5p in imatinib resistance, we generated 

imatinib-resistant subclones of GIST882 cells (GIST882R) and evaluated the expression 

levels of miR-125a-5p and its potential targets in GIST882R compared with its imatinib-

sensitive parental cell line. The GIST882R cells showed increased miR-125a-5p expression 

together with decreased protein expression levels of PTPN18 and STARD13 compared to its 

parental cell line.  

To evaluate the clinical significance of these findings, we next determined the protein 

expressions of PTPN18 and STARD13 in imatinib-resistant and –sensitive GISTs. We 

observed that PTPN18 levels were significantly lower in imatinib-resistant GISTs as 

compared to imatinib-sensitive samples, and inversely correlated with miR-125a-5p 

expressions. However, STARD13 was not significantly different between imatinib-resistant 

and –sensitive tumors and no correlation was found with miR-125a-5p expression. These 

results led us to investigate the direct functional role of PTPN18 on imatinib resistance in 

GIST cells. We showed that suppression of PTPN18 reduced imatinib sensitivity in GIST882 

cells, suggesting the direct involvement of PTPN18 in imatinib resistance in GISTs. 

We also evaluated the clinical impact of miRNA expressions in relation to metastasis, KIT 

mutational status and survival in our sample cohort. We identified specific miRNAs 

associated with metastasis (e.g. miR-150-3p and miR-301a-3p), KIT mutation (e.g. miR-150-

3p) and disease-free/ overall survival (e.g. miR-1915) in GIST. 

This study presents the first functional evidence for involvement of miRNAs in imatinib 

resistance in GISTs, and highlights the role of miR-125a-5p-PTPN18 regulation in imatinib 

resistance as an alternative mechanism to secondary kinase mutations. Our results also 

highlight several prognostic miRNAs for GIST patients treated with neoadjuvant imatinib. 

In summary, the main findings of this paper are: 

 GISTs have distinct miRNA expression profiles in relation to imatinib response. 

 miR-125a-5p is associated with imatinib resistance in GIST, and modulates imatinib 

response in GIST cells with a single KIT mutation (GIST882), but not in GIST cells 

with secondary KIT mutation (GIST48). 

 miR-125a-5p regulates PTPN18 and STARD13 in GIST882 cells.  

 Imatinib-resistant subclone cells (GIST882R) show increased expression of miR-

125a-5p and decreased PTPN18 and STARD13 protein levels, as compared to the 

parental cells (GIST882). 
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 PTPN18 modulates imatinib response in GIST882 cells. PTPN18 expression is 

downregulated in imatinib-resistant GIST samples as compared to –sensitive GIST 

samples; and inversely correlated with miR-125a-5p expression. 

 Several miRNA expressions are associated with metastasis, KIT mutational status and 

survival in GIST. 

 

4.2 PAPER II 

“FAK phosphorylation is regulated by PTPN18 and associated with imatinib resistance 

in gastrointestinal stromal tumors” 

In Paper I, we identified miR-125a-5p modulates imatinib response in GIST cells through 

regulation of PTPN18, a member of the PEST domain containing protein tyrosine 

phosphatase superfamily. The subsequent question raised was how PTPN18 regulates the 

imatinib response in GIST, which led us to Paper II. 

Given that higher activation of FAK was found in the imatinib-resistant GIST-T1-R 

subclones compared to imatinib-sensitive parental cells and inhibition of pFAK re-sensitized 

the resistant cells to imatinib-induced cell death (Takahashi et al, 2013), we hypothesized that 

pFAK might be the downstream target of PTPN18 and involved in imatinib resistance. 

We first generated imatinib-resistant subclones of GIST882 cells in addition to the ones in 

Paper I, and characterized their relationship with their parental cell line. We showed that 

GIST882 and all three GIST882R subclones carried the KIT K642E mutation. In addition, 

most of the GIST882R cells showed decreased CD117 expression in line with a previous 

report by Mahadevan et al. (Mahadevan et al, 2007), while DOG1 and CD34 expressions 

remained unchanged. Notably, some GIST882R cells still expressed CD117 at very high 

levels, demonstrating the heterogeneous population of imatinib-resistant GIST cells.  

