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ABSTRACT 

Congenital malformations are important causes of perinatal mortality and morbidity, and around 4% of children 

are diagnosed with a malformation during their first year of life. Despite improved surgical treatment, several 

malformations are associated with lifelong sequelae requiring specialized health care. Important issues for these 

families are the etiology, prognosis and recurrence risk of the malformation in future pregnancies. Nowadays, 

around 50% of patients with malformations in combination with cognitive impairment receive an etiologic 

diagnosis after genetic evaluation. The aims of this thesis were to increase the knowledge of genetic causes 

behind congenital malformations, to improve clinical genetic investigations of these patients and at the same 

time to identify genes involved in normal and impaired organ development.  

Study I Whole-body human chimerism is the result of two zygotes giving rise to one individual, and is a rarely 

detected condition that can cause congenital anomalies. We have studied the molecular background of a 

46,XX/47,XY,+14 karyotype identified in clinical genetic investigation in a boy with disorder of sex 

development (DSD). Based on molecular findings, we suggest that the chimerism in our patient is the result of 

dispermic fertilization of a parthenogenetically activated oocyte. This study highlights chimerism as an 

underlying cause of distinct cell populations in an individual, and shows the difficulty of predicting the severity 

of associated phenotypes in mosaic or chimeric forms of genetic aberrations. 

Study II Tetrasomy 14 is a rare condition associated with multiple malformations, cognitive impairment and 

mortality when present in non-mosaic form. We report on molecular genetic and mitochondrial studies in an 8-

year-old girl with a marker chromosome 14. We showed that the marker chromosome originated from maternal 

meiosis and was present in all cells analyzed, providing evidence that survival beyond infancy is possible in non-

mosaic forms of this condition. The results emphasize importance of updating existing data on clinical outcomes 

of patients with severe diseases to correspond to high standard pediatric care. 

Study III VACTERL association is a condition with multiple malformations including vertebral (V) anorectal 

(A) cardiac (C) tracheoesophageal (TE) renal (L) and limb (L) anomalies, without a known common cause. We 

performed array comparative genomic hybridization (array CGH) and DNA sequencing of the candidate genes 

PCSK5, HOXD13 and CHD7 to investigate the role of copy number variants (CNV) and single gene defects in 

39 patients and fetal cases with VACTERL association or a VACTERL-like phenotype. We identified 

pathogenic gene dose alterations in 2/39 patients (5%) and a pathogenic mutation in CHD7 in one patient, while 

single nucleotide variants of unclear significance were detected in PCSK5. We concluded that copy number 

variants are not common causes of VACTERL association and that CHARGE and VACTERL syndromes 

represent important differential diagnoses. 

Study IV In this study, we have investigated the hypothesis that genetic mosaicism in malformed organs could 

be an underlying cause of congenital malformations. Array CGH analyses using DNA derived from cardiac 

tissue in 23 patients with congenital heart malformations were performed, and findings of pathogenic or unclear 

variants were compared with presence in blood in the same individuals. We identified pathogenic gene dose 

alterations in 2/23 patients (9%) and did not find evidence for mosaicism. We concluded that identification of 

copy number variants are important in individual cases of congenital malformations and that genetic mosaicism 

warrants further study using other molecular genetic technologies. 

Study V We have studied the presence of copy number variants in 25 patients with congenital anorectal 

malformations, esophageal atresia and hydronephrosis using array CGH analysis and identified pathogenic 

variants in 2/25 cases (8%). We describe a mosaic structural variant of tetrasomy 15 identified in a patient with 

syndromic esophageal atresia, and report a novel putative susceptibility region for esophageal atresia. Mosaicism 

for pathogenic or unclear variants was investigated in both tissue and blood in eight cases and did not reveal 

discrepancies. The study shows importance of copy number analysis in individual patients with gastrointestinal 

malformations. 

General conclusions from our studies are that tissue-specific genetic mosaicism for copy number variants does 

not appear to be a common cause of congenital malformations and that CNV analysis is important in patients 

with congenital malformations as identification of high penetrance variants in some families markedly improves 

accuracy of recurrence risk estimations in these families.
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1 INTRODUCTION 

1.1 EMBRYOLOGY AND CONGENITAL MALFORMATIONS 

1.1.1 Gametogenesis and fertilization 

The formation of a human embryo begins with the fusion of a female and a male gamete, an 

oocyte and a spermatozoon, and the development of these germ cells start in the early 

embryo. Precursor cells, primordial germ cells (PGCs), are formed in the epiblast layer of the 

embryo and migrate to the developing gonads which they reach 4-6 weeks after fertilization. 

During migration, and as resident cells of the gonads, the PGCs proliferate by mitosis and 

increase in number. The differentiation into female or male gametes depends on the 

surrounding gonadal tissue; PGCs in the developing ovary become oogonia while PGCs 

surrounded by testicular tissue become spermatogonia. Female and male gametogenetic 

processes have different characteristics, described below. 

1.1.1.1 Oogenesis 

In female gametogenesis (oogenesis), a mitotic expansion of the germ cells lead to a peak 

amount of almost 7 million germ cells around the 5
th
 fetal month, after which apoptosis starts, 

leaving around 2 million cells at birth (1). In the developing ovary, PGCs differentiate into 

oogonia and enter the first reduction division (meiosis I) becoming primary oocytes, the cell 

type that resides in the ovary until ovulation. Simultaneously, follicle formation starts and the 

oocytes become surrounded by somatic cells and form primordial follicles. During the 

remainder of fetal development, birth and childhood, a continuous reduction of the ovarian 

reserve through apoptosis of oogonia lead to a remainder of 200 000 follicles at the start of 

puberty (1). From the onset of puberty, hormonal stimulation leads to recruitment of groups 

of primordial follicles that mature in a process termed folliculogenesis. Primordial follicles 

are activated and with oocyte growth, granulosa cell proliferation and recruitment of stromal 

theca cells, they mature through different stages; primary follicles, secondary follicles, early 

antral follicles and preovulatory follicles, a process that takes around 6 months (2). Ovulation 

is finally induced by the peak increase of LH, when the follicle ruptures and the oocyte 

covered by granulose cells (the oocyte-cumulus complex) is released into the oviduct while 

the theca cells and remaining granulose cells of the follicle are converted to the progesterone 

and estradiol producing cells of the corpus luteum. During maturation of the oocyte, the 

volume increases about 100 fold and RNA and protein molecules required for growth of the 

cell accumulate in order to sustain the early development of an embryo in the event of 

fertilization (2). During maturation, the competence to complete meiosis is also acquired. 

This process is induced by the preovulatory LH peak, so that after ovulation, the released 

oocyte has entered into meiosis II and remains arrested at the metaphase stage.  

1.1.1.2 Spermatogenesis  

In contrast to oogenesis, much of the differentiation and growth in spermatogenesis take 

place after birth. In utero, PGCs entering testis migrate to the basal membrane of the 
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primitive sex cords where they rest until after birth, surrounded by supportive Sertoli cells 

that provide nutrients and a protective environment. Around six months after birth they 

differentiate into spermatogonia (3). Spermatogenesis starts in early puberty when the sex 

cords acquire a lumen and develop into the seminiferous tubules of the testis. In the lumen of 

the tubule, spermatogonia with retained stem cell function give rise to daughter cells 

committed to sperm development. These expand in number by mitotic divisions and 

differentiate from spermatogonia to primary and subsequently secondary spermatocytes, 

passing through meiosis I and II. Subsequently the spermatids develop acrosomal heads 

covering the nucleus, carrying enzymes for breakdown of the oocyte zona pellucida, and also 

the middle piece and tail structures. Mature spermatozoa are released into the lumen of the 

seminiferous tubules, leaving most of the cytoplasm behind, and are transported to the 

epididymis where they acquire full motility (4).  

1.1.1.3 Meiosis 

Differentiation of germ cells includes two reduction divisions, meiosis I and II, during which 

each daughter cell receives half the chromosomal content of the original cell. Mature human 

germ cells contain haploid genomes comprising 23 chromosomes (n) in contrast to diploid 

somatic cells that contain 46 chromosomes (2n). Meiosis differs from mitotic division, in 

which daughter cells normally receive the same amount of DNA material as that of the 

original cell, and also by the exchange of genetic material between chromosomes in a process 

called recombination. This exchange takes place during prophase of the first meiotic division, 

which comprises five phases that can be identified when dividing cells are studied in the 

microscope; leptotene, zygotene, pachytene, diplotene and diakinesis. Homologous 

chromosomes pair during the first meiotic division and are temporarily bound by 

synaptonemal complexes. Breaks in the DNA strands are introduced and the strands 

exchange their original “stem” chromosomes, resulting in new combinations of the two 

original homologous chromosomes. In this way the chromosomal content of the haploid 

genome of the mature germ cells become a mixture of the maternal and paternal homologues, 

and if fertilized results in contribution of a mixture of maternal and paternal genes to the new 

embryo. In a male germ cell approximately 52 chiasmatas, or crossings of chromosome arms, 

form per cell and are distributed with at least one chiasmata per chromosome arm (1). In 

meiosis, the sorting of chromosomes to the daughter cells adds an additional layer of genetic 

variation, as this occurs randomly and results in a mixture of maternal and paternal 

chromosomes in each germ cell. The timing and results of the meiotic divisions differ in 

oogenesis and spermatogenesis (Fig. 1).   
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1.1.1.4 Fertilization 

The spermatozoon is transported by movements of the uterus and oviduct as well as its own 

movement into the ampulla of the oviduct where fertilization often takes place (4). In the 

female genital tract, spermatozoa undergo a process called capacitation which is required for 

passage through the corona cells of the oocyte-cumulus complex. Upon interaction between 

spermatozoon and oocyte-cumulus complex, the acrosome reaction takes place, with release 

of enzyme-containing granules that aid the spermatozoon in the passage through the zona 

pellucida. Interaction with the zona pellucida also induces a protein modification reaction that 

inhibits additional sperm to fuse with the oocyte, as well as zona pellucida protein breakdown 

through protease activity (5), enabling the spermatozoon to come into contact with the oocyte 

membrane. After sperm adhesion to the oocyte, their germ cell membranes fuse and the head 
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and tail of the spermatozoon enter the oocyte cytoplasm (4). After sperm entry, the oocyte 

completes meiosis II, ending with expulsion of the second polar body. The remaining 

chromosomes are arranged in the female pronucleus, while the sperm nucleus forms the male 

pronucleus and the DNA of both pronuclei is replicated. During the earliest stages of embryo 

development, no zygotic gene transcription occurs and events are controlled by mRNA and 

proteins contributed by the oocyte, accumulated during oogenesis (6). The first mitoses of the 

embryo, the cleavage stage, take place without cell growth and result in reduction of cell 

sizes. Subsequently, zygotic gene transcription is initiated and maternal control of the embryo 

diminished. 

1.1.2 Genetic errors of gametogenesis 

Oogenesis and spermatogenesis render female and male gametes susceptible to distinct 

genetic abnormalities that can be transferred to the embryo and result in diseased offspring. 

The prolonged meiosis I of the oocyte is believed to render it susceptible to failed separation 

of homologous chromosomes at completion of meiosis I, so called non-disjunction, resulting 

in trisomy conceptions upon fertilization, a risk that increases distinctly at a maternal age of 

35 years. Consequently, the majority of the extra chromosomes 21 found in Down syndrome 

are of maternal origin. In contrast, spermatogenesis is characterized by a high number of 

replication cycles due to the many cell divisions required for lifelong sperm production, 

which increases the likelihood for introduction of replication based errors such as point 

mutations and CNVs (7). Indeed, 80% of de novo point mutations in patients with autism 

spectrum disorders and schizophrenia have been shown to be paternal in origin, and the 

frequency of total de novo mutations in offspring, unrelated to phenotype, increase with 

paternal age (8, 9). 

1.1.3 Embryogenesis 

During the development of the fertilized egg from a zygote to a full-grown fetus, different 

developmental periods can be defined. The embryonic period lasts from fertilization until the 

eighth week. Blastogenesis, ending with the formation of the three-layered embryo, takes 

place during the first two weeks. From the end of the second week until the eighth week, 

precursors of all organ systems are formed during organogenesis. The fetal period, which 

lasts from the ninth week until birth, is characterized by maturation and growth of the organs.  

After fertilization, the embryo develops into a morula at the 16-cell stage, when the cells 

separate into an inner cell mass (the embryoblast) giving rise to the embryonic structures, and 

an outer cell mass (the trophoblast), that contributes to the placenta. The morula develops into 

a blastocyst, visually characterized by a fluid-filled cavity, and after hatching from the zona 

pellucida, implantation into the uterine cavity starts. Cells of the trophoblast, called 

syncytiotrophoblast, invade the endometrial stroma while the embryoblast differentiates into 

two layers: the epiblast and the hypoblast. The syncytiotrophoblast invade the maternal 

capillaries in the uterine stroma and establishes a connection with the maternal blood flow 

that result in the first uteroplacental circulation. An important process in embryo development 
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that takes place during this period is the determination of anterio-posterior, dorso-ventral and 

left-right body axis, which is a tightly coordinated event regulated by gene families important 

in embryological development. The embryo subsequently undergoes a process termed 

gastrulation, in which cells of the epiblast proliferate, migrate and invaginate through the 

primitive streak.  They subsequently form the three germ layers from which the different 

tissues and organ systems in the embryo develop during organogenesis; ectoderm, mesoderm 

and endoderm. The derivatives of the different germ layers are listed in Table 1. 

 

1.1.4 Normal and impaired organogenesis 

During the third week the notochord is formed in the mesodermal layer of the embryo. This 

midline signalling structure is crucial for folding and patterning of the embryo,. The 

notochord functions transiently during embryogenesis and produces developmentally 

important morphogens, such as the sonic hedgehog protein (SHH), that regulate development 

of surrounding tissues.  

During organogenesis the embryo undergoes a series of foldings in cephalo-caudal and lateral 

direction, resulting in formation of internal cavities and body wall closure. Development of 

some organs will be described briefly below. 

1.1.4.1 Development and malformations of the heart 

The heart is mainly formed from two different populations of mesodermal cells; the first and 

second heart field. Cells from the first heart field form the cardiac crescent in the cranial end 

of the embryonic disc. As a result of the cephalocaudal and lateral foldings of the embryo, the 

cardiac crescent fuses and forms the primitive heart tube. The second heart field is located 

medial to the cardiac crescent and contributes to most parts of the heart while the first heart 

field contributes to the left ventricle and atrial appendages (11). In addition, cells from the 

neural crest migrate into the region of the developing heart and contribute cells to the outflow 
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tract and the great arteries. The epicardium is formed from cells of the proepicardial organ 

(11). Formation of the heart is a complex three-dimensional morphogenetic process that 

results in the formation of two parallel circulations from the original “serial” circulation. The 

process involves looping of the cardiac tube, growth of endocardial cushions and formation 

of muscular contributions that participate in septation of atria, ventricles and great arteries 

and formation of the heart valves. The formation of the heart is regulated by temporally and 

spatially restricted gene expression, and biomechanical forces on the developing heart tissue, 

exerted by blood flow, also affects morphogenesis (12). 