Next, we quantified the protein expression levels of PTPN18, pFAK and FAK in GIST882 

and GIST882R cells. The GIST882R subclones showed a significant decrease of PTPN18 

and FAK levels in comparison to GIST882. On the other hand, pFAK levels were 

dramatically increased in the imatinib-resistant cells compared to the parental cells. In 

concordance with our results, same finding was also observed in GIST-T1 cell line 

(Takahashi et al, 2013); supporting that pFAK plays an important role in imatinib resistance 

in GIST. 

To evaluate the direct regulation of PTPN18 on FAK phosphorylation, we silenced PTPN18 

in GIST882 cells and evaluated its effect on pFAK levels. Indeed, silencing of PTPN18 

expression increased the pFAK level, whereas the FAK level remained unchanged; indicating 

that the phosphorylation level of FAK is regulated by PTPN18.  
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To further investigate the clinical significance of the findings, we quantified pFAK and FAK 

protein levels in imatinib-resistant and imatinib-sensitive GIST specimens. We observed that 

pFAK expression was only significantly up-regulated in the imatinib-resistant GISTs with a 

single KIT mutation, but not in those with double KIT mutations, compared to the imatinib-

sensitive group. This is consistent with our findings in Paper I that miR-125a-5p modulates 

imatinib sensitivity only in GIST882 cell line harboring a single KIT mutation, but not in the 

double KIT mutated GIST48 cells. 

On the other hand, FAK expression was significantly higher in the imatinib-resistant GISTs 

with double KIT mutant compared to the imatinib-sensitive tumors, however its level was not 

significantly different between the resistant GISTs with a single KIT mutation and the 

sensitive group. 

FAK expression had been associated with tumor progression and overall survival (Kamo et 

al, 2009; Koon et al, 2004). We therefore sought to determine whether FAK and pFAK 

expressions are associated with clinical outcome in our GIST cohort. In concordance with 

previous findings (Kamo et al, 2009; Koon et al, 2004), high FAK expression, but not pFAK 

expression, was significantly associated with metastatic GISTs. Together, these findings 

suggest that FAK may play an important role in tumor progression independent of FAK 

activation. 

Here, we propose a novel imatinib resistance mechanism in GIST, in which miR-125a-5p 

overexpression in imatinib-resistant tumors suppresses PTPN18 expression that subsequently 

leads to defective FAK dephosphorylation. 

To summarize, the main findings of this paper include: 

 PTPN18 silencing increases phosphorylation of FAK, but not FAK levels. 

 High pFAK levels are found in imatinib-resistant GIST882R cell lines and GIST 

specimens with a single KIT mutation. 

 High FAK levels are associated with tumor progression in GIST.  

 

4.3 PAPER III 

“Involvement of the MCL1 and miR-320 in imatinib-induced cell death of 

gastrointestinal stromal tumors” 

Even though imatinib exhibits remarkable anti-tumor responses, the molecular mechanisms 

of imatinib-induced cell death in GIST are not completely understood. In this study, we 

aimed to reveal the role of miRNAs in imatinib-induced cell death mechanisms in GIST.  

To evaluate the effects of imatinib on global miRNA expressions, we first profiled miRNA 

expression levels of imatinib-treated and non-treated GIST samples using microarray. We 



 

 45 

found 12 up-regulated and 2 down-regulated miRNAs in the imatinib-treated GISTs 

compared to non-treated GISTs with a FDR < 20%. Clustering analysis using these 

significant differentially expressed miRNAs classified the samples into two main subgroups: 

All imatinib-treated samples except two were grouped together, while the majority of the 

non-treated samples (9/15) were clustered in a separate group. We speculated that these 

deregulated miRNAs and their target(s) may have important roles in regulation of cell 

viability in response to imatinib treatment. Notably, MCL1 was a predicted target of the top 

five up-regulated miRNAs (miR-320a, miR-193a-3p, miR-320d, miR320c and miR-320b) in 

imatinib-treated GISTs. MCL1 is an apoptotic regulator, and its inhibition was shown to 

induce apoptosis in CML cells (Aichberger et al, 2005). In addition, one of the down-

regulated miRNAs, miR-483-3p, is known to target PUMA, which is a pro-apoptotic member 

of the BCL2 family (Ozata et al, 2011). Therefore, we selected four miRNAs (miR-320a, 

miR-320b, miR-193a-3p and miR-483-3p) to verify the array results with RT-qPCR in a 

larger cohort of 62 GIST samples. We found significantly higher expression of miR-320a and 

miR-320b, and lower expression of miR-483-3p in imatinib-treated GISTs vs. non-treated 

GISTs. 

We next quantified the expression levels of the two potential targets of miR-320a/b and miR-

483-3p (MCL1 and PUMA, respectively) in GIST samples by western blot analysis. We 

observed that MCL1 protein levels were significantly lower in imatinib-treated GISTs vs. 

non-treated GISTs. In addition, among the treated samples, the imatinib-sensitive tumors also 

showed significantly lower MCL1 expression than the imatinib-resistant tumors. Notably, the 

MCL1 expression was not different between the imatinib-resistant tumors and the non-treated 

tumors. Furthermore, MCL1 expression was inversely correlated with miR-320a and miR-

320b levels. PUMA expression was significantly lower in imatinib-treated samples compared 

to non-treated samples, and higher in non-treated samples vs. imatinib-resistant or –sensitive 

groups. However, its expression did not differ between resistant and sensitive groups. 

Surprisingly, PUMA expression was positively correlated with miR-483-3p expression. These 

results suggest the possible role of MCL1 and miR320 in imatinib response in GIST. 

Therefore, we further evaluated the effect of imatinib exposure on MCL1 and miR320 

expressions in cell culture experiments.  

We observed that the expression of the anti-apoptotic MCL1 isoform (MCL1L) was 

markedly induced in the adherent cells (mostly alive cells) upon imatinib treatment, while it 

was barely detectable in the floating cells (mostly dead cells). Furthermore, the floating cells 

showed clearly induced expression of the pro-apoptotic MCL1 isoform (MCL1S) after 

imatinib exposure, however MCL1S levels were very low in untreated control cells and in 

adherent cells. Similarly, miR-320b level was increased in floating cells; however the change 

was not statistically significant. Notably, miR-320a/b showed an inverse expression pattern 

compared to MCL1L, and a similar expression pattern as cleaved PARP.  

To further strengthen the involvement of MCL1 and miR-320a/b in imatinib resistance, we 

evaluated their expressions in three independent imatinib-resistant subclones of GIST882 
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cells and the imatinib-sensitive parental cell lines. MCL1L levels were significantly increased 

and MCL1S levels were markedly decreased in imatinib-resistant GIST882R subclones 

compared to its parental cell line. Similarly, miR-320a and miR-320b levels were 

significantly decreased in GIST882R subclones. These results demonstrate that anti-apoptotic 

MCL1L was upregulated during acquisition of imatinib resistance, while miR-320a/b and the 

proapoptotic MCL1S was downregulated. Our findings suggest the involvement of miR-320-

MCL1 regulation in imatinib resistance in GIST. 

This paper provides evidence that miR-320a/b and MCL1 expressions are associated with 

imatinib-induced cell death and imatinib resistance in GIST, and suggests the potential of 

miR-320 and MCL1 as novel targets for innovative treatment strategies for GIST patients. 