Heart malformations are the most commonly diagnosed malformations, with an incidence of 

approximately 0.8% and can vary in clinical importance from subclinical to life-threatening 

(13). The most sensitive period in heart development is during the fifth week after 

fertilization (14). Malformations include different types of atrial and ventricular septal defects 

(ASDs and VSDs) that result from disturbances of the septation processes, and 

atrioventricular septal defect in which a common atrioventricular canal persists together with 

atrial and septal defects due to failure of fusion of the superior and inferior endocardial 

cushions. Failure of the outflow tract to form properly can result in a common arterious trunc 

(truncus arteriosus) instead of separation into aorta and the pulmonic trunc, or in transposition 

of the great arteries when the spiralling of the conotruncal septum is impaired causing the 

aorta to arise from the right ventricle and the pulmonary artery from the left. Tetralogy of 

Fallot is a sequence of structural anomalies caused by the unequal division of the conus 

region due to anterior displacement of the conotruncal septum, resulting in right ventricular 

outflow tract obstruction, a ventricular septal defect, displacement of the aorta to the right and 

right ventricular hypertrophy. Impaired development of the right atrioventricular valves may 

lead to tricuspid atresia, which can also be a part of the more complex Ebstein anomaly. 

Valvular stenosis of the semilunar valves in the aorta and pulmonary artery results from 

varying degrees of fusion of the valves, and depending on the degree of fusion can result in 

underdevelopment of the great vessel associated with the defect valves. Hemodynamic 

alterations leading to reduced aortic blood flow from the left ventricle are believed to affect 

development of the aorta and result in constriction of an aortic segment, coarctation of the 

aorta (Fig. 2).  

 

Many gene families are known to be involved in cardiac morphogenesis, and some of the 

most important known transcription factor families involved in heart development are 

NKX2.5, GATA4 and TBX1. 
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Treatment of different malformations varies from surgical repair within the first day after 

birth to none. Closure of ASD and dilatation of pulmonary valve stenosis can often be 

performed endoscopically, while repair or replacement of heart valves, dilatation of arteries 

and outflow tracts and repair of complex defects is performed with open heart surgery. 

1.1.4.2 Development and malformations of the gastrointestinal tract 

The primitive gut is formed when the embryonic disc undergoes cephalocaudal and lateral 

folding, by enclosure of part of the yolk sac cavity, lined by endoderm, into the developing 

embryo. The primitive gut stretches between the anterior oropharyngeal membrane and the 

posterior cloacal membrane and is divided into the foregut, midgut and hindgut. The 

endoderm gives rise to the epithelial lining of the intestine, lung, pancreas and thyroid and to 

parenchymal cells of the liver, while smooth muscle, connective tissue, the peritoneum and 

stromal components of the glands arise from visceral mesoderm. The foregut gives rise to the 

esophagus and future lung, with a tracheoesophageal septum gradually separating the future 

respiratory system from the esophagus. Both the stomach and the primary intestinal loop, 

arising from the midgut, undergo rotation during development. The hepatic diverticulum, or 

liver bud, arises from the end of the foregut. The hindgut extends into the cloaca, where the 

urorectal septum separates the dorsal anorectal canal from the ventrally located primitive 

urogenital sinus. The urorectal septum subsequently forms the perineal body between the 

openings of the urogenital sinus and the cloaca, the future urinary and fecal excretion 

systems. Gut connection with the surroundings is created by breakdown of the oropharyngeal 

and cloacal membranes later during development. 

Disturbances of gastrointestinal development can affect different parts of the system and 

result in malformations such as body wall defects (gastroschisis and omphalocele), 

malrotation of the primary intestinal loop and atresia of different parts of the gut. Esophageal 

and anal atresia will be described further below. 

Esophageal atresia (EA) 

Esophageal atresia is a malformation that occurs in 1/3 500 births and develops during the 

fifth week after fertilization (14, 15). 

The knowledge of the mechanisms that result in EA/TEF in these malformations is still very 

limited, although pathogenesis has recently been shown to involve disturbance in molecular 

specification of the ventral and dorsal walls of the foregut (16).  

Genes in which mutations are known to cause esophageal atresia include SOX2, MYCN and 

CHD7 (16).  
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The malformation is surgically repaired with creation of an esophageal anastomosis within 

the first day after birth. The reported mortality is approximately 10% and is related to 

associated anomalies, compared to 100% mortality without surgery. Lifelong gastric and 

pulmonary complications are common in these patients (17).  

Anorectal malformations (ARM) 

Anorectal malformations occur in around 1/5 000 births and can present in a spectrum from 

imperforate anus with or without fistula (rectoperineal, vestibular, urethral or vesical) to 

cloacal malformation (18). The malformations result from abnormal development of the 

cloaca and urorectal septum during the seventh week after fertilization, but the pathogenic 

mechanisms behind the malformations are largely unknown.  

Genes in which mutations are known to cause syndromic ARM in humans include MNX1, 

SALL1 and GLI3, while mutations in HOXD13 have been described in a single patient (19, 

20). 

 Less severe anorectal malformations can be repaired in a single procedure after birth while 

patients with more severe forms receive a colostomy in the neonatal period until final repair 

can be performed at 1-2 months of age (18). The technique used for repair is called posterior 

sagittal anorectoplasty and involves division of the fistula, release of the gut and placement in 

normal position as well as creation of the pelvic floor muscles and external anal sphincter. 

Obstipation and urinary or fecal incontinence are common sequelae after surgery because of 

impaired development of the inner sphincter muscle and associated nerves. 

1.1.4.3 Development and malformations of the renal system 

The urological system originates from mesoderm, and two different transient systems (the 

pronephros and mesonephros) develop and regress before the permanent system is formed 

from the metanephros. The permanent collecting system including ureter, renal pelvis and 

calyces, develops from the ureteric bud which springs from the mesonephric (Wolffian) duct, 

invades the metanephric mesoderm and induces differentiation into renal parenchyma.  

Congenital Anomalies of the Kidney and the Urinary Tract (CAKUT) have an incidence of 

1/500 births (21). Disturbance of renal development during the fifth to eighth week can lead 

to uni- or bilateral renal agenesis with absence of ureter and kidney, if the ureteric bud fails to 

grow from the nephric duct. Inversely, duplex ureter and kidney, or duplex ureter and 

collecting system can result from growth of supernumerary ureteric buds. Impaired 
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interaction between the ureteric bud and the metanephric mesenchyme can result in renal 

hypodysplasia. Kidneys that are located more inferiorly than normally and are fused in the 

caudal lobes are called horseshoe kidneys. Impaired closure of the urinary bladder, bladder 

exstrophy, is a severe and very rare type of malformation (incidence of 1/10 000 to 1/50 000 

in live births) (22).  

 

Genes known to be involved in renal development and associated with human disease are the 

HNF1β, PAX2 and RET genes (21). 

While CAKUT can be subclinical, the more severe forms account for around 30% of renal 

failure in children, all of whom need to undergo renal replacement therapy (21). 

1.1.4.4 Development and malformations of the reproductive system 

Early gonads form as genital ridges in close relation to the mesonephros of the developing 

kidney, and primordial germ cells migrate to, and invade the ridges where they induce further 

gonadal development. Identical primitive genital structures develop in female and male 

embryos; bipotential gonads, genital ducts (Müllerian and Wolffian ducts) and external 

genitalia (genital tubercle, urethral folds and genital swellings) and all structures initially 

retain the possibility to develop into both female and male systems, depending on molecular 

signalling. In the event of female development, gonads differentiate into ovaries which 

produce estrogens that stimulate the Müllerian ducts to fuse and form female internal 

genitalia (the uterus, the oviducts and the upper part of the vagina) while the genital tubercle 

becomes the clitoris, the urethral folds become the labia minora and the genital swellings 

form the labia majora. In male development, gonads differentiate into testes that produce 

several important hormones; anti-Müllerian Hormone (AMH), which leads to regression of 

the Müllerian ducts and more importantly testosterone, which stimulates the Wolffian ducts 

to develop into the vas deferens, the rete testis, the epididymis and the seminal vesicle. 

External genitalia are stimulated by the testosterone metabolite dihydrotestosterone, which 

leads to elongation of the genital tubercle into the phallus, the formation of the penile urethra 

from the urethral folds and scrotal development from the genital swellings. The testes are 

formed in the abdomen, and during fetal development descend into the scrotum in two 

phases, both hormonally regulated from the testes. The transabdominal phase takes place 

between week 8 and 15 and is regulated by insulin-like hormone 3, while the second 

inguinoscrotal phase occurs between week 25 and 35 and is androgen-dependent (23).  
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Genital malformations in females 

Uterine malformations are reported in 4% of reproductive women, and are caused by 

impaired development or fusion of the Müllerian ducts in the female fetus (24). This can lead 

to complete uterine agenesis, duplications of the whole or part of the uterus (uterus didelphys 

or uterus bicornis) or failed reabsorption of the midline septum (septate uterus or arcuate 

uterus). Uterine malformations are associated with recurrent pregnancy loss, infertility and 

obstetric complications. For septate uterus, the delivery rate is as low as 40% untreated (24). 

Atresia of part of both Müllerian ducts can result in cervical atresia, and failed development 

or impaired fusion of the sinovaginal bulbs can cause vaginal atresia or duplication of the 

vagina, respectively.  

In many cases anatomically less complicated congenital uterine malformations, such as 

septate or arcuate uterus, may be treated surgically by hysteroscopy with drastic reduction of 

the risk for pregnancy loss. More complex malformations, such as uterus didelphys, may be 

associated with better pregnancy outcomes if not treated (25).  

Genital malformations in males 

The most common malformation of male genitalia is hypospadias, which occurs with an 

incidence of 8/1000 live-born boys in Sweden (26). Hypospadias results from incomplete 

fusion of the urethral folds that causes abnormal location of the urethral meatus at any point 

from the glans penis to the perineum along the ventral midline of the penis. Other features 

associated with hypospadias are ventral penile curvature (chordee) and cleaved ventral 

prepuce (27). Surgical repair, urethroplasty, is often performed between 6 and 18 months of 

age and can also include chordee excision, penile straightening, urethral, glanular and meatal 

reconstruction as well as skin reconstruction (27).  

A severe malformation is epispadias in which the urethral meatus is located on the dorsal side 

of the penis. This malformation is often associated with exstrophy of the bladder with 

incomplete closure of the body wall. Other penile malformations include micropenis, defined 

as 2.5 standard deviations below mean dorsal penile length, and bifid or duplicated penis as 

the result of a split genital tubercle. 

Disorders of sex development (DSD)  

DSD are defined as conditions when chromosomal, gonadal or anatomical sex is atypical, and 

the incidence of genital anomalies, when genitalia are not easily classified as male or female, 

is approximately 1/4 500 births (28). These conditions are classified into sex chromosome 

DSD, 46,XX DSD and 46,XY DSD. Chromosomal DSD includes 47,XXY (Klinefelter 

syndrome), 45,X (Turner syndrome), 45,X/46,XX and other mosaic or structural 

chromosomal aberrations leading to monosomy of whole or part of the X-chromosome, 

45,X/46,XY (mixed gonadal dysgenesis) and 46,XX/46,XY (mosaicism or chimerism) 

karyotypes (29). Both 46,XX and 46,XY DSD can be further classified into disorders of 



 

 17 

gonadal development (gonadal dysgenesis, ovotesticular DSD as well as testicular DSD in 

46,XX and testis regression in 46,XY) disorders related to excess (46,XX) or deficit (46,XY) 

of androgens and other causes. DSD can lead to sterility, but in the most common form 

(under-masculinization of male fetuses) fertility is often unaffected. Importantly, gonadal 

dysgenesis is associated with a high risk for gonadal tumors (30). The treatment of 

individuals with DSD is complex with respect to gender assignment, hormone replacement, 

surgical as well as psychosocial management and is ideally handled by multidisciplinary 

teams at specialized units. 

Genes important in female development include WNT4 and DAX1 while and in male 

development SRY, WT1, SOX9, FGF9 and SF1 (4). 

1.1.4.5 Development and malformations of the vertebrae 

The vertebrae develop from somites, segments that form from mesoderm on either side of the 

notochord. Sclerotome cells from the somites migrate to meet cells from the opposing somite, 

surrounding the neural tube. The vertebrae are formed through resegmentation in which the 

caudal part of each somite grow into and fuse with the cranial part of its caudal neighbour 

while the mesenchyme in the middle of the initial segments remain and form part of the 

intervertebral discs.  

Vertebral malformations result from an abnormal formation or segmentation process of the 

somites during the fourth and fifth weeks after fertilization, and are reported in <1/1000 live 

births, but the true frequency is likely higher because of asymptomatic forms (31). Unilateral 

complete failure of formation results in different types of hemivertebrae, while partial failure 

can give rise to wedge vertebrae. Failure of midline fusion of the paired somite halves of the 

vertebrae can lead to development of so called butterfly vertebrae. Unilateral segmentation 

defects can result in unilateral unsegmented bars, while bilateral segmentation defects can 

result in block vertebrae. Vertebral anomalies are associated with development of scoliosis, 

kyphosis and back pain, especially the combination of a unilateral unsegmented bar and 

contralateral multiple segmented hemivertebrae. The simultaneous presence of rib anomalies 

can impair lung development (31).  

 

Genes important in vertebral development and associated with malformations in humans 

include HES7, DLL3 and MESP2 (31). 

Surgical procedures for congenital scoliosis include fusion procedures which may have side 

effects of restrictive lung disease, or procedures involving fixation material that allows 
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growth of the spine, with the downside of requirement for multiple surgical procedures and 

other complications (31).  

1.1.4.6 Development and malformations of the limbs 

The limbs develop from the limb buds that arise from the body wall, with a core forming 

from mesoderm and a cover of ectodermal cells. The forelimbs form before the hindlimbs. 

The growth of the limb buds is stimulated from the apical ectodermal ridge (AER), a 

signalling center at the distal end of the limb bud, and differentiation of the tissue into 

cartilage and muscle takes place in a proximal-to-distal direction. Development of the hands 

and feet involves apoptosis in the AER, leading to separation of tissue into the fingers and 

toes. Another signalling center, the zone of polarizing activity (ZPA), determines antero-

posterior patterning of the limb. Ossification of bones in the extremities takes place from 

ossification centers and starts at the end of the embryonic period. After birth, the diaphyses 

are often ossified but the epiphyseal plate is still cartilaginous and is responsible for growth 

of the long bones.  