As a summary, the main findings are: 

 Imatinib-treated and non-treated GISTs have distinct miRNA expression patterns, 

including miR-320a, miR-320b and miR-483a-3p. 

 miR-320a/b is upregulated while its potential target MCL1 is downregulated in 

imatinib-treated GISTs as compared to non-treated GISTs. MCL1 expression was 

inversely correlated with miR-320a and miR-320b levels. 

 Higher level of anti-apoptotic MCL1 isoform (MCL1L) is associated with cell 

viability upon imatinib exposure in GIST882 cells. Oppositely, increased level of the 

pro-apoptotic MCL1 isoform (MCL1S) is associated with cell death. 

 The anti-apoptotic MCL1L is upregulated while miR-320a/b and the proapoptotic 

MCL1S are downregulated during acquisition of imatinib resistance in GIST882 

cells. 

   

4.4 PAPER IV 

“Functional role of the Ca
2+

-activated Cl
-
 channel DOG1/TMEM16A in gastrointestinal 

stromal tumor cells” 

DOG1 is a Ca
2+

-activated Cl
-
 channel, and it is expressed at high levels in most of GISTs 

(97%). However, its biological function in GIST is not fully characterized. Recent reports 

showed that DOG1 facilitates cell proliferation in primary cultures of ICC (Stanich et al, 

2011) and head and neck squamous carcinoma (Duvvuri et al, 2012). These findings raised 

the possibility for DOG1 function as a regulator of cell proliferation or apoptosis in GISTs. In 

Paper IV, we evaluated the functional role of DOG1 in GIST cells using specific DOG1 

activator Eact and inhibitor T16Ainh-A01. 

We first determined the subcellular localization of DOG1 in imatinib-sensitive GIST882 and 

imatinib-resistant GIST48 cell lines, using immunocytochemistry and confocal microscopy. 
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DOG1 was predominantly located at cell periphery including the plasma membrane of 

GIST882 cells, whereas it was found located in the perinucleus of GIST48 cells. Since DOG1 

was mainly localized in the plasma membrane of GIST882 cells, we chose this cell line for 

further characterization of DOG1-generated currents using patch-clamp method. To verify 

that DOG1 is functional in GIST882 cells, we recorded the whole-cell Cl
- 
currents at either 

inhibitory (90 nM) or activating (305 nM) [Ca
2+

]pip levels. The Cl
- 
currents increased from 

3.8±0.6 pA/pF to 13.5±3.2 Pa/pF upon increasing [Ca
2+

]pip to activating levels, verifying that 

DOG1 is functional and indeed Ca
2+

 dependent in GIST882 cells. 

We next determined the effects of DOG1 inhibitor T16Ainh-A01 and activator Eact on DOG1 

in GIST882 cells, by measuring whole-cell Ca
2+

-activated Cl
-
 currents.  We analyzed the 

inhibition by keeping the [Ca
2+

]pip levels only at the activating levels (305 nM), while for 

activation both activating (305 nM) and inhibiting (90 nM) [Ca
2+

]pip levels were used. 

Treatment with DOG1 inhibitor T16Ainh-A01 resulted in 60% decrease in the Cl
-
 currents in 

GIST882 cells, which is relatively low compared to other cells that was previously shown to 

be almost completely blocked by the T16Ainh-A01 (Namkung et al, 2011a). The difference 

might be due to the varying presence of Cl
-
 channels with different pharmacological 

properties other than DOG1 in these different types of cells.  In addition, DOG1 activator 

Eact caused 70% increase in the Cl
-
 currents at activating [Ca

2+
]pip levels, but did not affect 

the currents at inhibiting levels, showing the Ca
2+

-dependent specific activation effect of 

Eact.  

Next, we evaluated the effects of DOG1 inhibition and activation on apoptosis in both 

GIST882 and GIST48 cells using Annexin V / 7-AAD flow cytometric analysis. Even though 

we observed fewer early apoptotic cells upon DOG1 inhibition and more viable cells upon 

DOG1 activation in GIST882 cells, the differences were subtle. DOG1 modulation did not 

affect apoptosis rate in GIST48; however, its inhibition induced the apoptotic cells from early 

to late apoptotic stage.  

We lastly evaluated the cell proliferation of GIST882 and GIS48 cells upon DOG1 

modulation. In GIST882, even though we observed some minor changes in proliferation after 

72 hours, these changes were subtle especially compared to the effect of imatinib. In GIST48, 

we observed significantly increased proliferation both upon activation and inhibition of 

DOG1 after 72 hours. However, similar to GIST882, the differences were small, and the 

results were not meaningful since both DOG1 activation and inhibition are not expected to 

have a pro-proliferative effect. Therefore, these findings are in line with recent report by 

Simon and colleagues (Simon et al, 2013), showing that DOG1 inhibition did not alter tumor 

cell growth in vitro; however, it delayed the growth of xenografts of GIST-T1 and GIST430 

but not GIST882 in vivo.  

In summary, the main findings of this paper include: 

 DOG1 is localized in different subcellular compartments in imatinib-resistant and 

imatinib-sensitive GIST cells. 
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 DOG1 is functional and Ca
2+

-dependent in GIST882 cells. 

 DOG1 modulation does not have obvious effects on apoptosis or proliferation in 

imatinib-sensitive GIST882 and imatinib-resistant GIST48 cell lines; however, its 

activation led the early apoptotic cells to undergo late apoptotic stage in GIST48 

cells. 
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5 CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 

In the last twenty years, growing knowledge of molecular biology in GISTs has led to 

remarkable achievements in its clinical management. From a treatment-resistant uncontrolled 

disease, GIST has become an example for development of targeted therapies against 

oncogene-addicted cancers. However, even though tyrosine kinase inhibitors (TKI) improve 

the outcome of the majority of patients, they fail to provide a permanent cure and TKI-

resistant clones are observed in most of the initially responding tumors. Even the cases 

treated with new inhibitors, such as regorafenib (a multi-kinase inhibitor), eventually develop 

acquired resistance (Demetri et al, 2013). Despite several resistance mechanisms to imatinib 

have been described, a complete understanding of resistance mechanisms is needed for 

developing effective combinational therapies.  

This thesis work contributes an effort to understand the molecular mechanisms of imatinib 

resistance in GIST. Here, we identified two miRNA networks involved in imatinib resistance 

of GIST, i.e. miR-125a-5p-PTPN18-FAK (Papers I and II) and miR-320a/b-MCL1 (Paper 

III). Further studies are needed to provide complete understanding of these miRNA 

regulatory networks. For examples, what causes the dysregulation of these miRNAs in 

imatinib-resistant tumors/cells; whether miR-125a-5p directly regulates FAK phosphorylation 

levels, and PTPN18 overexpression can re-sensitize GIST cells to imatinib; functional studies 

of miR-320 modulation on MCL1 levels and imatinib response; and evaluation of the findings 

in additional GIST cell lines and subsequently in animal models.  

DOG1 is highly and specifically expressed in most of the GISTs, and used as an established 

biomarker in clinical settings (Espinosa et al, 2008). However, its biological function in GIST 

remains unknown. In this thesis, we identified that DOG1 is localized in different cellular 

compartments, but not an effective regulator of cell proliferation or apoptosis in imatinib-

resistant and –sensitive GIST cells (Paper IV). Future studies investigating its functional 

impact on other hallmarks of cancer may facilitate our understanding of its involvement in 

GIST progression. 

Complete understanding of molecular biology in GIST development, progression and 

treatment response will establish a ground for innovative therapeutic strategies with a goal 

of not only to temporarily control the disease, but also to permanently eradicate all tumor 

cells. This will hopefully turn GIST from a model of targeted therapies that control the 

disease progression, to a model of complete cancer cure. 
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