Limb malformations occur during the sixth week after fertilization (14). The incidence of 

congenital upper limb malformations is 1-2/500 live births (32, 33), which is higher than for 

lower limb anomalies. Limb malformations can be classified into defects that result from 

failure of formation, failure of differentiation, duplication, over- or undergrowth, constriction 

ring syndrome or as a part of generalized abnormalities and syndromes (33). Limb 

malformations can affect a whole extremity as in amelia (absence of limb) or micromelia 

(underdevelopment of a limb) or only the long bones as in phocomelia (long bones shortened 

or absent in one or more extremities), hemimelia (shortening or absence of one of the long 

distal bones radius, ulna, tibia or fibula) or sirenomelia (fusion of the legs). Hand and foot 

anomalies include for example syndactyly (fusion of digits), poly- or hypodactyly (more or 

less than five digits), brachydactyly (short digits) and ectrodactyly (deficiency or absence of 

middle digits) (34).  

Genes known to be important in limb development, and that cause malformations in humans 

when mutated, include HOXD13, TBX4, TBX5 and FGF10 (4). 

Treatment options include correcting surgical procedures and custom-made prosthetic limbs 

in some cases, with the goal to improve function and life quality (34). 

1.1.5 Descriptive terms 

Congenital malformations are defined as primary structural defects that result from errors of 

morphogenesis (35). In comparison, secondary defects occur due to disruptions of normal 

morphogenesis, for example by teratogenic agents or trauma. Further, deformations are 

defined as alterations in shape or structure of normally formed fetal parts. In this thesis, the 

term malformation will be used for both primary and secondary defects, since the underlying 

causes of observed malformations are often unknown.  



 

 19 

Malformations can occur isolated or in combination with other congenital abnormalities. A 

malformation sequence is a condition where one initial malformation leads to anomalies in 

other structures, whereas a malformation syndrome is a recognized pattern of malformations 

that occur as a response to one common cause. In cases with recognized malformation 

patterns where no common cause is known, the term malformation association is used. 

Description of congenital malformations includes different terms for failed or improper 

development. Agenesis is used to describe the absence or failed development of an organ due 

to absence of the embryologic primordium of the organ, for example renal agenesis. Atresia 

refers to the congenital absence of body openings or closure of tubular structures, e.g. anal 

and pulmonary atresia. 

1.1.6 Temporal effect 

Congenital malformations occur as a response to events that affect the embryonic or fetal 

period of development. The first two weeks after fertilization, are considered an “all-or-

nothing” period, when the cells of the embryo retain a high degree of potency and one cell 

can replace another in case of loss. However, if an insult occurs that leaves too many cells 

damaged, the embryo may be lost, although in some cases the result may not be lethal and 

may result in malformations (36, 37). During the period of organogenesis, when all organ 

systems are founded and the degree of cell differentiation is higher, the risk for organ 

malformations developing from embryonic insults is high. Early events before the end of the 

fourth week can result in severe neural, cardiac, gastrointestinal, renal and extremity defects 

while events in the second half of the organogenesis lead to milder defects. Insults during the 

fetal period, from the ninth week until birth, have less impact on organ development and are 

known to affect facial features, which can result in dysmorphism (38). 

1.1.7 Epidemiology 

Advances in pediatric surgery and intensive care have markedly increased survival among 

children with congenital malformations during the last decades, but congenital malformations 

are important causes of perinatal mortality and morbidity, and in Sweden, malformations or 

chromosomal aberrations are found in 30% of infants that die in the perinatal period (38). 

Severe birth defects in infants and aborted fetuses that are diagnosed within one month after 

birth are reported by neonatologists/pediatricians, obstetricians/gynecologists, pediatric 

cardiologists and cytogenetic laboratories to the Swedish Birth Defects Registry (SBDR), 

held by the National Board of Health and Welfare. In 2012, 2053 children (1.9%) were born 

with and 568 fetuses were aborted due to congenital malformations, though it should be noted 

that underreporting to this registry is a known problem. In addition, 183 children (0.2%) were 

born with and 408 fetuses were aborted due to chromosomal aberrations. Reported 

malformations were isolated (affecting one organ system) in 97% of children, and 60% of the 

reported children were male. Table 2 shows the reported number of cases of malformations in 

different organ systems in 2012 (39). Including less severe malformations, it is estimated that 
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around 4% of children have a malformation that is discovered during their first year of life 

(38). 

SBDR Swedish Birth Defects Registry. 
1Total number of births in 2012 was reported as 109 848. 

1.1.8 Causes of congenital malformations 

Following technical advances in molecular biology, the knowledge of the etiology behind 

congenital malformations has increased considerably. Still, the etiology can be determined in 

just over 50% of patients with congenital malformations in combination with developmental 

delay, and in a considerably lower proportion of patients with isolated malformations.  

Known causes of congenital malformations include genetic and environmental factors that 

influence organogenesis and cause fetal abnormalities. It has also long been suggested that 

combinations of genetic and environmental factors are responsible for disease.  
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1.1.8.1 Genetic causes 

Genetic aberrations of different size and type can cause congenital malformations and 

developmental delay. 

Chromosomal aberrations 

Losses and gains of chromosomal material that can be detected by chromosome analysis are 

large (≥~ 5 Mb) and are believed to affect embryonic development by changing the gene dose 

of many genes simultaneously, including developmentally important genes that are sensitive 

to gene dose alterations. 

Chromosomal aberrations usually affect neurological development and cause developmental 

delay and often malformations. Chromosomal aberrations include aneuploidies, with loss or 

gain of whole chromosomes, and deletions and duplications that affect parts of chromosomes. 

Constitutional aneuploidies seen in live-born children are trisomy 13, 18 and 21 and sex 

chromosome abnormalities, while other aneuploidies are not compatible with postnatal 

survival in constitutional form. Chromosomal translocations lead to different types of 

deletions and/or duplications that are most often unique to each family while other deletions 

or duplications are recurrent, such as Wolf-Hirschhorn syndrome (deletion of 4p) and cri du 

chat syndrome (deletion of 5p). Chromosomal aberrations can be caused by non-disjunction 

of homologous chromosomes or sister chromatids in the first or second meiotic divisions in 

parental germ cells in the case of aneuploidies, and from malsegregation of chromosomes 

resulting in unbalanced germ cells in translocation carriers. 

Microdeletions and microduplications 

Deletions and duplications smaller than 5 Mb can be detected by screening analyses such as 

array CGH or whole genome/exome sequencing, or by specific analyses such as FISH 

analysis, MLPA or quantitative PCR. Microdeletions and microduplications result in dose 

change for a lower number of genes compared to chromosomal aberrations and can affect 

development through several mechanisms: gene dose effect, position effects, gene disruptions 

or gene fusions. Recurrent microdeletions and microduplications are known causes behind 

malformation syndromes such as 22q11 deletion syndrome, Williams syndrome (deletion of 

7q11.2) and Potocki-Lupski syndrome (duplication of 17p11.2), while the effect of rare 

deletions and duplications are more difficult to predict. Microdeletions and microduplications 

that cause disease often occur de novo in affected individuals, but some pathogenic gene dose 

alterations are inherited from parents with the same or milder phenotypes (40). Gene dose 

alterations, or copy number variations, are further discussed in chapter 1.2.  

Single gene defects 

Mutations in single genes (insertions, deletions and base substitutions) can be detected by 

sequence analysis of specific genes and also by screening analysis using whole 

genome/whole exome approaches. Single gene mutations that lead to loss of function, gain of 

function or altered function can cause disease including malformations for example in 
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CHARGE syndrome (CHD7 mutations), Kabuki syndrome (KMT2D or KDM6A mutations) 

and Fanconi anemia (mutations in one of at least 15 different genes can cause disease). Single 

gene defects occur de novo or are inherited in a dominant, recessive or X-linked fashion. 

Imprinting 

Imprinting refers to a normal process that results in inactivation of alleles or regions of 

homologous chromosomes in a determined pattern dependent on the parental origin of the 

allele/homologous chromosome, and is thought to affect around 1% of human genes (38). 

Imprinted genes or regions are susceptible to disease in the case of deletion or inactivation of 

the active allele or gene region. In the 15q11-q12 region, some genes are imprinted on the 

maternal homologue while others are imprinted on the paternal homologue, and therefore 

deletion of the same genetic region can cause different phenotypic effects in individuals 

depending on the parental origin of the homologue that is affected by the deletion (Prader-

Willi and Angelman syndromes). Other examples of imprinting disorders are Beckwith-

Wiedemann and Silver-Russell syndromes. Imprinting disorders are sometimes caused by the 

phenomenon of uniparental disomy (UPD), in which case both homologues in a chromosome 

pair originate from the same parent.  

The de novo mutation concept 

A de novo mutation has been defined as “a genetic variation that is present for the first time in 

one family member (child) as a result of a mutation in a germ cell (egg or sperm) of one of 

the parents, or has occurred in the fertilized egg itself” (9) and are associated with sporadic 

disease as opposed to familiar disease caused by inherited mutations. Conclusions from 

massive parallel sequencing analysis in patient-parent trios in patients with 

neurodevelopmental phenotypes, is that de novo mutations in many different genes 

collectively represent an important role in phenotypes such as intellectual disability, autism 

spectrum disorders and schizophrenia (9). The importance of de novo mutations to a specific 

phenotype is proposed to correlate with the size of the mutational target (Fig. 7), the target 

mutability (highly mutable regions include CpG rich areas for point mutations and segmental 

duplications for CNVs) and paternal age at conception (point mutations and CNVs caused by 

replication-based mechanisms increase with paternal age) (7).  

With the new sequencing techniques, the estimation of de novo mutation frequencies per 

generation predicts 74 single nucleotide variants, 3 small insertions or deletions and 0.02 

CNVs per genome and one de novo mutation per exome (7). Overall mutation rates vary 

between and within families and are influenced by parental sex, age, ethnicity and 

predisposing genomic characteristics such as inversions, duplications, translocations and 

mutations in genes involved in DNA repair or recombination (7). Varying incidence rates for 

different recurrent genomic rearrangements mediated by NAHR can vary between ethnic 

groups because of ethnic-specific predisposing structural characteristics such as number of 

segmental duplications and their orientation in a specific region (7). 
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1.1.8.2 Environmental factors 

Embryological or fetal exposure to some environmental factors during sensitive time points 

in development can disrupt normal morphogenesis and result in secondary defects. Examples 

of teratogens, for which exposure during pregnancy increases the risk for malformations 

include maternal disease, drugs, radiation and industrial or agricultural chemicals.  

Maternal infection 

Several maternal infections are known to disturb embryonic and fetal development and cause 

abnormalities. Primary rubella infection in a non-vaccinated mother during the embryonic 

period (≤ 8 weeks) leads to malformations in 80% of cases and primarily causes heart defects, 

eye defects (congenital cataracts or retinopathy) and ear defects. Infection after 20 weeks of 

gestation is not associated with birth defects (41).  

Infection with cytomegalovirus (CMV), either primary or secondary, may cause a fetal 

infection that can lead to microcephaly, sensorineural hearing impairment and visual 

impairment due to chorioretinitis, optic atrophy or damage to the occipital cortex (42). 

Toxoplasma infection may also cause hearing and visual impairments in the fetus (43).  

Maternal chronic disease 

It is known that the risk for birth defects in pregnancies where the mothers have diabetes 

mellitus (including type I, II and gestational diabetes) is increased, especially the risk for 

heart malformations and neural tube defects. It has been proposed that increased glucose 

levels may affect the establishment of epigenetic patterns, leading to changed gene expression 

and abnormalities in the embryo (44).  

Other chronic diseases that seem to be associated with malformations independently of 

treatment are obesity (in absence of diabetes), migraine and paroxysmal supraventricular 

tachycardia (44, 45). 

Drug treatment 

Drugs are known teratogens that are believed to cause malformations through a number of 

disruptive mechanisms e.g. neural crest, endocrine or vascular disruptions, folate antagonism, 

oxidative stress or specific receptor- or enzyme-mediated teratogenesis (46). Different types 
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of drugs in clinical or recreational use are associated with fetal abnormalities, primarily 

cardiac abnormalities, for example chemotherapeutic agents (methotrexate), anticonvulsants 

(valproate), mood stabilizers (lithium), antibiotics (erythromycin), anticoagulants (warfarin) 

and retinoids (isotretionin) (35, 47-49). The knowledge of some such associations is used to 

choose alternative treatments if possible, although in severe cases the health of the pregnant 

woman is prioritized. Regarding recreational drugs, alcohol is a known teratogen and 

associations between maternal smoking and several different birth defects have been reported 

(50). 

Associations between drugs and birth defects are difficult to establish due to a number of 

inherent factors. Malformations are rare events, and associations are therefore most 

efficiently studies by case-control studies, which may introduce selection and exposure 

information may be subject to observation bias. Also, many factors may affect outcomes, for 

example multiple drug treatment, timing of fetal exposure, dosage level and underlying 

genetic predisposition. In addition, the disease for which the pregnant woman is treated may 

in itself increase the risk for fetal abnormalities.  

Assisted reproductive technologies (ART) 

Conflicting evidence has been presented as to whether assisted reproduction techniques using 

in vitro fertilization (IVF) increase the risk for birth defects (51). It is proposed that the 

observed slightly elevated risk for major malformations seen in ARF pregnancies that has 

been presented in recent studies (3-4% as opposed to 2-3% for a normal population) may be 

explained by an inherent higher risk for birth defects in couples receiving ART treatment, and 

not related to the procedure (51). 

Radiation 

Exposure of the fetus to high doses of radiation increases risk for microcephaly and other 

birth defects. However, fetal anomalies are only associated with exposure to more than 50 

mGy, which is a dose markedly higher than the radiation exposure for the fetus at singular 

examinations using radiography, computed tomography or nuclear medicine (52).  

Industrial and agricultural chemicals 

An example of a teratogenic agricultural chemical is methyl mercure, a metal compound used 

to preserve seed grain, and methyl mercury poisoning in pregnant women is known to 

increase the risk for birth defects (35). 

1.1.8.3 Multifactorial etiology 

A multifactorial model of inheritance, in which genetic and environmental factors add up to a 

threshold over which morphogenesis results in a malformation, has been proposed for many 

isolated congenital malformations, on the basis of statistical evidence (53, 54). This 

mechanism is proposed to explain the occurrence of phenotype in families with non-

Mendelian inheritance and sporadic disease. Still it is possible that di-, oligo- or polygenic 



 

 25 

causes can explain familial occurrence, and sporadic disease may be caused by de novo 

mutations.  

1.2 COPY NUMBER VARIATION 

1.2.1 Definition 

Structural variation in the human genome includes balanced (inversions and balanced 

translocations) and unbalanced forms (deletions, duplications and insertions) in terms of copy 

number, which refers to the number of times a specific genomic region occurs in a genome 

(55). Unbalanced forms, copy number variants (CNVs), were initially defined as stretches of 

DNA more than 1000 bp (1 kb) in size that differ in copy number in relation to a reference 

genome (56), but since refined methods, including high-throughput paired-end sequencing, 

have shown copy number variants of smaller sizes, a later definition refers to CNVs as ≥ 50 

bp in size (55).  

Copy number variation was first described in 2004, when technologies allowing comparison 

of whole genome copy number patterns between different genomes emerged. Two different 

studies described that segments of DNA, in size between small variants affecting base pairs 

and large variants such as heteromorphisms, were scattered over large regions of the human 

genome and contributed to genetic variation (57, 58). It is believed that CNVs cover 5-12% 

of the human genome and they probably account for 0.5-1% of the genetic variation between 

two individuals (59, 60). In an evolutionary perspective, it is likely that copy numbers with 

genetic content have inferred evolutionary benefits that have lead to enrichment in the human 

genome. Different types of CNVs are shown in figure 8.  

 

1.2.2 Phenotypic influence of CNVs 

CNVs are believed to affect phenotypes by changing gene expression, and studies have 

shown that expression of genes within and in the vicinity of CNVs are affected by copy 
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number variants (61). More than 50% of the effects of known CNVs are caused by gene 

disruption or disruption of the regulatory units associated with genes, rather than by gene 

dosage change (40). Changing the regulatory landscapes of genes can lead to a variety of 

effects since changes can be tissue- or developmental stage-specific (55). Interestingly, it 

seems that changed mRNA levels correspond poorly with protein levels, due to the several 

levels of regulation that determine protein levels (55). In general, it seems that deletions have 

more severe effect on human phenotypes than duplications, since 80% of CNVs reported in 

the Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl 

Resources (DECIPHER, https://decipher.sanger.ac.uk/) are deletions and that the duplications 

listed are correlated to less severe symptoms (62). 

Recurrent microdeletions and microduplications were first identified as causes of 

developmental disease, and rare CNVs are also known to be responsible for disease 

phenotypes (63-65). Lately, CNVs have been implicated in complex diseases, for example 

Parkinson disease, Alzheimer disease, schizophrenia, HIV susceptibility and Crohn’s disease 

(63).  

Importantly, the term CNV is a structurally descriptive term that implies presence of varying 

copy number for a specific region, but does not confer information about clinical 

significance. In order to specify clinical impact, CNVs should be defined as benign or 

pathogenic (66).  

1.2.3 Mechanisms behind formation of CNVs 

Genome-wide studies have estimated that de novo CNVs > 100 kb occur in 1/50 individuals 

(67). Different mechanisms for formation of CNVs have been described, with different types 

of mechanisms responsible for recurrent and rare CNVs. 

Non-allelic homologous recombination (NAHR) 

This mechanism involves recombination between non-homologous sequences of high 

similarity present in the genome, mostly segmental duplications or low-copy repeats which 

are > 10 kb in length and show 95-97% sequence similarity and therefore confer risk for 

erroneous pairing during recombination. Repeats oriented in the same direction mediate 

formation of duplications and deletions of the interval between the repeats, while repeats 

oriented in opposite directions mediate formation of inversions. NAHR can occur during 

meiosis and mitosis and lead to constitutional or somatic, often recurrent, CNVs (63). 

Non-homologous end-joining (NHEJ) 

This mechanism is used to repair double-stranded breaks in chromosomes caused by 

environmental factors, and physiologically in B and T cells for creation of receptor and 

immunoglobulin diversity.  CNVs resulting from NHEJ are non-recurrent and often found in 

shorter repeat sequences such as LINEs, Alu repeats and LTRs. A molecular “scar” with 
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inserted nucleotides can often be identified. This mechanism can cause deletions and 

translocations, but not duplications. 

Fork Stalling and Template Switching (FoSTeS)/Microhomology-mediated break-induced 

replication (MMBIR) 

The FoSTeS mechanism is active during DNA replication and involves fork stalling, 

disengagement of the lagging strand and association with a new replication fork, induced by 

microhomology sequences. This process may be repeated several times which can lead to 

complex rearrangements, and is responsible for deletions, duplications and inversions. 

Another replication-based mechanism that involves template-switching is MMBIR which is 

activated by breakage of a single DNA strand at the replication fork (63). 

1.3 VACTERL ASSOCIATION 

VACTERL association is a congenital heterogeneous condition with multiple malformations 

affecting different organ systems in affected individuals, and has an estimated incidence of 

1/10 000-1/40 000 in different studies (68). The component features of VACTERL are 

vertebral defects (V), anal atresia (A), cardiac malformations (C), tracheo-esophageal fistula 

(T) with esophageal atresia (E), renal malformations (R) and limb defects (L). The condition 

was first described by Quan and Smith more than 40 years ago (69), and was then termed 

VATER and included vertebral, anorectal, tracheoesophageal and radial anomalies while 

cardiac and renal anomalies were later added. Neurocognitive disability is not considered part 

of the phenotypic spectrum, although a specific form of VACTERL, VACTERL-H, includes 

hydrocephalus due to aqueductal stenosis (OMIM:#276950) (68). VACTERL association 

usually occurs sporadically, although familial cases exist (70).  

Diagnostic criteria, which are debated, include malformations in three of the organ systems, 

on the prerequisite that other malformation syndromes are not more likely causes. Due to the 

unknown cause, the heterogeneous phenotype and the phenotypic overlap with many other 

malformations syndromes, it is considered a diagnosis of exclusion (71). The clinical picture 

varies with the severity of the malformations seen in different individuals, and can differ from 

subclinical to life-threatening. Due to improvements in health care during the last decades, 

prognosis is rather good with present surgical techniques and intensive care, although 

sequelae cause substantial morbidity. 

1.3.1 Causes of VACTERL association 

There is no known, unifying cause of VACTERL association. It is generally believed to be a 

causally heterogeneous condition, although it is still possible that a single cause may explain 

the majority of cases, as in the case with CHD7 in CHARGE syndrome. Genetic, 

environmental and multifactorial causes have been proposed as causative.  

1.3.1.1 Genetic factors 

Evidence for one or more genetic causes includes (14):  
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1) an increased incidence of one or more component features in first-degree relatives of 

patients with VACTERL association (72) which implies genetic components in at 

least a subset of cases 

2) second-degree relatives show component features of VACTERL association 

3) several chromosomal aberrations have been reported in single patients (70) 

4) mutations in single genes have been described in individual patients  

5) overlap between the phenotype seen in VACTERL association and several other 

malformation syndromes caused by single gene defects 

6) VACTERL-like phenotypes are observed in mouse studies with mutations in genes 

(Shh, Gli2, Gli3, Pcsk5) involved in the embryologically important sonic hedgehog 

(SHH) signalling pathway (73, 74)  

It is worth noting that despite overlap with other syndromes, there is no single syndrome that 

encompasses all VACTERL component features except for VACTERL-H, which in some 

cases is caused by mutations affecting the FANC genes and has once been reported in patient 

with a heterozygous mutation in the PTEN gene (75, 76). A mutation in the ZIC3 gene, 

normally associated with heterotaxy, has also been reported in a patient with all component 

features of VACTERL association (14). 

Causative genetic factors that are compatible with findings of low monozygotic concordance 

in twins and sporadic occurrence are for example single gene defects with reduced penetrance 

or variable expressivity, epigenetic/regulatory factors, de novo mutations, mosaic occurrence 

or di-/oligogenic inheritance. 

1.3.1.2 Environmental factors 

One hypothesis that explains the occurrence of malformations originating in different time 

windows during development (which is the case in VACTERL association) is that the 

embryo is chronically exposed to a teratogen during this time. It is known that type I, II or 

gestational diabetes in pregnant women increases the risk for vertebral, cardiac and limb 

component features of VACTERL association in the fetus (77). This is suggested to be 

caused by a combination of hyperglycemia, oxidative stress and mitochondrial dysfunction 

(14).  

Teratogens that can cause single component features in VACTERL association include 

anticonvulsants, retinoic acid antagonists and alcohol. Other suggested teratogenic causes are 

for example infertility treatment and contraceptive use in pregnant mothers, but up to date, 

the evidence is weak (14).  
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1.3.1.3 Developmental pathways  

Disturbance in developmental processes that affect formation of all organs involved in 

VACTERL association, for example disturbance in mesodermal proliferation and migration, 

epithelial-to-mesenchymal transition or apoptosis have been proposed. Signalling pathways 

that have been proposed as causative are the SHH, NOTCH and FGF pathways (14, 78). 

1.4 MOSAICISM AND CHIMERISM 

Historically, all cells of an individual have been considered to carry the same genetic content. 

Mosaicism and chimerism represent different variants of a phenomenon in which cells of an 

individual differ in genetic content, with presence of two or more genetically distinct cell 

populations. Mosaicism is known to occur physiologically in development of lymphocytes 

where somatic rearrangements in individual B- and T-cells are responsible for the diversity of 

T-cell receptors and immunoglobulins, fundamental for the adaptive immune system. 

Mosaicism and chimerism are also seen in some genetic diseases and unusual phenotypes.  

1.4.1  Definitions 

Mosaicism refers to the presence of cell populations differing in genetic content, which arise 

after fertilization (post-zygotically) involving one fertilized egg (Fig. 9). Chimerism is 

defined by the fusion of two fertilized eggs into one embryo (Fig. 9).  

1.4.2 Forms of mosaicism 

Mosaicism occurs as the result of a genetic abnormality being introduced after fertilization, 

and since this can happen at any time point in development or postnatal life, the proportions 

and distributions of affected cells vary accordingly. A mutation that occurs in one of the first 

cell divisions after fertilization results in the mutation being present in a large proportion of 

cells of the growing embryo, and may affect all or several different tissues. A mutation 

introduced at a later stage of differentiation may affect fewer, more differentiated cells, for 

example skin or brain tissue. This type of mosaicism is termed somatic mosaicism, while 

mutations occurring only in germ cells are termed germline mosaicism. Germline mosaicism 

is a phenomenon that explains the occurrence of multiple offspring affected by the same 

genetic condition when parents are not carriers of the mutation. Tissue-specific mosaicism, 

with restriction of CNVs to different tissues, has been reported in apparently healthy 

individuals (79). 

The introduction of assisted reproduction techniques, have created possibilities to study 

human embryos at a cellular and molecular level. Studies using single-cell array CGH 

analysis in blastomeres from pre-implantation embryos have revealed a high degree of 

mosaic chromosomal and structural variation at this stage (80, 81), although it seems that a 

proportion of genetically abnormal embryos undergo “self-correction” during the first seven 

days after fertilization. 
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One theory explaining this observation is that cell cycle control mechanisms are not fully 

activated during the first cell divisions after fertilization, and that after activation of these 

mechanisms, abnormal cells are mitotically arrested (82). It is also known that self-correction, 

or “rescue”, can occur through loss of abnormal chromosomes, especially for trisomies and 

possibly triploid conceptions, sometimes resulting in uniparental disomy (Fig. 9) (83, 84). 

Another form of rescue is revertant mosaicism, when primary mutations can be self-corrected 

in individual cells, for example in Fanconi anemia and some cutaneous diseases (76, 85).  
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Confined placental mosaicism is a specific type of mosaicism originating in the early 

separation of cells carrying a genetic aberration from normal cells in the embryonic tissues, 

so that the genetically abnormal cells become restricted to placental tissues. This may affect 

fetal growth by placental dysfunction and is also clinically important in chorionic villus 

sampling for prenatal diagnostics, since analysis may show genetic abnormalities not present 

in fetal tissues (86). 

 

It has recently been shown, using breakpoint-specific sequencing in parents of probands with 

apparent de novo CNVs, that in a subset of these families the parents have low-level 

mosaicism for the same CNVs (87).This finding implies a higher recurrence risk than what 

would be estimated if a de novo mutation was present in a single parental germ cell or formed 

in the first cells of the embryo, and the recurrence risk depends on the frequency of the 

mutation in the germline. If a mutation confers a surviving advantage to the cell, the result 

can be an expansion of a mutation-carrying clone in the germline, and an increased 

recurrence risk, possibly as high as a dominant condition (87). Also, low-level parental 

mosaicism for single gene defects are being detected with high-resolution techniques (88). 
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1.4.3 Mosaicism in disease 

The implication of genetic mosaicism for disease phenotypes is difficult to predict in many 

cases, since it is dependent upon timing of the mutation event, cell type/types affected and 

distribution of genetically aberrant cells. However, mosaic forms of disease are generally 

associated with milder phenotypes compared to non-mosaic aberrations.  

The most commonly described form of mosaicism comprises chromosomal aberrations, since 

cytogenetic techniques have enabled detection of these aberrations for a long time. Mosaic 

forms of aneuploidies such as trisomy 13, 18 and 21 usually have less severe phenotypic 

consequences, and mosaic forms of other aneuploidies not seen in constitutional form such as 

trisomy 8, 9, 14, 17 and 22 are found. Mosaic forms of other structural variants such as 

translocations, inversions, ring chromosomes and supernumerary chromosomes are not as 

commonly reported (86). Several mosaic monogenic disorders have been reported during 

recent years often affecting the skin, skeletal and vascular systems and some occurring only 

in mosaic form, such as McCune-Albright, CLOVES and Proteus syndromes (89). 

Mosaicism is also reported in neurodegenerative diseases, normal aging and cancer (89). 

1.4.4 Chimerism  

Whole-body chimerism occurs as the result of a fertilization error when two separate zygotes 

give rise to one embryo (Fig. 9). Other types of chimerism include blood chimerism, when 

blood cells are exchanged between twins, or between mother and fetus and as a result of 

blood transfusion. Chimerism formed from two embryos with the same sex chromosome 

content is not known to cause a phenotype, and may rarely be discovered when blood group 

testing shows evidence of more than one blood group. When two embryos of different sex 

chromosome content form one embryo, genital development may be affected and result in 

ambiguous external genitalia which will lead to clinical genetic investigations. The phenotype 

varies in severity from normal male or female phenotype to different degrees of ambiguous 

genitalia, and is often associated with sterility. Chimerism explains a proportion of 

individuals with ovotesticular DSD, when both ovarian and testicular tissues are present in 

the same individual. Chimerism is proposed to form through different mechanisms; 

tetragametic chimerism, parthenogenetic chimerism, androgenetic chimerism and fertilization 

of the second polar body. In tetragametic chimerism two separate zygotes, formed from four 

gametes with equal quantitative contributions from the mother and the father, fuse. 

Parthenogenetic and androgenetic chimerism involve unequal quantitative contributions from 

mother and father; in parthenogenetic chimerism three of the four genomic contributions are 

of maternal origin while the corresponding proportions have paternal origin in androgenetic 

chimera. Fertilization of the second polar body has not been shown, but is suggested as an 

additional mechanism to give rise to chimeric embryos. 
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2 AIMS 

2.1 OVERALL AIMS 

The overall aims of this thesis were to improve clinical genetic investigations for patients 

with congenital malformations, and at the same time identify genes important in normal 

development of organs. Due to the limited knowledge of genetic factors in the development 

of malformations, clinical genetic counselling for couples with a previous affected child is 

unsatisfactory for families and doctors. An increase in patients with malformations who 

survive and reproduce, due to improvements in surgical and intensive care possibilities, also 

motivates increased research so that better prenatal diagnostics and more accurate estimations 

of recurrence risk can be given to these individuals. 

2.2 SPECIFIC AIMS 

More specifically we wanted to investigate the role of copy number variation in development 

of congenital malformations, and this was attempted by analyzing copy number variations in 

patients with different malformations.  

2.2.1 Investigation of copy number variants using array CGH in patients with 
congenital malformations 

We wanted to systematically investigate copy number variants in patients with congenital 

malformations by analysis with array CGH. Our intent was to investigate if pathogenic copy 

number variants were common causes in patients with malformations and also to identify 

candidate genes important in development of specific organs.  

2.2.2 Mosaicism 

It is known that mosaicism for chromosomal abnormalities often result in milder and more 

varied clinical phenotypes compared to non-mosaic cases. Until the introduction of array 

CGH, the possibilities to investigate smaller aberrations and different tissues have been 

limited due to requirement for technologies with higher resolution and need for tissue culture. 

We wanted to use array CGH analysis in malformed tissue to investigate if genetic mosaicism 

in general, and specifically tissue-restricted mosaicism in malformed tissue, was an 

overlooked cause of congenital malformations due to the difficulty of detection. To 

investigate this possibility we wanted to collect malformed tissue and blood samples from 

individuals with congenital malformations to compare the presence of pathogenic CNVs 

between healthy and malformed tissue.  

2.2.3 VACTERL association 

Chromosomal aberrations and single gene defects have been described in individual patients 

with VACTERL association, but no common cause has been identified in this condition. A 

specific aim was to investigate if copy number variation represented a common cause in 

individuals with VACTERL association, since there is strong belief that this condition with 

multiple malformations has a genetic background. In addition, we wanted to screen for 
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mutations in three specific genes (PCSK5, HOXD13, CHD7) in which mutations had been 

reported in single studies shortly before the start of this study (PCSK5 and HOXD13) or 

where the associate phenotype was overlapping with VACTERL, but where the extent of 

mutations found in patients with VACTERL association was not known (CHD7).  
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3 MATERIALS AND METHODS 

3.1 PATIENTS 

3.1.1 Study I and II 

The two patients described in studies I and II were identified and chosen for research analysis 

after clinical genetic investigations were performed at the Department of Clinical Genetics, 

Karolinska University Hospital, Sweden. 

3.1.2 Study III 

Patients with VACTERL association in study III were identified through the Swedish 

VACTERL Society and from the Pediatric Surgery Department at Astrid Lindgren Children’s 

Hospital, Stockholm, Sweden. Fetal cases fulfilling VACTERL criteria were identified from 

the registries at the section for Perinatal pathology unit at the Karolinska University Hospital 

in Huddinge, Stockholm, Sweden. Patients were included if they fulfilled diagnostic criteria 

for VACTERL association (≥ 3 component features). 

A subgroup of patients with VACTERL-like phenotypes was identified from a previously 

established biobank including DNA from patients with esophageal atresia. Patients with 

esophageal atresia and a minimum of one more component feature of VACTERL association 

were included. 

3.1.3 Study IV 

Patients surgically treated for congenital heart malformations were identified and included 

from the two Swedish centers performing pediatric cardiac surgery; the section for Pediatric 

Cardiology, Queen Silvia Children’s Hospital in Gothenburg and the Pediatric Cardiac 

Surgical Unit, Children’s Hospital at the University Hospital in Lund. The only inclusion 

criterion was that tissue removal was a planned part of the surgical procedure. Patients with 

isolated as well as syndromic phenotypes were included. In total, we received samples from 

33 patients. Ten patients were excluded for different reasons: three patients were excluded 

due to a known syndromic diagnosis (two patients with Down syndrome and one patient with 

CHARGE syndrome), six patients were excluded due to insufficient or inadequate quality of 

material for analysis, and one patient was excluded after analysis when it was revealed that he 

had a brother with the same type of malformation (familial case). Altogether, 23 patients 

were included in the study. One of the patients in this study was also reported in study III 

(V11 in study III/P7 in study IV, array CGH analysis was performed once using DNA from 

heart tissue). 

3.1.4 Study V 

Patients surgically treated for congenital malformations were identified at the Department of 

Pediatric Surgery at Astrid Lindgren Children’s Hospital, Stockholm, Sweden. We used the 

same inclusion and exclusion criteria as in study IV, that patients were included if tissue 
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removal was a planned part of the surgical procedure and that patients with known causative 

diagnoses were excluded, respectively. In total we collected 54 samples from patients with 

varying diagnoses. We received samples from patients with the following diagnoses: 

anorectal malformations (19), esophageal atresia (12), urological malformations (13), biliary 

atresia (3), vascular malformations (3), gastroschisis (1), omphalocele (1), diaphragmatic 

hernia (1) and ovotesticular DSD (1). 

We excluded thirteen patients for whom written consent could not be obtained, five patients 

that had normal array CGH analysis results in previous clinical investigations, one patient due 

to insufficient or inadequate quality of material for analysis and one patient due to previously 

known diagnosis (Down syndrome). After excluding these patients, nine patients were not 

prioritized for analysis, due to low numbers of patients in each group (diaphragmatic hernia, 

vascular malformation, polycystic kidneys, stenosis of the ureter, kidney duplication and 

biliary atresia). Altogether, 25 patients were included in the study. 

3.1.5 Informed consent 

All patients were included after informed consent was given from parents. For fetal cases, 

these were included from a biobank to which parents had given permission for research 

purposes. 

3.2 TISSUE SAMPLES 

Tissue samples from patients with congenital malformations were collected at surgery so that 

tissue removed from the malformed organ as part of the surgical procedure was preserved in 

physiologic saline solution (9 g/L). 

Tissue samples from fetal cases were collected from the biobank of fresh frozen tissue 

samples routinely collected during autopsy proceedings at the Section for Perinatal Pathology 

at Karolinska University Hospital in Huddinge.  

3.3 DNA EXTRACTION 

For DNA extraction, tissue preserved in saline solution was placed on a cell culture dish and 

a piece of desired size (20-40 mg) was cut and weighed. The sample was placed in Cell Lysis 

Solution from the Gentra Puregene Blood Kit (QIAGEN Sciences, Maryland, USA) followed 

by incubation at 65º for 45 minutes and subsequently a 10 minute incubation in a 56º heating 

block after which Proteinase K was added and the sample vortexed vigorously and left over 

night in 56º, after which the regular protocol was followed. 

Genomic DNA was isolated from peripheral blood samples according to standard procedures 

using the Gentra Puregene Blood Kit (QIAGEN Sciences, Maryland, USA).  
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3.4 DNA SEQUENCING (SANGER METHOD) 

The Sanger method for determining a target sequence is a polymerase chain reaction (PCR)-

based method that works by stepwise prolongation of a specific DNA target sequence, using 

target-specific primers and a thermostable DNA polymerase in a mixture of regular 

deoxyribonucleotides and fluorescently labelled dideoxyribonucleotides. The latter molecules 

do not have the hydroxyl group of the carbon at position 3’ of the deoxyribose sugar ring, 

interrupting further prolongation of the chain. The result of the reaction is a multitude of 

fragments of all possible different lengths, with a ddNTP located at the last position. The 

DNA sequence is determined through size-based separation of the fragments and 

identification through detection of wavelengths of emitted fluorescence. 

Identified variants are compared to variants reported in databases with sequence data from 

healthy individuals and characterized according to the effect of the mutation on protein amino 

acid sequence (synonymous/non-synonymous, missense, nonsense or frameshift mutation) 

and splicing. Other factors that influence assessment of a detected single nucleotide variant 

are the degree of conservation of the nucleotide across species and location in functionally 

important sites or domains of the protein. 

DNA sequencing was used in study III to screen the PCSK5, CHD7 and HOXD13 genes for 

mutations in patients and fetal cases with VACTERL association or a VACTERL-like 

phenotype. Primers for PCSK5 screening were designed for the 39 exons found in the 

Ensembl genomic sequence ENSG00000099139, while primers designed at the Department 

of Clinical Genetics, Karolinska University Hospital,  were used in sequencing of HOXD13 

(exons 1 and 2) and CHD7 (exons 2-38).  

Assessment of detected variants was performed with comparison to single nucleotide variants 

listed in dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) and by using pathogenicity prediction 

algorithms such as the Alamut v 2.0 software (Interactive Biosoftware, 

http://www.interactivebiosoftware.com). Alignment of protein sequences for PCSK5 was 

performed using the Uni-ProtKB database (http://www.uniprot.org/) and included sequences 

from six vertebrates. 

3.5 MICROSATELLITE MARKER ANALYSIS AND QUANTITATIVE 
FLUORESCENT PCR (QF-PCR) 

The possibility to effectively distinguish alleles and homologous chromosomes, and trace 

them within pedigrees is enabled by the existence of close to seven hundred thousands of 

short tandem repeats, or microsatellites, dispersed throughout the human genome (90). The 

repeats consist of a varying number of contiguous copies of 1-6 bp-units. Due to inexact 

copying of these sequences, there is a high degree of repeat length polymorphisms, with 

around 70% of individuals having varying number of copies in a specific location. To be able 

to distinguish alleles or homologous chromosomes, analyzed markers need to be informative, 

and that probability increases with the proportion of the population that is heterozygous for 

specific markers. The analysis is carried out in a PCR-reaction using one specific fluorescent 

http://www.ncbi.nlm.nih.gov/SNP/
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primer so that multiple single strand copies of the repeat are created. The resulting copies are 

then separated on an automatic sequencer together with a size standard reference so that the 

lengths of the fragments can be determined. The reaction is semi-quantitative, meaning that 

the relative amounts of different alleles can be determined. 

QF-PCR is a specific application of microsatellite marker analysis used in clinical settings to 

identify aneuploidies in chromosomes 13, 18, 21, X and Y. Compared to chromosome 

analysis this PCR-based method is fast (days compared to weeks) but gives no structural 

information. 

Analysis of microsatellite markers and QF-PCR was used to determine the causative 

mechanism behind the different cell populations detected in the patient reported in study I 

and also to determine the parental origin of and mechanism behind the formation of the 

marker chromosome found in the patient described in study II. 

3.6 MULTIPLEX LIGATION-DEPENDENT PROBE AMPLIFICATION (MLPA) 

Multiplex Ligation-dependent Probe Amplification is a multiplex PCR-based method used 

for detection of copy number changes in specific chromosomal locations. It can also be used 

for additional applications, for example methylation detection (MS-MLPA). Shortly, MLPA 

starts with hybridization of two adjacent target-specific oligonucleotide probes to patient 

DNA. Successful exponential amplification of the probes is dependent on specific binding of 

both probes to their complementary DNA sequences, so that a subsequent ligation step results 

in the formation of one probe for each target sequence. The designed probes all carry 

identical forward and reverse primer-binding sequences and therefore can be exponentially 

amplified in a subsequent multiplex PCR reaction using one primer pair, on requirement that 

the ligation reaction is successful. PCR-amplified fragments are separated on capillary 

electrophoresis according to size and relative amount detected through fluorescent intensity. 

Intra- and intersample normalization using reference probes and reference samples, so that 

the copy number results measure relative amounts of the target sequences. 

MLPA can be used for confirmation of copy number changes detected with other methods or, 

because of the ease of use, to screen large numbers of patients for specific copy number 

changes. 

In our studies, MLPA was used for confirmation of small copy number variants detected by 

array CGH in study III. 

3.7 CHROMOSOME ANALYSIS 

Analysis of chromosome structure is accomplished by culturing of cells, chemical arrest of 

the cell cycle in metaphase, fixation of chromosomes on glass slides and chromatin staining 

followed by microscopy. With microscopy analysis of metaphase spreads, whole 

chromosome loss or gain (aneuploidy), extra structural abnormal chromosomes such as 

isochromosomes and ring chromosomes, as well as structural chromosomal balanced or 



 

 39 

unbalanced rearrangements such as deletions, duplications, translocations, inversions and 

insertions can be detected at a resolution limited to around 4-5 Mb depending on the type of 

abnormality and location in the genome. Due to heteromorphisms, interchromosomal 

variations in amount and arrangement of repetitive DNA, chromosomal homologues can 

sometimes be distinguished in chromosome analysis. The method provides structural 

information, provides possibility to analyze single cells and identifies balanced 

rearrangements. The same information is not obtained from more modern methods, such as 

MLPA and array CGH analysis, and chromosomal analysis will likely continue to be an 

important clinical genetic method in the future. An important drawback with this method is 

that the requirement for dividing cells and cell culture (which may take up to 3 weeks) 

renders the method time consuming, and in addition the resolution is low. 

Chromosome analysis was used in individual cases in study I-V to determine the arrangement 

of chromosomal aberrations and to distinguish different cell populations. 

3.8 FLUORESCENT IN SITU HYBRIDIZATION (FISH) 

Hybridization of fluorescently labelled DNA probes of target-complementary sequence to 

denatured meta- or interphase spreads allows the detection of loss or gain of DNA at a higher 

resolution than chromosome analysis. Different types of probes can be used for specific 

purposes such as single copy probes, dual fusion probes, break-apart probes, chromosome 

enumeration probes (CEP) and painting probes. Analysis can be performed on metaphase or 

interphase spreads, with different advantages and drawbacks. Metaphase FISH allows a more 

accurate structural analysis but requires living cells that undergo cell culture to reach the 

metaphase stage. Interphase FISH is convenient to overcome the requirement for cell culture 

and is suitable for analysis on tissues difficult to culture, and is also convenient for analysis of 

a high number of cells in analysis of mosaicism. The resolution of FISH analysis is higher for 

deletions than for duplications. The form of FISH analysis with the highest resolution is 

called fibre FISH and involves denaturation of the protein structures that keep chromatin 

wound together, resulting in a free chromatin chain where targets down to around 5 kb can be 

analyzed. The obvious drawback of FISH analysis is that it is a specific analysis where the 

target analyzed must be chosen beforehand and FISH can thus not be used as a screening 

method. 

FISH analysis was used in studies I, II, IV and V to determine the origin of additional genetic 

material identified by chromosome analysis, to determine rearrangements and to confirm 

aberrations detected by array CGH. 

3.9 ARRAY COMPARATIVE GENOMIC HYBRIDIZATION (ARRAY CGH)  

3.9.1 Principle 

Array CGH is a method that combines screening analysis with high resolution, and has since 

introduced in research and clinical practice become the first choice method in clinical genetic 

investigations of patients with DD/ID, autism spectrum disorders and multiple congenital 
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malformations (91). The method is based on an “array” of several hundred thousand up to 

millions of DNA probes attached to glass slides. The probes can be seen as the equivalent of  

FISH probes, and together represent the whole genome. By analysis with array CGH, DNA 

isolated from patients can be investigated for loss or gain of chromosome material, copy 

number variants, through comparison with DNA isolated from healthy individuals. 

3.9.2 Different types of microarray platforms 

3.9.2.1 Bacterial artificial chromosome (BAC) array  

The first type of microarrays used BAC probes of 200-300 kb, and the resolution for 

detection of CNVs was approximately the same as the size of the probes. BAC array slides 

were produced by a method that involved printing spots of the different probes on to the glass 

slides. The protocols used for BAC arrays involved dye-swap experiments, in which two 

hybridization reactions were performed per patient sample. If the patient sample was labelled 

with Cy3 and the reference with Cy5 in the first reaction, the opposite was done in the second 

reaction to minimize false positive signals.  

3.9.2.2 Oligonucleotide array 

Microarrays using oligonucleotide probes, which are synthesized directly on the glass slide, 

have a considerably higher resolution than BAC arrays. Many oligonucleotide platforms can 

detect aberrations down to a few kb, while the platform with the highest resolution reported 

could detect aberrations down to 0.5 kb (92). 

3.9.2.3 SNP array 

SNP arrays combine detection of copy number variants with genotyping, enabling detection 

of loss of heterozygosity/uniparental disomy in the same experiment. In SNP array 

hybridization reactions, the patient sample is hybridized to the array. Fluorescence intensities 

from the experiment are then compared to a reference dataset to detect copy number variation 

in the patient, and intensities from the different alleles are also compared for each SNP, so 

that genotype can be determined. SNP arrays generally have a somewhat higher resolution 

than oligonucleotide arrays, although the distribution of SNPs is not evenly spread out in the 

genome. However, oligonucleotide probes can be added to SNP arrays to increase coverage. 

SNP arrays have the possibility to detect mosaicism at a lower level than oligonucleotide 

platforms.  

3.9.2.4 Studies I-V 

Array CGH was used in all studies, primarily for CNV screening in studies III, IV and V, but 

also to fine map aberration breakpoints detected by chromosome analysis in study I and II. 

Three different array platforms have been used for array analyses described in this thesis. The 

majority of patients in studies III-V were analyzed using a 180K oligonucleotide platform 

with 60-mer oligonucleotide probes and whole genome coverage, manufactured at Oxford 

Gene Technology (OGT). 
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This platform is used at the Department of Clinical genetics at Karolinska University 

Hospital, Stockholm, Sweden, and has an in-house design with higher density of probes 

within genes and a background of evenly spaced probes over the entire genome. Data 

analysis is performed using the Feature Extraction software for raw data analysis and 

CytoSure Interpret software for CNV analysis. The practical resolution of the platform is 30-

50 kb, varying with probe density in different regions.  
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The patients in studies I and II have been analyzed by a 244K oligonucleotide array from 

Agilent Technologies followed by raw data analysis in the Feature Extraction program and 

CNV detection in the DNA Analytics, both software programs from Agilent Technologies. 

The resolution of this platform is approximately 50 kb.  

Three patients in study III were analyzed with a 38K BAC array containing 38 370 BAC 

clones and manufactured by the Swegene DNA Microarray Resource Center at Lund 

University. For analysis of array data, Bio Array Software Environment (BASE) was used for 

both raw data analysis and CNV detection (93).  

3.9.3 Interpretation of CNVs  

Interpretation of CNV pathogenicity is a well-known challenge due to the widespread 

presence of CNVs in the population and their reduced penetration and variable expressivity 

for associated phenotypes. CNVs can show different types of inheritance; dominant, 

recessive, X-linked or complex and can also unmask recessive alleles on the other 

homologous chromosome. Classically, size, gene content, type of CNV, inheritance and 

presence in databases of healthy or diseased individuals are factors that are assessed when 

considering pathogenicity of a detected CNV. Databases where variants detected in large 

studies of healthy individuals, such as the Database of Genomic Variants (DGV) 

(http://projects.tcag.ca/variation/), or individuals with developmental phenotypes, such as 

DECIPHER (https://decipher.sanger.ac.uk/) and ECARUCA (http://www.ecaruca.net), have 

been created to guide in classification.  

It is also helpful to compare detected variants with variants from analyzed samples in an in-

house database, since detection of some CNVs may be related to platform-specific problems, 

and also these samples may represent a more relevant genetic background. CNVs where 

pathogenicity cannot be determined are termed variants of unknown significance (VOUS) 

(66).  

 

https://decipher.sanger.ac.uk/
http://www.ecaruca.net/
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4 RESULTS AND DISCUSSION 

4.1 GENETIC CAUSES OF CONGENITAL MALFORMATIONS DETECTED BY 
ARRAY CGH (STUDIES III, IV AND V) 

Screening for pathogenic gene dose alterations in patients and fetal cases with congenital 

malformations using array CGH (study III-V) identified pathogenic aberrations in six patients 

(Table 3). These clearly pathogenic aberrations were detected in patients with syndromic 

phenotypes only, and no pathogenic aberrations were identified in patients with isolated 

malformations. The sizes of the pathogenic aberrations varied from 0.04 Mb to 51 Mb, the 

smallest representing a single gene deletion and the largest a chromosomal aberration. Four 

of the pathogenic variants were large chromosomal aberrations, and three of these were 

identified in males and were the result of unbalanced translocations. The two largest 

imbalances were inherited from fathers that were carriers of the balanced forms of the 

translocations (patients FC14(III) and P15(IV), respectively), while the smaller one had 

occurred de novo in the proband (P4(IV)). In the fourth patient, P24(V), a mosaic 

rearrangement on chromosome 15 was found to have occurred de novo in the patient. Of the 

four detected aberrations, all but the 18;22 translocation should are readily detected by 

chromosome analysis.  

Large chromosomal imbalances are known causes of congenital malformations and since we 

did not perform cytogenetic pre-screening before array CGH analysis, the identification of 

several large structural aberrations is expected. Unbalanced chromosomal translocations are 

usually unique within families and do not represent causes that can be found in many 

patients, although some common features may be identified between patients with 

overlapping aberrations. Candidate disease gene identification from chromosomal aberrations 

becomes rather speculative since the abnormalities usually affect large numbers of genes and 

both duplications and deletions are present in the same patient.  

Two pathogenic findings were not detectable by chromosome analysis, a whole gene FANCB 

deletion in a fetal case (FC10 (III)) and a deletion in the distal 22q11 deletion region in a 

patient with syndromic anal atresia (P12(V)) (Table 3). The FANCB deletion shows X-linked 

recessive inheritance and was transmitted from a healthy mother to a male fetus while the 

22q11.22 deletion was inherited from a healthy father. In this case it remains unclear which 

role this aberration has in the patient phenotype since this deletion is associated with a mild, 

primarily cognitive, phenotype.  

VOUS were detected in 32 patients, and variants in 10 of these patients were chosen based on 

size, copy number type and gene content, and further characterized by investigation of 

inheritance status (Table 4). In one case the CNV turned out to be de novo in the patient 

(patient P24(V)). In two cases the familial samples available were not enough to determine 

inheritance. In seven cases, the aberrations were inherited from apparently healthy parents. 
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VSD ventricular septal defect, EA esophageal atresia.
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EA esophageal atresia, AA anal atresia, TGA transposition of the great arteries, TOF tetralogy of Fallot, CoA coarctation of the aorta, VSD ventricular septal defect, BAV bicuspid aortic 

valve, DD developmental delay, GR growth retardation, ASD atrial septal defect, v. cava sup. vena cava superior.
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Altogether, screening for gene dose alterations in 86 patients with isolated or syndromic 

congenital malformations revealed pathogenic aberrations in 6/87 patients (7%) (Table 5) and 

since pathogenic variants were detected only in syndromic cases, the proportion of 

pathogenic findings was higher when patients with isolated malformations were excluded 

(10% and 20%, respectively, including and excluding the VACTERL group). Pathogenic 

CNVs that would not be detectable by array CGH were found in 2/86 patients (2% and 4% 

including and excluding VACTERL, respectively). VOUS were detected in 32/86 patients 

(37%). A similar study using microarray analysis to investigate copy number variants in 95 

fetal cases with isolated and syndromic congenital malformations reported CNVs >100 kb in 

size in 21% of patients (94). Similarly, in study III-V, 26/86 patients and fetal cases (30%) 

had at least one CNV > 100 kb.  

Considering the phenotypes of patients and fetal cases screened in study IV-V, 58% had 

isolated malformations, which is likely higher than in most clinical settings. It is noteworthy 

that none of the clearly pathogenic findings were identified in patients with isolated 

malformations. Comparisons between patients with isolated and syndromic phenotypes did 

not reach statistical significance, due to small sample sizes and low number of genetic 

findings, although the results may indicate that copy number variants > 50 kb are rare causes 

of isolated malformations. Different proportions of causative findings have been reported 

using array CGH in patients with isolated heart malformations, and the utility of array CGH 

screening in this patient group has been discussed previously (95). The heterogeneity of the 

group “congenital heart malformations” makes conclusions about utility difficult in this 

specific group.  

Nine patients (9/86; 10%) had two or more CNVs > 50 kb and four patients had two or more 

CNVs >100 kb (4/86; 5%). A two-hit model has been proposed for intellectual disability, in 

which one CNV can confer risk for neuropsychiatric disease and the combination with a 

second CNV aggravates the phenotype (96), and it is plausible that a similar mechanism 

could be involved in congenital malformation phenotypes, although this would be difficult to 

prove in individual cases. In two of the four patients with more than one CNV > 100 kb 

(P12(V) and P24(V)), one of the identified CNVs was pathogenic but could not completely 

explain the phenotypes seen in the patients. In the other two cases, it was not possible to 

decide whether the detected variants were associated with the patient phenotypes. It is 

conceivable that the combinations of CNVs are pathogenic, but presently their etiologic role 

cannot be determined in these cases. 

The low proportion of causative findings may partly be explained by the high proportion of 

patients with isolated malformations and the conclusion by us and others that CNVs are 

rarely seen in patients with VACTERL association. The choice of platform naturally 

influences detection rates depending on resolution and robustness. The resolution of the 180K  
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VOUS variant of unclear significance. 
1Correcting total number of patients for one patient that was included in study III and IV. 
2Excluding patients with VACTERL association or a VACTERL-like phenotype in study III. 



 

48 

array used in our study is 30-50 kb, and thus we have not detected smaller CNVs which are 

known to be frequent in the genome. Also, patient selection in our studies differs from other 

studies in that we have only included surgically treated patients, so that mosaicism could be 

investigated. This has limited the number of patients included and potentially introduced a 

bias, although the proportion of patients with identified aberrations in our studies is similar to 

those reported in other studies. In addition we did not perform chromosome analysis before 

array CGH analysis, reflecting the finding of several large chromosome aberrations in our 

studies. Importantly, the patient material in our studies is heterogeneous, both within and 

between studies, and this fact likely reduces the possibility to detect aberrations present in 

specific malformations.  

4.1.1 Copy number variants in patients with congenital heart malformations 

Pathogenic gene dose alterations were detected in two patients with heart malformations 

(2/23; 9%) and VOUS were detected in nine patients (9/23; 39%). Based primarily on size 

and gene content, inheritance status was investigated in three patients with VOUS and shown 

to be inherited from unaffected parents and are thus continuously regarded as unclear variants 

that need further study. One of these regions, 6q23.2, may represent a susceptibility region 

for congenital heart malformations and is further discussed in section 4.1.5.1. It is noteworthy 

that inherited variants have been reported as causative in cases of heart malformations (97, 

98).  

Published studies of copy number variants in patients with heart malformations have reported 

similar or higher frequencies, although varying inclusion criteria, definition of copy number 

variants, diagnostic platforms and study design make comparisons difficult (98-102).  

4.1.2 Copy number variants detected in patients with esophageal atresia 

Screening for pathogenic aberrations in esophageal atresia revealed one clearly pathogenic 

aberration and VOUS in all five patients. We identified two novel regions in which gene dose 

alterations could be associated with increased risk for EA, discussed in section 4.1.5.2. 

Genetic causes can presently be identified in around 11-12% of patients with esophageal 

atresia and gene dose alterations are reported in individual cases, while more systematic 

studies have yet to be published (103). One study reporting results from array CGH in seven 

monozygotic twin pairs discordant for esophageal atresia did not report pathogenic variants 

(104). All patients in our material had syndromic EA, which is a possible explanation to a 

high proportion of pathogenic or VOUS identified in our study. The number of patients is too 

low to contribute to the determination of proportion of pathogenic copy number variants in 

patients with EA.  

4.1.3 Copy number variants detected in patients with anal atresia 

In our study of patients with anal atresia, a pathogenic CNV was detected in one patient 

(1/14; 7%) and VOUS were detected in five patients (5/14; 36%). For comparison, probable 

disease-causing CNVs were reported in 17% of patients with anorectal malformations in 
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combination with a CNS malformation (105). In our study, 50% of patients had isolated 

malformations, possibly decreasing the likelihood of detecting pathogenic CNVs.  

4.1.4 Copy number variants in patients with hydronephrosis 

In our study, we did not identify pathogenic CNVs in patients with congenital 

hydronephrosis. Two patients (2/6; 33%) had VOUS. The study group is very small and no 

patients had additional malformations, and thus we cannot draw any conclusions about the 

role of copy number variants in congenital hydronephrosis. 

4.1.5 Interesting copy number variant findings in patients with congenital 
malformations 

4.1.5.1 Deletion at 6q23 in a patient with CoA, VSD and bicuspid aortic valves (BAV) 

A deletion at 6q23.2 was detected in patient P13(IV), with an isolated, combined heart 

malformation including CoA, VSD and BAV. The 0.58 Mb deletion was found to be 

inherited from a mother without a known heart malformation. The deletion overlaps a region 

reported to be associated with hypoplastic left heart syndrome (106), and four of the six 

deleted genes have been reported to be expressed in heart tissue and to be involved in heart or 

vasculature function or development. Homozygous mutations in the ENPP1 gene, encoding 

an ectoenzyme involved in hydrolysis of extracellular nucleotides, cause generalized arterial 

calcification of infancy (OMIM:#208000). A second gene within the 6q23.2 region, ENPP3, 

encodes an isoenzyme of ENPP1, and has no known disease association. Interestingly, the 

mouse homologous gene, Enpp3, shows expression in the second heart field and may be 

regulated by Nkx2.5 (107-109). Further, the MED23 gene encodes a subunit of the large 

mediator complex (MED) involved in transcription activation in which mutations in genes 

encoding other subunits have been reported in congenital heart disease while the subunit 

encoded by MED23 has so far not been associated with heart malformations (110). 

Nevertheless, a Med23
-/-

 mouse model is embryonic lethal and displays disorganization of the 

vasculature (111). The ARG1 gene is expressed in heart and may be linked to coronary heart 

disease (112). A search in the DECIPHER database reveals one patient (patient 251447) with 

an overlapping 7 Mb-deletion and congenital anomalies not including heart malformation.  

It is known that cardiovascular genetics are complicated, with single gene mutations 

associated with heart malformations showing reduced penetrance and varying expressivity, 

and it has been suggested that the causality of CNVs should be evaluated on the basis of gene 

content rather than inheritance and size (113). Considering that four genes in the region seem 

to be involved in heart or vasculature development or function, two of them possibly in the 

same pathway, it seems likely that the variant affects development of the heart and confers 

risk for erroneous morphogenesis with influence of additional genetic or other factors.  

4.1.5.2 Copy number variants at 15q26.3 in patients with esophageal atresia 

Copy number variants at 15q26.3 were detected in three patients with esophageal atresia and 

other features. One was a de novo 0.7 Mb deletion affecting seven genes while the other two 
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were gains (a 0.5 Mb duplication and a 0.4 Mb triplication inpatients P4(V) and P25(V), 

respectively), affecting three genes, and one of them was detected in a healthy monozygous 

twin. The duplication region overlaps with CNVs in the DGV. 

The deletion was detected in patient P24(V) who had partial tetrasomy 15. Esophageal atresia 

has not been described with the tetrasomy 15 genotype previously, drawing attention to the 

15q26.3 region in relation to esophageal atresia. The causal relation of the deletion and EA 

could be one of three possible alternatives: 1) the deletion is unrelated to EA, 2) the deletion 

in combination with tetrasomy 15 can cause EA, or 3) the deletion in itself is causal.  

Combining the results of these three patients and the fact that esophageal atresia is an unusual 

phenotype, the 15q26.3 region seems interesting to study further. Several of the genes 

affected by the detected CNVs are recessive disease genes not associated with esophageal 

atresia, and since the deletion and duplications are not overlapping, it seems likely that a 

putative developmental effect is exerted through disruption of gene expression regulation.  

4.1.6 Summary 

The combined results of study III-V emphasize importance of copy number variant analysis 

in patients and fetal cases with malformations, since variants with high penetrance conferring 

a high recurrence risk are detected. The importance of detection of similar pathogenic 

variants is very high to individual families, with the possibility to provide an explanation, to 

lower recurrence risk estimates and to offer prenatal diagnostics in future pregnancies. Our 

analysis is too small for proportion estimates of causative CNVs in individual malformations, 

but provides further evidence for the contribution of genetic factors in development of 

malformations. 

In patients with isolated malformations, the likelihood of finding pathogenic causes by copy 

number analysis down to 50 kb may be low, although some studies that find no difference 

between de novo CNVs in syndromic and isolated phenotypes provide evidence to the 

contrary (98). Additionally, VOUS which may represent risk factors are detected in a 

substantial proportion of these patients and the impact of such variants will be important to 

investigate to further clarify the etiology behind malformations.  

4.2 MOSAICISM AND CHIMERISM IN PATIENTS WITH CONGENITAL 
MALFORMATIONS (STUDIES I, II, IV AND V) 

A specific aim of this thesis was to investigate the role of genetic mosaicism for copy number 

variants as a cause of congenital malformations. Altogether, 18 patients from study IV and V 

(including ten patients with heart, three patients with EA, three patients with anal atresia and 

two patients with congenital hydronephrosis) were analyzed for pathogenic aberrations or 

VOUS > 50 kb in tissue from the malformation and also in blood samples. We did not detect 

discordance of VOUS patterns between tissue from the malformations and blood in the same 

individuals, and thus our studies do not show that mosaic copy number variation is a common 

underlying cause of congenital malformations. A number of inherent challenges in studying 
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tissue-specific mosaicism as well as specific limitations to our studies, including choosing the 

appropriate tissue for analysis, difficulty of obtaining tissue samples from malformations and 

sensitivity of the analysis method complicate interpretation of the study results.  

So far, no systematic studies comparing copy number variations detected by array CGH 

between tissue from malformations and blood in the same individuals have been published. 

Recently, Bednarczyk et al. reported the presence of five different copy number variants 

detected in esophageal tissue but not detectable in blood in a patient fulfilling criteria for 

VACTERL association (114). Studies of heart malformations investigating genetic 

mosaicism for specific genetic causes using other methods such as DNA sequencing, MLPA 

and FISH have been published (115-130). A number of studies by Reamon-Buettner et al. 

reported somatic mutations in cardiac disease genes identified in formalin-fixed tissue from 

hearts affected by malformations, that other groups were not able to replicate analyzing fresh 

frozen heart tissue. Apart from that, one study where fresh frozen heart tissue was used for 

analysis showed somatic mutations in a subset of patients with sporadic tetralogy of Fallot 

(130). Single studies screening for mosaic forms of X-chromosome aberrations or 22q11-

deletions in cardiac tissue with fluorescent in situ hybridization (FISH) and short tandem 

repeat markers have not reported positive findings (115-117).  

For comparison, mosaicism for CNVs detected in DNA from blood samples in children with 

developmental delay and/or multiple congenital anomalies has been reported with 

prevalences of 0.5-3.74% (86).  

In our studies, an obvious disadvantage is the low number of patients overall and in separate 

diagnostic groups, a result of the difficulty to collect tissue samples from surgical procedures. 

Ethical restrictions to our study allowed collection of discarded material only, and this has 

limited the number of surgical procedures where collection was permitted and also the 

possibility to choose a common source of material. When studying mosaicism, there is a great 

uncertainty as to which tissue to study and conclusions must be drawn accordingly, so that in 

our studies, we could only hope to detect mosaicism present in the whole malformation or 

organ, but not restricted to specific regions. This presumably could exclude aberrations that 

have occurred later during development in more differentiated cells that would affect a 

specific region. In heart development, the difficulty of choosing the appropriate tissue is 

complicated by the hemodynamic effect on heart development so that an initial primary 

abnormally developing structure that affects blood flow can result in secondary 

malformations that may be more prominent (131). 

The resolution of the microarray platform, both regarding size of aberrations and level of 

mosaicism, is important and the 30-50 kb resolution of the 180K oligonucleotide platform 

used in our studies precludes detection of small CNVs. In general oligonucleotide 

microarrays, with minimal mosaicism detection rates around 10-20%, are less sensitive 

compared to SNP arrays and possibly also BAC arrays in detecting low-level mosaicism 

(132, 133). The application of mosaicism filters in the CNV algorithm that we used 

corresponds to a mosaicism level of 15% combined with a size of 5 Mb, although visual 

inspection for smaller aberrations with log2-ratios indicating mosaicism was performed. It is 
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however possible that small aberrations present in <15% of cells have not been detected.  

Somatic CNVs present in more than one tissue (heart, kidney and skin) have been reported in 

a deceased individual without malformations (79), and since CNVs in tissue from congenital 

malformations have not systematically been studied before, we chose to include patients with 

syndromic CHD, and it is possible that this has lowered our chances of finding pathogenic 

mosaicism. 

4.2.1 Aspects of mosaicism 

Different aspects of mosaicism can be highlighted with examples from our studies, for 

example parental mosaicism and inheritance, mechanism of formation, phenotypes and 

prognosis associated with the genotype. 

4.2.1.1 Genotype-phenotype correlations in mosaic disorders 

A known difficulty of genetic counselling in mosaic disorders is the varying phenotype 

associated with mosaic forms of chromosomal aberrations, and this is exemplified by the 

patient described in study I. The underlying explanation is likely the variation of timing for 

the occurrence of the mutation, the cell type affected and the phenotypic effects of the 

aberration on the cell type that will influence distribution and effects of the aberration. In the 

patient of study I, analysis of several different tissues as well as different techniques was used 

to determine the proportion of the trisomic cell population. The patient had a very mild 

phenotype compared to other patients with trisomy 14 mosaicism, despite a detected 

proportion of trisomic cells of up to 30%. Also, it seems that the clinical phenotype in 

trisomy 14 mosaicism is unrelated to the level of mosaicism detected in blood (134). The 

explanation may be a low proportion of trisomic cells in the CNS, or in cell populations 

important during the development of CNS, but this explanation is difficult to prove.  

4.2.1.2 Update of prognosis for non-mosaic chromosomal aberrations 

Several conditions are described in the literature as non-compatible with survival in non-

mosic form, for example trisomy 8, 9, 14, 17 and 22 (135), while constitutional trisomies for 

chromosomes 13, 18, 21 and X can be seen in live-born babies, but with drastically reduced 

survival for trisomy 13 and 18 (90% are reported to die within the first year of life from 

cardiac, renal or neurological complications, or in trisomy 18 from infections). The tendency 

to surgical treatment in this patient category has been restrictive since it has been reported 

that survival is not improved by surgery (136, 137).  

In the patient described in study II, partial tetrasomy 14 was detected. The patient is severely 

affected with multiple malformations, hearing and visual impairment, global developmental 

delay and severe reactions to respiratory tract infections which have required intensive care 

treatment and tracheostomy. Since all previously reported patients with non-mosaic forms of 

the condition have been lethal during infancy, the parents were counselled accordingly. 

Analysis using array CGH, chromosome and FISH analysis did not give evidence of 

mosaicism in this patient. In chromosome analysis, 25 metaphases each from cultured 

peripheral blood lymphocytes and fibroblasts were analyzed, which can exclude mosaicism at 
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the 12% level with 95% confidence in both tissues separately (138). In addition, 100 

interphases from peripheral blood lymphocytes were analyzed without evidence of 

mosaicism. It is still possible that a low-level mosaicism is present, or that a tissue-specific 

pattern for the marker chromosome with lower levels in specific tissue not analyzed by us is 

present. Still, this is the first patient with apparent non-mosaic tetrasomy 14 and long-time 

survival, likely reflecting advances in pediatric intensive care treatment during the last 

decades.  

In light of these advances, it is important to reevaluate survival of patients severely affected 

by chromosomal aberrations, since prognosis is likely based on data accumulated during 

times when surgical techniques and intensive care were less developed. A recent study of the 

effects of surgical treatment of congenital heart malformations in patients with trisomy 13 

and 18 show increased survival in these patients compared to patients who received expectant 

management. The study has limitations such as short follow-up time and a possible bias for 

patients with less severe phenotypes undergoing treatment, but if a subset of patients can 

benefit from surgical repair, it is still important to take into account in determining treatment 

strategies for these patients (139). 

4.2.1.3 Formation of mosaic partial tetrasomy 15 

In study V, an unusual structural variant of the inv dup(15) syndrome was identified in 

patient P24(V), equalling partial tetrasomy 15 in 82% of peripheral blood cells. The cell 

populations harbouring the tetrasomy 15 showed two different alternative rearrangements 

with the extra material located to 15p or a marker chromosome, respectively. In a subset of 

cells, the extra material was lost. From the existing information it is still possible to suggest 

that the most frequent disomic cell population with extra material on 15p was the original one 

and that instability of the arrangement has resulted in formation of a ring chromosome and 

subsequent loss of the ring in a subset of cells. Formation of the more common inv dup(15) is 

described as the result of a U-type exchange mechanism in maternal meiosis (140). The U-

type exchange mechanism cannot alone explain the rearrangement in the patient, and it is 

possible that an initially formed isodicentric marker underwent a subsequent rearrangement 

including non-homologous end-joining of the isodicentric marker and 15p to result in the 

observed karyotype. A similar mechanism has been described to explain the occurrence of 

translocations of 15q, believed to be the reciprocal products of the inv dup(15) chromosome 

(141). Further determination of the mechanism in patient P24(V) is dependent on 

microsatellite marker analysis in parents and proband.  

4.2.1.4 Parental mosaicism 

A 0.40 Mb deletion on 7p21.3 detected in patient P5(IV), a boy who was born with 

transposition of the great arteries and severe hypospadias, was found to be inherited from a 

mother who was reportedly healthy. Parental analysis was performed in an array CGH 

analysis using DNA from buccal cells, and hybridization of maternal against paternal DNA. 

Visual examination of the array result for the parents revealed a mean log2-ratio of -0.16 for 
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the region deleted in the patient, indicative of mosaicism in the mother. Analysis of meta- and 

interphase chromosomes (15 and 332 cells analyzed, respectively) from peripheral blood of 

the patient’s mother showed the deletion to be present in a mosaic state in 16% of 

lymphocytes while analysis in a healthy brother of the patient revealed a normal pattern. The 

inheritance pattern indicates that the CNV could be pathogenic, although further studies need 

to clarify this. The recurrence risk cannot be estimated, both due to the unclear significance of 

the deletion and also due to the limitations to investigating the proportion of oocytes carrying 

the deletion. The family was counselled that they are likely to have an increased risk of 

having an affected child in future pregnancies, and that intensified ultrasound investigations 

are indicated, but presently we may not offer prenatal testing due to the unclear nature of the 

CNV.  

Recently, low-level somatic mosaicism for genetic aberrations in parents was reported to be 

the cause of constitutional genetic syndromes in their offspring (87, 98). This is an important 

discovery since the recurrence rate would be estimated to be considerably higher than if the 

aberrations had occurred de novo, possibly as high as 50% (7). Genetic counselling will be 

difficult if pathogenicity can not be determined for the variant, since a high recurrence risk 

cannot be excluded, but prenatal diagnosis cannot be offered to the family. 

In this case, the deletion interrupts two genes, THSD7A and PHF14, removing the last 19 

exons of THSD7A and the last exon of one splice variant of PHF14. THSD7A encodes a 

protein that has been shown to be important in endothelial cell migrations in zebrafish 

angiogenesis (142) while PHF14 is likely involved in chromatin-mediated transcriptional 

regulation (143). Further studies of this region are needed to determine a potential role in 

development of congenital malformations. 

4.2.2 Chimerism 

To learn more about genetic mechanisms behind malformations, we wanted to specifically 

investigate the mechanism behind the unusual gene dose alterations found in clinical 

investigations of individuals with congenital malformations. In a boy with disorder of sex 

development, mild skin manifestations and normal psychomotor development, chromosome 

analysis revealed a 46,XX/47,XY,+14 karyotype. The parental contributions to genetically 

distinct cell populations in an individual can be determined using microsatellite marker 

analysis and results in this patient revealed chimerism as an underlying cause. Although 

chimerism is not necessarily a cause of phenotypic abnormalities, and is sometimes 

discovered by chance when results of blood group analysis are ambiguous, some types of 

chimerism may result in abnormalities. When the sex chromosome content of two cell 

populations is discordant, varying degrees of disorder of sex development may result, 

although phenotypes can be normal. A second disease-causing mechanism is when one of the 

cell populations shows uniparental disomy (144), leading to imprinting disorders in a varying 

degree in the case of a maternal isodisomic clone, and placental mesenchymal dysplasia in 

case of a paternal clone. The identification of chimerism also provides a unique possibility to 

discover mechanisms involved in human fertilization and the first part of embryogenesis. 
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4.2.3 Summary 

Our studies do not provide evidence for tissue-specific mosaicism as a common cause in 

congenital malformations, however, the sample-size and heterogeneous diagnoses would only 

allow detection if mosaicism was a frequent underlying cause. It is still possible that tissue-

specific mosaicism for CNVs or other types of genetic aberrations are causative, and will be 

detected in future studies using other techniques. The finding of parental mosaicism for a 

putative pathogenic CNV also points to the importance of detecting genetic mosaicism in 

parents, to improve recurrence risk estimations and genetic counselling. 

4.3 CAUSES OF VACTERL ASSOCIATION (STUDY III) 

4.3.1 Copy number variants  

The proportion of pathogenic CNVs identified in patients with VACTERL association was 

5%, which is considerably lower than in syndromic patients from studies IV and V (20%), 

although comparisons are not statistically significant. The finding of a lower proportion of 

pathogenic findings in patients with VACTERL association (study III) compared to patients 

with malformations that were not included based on a VACTERL diagnosis (although some 

patients fulfil VACTERL criteria in studies IV and V), may still support the finding in study 

III and other reports that copy number variants are not common causes behind VACTERL 

association, even compared to patients with multiple malformations. The proportion of 

causative gene dose alterations is similar to the result reported in a study of the same size by 

Hilger et al. who reported 6% causative de novo CNVs (145). With a number of published 

microarray studies, it seems that CNVs are causative in a small subset of patients with 

VACTERL association; however, these singular cases are still important for implications of 

genes and pathways involved in pathogenesis (146-148). It is still possible that small CNVs, 

not detected by current microarray platforms, are important. Notably, analysis in the 19 fetal 

cases included was performed on DNA isolated from tissue samples (lung, spleen, heart or 

liver). It is possible, but not likely, that pathogenic copy number variants could be restricted 

to blood cells or other tissues not sampled.  

It seems that copy number variants can explain a small proportion of cases in the patient 

group, but points to other possible causes of VACTERL that have not been identified yet. 

4.3.2 Single gene defects 

Mutation screening in CHD7, PCSK5 and HOXD13 revealed a pathogenic mutation in CHD7 

in one patient. The de novo CHD7 mutation was identified in a patient with a VACTERL-like 

phenotype, establishing a diagnosis of CHARGE syndrome. The phenotypic overlap between 

VACTERL and CHARGE include esophageal atresia, cardiac defects, anal atresia, renal and 

limb anomalies and our result emphasizes the importance of differential diagnosis in patients 

with these phenotypes.  

The search for a common genetic cause in VACTERL association is often compared to the 

search for and identification of a causative gene in patients with CHARGE syndrome, since 
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CHARGE also occurs sporadically and was shown to be caused by de novo mutations. An 

important difference between the VACTERL and CHARGE phenotypes is that patients with 

CHARGE syndrome have a cognitive impairment which likely results in a low reproduction 

rate in these patients. In contrast neurodevelopmental phenotypes are not seen in patients with 

VACTERL association, and a historically low rate of reproduction is likely due to the 

severity of malformations, especially ARM. With improvement of surgical treatment, it is 

possible that patients with VACTERL association will be more reproductively active and that 

a different recurrence risk could be observed in the future. 

Screening for mutations in PCSK5 revealed three rare missense variants, with genotype 

frequencies in dbSNP of 0.03-2.8%, respectively. The variant with the lowest frequency 

affected a highly conserved Cys residue, resulting in a Cys→Tyr amino acid change, possibly 

disrupting a disulphide bond. The frequency reported is too high to represent a penetrant 

mutation, but could represent a variant with reduced penetrance. The way in which PCSK5 

mutations are believed to cause a VACTERL phenotype is through reduced cleavage of one 

of its’ target proteins, GDF11, which has been shown to participate in regulation of HOX 

genes, long regarded as candidate genes for VACTERL association (74). 

So far, it seems that single gene defects represent causative factors in a subset of VACTERL 

patients. Massive parallel sequencing has not provided a common cause, as in many other 

congenital disorders, although new recessive mutations in TRAP1 were recently reported to 

be present in 2/300 patients with VACTERL association including kidney abnormalities (149, 

150), and so far no VACTERL exome sequencing studies have reported a high proportion of 

de novo mutations. 

4.3.3 Patient selection 

Since VACTERL association is a rare disorder with relatively few genetic findings, we chose 

to include both patients (12) and fetal cases (19) fulfilling diagnostic criteria and patients with 

esophageal atresia and at least one additional malformation in the VACTERL spectrum, not 

fulfilling diagnostic criteria (8), to increase the study group and increase the likelihood of 

finding CNVs with potential candidate genes that could point to specific pathways important 

in development of the malformations seen in VACTERL.  

It is interesting that both pathogenic gene dose alterations and all variants detected in PCSK5 

were identified in fetal cases. All of the included fetal cases, except one, were aborted after 

detection of fetal abnormalities at ultrasound screening, and thus were not spontaneous 

abortions. It may be the case that the fetal phenotypes that are diagnosed with ultrasound are 

more severe compared to the patient phenotypes in our study, and therefore have a higher 

degree of genetic findings, but due to the over-all low frequency of findings this remains 

unclear.  

Inclusion of fetal cases where the neurological phenotype cannot fully be evaluated may 

result in inclusion of cases that, in a postnatal setting, would not have been diagnosed with 

VACTERL because of developmental delay, and this may decrease the likelihood of finding 
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true VACTERL causes in the patients in our study. It is also possible that the patients not 

fulfilling VACTERL criteria in our study would be less likely to have genetic aberrations, 

and that inclusion of these patients lower the expected diagnostic proportion. In our case, the 

inclusion of fetal cases and patients not fulfilling VACTERL criteria makes the results less 

suitable to generalize in terms of frequency, and can be regarded more as a search for 

candidate genes. Given the high number of included fetal cases fulfilling VACTERL criteria 

and pathogenic findings in 11% of these (2/19), one conclusion that may be drawn is that 

genetic analysis in fetal cases are important. 

4.3.4 Summary 

Systematic studies, including our own, have so far not revealed causative single gene defects, 

copy number variants or chromosomal aberrations in a large number of patients. Some 

pathways involved in development of mesodermal structures and mesodermal processes are 

implicated by several studies (14). Because of the intricate signalling network involved in the 

embryologic pattern formation and organogenesis, it is possible that de novo mutations in 

different genes involved in the same network may be responsible, or that oligogenic influence 

is of importance. A theory that should be systematically tested is the role of epigenetic factors 

in VACTERL association. It is also possible that whole genome sequencing will reveal 

mutations. 
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5 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

In 2008, when we set out to study copy number variants and mosaicism, array CGH had 

relatively recently been introduced as a method used in routine clinical genetic diagnostics, 

and most cases of mosaicism had been diagnosed in the form of aneuploidy by chromosome 

analysis, although examples of mosaic single gene defects were known. During the course of 

these years the technical development has allowed introduction of exome, genome and 

transcriptome sequencing, which can identify the majority of single nucleotide variants and 

structural rearrangements found in a human genome in one single reaction, and in addition 

has the ability to detect mosaicism down to the level of 1% (151). During the next few years, 

massive parallel sequencing will successively replace array CGH as a screening method in 

patients with developmental disease and congenital malformations in research and clinical 

practice. 

We have, along with other research groups, studied the occurrence of pathogenic copy 

number variants in patients with different types of malformations, and the results indicate that 

copy number variants likely represent important and fully penetrant causes in a subset of 

patients, but do not explain the great proportion of isolated or syndromic cases. The 

characterization of inherited copy number variants and determination of their role in genetic 

disease is ongoing and will likely continue. Similarly for single gene defects, the contribution 

of de novo and inherited mutations in congenital malformations will be further investigated 

using massive parallel sequencing. Because of the great number of genes involved in human 

development, the number of possible target genes for mutations is very large and it is possible 

that de novo single gene or copy number mutations, alone or in combination with other 

genetic variants, in a multitude of different target genes are causative. It has been shown that 

aneuploidy is very common in cleavage stage embryos, possibly due to a lower degree of cell 

cycle control, and perhaps single gene mutations are also introduced at this stage. In 

developmental disease, the importance of regulation of gene expression has come more into 

focus and in heart malformations, chromatin regulation has been proposed to provide a new 

important “pathway“ where genetic events can result in disease (152). Since signalling 

networks active during embryonic development are often involved in development of many 

organs, it is likely that they may provide explanations also in other diseases. 

We have investigated if mosaicism for genetic aberrations detected in the malformed tissue 

could be an overlooked cause of malformations. Based on the results of our and other studies, 

mosaicism for different types of aberrations seems more widespread than previously known, 

and is likely to have important roles in many types of disease, although we could not show 

that mosaic copy number changes in malformed organs are common. It is likely that 

underlying mosaicism and chimerism will be encountered more often with new methods that 

can detect very low levels of distinct cell populations and methods that allow genome-wide 

analysis of single cells will contribute to increased knowledge about mechanisms or chain of 

events that lead to mosaic genotypes and phenotypes. 
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In VACTERL association, it seems that a common cause will not be found. It is likely that 

the phenotype can be the result of several different mechanisms that affect mainly 

mesodermal structures. Since large scale sequencing has so far not provided the solution, it is 

possible that the answer is not in the coding sequence. Deregulation of developmentally 

important genes could be involved, either through mutations or rearrangements of regulatory 

units, mutations in non-coding RNAs or through changes in chromatin regulation by genetic 

or environmental influences. Studying altered gene expression in fetuses with diabetic 

mothers in animal models could provide insight into deregulated pathways. Also, the finding 

of a single umbilical artery in a subset of patients with VACTERL association may be a 

somewhat overlooked feature that could provide a clue as to the pathogenic processes that are 

involved (68, 153). 

The knowledge about genomic structure and genetic variation increases continuously, and is 

becoming increasingly complex. It seems that the genetic background in an individual, all the 

different nucleotide variants, microsatellites and copy number variants provide an important 

explanation, but not a solution, to the varying phenotypes seen in the majority of genetic 

disorders. The interplay between this background of variants with varying penetrance in 

different phenotypes, is likely an important cause of sporadic disease, whether it be 

congenital malformations or later-onset phenotypes. 
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6 SAMMANFATTNING PÅ SVENSKA 

Medfödda missbildningar är en viktig orsak till dödlighet och sjuklighet under tiden kring 

födelsen och identifieras hos ca 4% av alla barn som föds i Sverige. Förbättrade 

behandlingsmöjligheter inom barnkirurgi och intensivvård har lett till ökad överlevnad hos 

många barn, men trots detta kan missbildningar medföra livslånga besvär och behov av 

specialiserad sjukvård för drabbade individer. För familjer där barn har fötts med 

missbildningar är möjligheten att få information om bakomliggande orsak, prognos samt 

återupprepningsrisk vid ny graviditet centrala frågor. Ungefär hälften av alla familjer med 

missbildning i kombination med utvecklingsförsening kan få en förklaring till varför deras 

barn drabbats, och för patienter med enbart missbildning är siffran betydligt lägre. Syftet med 

våra studier har varit att öka kunskapen om bakomliggande orsaker till medfödda 

missbildningar för att kunna erbjuda förbättrad klinisk genetisk diagnostik och rådgivning, 

samt att identifiera gener involverade i normal och avvikande organutveckling. 

Viktiga begrepp i våra studier är copy number variation (CNV) och mosaicism. Man har på 

senare år upptäckt att tillskott (duplikation) eller förlust (deletion) av arvsmassa, så kallad 

copy number variation, förekommer hos friska individer som en del av den normala 

variationen mellan människor men att vissa duplikationer och deletioner också kan påverka 

fosterutveckling och orsaka missbildningar eller utvecklingsstörning. Tidigare har sådana 

avvikelser studerats med mikroskopi av celler i delningsfas, men detta har medfört att man 

endast kunna identifiera stora kromosomavvikelser. Med en nyare teknik, array comparative 

genomic hybridization (array CGH), kan mindre sjukdomsorsakande avvikelser 

(duplikationer och deletioner) påvisas. Tekniken används i klinisk genetisk diagnostik för att 

undersöka individer med utvecklingsförsening och/eller medfödda missbildningar.  

Begreppet mosaicism syftar på att man hos vissa individer upptäckt att den genetiska 

uppsättningen i deras celler skiljer sig åt mellan två eller flera grupper av celler, och sådana 

skillnader uppstått efter befruktningen. Man vet numer att mosaicism sannolikt förekommer 

hos många människor utan att det har någon tydlig effekt, men ibland innehåller en av 

cellgrupperna en genetisk avvikelse som leder till sjukdom hos individen, vilket innebär att 

man vid en genetisk analys kan upptäcka tillståndet. Då mosaicism definitionsmässigt innebär 

att en genetisk avvikelse förekommer i en andel av det totala antalet celler i kroppen medför 

det en oftast en ”utspädning” av sjukdomseffekten. En annan mycket ovanlig bakomliggande 

orsak till missbildningar och genetiskt åtskiljbara cellgrupper hos en människa är chimerism 

vilket innebär att ett embryo uppstått genom sammansmältning av två separat befruktade ägg.  

Vi har studerat enskilda fall samt grupper av patienter med olika typer av medfödda 

missbildningar med microarray-teknik samt ett flertal andra genetiska metoder för att 

undersöka vilken betydelse copy number variation och mosaicism har för uppkomsten av 

olika typer av medfödda missbildningar, samt hur vissa deletioner och duplikationer uppstått. 

Vi har utfört analys på arvsmassa isolerad från celler från missbildad vävnad och jämfört med 

celler från blod hos individer med missbildningar, för att undersöka om genetiska avvikelser 

begränsade till missbildad vävnad, alltså mosaicism, kan vara en orsak till missbildningar.  
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Sammanfattning av resultat från våra studier: 

 med array CGH analys har vi hittat sjukdomsorsakande duplikationer och deletioner 

hos 5-8% av patienter med medfödda missbildningar 

 sjukdomsorsakande duplikationer och deletioner förekommer hos en liten andel av 

patienter med VACTERL association  

 analys för duplikationer och deletioner i vävnad från missbildningar har inte påvisat 

mosaicism för copy number variants 

 resultat från molekylära analyser indikerar att partenogenetisk aktivering av ett ägg är 

den bakomliggande orsaken till chimerism hos en patient med 

könsutvecklingsstörning 

 CHARGE syndrom har påvisats hos en patient med symptom liknande de som ses vid 

tillståndet VACTERL association  

 hos en patient med mosaicism för trisomi 14 (förekomst av en extra kromosom 14) 

har analys av ett flertal olika vävnader visat att den avvikande cellpopulationen 

förekommer i proportioner varierande mellan 0 och 30%.   

 vi har rapporterat överlevnad till skolåldern hos en patient med tillståndet tetrasomi 

14 (förekomst av två extra kopior av en del av kromosom 14) i icke-mosaisk form, ett 

tillstånd som tidigare beskrivits som letalt  

Utifrån resultaten av våra studier kan följande slutsatser dras:  

 prognoser för ovanliga genetiska tillstånd med missbildningar kan behöva omvärderas 

då barnkirurgi och barnintensivvård genomgått stora framsteg 

 CHARGE syndrom är ett tillstånd som symptommässigt liknar VACTERL 

association och som är viktigt att särskilja då det har en känd genetisk orsak 

 vilka symptom en patient med en genetisk avvikelse i mosaisk form får är svårt att 

förutsäga, då det sannolikt beror på hur fördelningen av celler med den genetiska 

avvikelsen sett ut under fosterutvecklingen  

 undersökning av duplikationer och deletioner med känslig metodik är viktigt hos 

patienter med medfödda missbildningar, då upptäckt av sjukdomsorsakande 

avvikelser har mycket stor betydelse för enskilda familjer i form av bättre information 

om orsak, prognos och återupprepningsrisk 

 mosaicism för sjukdomsorsakande deletioner och duplikationer förefaller inte vara en 

vanlig orsak till medfödda missbildningar, dock är antalet undersökta fall så litet att 

man inte kan utesluta detta som en sjukdomsorsak 
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